
Development of a Lunar Rover Simulator with an
Interface for Reinforcement Learning

Assawayut Khunmaturod
School of Electrical Engineering

Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea

assawayut@kaist.ac.kr

Dong Eui Chang
School of Electrical Engineering

Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea

dechang@kaist.ac.kr

Abstract—In this paper, we propose an open-source lunar
rover simulator integrated with a reinforcement learning
framework. We incorporate lunar environmental effects in
our simulator to enhance the rover locomotion realism while
employing PyBullet to simulate the dynamics of a multi-degree-
of-freedom planetary rover. We also extend our lunar rover
simulator to interface with a reinforcement learning framework
using OpenAI Gym environment and a compatible training
workflow. We demonstrate the success of this integration through
an autonomous rover navigation task on the lunar environment
in our simulator using two reinforcement learning algorithms,
DDPG and TD3. The lunar rover simulator is available at
https://github.com/assawayut/LunarRoverSim
and an accompanying video can be accessed at
https://www.youtube.com/watch?v=8HMqAkDbpqI.

Index Terms—Simulation and Animation, Space Robotics and
Automation, Reinforcement Learning

I. INTRODUCTION

In recent years, lunar exploration missions have garnered
significant attention from numerous space agencies and re-
search organizations. These missions typically employ un-
manned ground vehicles (UGVs) or autonomous planetary
rovers to conduct exploration tasks on the lunar surface.
However, due to the significant costs and risks associated with
physical hardware testing, there is a growing need to assess
and validate rovers in a simulated environment. The planetary
rover simulator, in this context, plays a pivotal role in lunar
exploration by providing a preliminary evaluation of rover
performance.

One of the fundamental factors in the rover simulator is
to create a realistic simulated planetary environment that
encompasses physical and visual aspects. Lunar environments,
unlike the Earth environment, often exhibit extreme conditions
that can impact rover locomotion, so they must be addressed in
the simulation. Since rovers must operate and traverse the lunar

This work was in part supported by the CARAI grant funded by
DAPA and ADD (No. UD190031RD), by IITP (No. 2022-0-00469, No.
20210005900012003), by NRF (No. 2021R1A2C2010585) and by BK21
Program.

Fig. 1: Display of planetary rover simulator

surface, their interaction with the terrain, particularly wheel-
terrain interaction, must be accurately modeled and integrated
into the simulator.

Another challenge concerning the rover simulators is the
limited accessibility of well-developed simulators. While sev-
eral comprehensive rover simulators exist, most of them are
not publicly accessible, hindering progress in the field of rover
development. Thus, there is a growing demand for open-source
rover simulators.

Moreover, with the emergence of deep learning (DL), there
is a heightened requirement for simulators that can integrate
with data-driven algorithms. However, generating large-scale
data for DL training involves a trade-off between runtime
and simulation realism. In this regard, most existing rover
simulators, such as [1]–[5], lack a readily available interface
for DL applications. Hence, developing a rover simulator
capable of integrating and being compatible with DL becomes
imperative.

Motivated by the aforementioned facts, we propose an open-
source lunar rover simulator seamlessly integrated with a
reinforcement learning (RL) interface. We develop the sim-
ulator on top of the PyBullet physics simulator, offering high
fidelity in multi-DOF rover dynamics and the contact solver.
We enhance realism by incorporating environmental effects.
Moreover, we establish integration between our simulator and
the RL framework and showcase this integration through an
autonomous rover navigation task using our simulator and
open-source RL algorithm library. Our main contributions are

117979-8-3503-5030-2/24/$31.00 ©2024 IEEE

20
24

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
io

n,
 C

on
tr

ol
 a

nd
 R

ob
ot

ic
s E

ng
in

ee
rin

g
(C

AC
RE

) |
 9

79
-8

-3
50

3-
50

30
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CA
CR

E6
23

62
.2

02
4.

10
63

48
67

as follows:
1) We develop an open-source lunar rover simulator for

lunar missions, where we additionally incorporate and
model the environmental influence on rover locomotion
into our simulator to enhance the degree of realism.

2) We establish the interface between our lunar rover
simulator and the RL framework via OpenAI Gym
environment and an open-source RL workflow. We
demonstrate an example of using RL for an autonomous
rover navigation task in our lunar rover simulator.

The paper is organized as follows. Section II reviews the
related work on existing planetary rover simulators and their
integration with RL. Section III explains the methodology of
the simulators, especially the rover and lunar environment.
Section IV describes simulator and RL interface. Section V
shows an example of using RL for a navigation task in our
simulator. Section VI concludes the paper.

II. RELATED WORK
Designed to support planetary missions, various planetary

rover simulators have been developed by space organizations.
Notably, Rover Analysis, Modeling and Simulation (ROAMS)
[1] was created by Mars Technology Program under NASA’s
supervision, serving as a testbed for Mars rovers. The simula-
tor incorporates mechanical and electrical models of the rover
while also accounting for terrain and the dynamics of wheel-
soil interaction. Another significant advancement is ARTEMIS
simulator [2], designed to evaluate the locomotion of rovers
across diverse soil types, with the interaction model derived
from wheel-soil experiments. Furthermore, to support lunar
missions, NASA developed Lunar Rover Driving Simulator
[3]. Based on open-source Gazebo and ROS (Robotic Op-
erating System), this simulator provides a high-fidelity visual
simulation of lunar terrain and middleware communication for
off-board flight software testing.

MMX Rover simulation [4], developed by DLR, aims to
provide a unified rover simulator to support various planetary
rover experiments, including driving, spacecraft separation,
and up-righting from landing. ESA has developed 3DRover
[5], an end-to-end rover mission and onboard algorithm testing
simulator. However, despite the accuracy of contact interaction
or the high-realistic visual scenarios, these rover simulators
are neither available in public nor accessible free of charge.
MarsSim [6], which aspires to provide high-fidelity physical
and visual aspects to the planetary rover simulator, is intended
to be open-source but has yet to be released.

In terms of RL and rover simulator, OpenAI Gym [7] was
developed to standardize the API interface of RL framework
with the physics simulator. As a result, many rover simulators
have been developed on top of an open-source physics simu-
lator to facilitate the implementation of RL algorithms. Works
such as [8], [9], [10], and [11] utilize Gazebo as a physics
engine simulator, interfacing with OpenAI Gym in order to
train the rover for navigation and grasping tasks. In addition,
the work presented in [12] combines CoppeliaSim and OpenAI
to build an open-source RL rover simulator platform. Since

Gazebo was not primarily developed to interface with OpenAI
Gym, it requires ROS as communication middleware, and
CoppeliaSim currently requires a license. All of these highlight
the need for unified open-source codes and RL integration of
the planetary rover simulator.

III. SIMULATOR METHODOLOGY

This section outlines the methodology employed in con-
structing our lunar rover simulator utilizing PyBullet physics
engine. The GUI interface of the simulator is depicted in
Figure 1, and the overall workflow is depicted in Figure 2.

A. PyBullet

We use PyBullet [13] for the rover simulator based on
several key considerations. Firstly, the open-source nature of
PyBullet facilitates broader accessibility within the research
and development community. Secondly, accurate modeling of
rover-terrain interaction, including precise contact dynamics
between rigid and deformable bodies, is essential for the sim-
ulation, which is an aspect where PyBullet outperforms other
considered simulators [14]. Furthermore, PyBullet supports
various robot model formats, such as URDF, SDF, and MJCF,
enhancing flexibility for incorporating diverse models.

B. Rover Model

Our rover models are based on two well-established lunar
rovers, LUVMI-X [15] and VIPER [16], as depicted in Fig-
ure 4a and 4b respectively. Both share an identical mechanical
structure comprising twelve actuated joints, including four
actuators mounted on each wheel for speed control, four
revolute steering joints for steering control, and four revolute
suspension joints for active suspension control. To incorporate
these models into the simulator, we first design these models
on CAD drawing software. Then, we export URDF files, up-
load them to the simulator, and fine-tune the joint parameters
to achieve rover stability.

It should be noted, however, that the VIPER rover model
encompasses a closed-loop mechanism within its suspension
link, following a four-bar linkage structure. The standard
URDF format does not inherently support this structure. Con-
sequently, one additional constraint in the suspension link is
imposed in the simulator.

C. The Moon Environment

To enhance the realism and fidelity of rover operations in
our simulator, we model various environmental factors on the
moon. These factors include gravity, temperature, terrain, and
wheel-soil interaction.

1) Gravity: The gravitational acceleration on the lunar
surface is approximately 1.625m/s2. The value of gravity can
be adjusted directly through PyBullet API.

118

Fig. 2: Overall workflow of lunar rover simulator

2) Temperature Effect: Due to the absence of an atmo-
sphere, the lunar surface experiences a wide range of tem-
perature, oscillating between values of −173°C to 127°C.
These ambient temperature variations significantly impact the
physical characteristics of the motor, particularly the winding
resistance and torque constant. As a result, these parameters
have a direct impact on the generated motor torque, which in
turn affects the overall locomotion of the rover.

To incorporate the temperature effect, we assume that the
electric heat loss dominates over the frictional loss. Then,
we divide the motor into the rotor and stator. The thermal
equilibrium equation of the rotor is

Pvdt− TR − TS

Rth1
dt− CRdTR = 0, (1)

where Pv = I2R is the internal loss with I denoting the
applied current to the motor and R the internal electrical
resistance of rotor (winding resistance), TR and TS are the
temperature of rotor and stator respectively, Rth1 is the thermal
resistance of the rotor, and CR is the thermal capacity of rotor.
Rearranging (1), we obtain the dynamics of rotor temperature
as

ṪR =
1

CR

(
Pv −

TR − TS

Rth1

)
. (2)

Similarly, for the stator temperature, we have

ṪS =
1

CS

(
TA − TS

Rth2

)
, (3)

where TA is the ambient temperature, which is a parameter to
be defined in the simulator, Rth2 is the thermal resistance of
the stator, and CS is the thermal capacity of stator.

In the simulation loop, the rotor temperature and stator
temperature are updated through Euler integration with their
respective dynamics in (2) and (3) as

TR(k) = TR(k − 1) + ṪR(k)dt, (4)

TS(k) = TS(k − 1) + ṪS(k)dt, (5)

where k−1 and k denote the state at the previous and current
time step respectively, and dt is the simulation time step.
Following the temperature updates in (4) and (5) for each
motor, we calculate the changes in winding resistance R and
torque constant for each motor K as

R = R0 (1 + α (TR − TR0)) , (6)
K = K0 (1 + β (TR − TR0)) , (7)

where TR0 = 25°C, R0 is the winding resistance at TR0,
α is temperature coefficient of rotor materials, K0 is the
torque constant at TR0, and β is the temperature coefficient of
permanent magnet used.

The updated torque constant K in (7) is used to establish the
new relationship between applied current and produced torque
from the motor, which will be explained in Section III-D3.

We demonstrate the effect of motor temperature on the
actual applied torque by constantly applying a 15-Nm desired
torque to all four driving motors, enabling the rover to traverse
in a straight path on the terrain. Figure 3 shows the increase
in motor temperature and the difference between the desired
torque and the actual applied torque to the motor, where
the actual torque decreases over time. Moreover, after the
temperature reaches 150°C, which is set as the maximum
operating temperature threshold, the actual applied torque
instantly drops to zero.

3) Terrain: We aim to incorporate actual lunar terrain
surfaces into our rover simulator. While PyBullet supports 3D

119

Fig. 3: Time evolution of the motor temperature (blue line), the actual torque
applied to the motor (black line), and the desired torque (dash line)

(a) (b)

(c) (d)

Fig. 4: (Top) Rovers in the simulator with (a) LUVMI-X model and (b) VIPER
model. (Bottom) (c) 2D elevation map of de Gerlache rim and (d) generated
3D mesh with 1/100 scale

meshes as multibodies, obtaining 3D meshes of actual lunar
terrain poses challenges due to their limited availability and the
significant time required for manual creation using commercial
3D modeling software, which could lead to accuracy issues. To
address these challenges, we instead acquire the free resources
of 2D elevation maps of lunar surface provided by NASA,
which are accessible with high resolution. Employing the
technique and open-source software in [17], [18], [19], we
generate 3D meshes directly from these 2D elevation maps.

As illustrated in Figure 4, we present an instance of 3D
mesh in the simulator representing de Gerlcahe rim (Site 11),
located at the south pole of the moon. In fact, a 2D elevation
map (Figure 4c) was obtained from [20], and its corresponding
3D mesh (Figure 4d) was generated with [19].

4) Wheel-Soil Interaction: As the rover traverses the ter-
rain, comprising hard rock and soft soil, it encounters complex
terramechanics interactions at its wheels, which significantly
impact its locomotion. Consequently, the integration of a
terramechanics model into the simulator becomes essential.
Following the approach presented in [21], we categorize the

terrain into the two distinct types; hard rock and soft soil.
In the case of wheel-rock interaction, the dominant ter-

ramechanics model involves friction at each wheel, which is
governed by

f = µFN ,

where µ is the friction coefficient, and FN is the normal
force. PyBullet API enables direct specification of the friction
coefficient for the terrain.

In the case of the wheel-soft soil interaction, we simplify
the calculation of normal force at each wheel by employing
the compliance system [22] expressed as

FN = kNzw + cN żw,

where kN is the contact stiffness of terrain, cN is the con-
tact damping of terrain, and zw and żw are the sinkage
displacement and sinkage velocity of wheel respectively. It
is noteworthy that the contact stiffness and contact damping
can be adjusted through terrain parameters in PyBullet API,
and the corresponding wheel sinkage displacement zw will be
calculated. Then, we calculate the slip ratio s and the slip
angle β of each wheel by

s =

{
(rω − vx) / (rω) , rω > vx

(rω − vx) /vx, rω < vx
, (8)

β = sign (vy) arccos
(
vx/

√
v2x + v2y

)
, (9)

where r is the wheel radius, vx and vy are the traversing
velocity and lateral velocity of the wheel respectively, and ω
is the angular velocity of the wheel. Subsequently, under the
assumption of small exit angle, the entrance angle θ1 and the
angle of maximum stress θm can be defined as

θ1 = arccos

(
r − zw

r

)
, θm = 0.5θ1.

Additionally, the maximum normal stress σm and the max-
imum shearing stress τm are defined as

σm = (kc/b+ kϕ) [r (cos θm − cos θ1)]
n,

τm = (c+ σm tanϕ)
(
1− e−j/Ks

)
,

where kc and kϕ are the pressure sinkage moduli for cohe-
sion stress and internal friction angle respectively, c is the
soil cohesion, ϕ is the internal friction angle, Ks is the
shearing deformation modulus, n is exponent sinkage, and
j is shearing displacement defined as j = rs (θ1 − θm) −
(1− s) (sin θ1 − sin θm), where rs is the shearing radius of
wheel assumed as rs ≈ r in this work, and s is defined in (8)

Finally, as proposed in [21], the analytical models of draw-
bar pull force FDP , lateral force FS , resistance moment MR,

120

Fig. 5: (Top) The trajectory of rover on the hard soil (Bottom) The trajectory
of rover on the soft soil

overturn moment MO, and steering resistance moment MS

can be expressed as

FDP = rbτmA− rsbσmB, (10)

FS = rsbτmθm(1− e−r(1−s)(θm) tan β/Ky), (11)

MR = r2sbτmθm, (12)
MO = FSr, (13)
MS = FS sin θmr + FDP bθs/8π, (14)

where

A =
2 cos θm − cos 2θm − 1

θm
, B =

2 sin θm − sin 2θm
θm

,

b is the width of wheel, β is defined in (9), and Ky is the
lateral shear deformation modulus.

During simulation steps, the derived interaction forces and
torques given in (10) - (14) are applied to the center of each
wheel on the rover.

We demonstrate the effect of wheel-soil interaction by
applying a constant 15-Nm torque to all driving motors and
having the rover traverse two soil types: hard soil and soft
soil. Figure 5 shows the trajectory of the rover in both cases.
While the rover can traverse in a straight line on hard soil,
its locomotion changes in the case of soft soil due to the
interaction forces and torques applied to the wheels of the
rover.

D. Control Input

The rover can be controlled in the simulator by passing the
desired control inputs to the joints. PyBullet supports control
values in the form of position, velocity, and torque. Consid-
ering the effects of lunar environment on the motor, which

may modify the current-torque relationship, we introduce the
electric current as an additional virtual control input. The
control input takes the form

Ui = (usus,i, usteer,i, udrive,i),

where sus represents the suspension joint, steer represents the
steering joint, drive represents the driving joint, i represents
the side of the rover (left front, right front, left rear, right rear),
and u represents types of control input.

1) Position and Velocity Input: In the simulator, the position
and velocity control mode aims to minimize the constraint
error between the desired and actual values of the position
and velocity of rover. This control mode employs proportional-
derivative (PD) control for position and P control for velocity.

2) Torque Input: The torque input mode directly applies
the desired torque to the joint motors. This approach allows
for more direct manipulation of the locomotion of rover, and
the torque dynamics will be tailored based on the specific joint
dynamics parameters obtained from URDF.

3) Electric Current Input: For a realistic rover locomotion
behavior in the lunar environment, it is essential to incorporate
the electric current as virtual control input. Through motor
system identification, the relationship between applied electric
current and resulting torque can be determined as

τ = KI, (15)

where I is the applied current, K is the torque constant of
motor given in (7), and τ is the corresponding torque. Given
the values of applied electric current and torque constant of
the motor, the torque applied to the joints of rover is derived
from (15). Moreover, if the temperature effect discussed in
Section III-C2 is considered, the resulting applied torque can
be calculated as

τ
′
=

K
′

K
τ, (16)

where K
′

is the new torque constant calculated from (7) and
τ

′
is the new torque input.

E. State

After control inputs are applied, the simulator physics
is updated based on Bullet engine. PyBullet API returns
the states of the rover, which includes the position vector
p = (px, py, pz), the quaternion orientation vector q =
(qw, qx, qy, qz) that can be transformed into the Euler angles
of orientation η = (Φ,Θ,Ψ), the linear velocity vector v =
(vx, vy, vz), and the angular velocity vector ω = (ωx, ωy, ωz)
of the rover. All of these are expressed in the fixed inertial
frame. Furthermore, to allow the low-level control of each
motor joint, it is necessary to include the angular position and
velocity of each actuated joint i.e. pi and ωi for i = 1, 2, ..., 12
in the state vector.

In addition to the state of rover, it is possible to obtain
the rendered images representing diverse simulation scenarios
from arbitrary camera viewpoints. The camera configuration
is governed by both the view matrix and the projection matrix.

121

In the rover simulator, these matrices are computed to emulate
image capture from a fixed front-mounted camera on the
rover. Furthermore, three distinct image matrices are derived in
this context: RGB image matrix CRGB ∈ R320×240×4; depth
image matrix Cdepth ∈ R320×240; and segmentation image
matrix Csegment ∈ R320×240. It is worth noting that, since
the computation of these matrices are expensive, the camera
sensors are designed to operate at a lower rate compared to
the simulation frequency.

IV. REINFORCEMENT LEARNING INTERFACE

One advantage of PyBullet over other simulation platforms
is its ability to perform all actions within a single dynamics
step and to subsequently provide the corresponding states [23],
making it compatible with RL integration. In our rover
simulator, we establish an interface to align the simulator
with OpenAI Gym environment class and combine it with
workflows in open-source RL libraries that are compatible with
Gym class.

OpenAI Gym is an open-source Python library designed
to support and standardize the development of RL method-
ologies. Following the classic agent-environment paradigm,
OpenAI Gym provides an API that bridges learning algorithms
and the environment spaces.

In the context of our rover simulator, the control inputs
(action), defined in Section III-D, are passed to the joints
of the rover, defined in Section III-B. Subsequently, Py-
Bullet resolves the forward and collision dynamics of the
rover and other multibodies in the simulation environment,
defined in Section III-C, and returns the resulting states of the
rover (observation), defined in Section III-E, along with the
corresponding reward value. This agent-environment loop is
wrapped as a Gym class.

We rely on Stable Baselines3 (SB3) library [24], an open-
source repository of RL algorithms based on PyTorch, for the
training workflow due to its compatibility with Gym’s wrapped
environment. Notably, SB3 contains the implementable RL
algorithms, including PPO, DDPG, SAC, and TD3, and also
a comprehensive RL training workflow.

V. EXAMPLE DEMONSTRATION

This section presents our approach to training the rover for
autonomous navigation in the lunar environment using RL
algorithms. The objective for the rover is to traverse across
the lunar terrain to reach a predefined destination.

For the observation space, assuming that the goal position
pg = (pg,x, pg,y) is observable to the rover, we augment the
observation space with the goal position. Additionally, we
want to reduce the vibration effect during traversing, which
implies a reduction in the vertical linear acceleration of the
rover. However, PyBullet, by default, does not provide linear
acceleration as direct feedback. To overcome this, we use
Kalman filters to estimate the linear acceleration. Following
the standard Kalman filter algorithm with the state vector
X = (p,v, â) ∈ R3 × R3 × R3, where â is the estimated
linear acceleration, and measurement vector Y = HX with

measurement matrix H = [I6×6 06×3], the estimated linear
acceleration of rover can be calculated. Thus, the observation
space can be denoted as

A = (p, η,v, ω, â,pg) ∈ R3 × R3 × R3 × R3 × R3 × R2.

For the action space, to simplify the control method, we
model the motion of rover as that of a differential drive robot,
treating 4 driving motors as a single actuator for linear motion
and 2 front steering motors as actuators for angular motion.
The control policies for 4 suspension motors are also learned
independently to enable adaptive response to rough terrain. As
a result, the action space can be denoted as

U = (τdrive, τsteer, τsus,1, τsus,2, τsus,3, τsus,4) ∈ R6.

To accomplish the navigation task, we define a reward function
as

r = 20rprog + 0.1rhead + 0.05rtilt + 0.1rexcite +G+ V,

where the components of reward function are described as
follows:

• rprog = ∥Pk,g − Pk−1,g∥ represents the progress made
by the rover towards the goal position, where Pk,g and
Pk−1,g indicate the vectors from rover to goal position
at the current and previous time steps respectively.

• rhead =
Pk,g

∥Pk,g∥ · (cos(Ψ), sin(Ψ), 0), where Ψ denotes
yaw angle of rover and a · b denotes the dot product
between vectors a and b, encourages the rover to align
its heading with the goal position.

• rtilt = −|Φ| − |Θ| penalizes excessive roll Φ and pitch
Θ of the rover to promote stable navigation.

• rexcite = −|âz| encourages the rover to maintain a
smooth ride by penalizing excessive vertical acceleration
âz .

• G = 500 is the reward for the rover successfully reaching
the goal position.

• V = −60 is the penalty imposed when undesirable
terminal conditions are met, such as the rover getting
stuck in the pothole or flipping over.

For training, we employ deep deterministic policy gra-
dients (DDPG) and twin delayed DDPG (TD3) algorithms
from SB3, with action noise drawn from Gaussian distri-
bution N(0, 0.3) added to actions. We utilize the default
settings of multi-layer perceptron model in both algorithms
for the training process without further tuning any hyper-
parameters. The training results of both algorithms are de-
picted in Figure 6, showing the average return per episode.
The convergence of return after 400 episodes validate the
success of achieving the navigation task using the integra-
tion of lunar rover simulator and the RL framework. The
RL simulation result can be seen in the video available at
https://www.youtube.com/watch?v=8HMqAkDbpqI.

VI. CONCLUSION

In this paper, we propose an open-source lunar rover sim-
ulator integrated with reinforcement learning framework. The

122

0 200 400 600 800 1000

-100

0

100

200

300

400

500

600

700

800

DDPG

TD3

Fig. 6: Average return per episode of DDPG (solid line) and TD3 (dashed
line) algorithms

simulator incorporates into the lunar environment various fac-
tors that affect the rover locomotion. PyBullet is employed to
integrate the dynamical equations of the rover and provide the
corresponding states of rover. Importantly, we make the sim-
ulator publicly accessible, offering flexibility in various rover
simulation applications. Furthermore, we show the seamless
integration of our rover simulator with reinforcement learning
framework, which is demonstrated through autonomous rover
navigation task on lunar terrain. Beyond lunar missions, we
anticipate that this open-source simulator software will serve
as a tool for upcoming planetary rover missions.

ACKNOWLEDGMENT

The authors thank Kraiphum Kerdthip and Whimin Kim for
the assistance in rover design.

REFERENCES

[1] A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, and
R. Steele, “ROAMS: Planetary surface rover simulation environment,”
Nara, May 2003, nTRS Author Affiliations: NTRS Document ID:
20060028642 NTRS Research Center: Jet Propulsion Laboratory (JPL).

[2] B. P. Trease, R. A. Lindeman, R. E. Arvidson, K. Bennett, L. P.
VanDyke, F. Zhou, K. Iagnemma, and C. Senatore, “Adams-based rover
terramechanics and mobility simulator - ARTEMIS,” Tech. Rep. NPO-
47781, Apr. 2013, nTRS Author Affiliations: California Inst. of Tech.,
Washington Univ., Massachusetts Inst. of Tech. NTRS Document ID:
20130012671 NTRS Research Center: Jet Propulsion Laboratory (JPL).

[3] M. Allan, U. Wong, P. M. Furlong, A. Rogg, S. McMichael, T. Welsh,
I. Chen, S. Peters, B. Gerkey, M. Quigley, M. Shirley, M. Deans, H. Can-
non, and T. Fong, “Planetary rover simulation for lunar exploration
missions,” in 2019 IEEE Aerospace Conference (AERO), Mar. 2019,
pp. 1–19.

[4] F. Buse, A. Pignède, J. Bertrand, S. Goulet, and S. Lagabarre, “MMX
rover simulation - robotic simulations for phobos operations,” in 2022
IEEE Aerospace Conference (AERO), Mar. 2022, pp. 1–14.

[5] P. Poulakis, L. Joudrier, K. Kapellos, and R. Section, “3DROV: A
planetary rover system design, simulation and verification tool,” Feb.
2008.

[6] R. Zhou, W. Feng, L. Ding, H. Yang, H. Gao, G. Liu, and Z. Deng,
“MarsSim: A high-fidelity physical and visual simulation for Mars
rovers,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 59, no. 2, pp. 1879–1892, Apr. 2023.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” Jun. 2016, arXiv:1606.01540
[cs].

[8] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat, “Robot navigation
of environments with unknown rough terrain using deep reinforcement
learning,” in 2018 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR), Aug. 2018, pp. 1–7.

[9] B.-J. Park and H.-J. Chung, “Deep reinforcement learning-based failure-
safe motion planning for a 4-wheeled 2-steering lunar rover,” Aerospace,
vol. 10, p. 219, Feb. 2023.

[10] W. Feng, L. Ding, R. Zhou, C. Xu, H. Yang, H. Gao, G. Liu, and
Z. Deng, “Learning-based end-to-end navigation for planetary rovers
considering non-geometric hazards,” IEEE Robotics and Automation
Letters, vol. 8, no. 7, pp. 4084–4091, Jul. 2023.

[11] A. Orsula, S. Bøgh, M. Olivares-Mendez, and C. Martinez, “Learning to
grasp on the moon from 3D octree observations with deep reinforcement
learning,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2022, pp. 4112–4119.

[12] T. Blum, G. Paillet, M. Laine, and K. Yoshida, “RL STaR platform:
Reinforcement learning for simulation based training of robots,” Sep.
2020, arXiv:2009.09595 [cs].

[13] E. Coumans and Y. Bai, “PyBullet, a python module for physics
simulation for games, robotics and machine learning,” 2016. [Online].
Available: http://pybullet.org

[14] S.-J. Chung and N. Pollard, “Predictable behavior during contact simu-
lation: a comparison of selected physics engines,” Computer Animation
and Virtual Worlds, vol. 27, no. 3-4, pp. 262–270, May 2016.

[15] J. Gancet, D. Urbina, J. Biswas, M. Losekamm, S. Sheridan, A. Evagora,
L. Richter, S. Schroeder, T. Chupin, D. Fodorcan, H.-K. Madakashira,
P. Reiss, S. Barber, N. Murray, G. Fau, K. Kullack, R. Aked, M. Re-
ganaz, S. Kubitza, J. Neumann, and P. Wessels, “LUVMI and LUVMI-
X: Lunar volatiles mobile instrumentation concept and extension,” in
ASTRA 2019 – 15th Symposium on Advanced Space Technologies in
Robotics and Automation, Jan. 2019.

[16] R. Chen, “VIPER Mission Overview,” Feb. 2020. [Online]. Available:
http://www.nasa.gov/viper/overview

[17] M. G. Müller, M. Durner, A. Gawel, W. Stürzl, R. Triebel, and R. Sieg-
wart, “A photorealistic terrain simulation pipeline for unstructured
outdoor environments,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2021, pp. 9765–9772.

[18] M. Fogleman, “hmm,” Jul. 2023, original-date: 2019-08-22T02:42:36Z.
[Online]. Available: https://github.com/fogleman/hmm

[19] H. Technologies, “TIN Terrain,” Eindhoven, the Netherlands, Jul.
2023, original-date: 2018-09-11T11:15:17Z. [Online]. Available:
https://github.com/heremaps/tin-terrain

[20] M. K. Barker, E. Mazarico, G. A. Neumann, D. E. Smith, M. T.
Zuber, and J. W. Head, “Improved LOLA elevation maps for south
pole landing sites: Error estimates and their impact on illumination
conditions,” Planetary and Space Science, vol. 203, p. 105119, Sep.
2021.

[21] H. Yang, L. Ding, H. Gao, Z. Wang, Q. Lan, G. Liu, Z. Liu, W. Li, and
Z. Deng, “High-fidelity dynamic modeling and simulation of planetary
rovers using single-input-multi-output joints with terrain property map-
ping,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 3238–3258,
Oct. 2022.

[22] G. Sohl and A. Jain, “Wheel-Terrain Contact Modeling in the ROAMS
Planetary Rover Simulation.” American Society of Mechanical Engi-
neers Digital Collection, Jun. 2008, pp. 89–97.

[23] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoel-
lig, “Learning to Fly—a gym environment with PyBullet physics for
reinforcement learning of multi-agent quadcopter control,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2021, pp. 7512–7519.

[24] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-Baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

123

