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Abstract—Rollups are a type of blockchain network
that derives state from another blockchain network. These
systems are complex pieces of middleware that provide a
development platform for decentralized applications but
also depend on another blockchain network to function.
They involve a number of components, some of which exe-
cute off-chain (possibly on specialized hardware), and some
of which are implemented via smart contracts. They are
expected to handle millions of dollars in cryptocurrencies
and operate at scale with strong liveness guarantees. These
properties result in a unique set of requirements for these
systems. In this document, we report on the requirements
engineering challenges related to building such a system
from first-hand experience.

Index Terms—blockchain, rollup, requirements engineer-
ing, web3

I. INTRODUCTION

Modern blockchains like Ethereum [1] support so-

called smart contracts. A smart contract is a program

deployed on the blockchain whose functions can be

called via blockchain transactions [2]. Smart contracts

provide the ability to build “decentralized Applications”

(dApps) which use the blockchain as a back-end for logic

and data storage. dApps can hold or implement digital

assets such as Ether or ERC-20 tokens [3].

These smart contracts can also be used to track the

state of another blockchain. The network running the

smart contracts is called the layer one and the network

anchored to these contracts is the layer two [4]. The

smart contracts on the layer one can implement a so-

called bridge [5] between the networks, and if the layer

two state is only considered valid according to some

conditions enforced by the smart contract, the layer two

inherits some security from the layer one. Namely, the

layer two state is only valid if the underlying layer one

accepts it, which is hard to do if the layer one is hard

to fool. This design allows the layer two to execute its

state updates off-chain and periodically post the resulting

state to the layer one. As a result, rollups (a.k.a. commit-
chains [6] or validating bridges [7]) can process more

transactions per second with cheaper fees than their

layer one without completely sacrificing security. A more

complete description of rollups is provided in Section II.

The benefits of rollups have made them popular in

blockchain ecosystems. At the time of writing there are

45 active rollups and 34 more in development according

to the website L2Beat [8] which tracks these systems. As

blockchain systems gain popularity, the amount of layer

two rollups may stabilize, but rollups on rollups (i.e.,

layer three rollups) may become popular. This is in part

because they can provide the benefits of layer two rollups

but for specific state transition functions. In particular,

dApps may choose to implement their own “app chain”

which inherits security and performance from a suitable

layer two, but is tailored to the specific dApp needs; i.e.,

the state transition will be one specific to the dApp. In

such a ecosystem, rollups are likely to be engineered

and re-engineered over and over again. Requirements

Engineering (RE) practices must be in place to guide

this development, just as it is in other specific domains

(e.g., safety-critical molecular programs [9], scientific

computing [10], and artificial intelligence [11], [12]).

In this work, we aim to highlight RE challenges based

on our experience building a rollup (Zircuit [13]). These

challenges arise from their security-critical nature (they

secure millions of dollars of cryptocurrency), their place

in an ecosystem as middleware, the complex domain-

specific languages used for their implementation, their

legal considerations, their reliability considerations, and

their (eventual) decentralized operation. These chal-

lenges arise from both first hand experience in building

a zero-knowledge rollup (see Section II-A) and from

anticipating the future of building and maintaining these

systems.

We aim to answer the following research questions

within this work:

RQ1 What are the unique RE challenges for building a

rollup network?

RQ2 How do rollup RE concerns differ from other web3

projects?

RQ3 What RE lessons are important for the community

around rollups?

Contributions. In answering the research questions

above, we provide two main contributions.

1) We provide an industrial report of RE challenges in

building a zero-knowledge rollup. Our challenges

are mapped to challenges present in existing RE

literature (where possible), and we highlight that
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this domain has unique challenges and develop-

ment processes. These challenges should be over-

come or addressed in future rollup development.

2) We suggest directions for future RE research in

web3 systems. Observing that there is no common

systematic approach to RE practices in web3 sys-

tems despite a need for community driven require-

ments validation in this field, we suggest directions

for additional RE studies. We point out explicit

areas where the existing RE literature fails to

capture the unique concerns for building complex

web3 systems.

This paper is structured as follows. Section II gives a

high level description of rollups and their development

process to provide context for the reader. Section III

outlines the methodology of the work and Section IV

reports on the RE challenges faced while building a

rollup. Section V concludes the paper.

II. PRELIMINARIES

In this section, we provide a concrete description of

blockchain rollups (Section II-A) before outlining the

rollup development process (Section II-B).

A. Rollups

A rollup can be broken down into several compo-

nents1: a sequencer, a state proposer, and an (explicit or

implicit) verifier. A sequencer is responsible for ordering

layer two transactions and committing, via a transaction

to layer one, to a batch of transactions to be executed.

This batch is made up of layer two transactions. A state

proposer executes the transactions in a batch (in the order

provided by the sequencer’s commitment) and computes

new state roots which are written to layer one. Verifiers

in a rollup ensure that state roots are (eventually) correct.

Rollups come in two major types, which may change

the responsibilities of these components: optimistic and

zero-knowledge.

An optimistic rollup is one in which the state pro-

poser is bonded and proposes new state roots. The state

proposer is bonded in the sense that they stake some

funds on layer one that are lost if they post an incorrect

state root. A verifier in an optimistic rollup is an actor

who submits a so-called fraud proof to challenge an

incorrect state root proposed by the state proposer. In

an optimistic rollup, state roots are considered correct

unless a bonded verifier successfully challenges the state

root with a fraud proof within some period of time (e.g.,

seven days). Such a verifier may need to propose an

alternative state root than the one provided by the state

proposer. Often, verifiers are part of the state proposer,

and the combined entities are called validators. A verifier

who successfully challenges the state proposer wins the

1Other work like [14], [7] use different terms for these components,
but each rollup has some component that performs these actions.
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Implement
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Step 3
System
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System
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Feedback, bug fixes, and (layer one) network evolution

Fig. 1: Development steps in a rollup. Requirements are

established and implemented, and audits are performed

prior to deployment of the network. At any stage, feed-

back and evolution of related components can change

the requirements (and therefore their implementation).

state proposer’s bond; those that lose the challenge give

up their own stake to the state proposer. Arbitrum is an

example of an optimistic rollup [15].

A zero-knowledge (ZK) rollup is one in which the state

proposer generates cryptographic proofs that each new

state root is correct. In a ZK rollup, the state proposer

performs state transitions within a zero-knowledge proof

framework (e.g., [16]), which generates a validity proof :

an artifact that proves that a particular function was

executed with particular inputs, which resulted in the

new state. These validity proofs can be verified using

layer one smart contracts (as a result, the verifier actor

is implicit in such rollups). A state proposer for a

ZK rollup may have one or more provers as a sub-

component, which generates the validity proofs given

a batch of transactions and a previous state root. Note

that the “zero-knowledge” aspect of these proofs are

sometimes helpful for privacy (see also Section IV-D),

but mostly these systems are used because the proofs

are also succinct. This property enables the proofs to

be verified in a fraction of the time required to run

the computation in the first place, enabling verification

directly on a layer one blockchain.

This document presents first-hand experience from

developing Zircuit, a ZK rollup. Zircuit was built on top

of the “OP Stack”, an open-source public good, which

implements the Optimism optimistic rollup [17]; Zircuit

replaces the fraud proof system within that stack with a

ZK proof system.

The liveness of a blockchain is a property where new

blocks can always be added to it and transactions can

be finalized; that is, the chain never halts. The liveness

of a rollup is expected to match that of its layer one: as

long as the layer one is not halted, the layer two should

also be able to produce blocks and finalize transactions.
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B. Rollup Development

Figure 1 outlines the development process for a rollup.

There are four main steps to development: requirements

elicitation, requirement implementation, a system audit,

and the deployment of the system. We describe these

steps in more detail below.

Steps 1 and 2 are common. First, an initial set of

requirements is elicited for the network (Step 1). In agile

rollup development, this may not set the specifics of

some requirements (e.g., the expected validity proof size)

but will guide the core use cases and typically define the

larger structure of the rollup. The requirements at this

stage will likely dictate the virtual machine to be used on

the rollup, the target layer one to build on, and the finality

mechanism for the rollup. Next, the requirements are

implemented (Step 2) and requirements may be added

and others may be refined. These may arise because of

technical difficulties (e.g., the proof system for the state

transition cannot easily support a particular opcode or

function) or because the requirements are not precise or

complete.

Step 3, which may not be common outside of web3

system development, is an external code audit of the

system. Although this is strictly optional, many web3

applications and networks will undergo this process. The

audit aims to reduce the number of actual bugs in the

system and may include a line-by-line review of the

system (or parts of it) or a focused inspection of critical

areas. Line-by-line reviews are the slowest and most ex-

pensive option, though they are the most comprehensive.

To reduce these costs, only some system components

may be reviewed in such a manner; often, these are the

smart contracts. Smart contracts are typically immutable

and public, meaning that errors in their implementation

are difficult to fix. The smart contracts implementing a

rollup (or any other dApp) can be placed behind a proxy

contract [18] in order to effectively skirt the immutability

of the code, but updates may still require a hard-fork

[19] of the layer two network. In a centralized rollup,

this may be technically challenging but possible; in a

decentralized one, it may be difficult to get community

buy-in for the suggested update. The auditors benefit

greatly from a list of requirements for the network, but

often have to infer them from the code and discussions

with the developers. Issues found by the audit affect the

requirements and in turn their implementation.

Finally, the system is deployed (Step 4). Often the

system is first deployed as a layer two test-net on a

layer one test-net; a test-net is a functionally equivalent

version of the network that does not handle cyrptocur-

rencies of value. This is intended to provide a final

check of the system, allow users to test the functionality

of the network with their dApps, and to stress test

the system. After some time, a main-net deployment

occurs on a real layer one, and real funds (and risk)

are present. Even after deployment requirements may

need to change based on user feedback, identification

of bugs, and the evolution of the underlying layer one.

While most changes to the layer one are backwards

compatible, layer two code is often a fork of layer

one code (namely, execution clients), which may not

provide backward compatible API in newer versions. In

some cases, changes can be implemented immediately;

in others, a network upgrade or fork may be required

(see also Section IV-B).

III. METHODOLOGY

This research was performed by searching for publi-

cations that referenced the challenges we experienced

first hand directly. We looked for these in top-rated

conferences and journals via databases like the ACM

Digital Library, Google Scholar, IEEE Xplore, and Sci-

ence Direct. The focus of the search was related to

“Requirements Engineering Challenges” and we added

terms “Agile Development”, “Blockchain”, “Complex

System”, “Decentralized Autonomous Organizations”

(DAOs) , “Distributed Ledger”, “Open-Source Software”

(OSS), and “Web3”, along with related spellings. Ini-

tial screening removed repeated publications and those

which pre-dated blockchain technology. Candidate publi-

cations were selected based on their relevance perceived

on their title, keywords, and abstracts. Few publications

were found to directly reference blockchain technology,

and so we included those which were related to our

perceived challenges (Section IV). Only a handful of

publications captured our challenges precisely or referred

to blockchain technologies in a meaningful capacity. No

single publication entirely captured the RE challenges

we faced developing a rollup.

IV. CHALLENGES

There are a number of challenges inherit to specifying

requirements for rollups. These challenges need to be

addressed early in the development process in order to

prevent costly changes later. The challenges arise from

the fact that rollups are security-critical, serve as mid-

dleware, difficult to test, subject to legal considerations,

complex online systems, and are OSS.

A. Rollups are Security-Critical

Rollups are non-trivial to develop but are expected

to handle millions of dollars in cryptocurrencies. At the

time of writing, L2Beat [8] reported that the cumulative

value of cryptocurrencies in these systems is $40.27

billion USD, with the Arbitrum rollup responsible for

$17.5 billion of that on its own. This makes them

attractive targets for malicious actors (in the past, over

$2 billion USD was stolen from blockchain bridges [20])

and increases the risk of critical bugs. This also in-

troduces a need for these systems to upgrade slowly,

in order to prevent the operators from introducing new
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bugs or leveraging any of their privileged roles. Bugs

may therefore persist for a while on-chain and in the

open. These systems need to be open-source so that the

community can verify which code is being executed, in

order to avoid introducing new trust assumptions (see

also Section IV-F).

Validating that a rollup supports necessary security

features, cannot be upgraded quickly, and does not have

privileged roles introduces RE-centric challenges.

First, it requires rollup developers to share their re-

quirements. Unfortunately, most rollups do not explic-

itly report on their requirements. Validation of these

requirements becomes a community challenge using only

implied functionality and reviews of the code base. This

presents the first challenge that must be overcome by

both rollup developers and the community.

Challenge 1. There are no standards for presenting and

tracing requirements through complex web3 systems

for community members.

Second, there are no standards for rollup functionality,

and as a result, there are no standard requirements.

For example, L2Beat reports on the implementation of

so-called escape hatch functionality of rollups, which

aims to allow users to recover their assets even if the

rollup is offline [14]. This functionality is challenging to

implement, may be unique to each rollup, often requires

compromises elsewhere, and is not standardized (indeed,

there are no standards for nearly any aspect of a rollup).

As a result, a rollup’s set of requirements for these

security-critical features may not satisfy everyone, or

may dictate that a possible resolution requires expensive

hardware (e.g., to generate validity proofs). A resolution

to the following challenge would help to classify, com-

pare, and understand these systems for both developers

and end-users.
Challenge 2. There are no standard requirements for

security-critical features. Unlike on-chain standards for

tokens (like ERC-20 [3]), there are no standards for

requirements of rollups, including for critical parts like

bridges or escape hatches.

Both challenges can be overcome publicly sharing

a rollup’s requirements. Public requirements should be

precisely stated and accompanied by a method to trace

their implementation within the code base. These chal-

lenges are related to the “representation of requirements

knowledge” challenge presented in [21]. However, while

the proposed mechanisms within that paper focus on

internal tools, ideal solutions are not limited to rollup

developers and would also allow the community to val-

idate requirements. This concern for public traceability

is not emphasized in that work.

B. Rollups are Middleware

Rollups generally support smart contracts themselves,

allowing dApps to build on them and even other rollups

(i.e., layer three networks and beyond), which makes

them middleware. This introduces the challenge of col-

lecting requirements from other networks. Requirements

are influenced by the choice of layer one, which in turn

may add requirements to mimic many of its features, and

other rollup networks.

The choice of layer one, often Ethereum, influences

the requirements of a rollup. First, the smart contract

capabilities of the layer one may have specific limitations

(e.g., amount of so-called gas used to meter on-chain

execution), which directly impacts engineering require-

ments of the rollup. For example, while there are many

ZK proof systems, some may not have proofs small

enough to be verified on-chain without running out of

gas. Second, dApp developers often want to be able to

port smart contract code onto a layer two with minimal

friction. This is in part a result of dApp developers

requiring costly smart contract audits (c.f. Figure 1

Step 3, which also applies to dApps), which are not

necessarily accurate after updates to their code. To avoid

re-audits, dApp developers prefer the ability to redeploy

their smart contracts on a rollup which supports their

code without additional changes. This is not always the

case: the website rollup.codes [22] reports on changes

the semantics of opcodes in rollup virtual machines.

Most rollups on Ethereum aim to support the Ethereum

Virtual Machine (EVM) to allow easy porting of Solid-

ity [23] smart contracts popular on Ethereum itself, but

subtle opcode changes may invalidate dApp developer

requirements. Note that while EVM-compatibility is not

true for all rollups – some rollups, like Starknet, use a

different virtual machine altogether – it is common at

the time of writing.

Other rollups may also influence the set of desired re-

quirements. As middleware, rollups can expand their set

of supported functionality, either through new opcodes

or other requirements. Zircuit chose to add additional

functionality to its sequencer in order to detect mali-

cious transactions, while other rollups like Taiko [24]

and Boba [25] have added additional opcodes to their

versions of the EVM. As rollups experiment with useful

middleware functionality, popular features will spread

and be implemented by more and more rollups.

This results in the following challenge that will not

be problematic for smaller web3 systems implemented

only via smart contracts. The following challenge is

also discussed in part by [26], when “a source of

requirement[s] is features appearing in other software”.

Challenge 3. Requirements are constantly being up-

dated, sourced from related systems, and may be

incompatible. Requirements need to be synchronized

not only within development teams, but with external

projects and systems.

This challenge is related to the “supporting change

and evolution” area of [21]. The findings of [21] re-

lated to “synchronization of development” and “up-
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dating requirements” are partially relevant. However,

the necessary synchronization was not an issue within

teams of Zircuit but rather with open-source depen-

dencies and forks. These dependencies allowed a good

amount of re-use in components, but turned out to be

problematic when components were tightly coupled and

some needed customization. The findings that product-

line engineering may be valuable to avoid re-specifying

and encouraging re-use also in that paper are also of

interest. This concern is unique to rollup development

in the web3 space as it does not apply to smart contract

based systems which can reuse libraries and standard

implementations but do not need to worry about the

communication between several services – most of their

communication happens on-chain.

We remark that the product-line engineering felt as if

it was out of scope of any particular rollup. For example,

both Zircuit and Optimism use a fork of the Go Ethereum

client (Geth) [27], but with different requirements. Ide-

ally the customization required for both of these rollups

(which are not the same) would be supported in a

software product-line fashion by Geth itself. Given that

the Geth team likely has other concerns, this may not

be feasible alone, but a collaboration between Geth and

various rollup teams could simplify and unify develop-

ment in this space. This suggests a wider open-source RE

challenge which may be solved via public grants and

other incentives between cooperating teams. This also

relates to Challenges 1 and 2, as such a product-line will

enable consistent evolution of requirements and a core

set of requirements common to all cooperating rollups.

C. Rollups are Difficult to Test

Rollups are very difficult, if not impossible, to thor-

oughly test. The number of paths that they should be

able to execute is large, and ZK rollups are even more

problematic. This is because ZK rollups transform the

state transition function of the rollup (i.e., the block

creation function) into a mathematical framework that

generates a proof that the function was performed cor-

rectly, as well as the output of the function (e.g., the

layer two block). These functions are encoded in a

Domain-Specific Language (DSL) which compiles the

function into a set of constraints that hold if and only

if the computation is performed correctly. The number

of constraints in the transition function for a blockchain

may be very large (e.g., 226) and are therefore impossible

to manually check. This leads to RE challenges related to

requirements validation and verification, and can make

some requirements difficult to implement.

First, it can be impossible to verify ZK constraints

directly. Instead, users of the ZK systems can merely

test these constraints or determine if the constraint

compiler is trustworthy. The former approach can miss

important bugs resulting from under constrained systems

(see e.g. [28]), while the latter may also be difficult or

require specialized knowledge. Not every rollup uses the

same ZK proof system (and some do not any such system

at all), and as a result, it may be some time before

the community agrees on trustworthy compilers and

ZK software stacks. This uncertainty makes it difficult

to verify requirements and gives rise to the following

challenge.

Challenge 4. Manual verification of requirements may

be impossible and must rely on tooling.

Second, the use of a ZK proof system can compli-

cate implementations of (non-functional) requirements,

leading to their changes. Requirements related to system

performance can be particularly complicated to imple-

ment, and may require specialized hardware (namely,

GPUs), in order to be feasible. However, specialized

hardware may not always be available or may be too

costly to operate. This can lead to concessions in terms

of proof generation performance, proof size, or reliability

(see also Section IV-E). In some cases, requirements like

validity proof size are not flexible and are dictated by the

choice of layer one complicating things further. These

complications are more common for non-functional re-

quirements regarding performance.

Challenge 5. Non-functional requirements are hard to

specify ahead of time, but system changes are costly.

These challenges fit in part to those related to building

and maintaining shared understanding of the system

presented in [21]. Creating and maintaining traces for

requirements becomes paramount when they must be im-

plemented using a DSL which is translated to something

which is not human-readable. Challenge 4 is therefore

unique to rollup development within the web3 space as

such DSLs are not common for strictly on-chain dApps.

Similarly, the creation of documentation to complement

tests is important to convey to both developers and the

community that concerning issues have been addressed

during development. Challenge 5 is unique to rollups

as on-chain dApps do not need to worry about many

common concerns, like those related to performance or

scalability, because the chain running the dApp forces

their outcome.

D. Rollups may be Subject to Legal Considerations

Rollups which introduce privacy may have to consider

the implication of their actions in the context of legal

policy and guidelines. Although most rollups aim to

simply provide a better user experience to blockchain

users through higher transaction throughput and lower

fees, some (e.g., Aztec [29]) aim to add functionality

including privacy. This can be achieved by using ZK

proof systems for the original purpose: arguments of

knowledge. Proof systems used in this regard, rather than

simply because they provide succinct validity proofs, can

hide transaction details and result in private transactions.

There may be other legal considerations as well, like
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those related to Know-Your-Customer (KYC) concerns

or related to the jurisdiction where the system is being

operated. Tackling requirements from these sources is

very difficult, as the laws and guidelines are relatively

new and may be inconsistent across jurisdictions. Many

projects aim to steer clear of these considerations alto-

gether, in part because there are no development rec-

ommendations for these systems. The main challenge

here is to handle legal uncertainty for this relatively new

technology.

Challenge 6. Requirements arising from legal consid-

erations are not well outlined by government agencies.

To overcome this challenge, it would be beneficial

to compile set of recommendations, perhaps similar to

that of [30], for ZK and privacy-preserving technologies.

However, we worry this may be premature as many

entities may not have an established stance on these

topics.

E. Rollups are Complex, Online Systems

There are operational considerations that need to be

taken into account in order to satisfy rollup liveness

requirements. There include running off-chain rollup

components with five-nines up time, especially as they

are immature and centralized. We have not found any

team that shares their requirements for these operational

considerations, even though they are important to the

success of a project. This may be because they are

rollup specific, but as rollups also move towards shared
sequencing (multiple rollups using the same sequencer),

there is a need to share these non-functional require-

ments. Just as an Machine Learning (ML) system is

composed of more than just a ML library, a rollup

is more than a single blockchain node [31]. These

challenges are related to building and maintaining shared

understanding of the system in [21]; namely, “system

vs. component thinking”. There is a need to think

beyond the key differentiators of rollups (i.e., fraud

proofs or validity proofs), and instead to make sure

that all parts of the system operate correctly – even

those that are less public or innovative than others.

Challenge 7. Rollup research and development over-

looks requirements for user experience, infrastructure,

and interoperability concerns.

Again, these concerns are not present for entirely on-

chain dApps, which can always rely on the underlying

blockchain for liveness and accessibility.

F. Decentralized Rollups are Open-Source Software

Rollups that move past a point of centralized opera-

tions – that is, have decentralized components that can

be run by anyone in the world – must be OSS, in order to

ensure users know what they are running. Previous work

(like [26]) has studied RE challenges for OSS, and it is

likely that these challenges will persist in this domain.

Current rollup development is more or less operat-

ing using the “cathedral” model to deploy and release

code [32]. As a result, the work on issues arising from

when “requirements are asserted by developers” in [26].

As code is open-sourced and these systems mature, a

model borrowing from the bazaar is starting to appear

at a high level. Projects are taking established code

bases and changing core features (e.g., using a ZK proof

system instead of a fraud proof system), but these just

result in different rollups. That is, it is resulting in

more “cathedrals” rather than resulting in changes to the

original codebases.

Challenge 8. Community-sourced requirements are

difficult to incorporate into existing systems as

blockchains must evolve slowly.

This may be common to other dApps which aim to

fork libraries and standard implementations. However,

as on-chain dApps are more or less immutable, the

suggestion and incorporation of new requirements is

relatively unique to rollups within the space, except when

on-chain dApps provide entirely new versions to satisfy

these requirements.

When requirements are communicated, they often

arise from informal discussions. We have found dis-

course on rollup requirements via Twitter (now X)

threads, Telegram chats between teams, and Discord

groups. RE concerns are discussed when “requirements

exist informally as part of communication messages

(e.g., emails, discussion forums)” in [26]. Rollups may

be the primary method for scaling the Ethereum ecosys-

tem, and there is no expectation of a single system

winning out or being “best”. The following challenge

is therefore not unique to complex OSS, but is unique

to rollups within web3 OSS.

Challenge 9. Requirements may be imprecise and

spread among many sources.

It is our hope that, along with suitable resolutions

to Challenges 2, 3, and 7, that a standard for rollup

requirements is developed and used by the community.

Finally, challenges related to the OSS nature of rollups

may also be subject to challenges that arise from protocol

governance lead by a Decentralized Autonomous Orga-

nization (DAO). DAOs are a concept unique to web3 and

operate protocols, produce software, or govern commu-

nities (see e.g., [33]). There are preliminary studies of

the interactions of DAOs and OSS projects [34], but we

anticipate that this area of web3 will continue to evolve.

Potential challenges related to DAO-based governance of

rollups will likely relate to Challenge 9 and will need to

be considered in advance of such proliferation to ensure

user funds, and trust in the ecosystem, are not at risk.

V. CONCLUSION

In this work, we have reported on the RE challenges of

building a ZK rollup. We have demonstrated that these
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systems are complex and should benefit from existing

RE frameworks, but are also unique and require their

own considerations. We have answered RQ1 by listing 9

explicit RE-centric challenges facing rollup developers

(and their users). In each case, we commented on the

applicability of these challenges to other web3 dApps,

answering RQ2 in the process. As an answer to RQ3,

we note that the lessons of related systems should not

be overlooked but are not necessarily taken to heart in

practice. Furthermore, as also pointed out by [35] for

blockchains in general, there are no systematic studies

of RE concerns for rollups or web3 systems in general.

RE-centric studies which aim to confirm the challenges

in this paper, possibly through developer interviewers,

will undoubtedly surface additional concerns that should

also be addressed.

This work should not be considered complete: as with

all parts of web3, these systems will continue to evolve

over time. Moreover, we were not able to provide a

comprehensive review of our challenges in light of the

current RE literature, and we leave this for future work.

For example, there are other challenge areas of [21]

that did not fit into the unique areas highlighted in

Section IV (e.g., the challenge of expressing value in user

stories that can be completed in a single sprint, persisted

throughout this system’s design). These may not be

unique concerns but should still be discussed in order

to provide strong RE recommendations and frameworks

for these systems. These recommendations should keep

the web3 community in mind, and suggest methods

by which the community can easily trace requirements

within complex systems. The complexity of these sys-

tems means that this area (and web3 systems more

generally) warrants further study for RE researchers. We

hope that this work provides context for, and guides

research directions of, future studies.
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