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ABSTRACT The Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge (SubT
Challenge) was designed for competitors to develop and deploy teams of autonomous robots to explore
difficult unknown underground environments. Categorized in to human-made tunnels, underground urban
infrastructure, and natural caves, each of these subdomains had many challenging elements for robot
perception, locomotion, navigation, and autonomy. These included degraded wireless communication, poor
visibility due to smoke, narrow passages and doorways, clutter, uneven ground, slippery and loose terrain,
stairs, ledges, overhangs, dripping water, and dynamic obstacles that move to block paths among others.
In the final event of this challenge held in September 2021, the course consisted of all three subdomains.
The task was for the robot team to perform a scavenger hunt for a number of predefined artifacts within a
limited time frame. Only one human supervisor was allowed to communicate with the robots once they were
in the course. Points were scored when accurate detections and their locations were communicated back to
the scoring server. A total of eight teams competed in the finals held at the Mega Cavern in Louisville, KY,
USA. This article describes the systems deployed by Team CSIRO Data61 that tied for the top score and won
second place at the event.

INDEX TERMS Multirobot systems, navigation, robotics and automation, simultaneous localization and
mapping (SLAM).

I. INTRODUCTION

THERE have been significant advancements in field
robotics in the past decade in terms of the maturity

of commercially available platforms, advanced sensor tech-
nology, navigation capability, power systems, and compute

systems. However, fully autonomous deployment of robots in
real-world field applications are still not commonplace. This
is especially so in unknown, dangerous, and difficult environ-
ments. There seem to be some technology gaps that prevent
widespread use of robotic systems in such environments—an
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application area that can have significant benefits in removing
humans from dull, dirty, and dangerous environments.

Subterranean environments such as mining tunnels, under-
ground urban infrastructure, and natural caves are especially
challenging for robots due to lack of global positioning
system (GPS) for localization, degraded wireless communi-
cation, poor perception due to obscurants, locomotion and
navigation difficulties due to narrow passages and doorways,
clutter, uneven ground, slippery and loose terrain, stairs,
ledges, overhangs, drippingwater, and dynamic obstacles that
can move to block paths. The Defense Advanced Research
Projects Agency (DARPA) Subterranean Challenge (SubT
Challenge) was motivated by this gap in technology that was
preventing the effective deployment of autonomous robots
into this type of environments. As described in [24], the
primary scenario centered around providing advanced situ-
ational awareness to rescuers following a collapsed mine,
earthquake, or personnel lost or injured in a cave. The
challenge was designed with extensive input from and in col-
laboration with first responders. The aims included spurring
innovation, building communities of practice, setting new
benchmarks for state-of-the-art, and creating societal impact.
Point scoring in competition events was achieved by detect-
ing, identifying, and locating an artifact to an accuracy of
within 5 m. Artifact classes included survivors (thermal
mannequins), backpacks, ropes, helmets, fire extinguishers,
power drills, vents, CO2 concentrations, cell phones, and
light emitting diode (LED)-illuminated cubes. To make the
scenarios as realistic as possible, the event courses included
rough terrain, steep inclines, narrow openings, stairs, water,
obscurants such as dust and smoke, and dynamic obstacles
(e.g., representing further cave-ins during the mission). Due
to the underground environment, GPS is unavailable and
communications are severely restricted.

Challenge events commenced with the SubT Integration
Exercise (STIX) in the Edgar Experimental Mine, Idaho
Springs, CO, USA, in April 2019. The first competitive
event was the Tunnel Circuit at the NIOSH Safety Research
Coal Mine and Experimental Mine in Pittsburgh, PA, USA,
inAugust 2019. TheUrbanCircuit event was held in February
2020 at Satsop Business Park, Elma, WA, USA, in an
un-commissioned nuclear power plant. The COVID-19 pan-
demic led to the cancellation of the Cave Circuit event that
was scheduled to take place in August 2020. The teams were
encouraged to conduct their own testing in local cave envi-
ronments that they could access. Each year of the challenge
represented a Phase, with Phase I including the tunnel circuit,
Phase II the urban and cave circuits, and Phase III concluding
with the final event. After successfully competing in circuit
events in Phases I and II of the DARPA SubT Challenge [13],
Team CSIROData61 was selected as one of the eight finalists
to compete in the final event that was held in September
2021 at the Louisville Mega Cavern, KY, USA (see Fig. 1).
After winning the preliminary round at the final event, Team
CSIRO Data61 tied for the top score of 23 points with Team

FIGURE 1. Team CSIRO Data61 members at the DARPA SubT
Challenge Final Event along with the robot fleet.

CEREBRUS in the final prize run. After tie-breaker rules
were invoked, Team CSIRO Data61 won the U.S.$1Million
second place prize, with only 1 min, 1 cm, or 1 extra artifact
report away from first place [7].

This article summarizes the heterogeneous robot system
deployed by Team CSIRO Data61, utilizing unified mul-
tiagent mapping and autonomy. We also describe how the
team of robots overcame various challenges in the final event
course, and the results and lessons learned from the program.
The overall system of systems demonstrated remarkable
resilience in the harsh environment even in the face of attrition
of individual agents. We will focus on the advancements and
changes implemented on our systems for Phase III of the
competition, in comparison to the work presented in our prior
work [13] representing Phases I and II.

A. RELATED WORK
System reviews from the various SubT teams from Phases I
and II each contain detailed literature reviews, and can be
found in [1], [13], [14], [18], [23], [29], [31], and [37].
Here, we describe the systems employed by SubT teams as
described in these papers, and subsequent examinations of
particular system components.

Tranzatto et al. [38] described the system employed
by Team CERBERUS (University of Nevada, Reno, ETH
Zürich, NTNU, University of California Berkeley, Oxford
Robotics Institute, Flyability, and Sierra Nevada Corporation)
that won first place in the final prize round, with [37] out-
lining the system from the tunnel and urban circuits. The
robot roster for Team CERBERUS consisted of aerial scout
uncrewed aerial vehicles (UAVs, including small, medium,
and large platforms), a tethered wheeled ground vehicle to
extend communications, and two variations of the ANYmal
C quadruped: carrier for deploying communication-extender
modules, and explorer for proceeding deep into the environ-
ment. Graph-based path planning was used with a bifurcated
architecture for efficient local and global exploration [8].
Localization and mapping were performed with complemen-
tary multimodal sensor fusion (CompSLAM) described by
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Khattak et al. [15]. Miki et al. [20] detailed the learning-based
perceptive locomotion utilized by the quadrupeds that bal-
ance the information from multimodal perception sources to
traverse complex terrain (including stairs) in the presence of
sensor noise.

Team CoSTAR (NASA Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, MIT, KAIST, and Lulea
University of Technology) used a combination of Boston
Dynamics Spot robots, UAVs, and wheeled robots; the
system that was deployed in the tunnel and urban cir-
cuits is described in [1]. The focus of their development
was networked belief-aware perceptual autonomy (NeB-
ula), which aimed to address challenging, degraded-sensing
environments through a combination of sensor fusion, and
uncertainty-aware planning. By incorporating map and loca-
tion uncertainty into the planning problem, risk-aware plans
were constructed that account for difficult phenomena such
as dust and smoke. Planning under uncertainty is a very chal-
lenging problem; this was approached through a hierarchical
system described in [16]. The primary modality for simulta-
neous localization and mapping (SLAM) was lidar/inertial,
but alternative solutions were maintained based on visual,
thermal, radar, and wheel odometry, fused based on the esti-
mated confidence [30], and used as hints for the lidar/inertial
solution [25]. The description of the integration of NeBula
onto the Spot-legged platforms to enable autonomous-legged
exploration is provided in [3]. A semantic object mapping
pipeline provides the operator with enhanced object detec-
tions as described in [17].

Team CTU-CRAS-NORLAB (Czech Technological Uni-
versity andUniversité Laval) solution for the tunnel and urban
circuits utilized wheeled Husky UGVs, tracked Absolem
UGVs, PhantomX hexapods, and DJI quadrotors [29]. Plat-
forms used various models of lidar, visual cameras, and depth
cameras: the Husky used a multibeam lidar and six cameras;
the Absolem used a rotating line lidar and a single omnicam-
era, the PhantomX used RGBD cameras, and the quadrotor
used multibeam lidar and cameras. Multiband communica-
tions provide high-rateWiFi connection at short ranges (5 and
2.3 GHz), and low-bandwidth control information at longer
ranges (900MHz). Object detection used YOLOv3 trained on
20 000 images, alongside CO2 and WiFi detection capability.
Wheeled and tracked robots used an extended Kalman filter
(EKF) to provide initialization for an iterative closest point
(ICP)-based odometry method, based on lidar odometry and
mapping (LOAM), with no loop closure enabled (since the
required accuracy could be met without it). Exploration uti-
lized frontier methods [2], with coordination provided by the
human supervisor.

Team Explorer’s (Carnegie Mellon University and Oregon
State University) system from the tunnel and urban circuit
events is described in [31]. Custom wheeled robots enabled
coverage of difficult terrain, and the marsupial launch of
a UAV. Communications were built around Rajant DX2’s,1

1https://rajant.com/

and ground robots carried a total of 24 nodes, which were
dropped autonomously based on line of sight and signal
strength. Datawas selectively shared between robots based on
a ledger system. Rather than using a tightly coupled approach,
super odometry [43] uses a mixed (loosely and tightly cou-
pled fusion) scheme where visual and lidar inertial odometry
(VIO and LIO) estimates are fused with IMU measurements
asynchronously to estimate robot trajectory at a fast (200
Hz) rate. Object detection used convolutional neural network
(CNN)-based detection pipelines trained onRGB and thermal
images, trained using datasets augmented with synthetic data.
WiFi and gas localization relied on human interpretation of
the noisy signal strengths. The reference coordinate system
(i.e., the ‘‘gate’’) was localized using a total station-based
calibration. Exploration utilized a hierarchical approach [5],
where a global planner maintains a course tour, and a local
plannermaintains a detailed pathwithin a local region. Explo-
ration was driven by camera coverage of observed surfaces
rather than a mapping of 3-D space.

Team MARBLE’s (University of Colorado Boulder, Uni-
versity of Colorado Denver, Scientific Systems Company,
and University of California Santa Cruz) solution for the
tunnel, urban, and cave circuit (held virtually) events utilized
map and goal-point sharing among agents [28], a metric-
topological graph-based planner and a continuous frontier-
based planner [23]. In this system, the base station did not
act as a central agent, but instead could relay information as
any other agent. In addition, the base station merged artifact
reports from all robots, providing the human supervisor with
a single submission for detections with a similar position
and type. The robot fleet consisted of wheeled Husky and
tracked Superdroid UGVs, and Lumenier UAVs. Ground
platforms used Ouster multibeam lidars and RGBD cameras
with a high-power GPU workstation providing computation,
whereas the UAVs used RGBD and ToF cameras. Map-
ping was performed using Google Cartographer, and map
sharing was achieved by extending Octomap to permit the
transmission of map differences. Communications were built
on custom beacons using a custom transport layer solution
named udp_mesh.

Team Coordinated Robotics used a teleoperation strategy
for the urban circuit event [14]. Due to time constraints in
preparing for the event (four months), the team made the
decision to focus on integrating multiple platforms with min-
imal autonomy over a single platform with semi-autonomy.
The SLAM algorithm LeGO-LOAM [32] was used, with its
output fused with IMU data from two Intel Realsense D435i
using the ROS EKF package ‘‘robot_localization’’ [21] for
estimating the robot pose and artifact position. As the robots
are teleoperated via a video feed, only one robot could be
controlled at a time. This led to the team’s strategy to use
the robots as communication nodes, with a robot teleop-
erated into the course until the communication bandwidth
was unable to sustain the video feed. The robot was then
driven back into full communications range using the map
data. The next robot was then driven deeper into the course,
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past the previous robot resulting in a wireless communication
backbone and data flow to the operator.

Team National Chiao Tung University (NCTU) used a
heterogeneous team of ground robots (Husky) and blimps
to navigate the complex environments of the tunnel and
urban circuit events. An overview of the approach is provided
in [18]. Navigation was achieved through deep reinforcement
learning (RL) using a cross-modal contrastive learning of rep-
resentations (CM-CLRs) method, where mmWave radar and
lidar data were used for training [11]. Through this approach,
the ground robots were able to navigate in smoke-filled
environments using only mmWave radar and XBee for com-
munications. The unique aspect of the team’s approach was
the use of lighter-than-air platforms. The motivation for a
blimp was twofold, to enable collision-tolerant navigation
and for long-term autonomous flight [12]. With lift achieved
by helium, the motors are only required for propulsion,
enabling longer flight times. Although the blimp could collide
and bounce off the environment, due to the required size of
the blimp to generate adequate lift, it had difficulties passing
through narrow passageways and was susceptible to airflow
within the tunnel. The team attempted to learn a navigation
policy for the blimp, but were unable to learn a robust policy
due to the inability to model the complex blimp dynamics in
the Gazebo simulator.

An in-depth analysis of the results from the SubT Chal-
lenge Finals event, along with insights, lessons learned, and
future work recommendations were provided in [7]. The
performance of the different teams was compared using the
competition’s singular scoring objective (artifacts detected)
as well as describing hypothetical scenarios where the artifact
error threshold values (set at 5 m from ground truth for
the competition) were adjusted. Alternate relevant evaluation
metrics, such as lowest map deviation, greatest map cover-
age, largest map (points), and fastest successful report, were
also introduced to compare the teams’ solutions. In addition,
technical and operational insights based on the competition
results and the evolution of technology during the Challenge
period were provided. The most successful solutions had a
heterogeneous team (different platform mobility and func-
tion) of robots built upon reliable commercial-off-the-shelf
(COTS) products. This allowed the solution to adapt to differ-
ent scenarios and reduce the impact when attrition of robots
occurred. Another insight provided was on the crucial role the
human supervisor performs.While the human supervisor was
a mission enabler, providing high-level commands and coor-
dination, they were also the weak link, where the cognitive
load of the human supervisor could limit performance.

B. CONTRIBUTIONS
The key differentiator in our solution is the homogeneous
sensing capability, which enables shared maps between all
agents. UGVs and UAVs both utilize spinning lidars which
power both mapping and autonomy, with cameras provid-
ing object detection capability. The highly modular UGV

solution centered around a common sensing pack and nav-
igation stack has enabled rapid adaption to a wide range of
platforms. All agents utilize the same SLAM system, which
develops complete shared maps on each agent. These were
exploited to provide shared global maps between all ground
agents, and multirobot task allocation.

This article includes a brief description of our full system
approach, with further detail on aspects that changed from our
Phases I and II system described in [13]. Further details of the
earlier work can be found in [13]; particular differences from
this approach include the following aspects.

1) The UGV exploration system was revised to calcu-
late traversability frontiers, utilizing multiagent global
mapping data.

2) A new planner was developed that specifically targeted
passing through narrow gaps.

3) The multirobot task allocation reward function was
reformulated to incorporate elements that consider the
positioning of all agents in the tunnel network.

4) The tools available to the human supervisor for pri-
oritizing tasks and altering assignments were greatly
improved.

5) The object tracker was redeveloped to associate new
detections to full multirobot histories (as opposed to a
recent window on the local agent).

6) The Boston Dynamics Spot was incorporated into our
robot fleet, and integrated with our common sensing
and autonomy stacks.

7) The drop nodes and dropping mechanisms were
redesigned based on lessons in prior events.

8) A new UAV platform was adopted to overcome the
limitations of the previous platform, and hardware was
integrated to permit the use of the same object detection
pipeline as ground agents.

9) SLAMwasmodified to selectively share frames, avoid-
ing repeated sharing of identical frames when the robot
is not moving significantly.

In addition, we describe in detail, the results of the approach
at the final event of the DARPA SubT Challenge.

1) For each run, details of the operator’s intentions, com-
plicating events, and results.

2) Communications performance, use of autonomy and
human intervention.

3) Object detection performance and lessons learned.
4) Analysis of the mapping performance achieved in

comparison with the ground truth scans provided by
DARPA.

5) Experiences providing remote support due to severe
limitations on the deployed team.

II. SYSTEM DESCRIPTION
SubT involves a fleet of robots autonomously exploring an
underground environment under the control of a single human
supervisor. The final event combines the challenging ele-
ments from tunnel (e.g., large scale), urban (e.g., stairs),
and cave (e.g., extreme terrain) environments. The solution
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FIGURE 2. Team CSIRO Data61’s robot platforms deployed during the final event.

fielded by Team CSIRO Data61 at the final event involved
two Boston Dynamics Spot robots,2 two BIA5 OzBot all-
terrain robots (ATRs),3 and two Emesent UAVs carried
by the ATRs. Communications nodes based on the Rajant
Breadcrumb ES1 were carried on the ATRs and deployed
through the course. The fleet employed is illustrated in
Fig. 2.

In this section, we describe the hardware components of
the system. We begin in Section II-A describing the UGV
platforms developed for the final event, and subsequently the
UAV system in Section II-B. Finally, Section II-C describes
the design of the communications system.

A. UGV PLATFORMS
The hardware systems architecture for the UGV platforms is
summarized in Fig. 3. A number of minor changes were made
to the architecture deployed in the earlier phases of the SubT
Challenge. The primary change to Fig. 3 is the addition of the
Boston Dynamics Spot and the removal of a universal serial
bus (USB) hub connecting external sensors. These changes
and modifications are described in Sections II-A1–II-A3.

2https://www.bostondynamics.com/products/spot
3https://bia5.com/

1) BIA5 OzBot ALL-TERRAIN ROBOT
The BIA5 OzBot ATR was first utilized by Team CSIRO
Data61 in the tunnel circuit event in August 2019. Sub-
sequently, a lightweight (90 versus 300 kg) version was
custom-built for CSIRO by BIA5 and employed in the Urban
Circuit event and cave testing performed in lieu of the cave
circuit event.

The same robots were utilized in the final event, using the
same LiFePO4 batteries, power system, and Cincoze DX-
1100 ruggedized workstation (with Intel i7-8700T CPU).
An evolved version of the ‘‘CatPack’’ perception pack was
utilized, providing lidar, IMU, and cameras with integrated
compute performing SLAM and object detection. The new
CatPack version had a fully machined aluminum housing
instead of the previously mixed aluminum and printed plastic
housing, providing better dust and moisture protection, more
effective cooling, and better camera lens mounting giving
improved image focus. A WiFi and Bluetooth module was
also integrated into the CatPack and could be used for artifact
detection instead of USB-connected modules.

Extensive improvements were made to the robot’s motors
and motor controllers. The motivation for this was twofold;
first, to overcome issues with burn-out of motors in
autonomous operation; and second, to provide finer control
over the paths that the robot executed. The changes made are
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FIGURE 3. Hardware systems architecture for the Spot, DTR, and ATR platforms.

representative of those that have been found to be necessary
to support autonomous operation on other platforms designed
for teleoperation. The platform speed is 1.2 ms−1.

In relation to robustness, motors were burned out on a num-
ber of occasions. The first instance of this occurred during the
Urban Circuit event, where a track became fixed on a large
hook concreted into the ground. Subsequently, additional
burn-outs occurred on a number of occasions where one track
lost traction and spun repeatedly as autonomy attempted to
recover from the condition. This was addressed first by intro-
ducing higher torque motors (a custom 108 mm out-runner
motor configuration coupled with BIA5’s gearboxes) that
were capable of handlingmore heat, and second by upgrading
the motor control system and introducing a thermal model
of the motor. The upgraded motor controller used an Elmo
motion control (MC) system, providing feedback on current,
temperature, velocity, and acceleration at 200 Hz.

The thermal modeling introduced to this system was used
to estimate the core temperature of the motor from an exter-
nally mounted thermistor on the motor casing. The thermal
transfer from the motor core to the casing was based on a
model provided by the motor manufacturer [19]. On each
update of the motor communications loop, the motor current
and thermistor readings would be fed into the model to get
an internal temperature estimate. This allowed the system to
apply significantly more power to the tracks in short bursts

without risking a burnout, and consequently increasing the
overall agility of the platform.

In relation to fine motor control, the stock motors and con-
trollers had a range of difficulties, such as low-rate feedback
(10 Hz), simple proportional, integral, derivative (PID)-based
control, fixed acceleration limits, and an opaque interface.
Most significant among these was the PID-based control,
which resulted in a significant overshoot due to a large
integral wind-up to overcome stiction. This presented a sig-
nificant barrier in tight environments such as when navigating
through a narrow doorway. In contrast, the Elmo MC’s built-
in system identification was utilized to obtain precise velocity
control. The higher bandwidth 200-Hz feedback also enabled
improvements to the outer control loop, which was executed
over a dedicated Ethercat interface. This higher rate feedback
was utilized to implement a differential drive controller which
balanced the desired level of aggressive control with smooth-
ingwhen excessive velocity changeswhere commanded (e.g.,
when switching to a time-critical recovery behavior).

Our efforts provided us with a highly robust platform
capable of aggressive navigation, yet with exceptional fine
control. This platform demonstrated robust control in adver-
sarial terrain conditions in testing such as large rock piles and
stairs, as well as challenging deformable cave environments
in the self-led cave circuit. Around the time of the final
event, further motor replacements were required, but these
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FIGURE 4. New DTR design showing its improved obstacle clearance ability next to a 180 mm high step in a CAD diagram (left), and
the real robot carrying an earlier version of the CatPack perception pack (right).

appeared to be related to deterioration over time rather than
particular traumatic events. We plan to address this in future
design iterations through an integrated gearbox, motor, and
controller solution.

2) CSIRO DYNAMIC TRACKED ROBOT (DTR)
The CSIRO DTR was developed to combine the strengths of
the ATRwith those of the smaller SuperDroid LT2-F, particu-
larly around stairs and narrow doorways. Development of this
platform continued from its initial design used at the self-led
cave circuit up to the final event. Mechanically, the track
tension mechanism was improved by coupling the position
of the tensioner wheel and suspension arm. Their coupled
motion maintains a constant tension in the track throughout
the motion range of the suspension arm. This maintained
soft suspension, but achieved the high track tension needed
to provide robustness to small rocks in the tracks. The final
design of the platform is shown in Fig. 4; the platform is
capable of operating at a speed of 3 ms−1, but is configured to
use a similar speed to the ATR due to the tuning of autonomy.

The design maximized commonality with the ATR com-
ponents, and served as a prototype of the Elmo MC system
described in Section II-A1. This commonality was an explicit
design goal, to permit either platform to provide spare parts
for the other. The same CatPack perception was utilized as the
ATR, while the navigation computer was based on an Intel
NUC NUC8i7BEH.

Tuning of the autonomy stack for the DTR was
de-prioritized when the Spot was integrated into the robot
team, but continued at a low rate of effort. It was intended
that the platform would feature in the team at the final event,
but this needed to be dropped due to the minimal team that
was able to be sent due to COVID-19 travel restrictions.
An accurate simulation model of the platform was developed,
and was utilized by Team CTU-CRAS in the DARPA SubT
ChallengeVirtual track. The platform is seeing continued use,

particularly in natural environments where it has less impact
than the larger and heavier ATR platform.

3) BOSTON DYNAMICS SPOT QUADRUPED ROBOT
The Boston Dynamics Spot platform is a COTS quadrupedal-
legged platform. It features a top speed of 1.6 ms−1, a max
payload of 14 kg, and a typical operation time of 90 min
(unloaded; typical operation times were 40–45 min with a
payload). It has stereo cameras positioned around the body
which allow it to generate a 360◦ map of the local terrain.
This map, combined with state-of-the-art locomotion soft-
ware, allows it to traverse a wide array of terrain. The Spot
platform was used to navigate into areas that were unsuitable
for the tracked ground platforms, including stairs, and narrow
passageways [35].

Previously the Ghost Robotics Vision60 Platform had been
fulfilling this role within the fleet. The decision to switch to
the Spot platform was made based on testing its performance
in these specific areas. Predominant capabilities of the Spot
are understood to be due to its terrain sensing: Unlike the
Spot platform, the version 4.2 Vision60 platform available at
the time did not provide any local terrain mapping or footfall
planning, which made it unsuitable for traversing stairs, a key
area the legged platform was aimed at addressing. The Spot
platform also provided a payload interface that was more
robust, better documented, and supported for the user. This
not only allowed the team to rapidly integrate Spot into the
fleet, but also allowed the onboard sensor data to be integrated
into the team’s autonomy stack as described in Section IV-A4.

As illustrated in Fig. 2, the Spot was fit with the same
CatPack perception pack utilized in the other platforms, along
with the same navigation computer utilized with the DTR and
the earlier Ghost platform. Communications were provided
by a Rajant ES1 Breadcrumb node as detailed in Section II-C,
however, the platform was not equipped to drop additional
nodes.
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B. UAV PLATFORM
The SubTerra ‘‘Navi’’4 UAV used in the SubT Finals is the
first UAV specifically designed to work with the Emesent
Hovermap payload with specifications given in Table 1 (see
Fig. 5). This platform was commissioned from the New
Zealand-based company, Aeronavics, by Emesent.

Throughout all previous circuits, our UAV platform of
choice was the DJI M210. Whilst this platform was robust
and met our size and payload requirements, it provided some
challenges when pushed beyond its manufacturer-expected
use cases.Most critical were random events in which theUAV
would override take-off commands due to perceivedmagnetic
interference. The act of moving an ATR through a circuit
with an M210 on the back could cause sufficient interference
with the UAVs in-built sensors, raising an error. A further
problemwas that, once fully loaded with the Hovermap, com-
munications node, and vision system, it only provided around
8 min of flight time. With these problems in mind, a fully
configurable platform with a 20-min battery life, and high
payload capacity was required to allow for full control over
every aspect of the system and achieve our desired coverage
goals.

With no commercially available UAVs on the market at the
time, Emesent commissioned a custom solution from Aeron-
avics based on their existing Navi UAV. The Navi provided
an Ardupilot-based system that met our transparency, flight
time, and lift capacity requirements. Unfortunately, the devel-
opment of this platformwas problematic requiring significant
effort to improve platform reliability. Such reliability issues
included electronic speed controller (ESC) burnout, debris
ingress through open motor housings, battery failure, short
life-span, and communications issues with the ground station
remote controller (RC). Ultimately, most of these problems
were solved or mitigated before the final circuit and the plat-
form proved itself. In the second preliminary round, one Navi
platform was downed by a sheet of foam in mid-air, how-
ever, the system sustained no major damage to the air-frame,
Hovermap, or vision system, only requiring prop replacement
to be back in the air within an hour of returning to the
pit.

A feature of this platformwas propeller guards. These were
installed when needed as they traded increased survivability
in the air for reduced ability to enter narrow passageways
while riding the parent vehicle. Whilst on the ATR, the pro-
peller guards extended beyond the UGV’s 780 mm width,
preventing the ATR from entering as narrow passages. The
guards also increased the UAV’s width in flight, but the UAV
could still navigate the same size tunnel, as light contact with
thewall would no longer guarantee a crash. In the final circuit,
propeller guards were installed for the first preliminary run to
ensure that the UAVs would return intact. For the second and
final runs, a more risky approach was taken and guards were
removed from all UAV systems.

4https://aeronavics.com/models-of-drones/navi/

TABLE 1. UAV specifications—loaded with Hovermap and vision
system.

1) UAV VISION SYSTEM
Accompanying the Navi platform was a new vision system
called the ‘‘Tick’’ (see Fig. 6), which was developed in paral-
lel with improvements to the previous gimbal-based approach
before being chosen as the UAV vision system for the final
circuit. Specifications of the Tick are given in Table 2.
Prior to the tick, a gimbal-based vision system was

employed by our UAVs. This was an in-house design uti-
lizing off-the-shelf electronics to create a fully controllable
and stabilized gimbal. A single FLIR BFS USB 3.0 camera
would feed frames through the Hovermap to an Intel Neural
Compute Stick 2 for image classification. This secondary
compute unit was required as on-board image classification
would compete with SLAM, trajectory planning, and other
core processes for CPU resources, leading to higher image
classification latency and a lower output rate.

The gimbaled camera system, along with our visual cover-
age tracking software, could scan the course independently of
UAV orientation. Compared to a static system, this provided
enhanced vertical coverage of the course and a higher chance
to detect objects when the platform was stationary. In theory,
the single moving camera with a narrow-moderate field of
view (FOV) allowed for both highly detailed images at long
ranges and large field coverage given enough time in one
region. However, due to the limited flight time of small UAV
platforms, it was not practical to loiter in one region for
extended periods, thus in prior SubT circuits it suffered from
limited coverage and missed target objects.

Due to these coverage limitations, we developed a static,
multicamera system with on-board processing utilizing
CSIRO Data61’s perception stack. As the Hovermap host
system was used to run the Wildcat SLAM solution, this
package could leverage smaller NVIDIA Jetson hardware
than the CatPack used on the UGV. This system was called
the Tick due to its parasitic nature on the Hovermap.

At its core, the Tick ran an NVIDIA Jetson Xavier-NX
on a connect-tech quark carrier board, allowing for dual
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FIGURE 5. Emesent/Aeronavics SubTerra (‘‘Navi’’) UAV (left), being launched off the back of an ATR UGV (center), and in flight inside
the DARPA SubT finals course (right).

FIGURE 6. Anatomy of the vision system (the tick) on an Emesent Navi UAV showing compute and interfacing (left) and sensor
arrangement (right).

MIPI-CSI cameras. Whilst the Xavier-NX had the connec-
tivity and processing power required to run more cameras,
carrier board and weight restrictions limited this to two cam-
eras. The specific camera arrangement and lens combination
were the single largest factor in the performance of the tick.
Initially, the tick was configured with dual downward angled,
forward/side facing, wide FOV (160◦–180◦) cameras to max-
imize coverage, with particular focus on the space directly in
front of the UAV and that of unexplored pathways/nooks to
either side. Testing showed that this configuration suffered
from problems as follows.

1) A short range of only 5–6 m due to the large FOV of
each camera.

2) High power consumption due to the lighting require-
ments for such a large FOV.

3) Over-exposure of the image due to reflections from
UAV legs.

4) After transitioning from the M210 to the Navi, the
new leg setup with four legs placed at the UAV
corners blocked a significant part of the camera
FOV.

Further testing led to the final configuration, consisting of
one front-facing, 70◦ FOV camera, and one rear, downward-
facing 140◦ FOV camera. This configuration was able to
maximize both the system’s coverage and range by relying
on the tendency of the exploration code to stop and spin in
place when passing an unexplored passageway. The rotation
of the platform allowed the fixed cameras to cover a larger
FOV, with the board FOV (140◦) sensor specializing in tar-
gets close to the UAV (∼5–8 m), while the narrow FOV
camera could search for targets at ranges of up to 15 m.
Continued improvements to the system included aspects of
the lighting configuration. Specifically, increasing vertical
separation between the rear lights and camera significantly
reduced image blow-out on close objects and increased the
accuracy of the tick.

C. COMMUNICATIONS SYSTEM
The communications system used in the final event closely
matched the solution that was deployed at the urban and cave
events. COTSRajant Breadcrumb nodes were used to provide
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TABLE 2. Tick specifications.

a layer 2 (i.e., the data link layer in the OSI communications
model [44]) mesh network using wireless, dual-band (2.4 and
5.8 GHz) 802.11 radio links. The base station and robot
autonomy computers all used a standard Linux TCP/IP stack
to communicate over this network. Layer 4 (transport layer)
traffic was handled exclusively by a software component
named Mule, described in Section II-C4.

1) BASE STATION COMMUNICATIONS
The base station computer was connected to two Rajant
Breadcrumb nodes: an ES1 and a Peregrine. Each node was
mounted with antennae on dedicated masts that provided
approximately 1.5 m of ground clearance. The ES1 was
connected to 4 dBi (2.4 and 5.8 GHz), multipolarized, omni-
directional, goose-neck style antennae whilst the Peregrine
was connected to 9 dBi (2.4 GHz) and 12 dBi (5.8 GHz),
directional sector antennae. The decision to use multiple node
masts at the base station was made during the lead-up to the
event and was motivated by the idea that the course entrance
may have consisted of two or more narrow tunnels which
would not be well handled by a single directional antennae.
Though the actual course used a single entrance tunnel, the
team decided to continue deploying both mast nodes in each
run due to early results indicating a nonnegligible degree of
RF transparency through some of the course walls.

2) COMMUNICATIONS NODE DROPPING MECHANISM
Whereas the earlier communications node designwas aminor
repackaging incorporating a battery into the Rajant Bread-
crumb ES1, the node utilized in the final event underwent
a major redesign. The core ES1 node was supplemented
by a Raspberry Pi 4, which served two functions. First,
it controlled the deployment of the node. Rather than
being statically dropped, the revised node design actively
unfurls two side panels, self-righting in the process, pow-
ered by Dynamixel motors. Subsequently, antennas unfurl to
a configuration with sufficient height to provide improved
communications quality, and finally, the ES1 power is acti-
vated. The deployment process and design are shown in
Fig. 7.

The Raspberry Pi 4 also provided the secondary capability
of running an instance of the Mule communications software
on the node. Due to the reprioritization of tasks in the lead-up
to the final event (again, due to COVID-19-related travel
restrictions for the team), insufficient experimentation had
been conducted with this concept prior to the final event,
so the capabilitywas not employed. However, it has the poten-
tial to allow nodes at the boundary of communication to retain
data from a robot as it goes deep beyond communication.

The node dropper design also evolved for the final event.
Lessons from testing in the cave environment showed that
carrying node droppers which extruded beyond the vehicle
footprint was highly undesirable. It was also found that drop-
ping to the side of the platform was preferable over dropping
in front or behind, as it inherently tended to result in node
positions which did not block the traversal of a passage.
Accordingly, as shown in Fig. 2, four-node droppers were
installed on the track guards of each ATR (two on each side).

3) UGV AND UAV COMMUNICATIONS SYSTEM
Each UGV was equipped with a Rajant ES1 node connected
to 4 dBi (2.4 and 5.8 GHz), multipolarized, omni-directional,
goose-neck style antennae. Each UAV was equipped with the
smaller Rajant DX2 node connected to 2.6 dBi (5.8 GHz
only), omni-directional, lollipop-style antennae due to size
and weight constraints.

4) MULE
Mule was the layer 4 software component which bridged
ROS topic messages between the independent ROS systems
running at the base station and on each robot. Mule provided
best-effort, end-to-end transport for ephemeral data such as
robot status and teleoperation video, as well as disruption-
tolerant, hop-by-hop transport for mission-critical data such
as Wildcat frames, and object detection reports. These fea-
tures enabled the operator and autonomy software to use
data-muling as a strategy for improving exploration effi-
ciency and overcoming robot attrition.

Improvements were made to the design of Mule for
deployment in the final to expose more information to the
human-operator, such as providing more detailed information
on exactly what data was yet to be downloaded from a given
peer, and a separation of ‘‘synchronization lag’’ into upload
vs download metrics.

The capability provided by Mule was critical to the out-
come achieved at the final event. For example, as described
in Section VII, in the final prize run, data from a fallen Spot
robot was relayed to another platform that passed nearby, and
later transmitted to the base. It was these data-muling efforts
that resulted in the final successful artifact report in the final
critical seconds of the run.

5) COMMUNICATION SYSTEM IMPROVEMENTS
Despite the core design of the communications system
remaining relatively unchanged between the urban and final
events, significant performance improvements were attained
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FIGURE 7. (Left) Communications node packing, showing stages of deployment: as dropped from the robot, after side panels unfurl,
self-righting the node, and after antenna deployment. (Right) Block diagram of communications node design.

due to the resolution of previously undiscovered integration
issues.

The first of these issues was related to the active Blue-
tooth scanning being used for the detection of the mobile
phone artifact. At the Urban event, UGVs were equipped
with a UD100 Bluetooth USB adapter and software that
would repeatedly perform active Bluetooth ‘‘inquiry’’ scans
to elicit responses from nearby Bluetooth devices. Each of
these scans involved brief transmissions on a sequence of
1-MHz Bluetooth channels spread across the 2.4-GHz ISM
band. These transmissions were unmanaged with respect to
the 20-MHz 802.11 channel that was used by Rajant Bread-
crumbs in the same 2.4-GHz ISM band. Integration testing
conducted after the Urban event revealed that these Bluetooth
transmissions were significantly degrading the performance
of the Rajant mesh network. With consideration of overall
system performance and time constraints, it was decided that
the Bluetooth detection capability would be removed from
UGVs altogether, relying on (passive) WiFi detection (for
cell phones) and the visual signature of the cube artifact.
A similar 2.4-GHz interference problem was discovered with
the RC transceiver, however, this scenario was restricted to
times when the handheld RC unit was switched on and in
close range of the robot (a situation that could not arise during
actual competition).

The second of these issues was related to unintentional
mesh network traffic originating from devices other than
the base station and autonomy computers. The hardware
designs of the UGVs and UAVs both contained a single Eth-
ernet network that was used to connect the robot autonomy
computer with on-board sensors, controllers, and the Rajant
Breadcrumb node. Early on in the development process, the
Rajant Breadcrumb nodes were configured to use a bridging
mode where layer 2 packets received via the local Ethernet
connection could be transported via the mesh network regard-
less of the source address. This configuration simplified
certain aspects of system development by allowing access
to network-enabled robot hardware from any computer con-
nected to a Rajant Breadcrumb. However, this configuration

left the performance of the communications system vulner-
able to unexpected sources of network traffic. Such sources
were inadvertently introduced on multiple occasions during
development. On each occasion, a new piece of hardware
had been introduced that defaulted to a communication mode
that generated a high-frequency stream of packets with a
layer 2 broadcast destination address. This would result in a
subtle but significant degradation of the communications sys-
tem performance during subsequent system tests, requiring
manual traffic analysis to detect and identify the offending
hardware. Prior to the final event, it was decided that the
Rajant Breadcrumbs would be configured to use a MAC
address whitelist so that only layer 2 packets originating from
the base station and robot autonomy computers could be
bridged over the mesh network.

III. LOCALIZATION AND MAPPING
Robust localization and mapping are critical to downstream
robotics tasks. For example, as described in Section IV, robot
autonomy requires the information of localization and the
environment map for path planning, multiagent coordination
requires knowledge of each robot’s position on a shared map,
and in SubT, detected artifacts must be reported with accurate
locations. This section briefly describes Wildcat, our multi-
agent lidar-inertial SLAM system used in the DARPA SubT
Challenge. We refer the reader to [27] for additional technical
and implementation details. A consolidated report on the
experiences of the various SubT teams with localization and
mapping can be found in [9].

A. WILDCAT SLAM
A diagram of Wildcat is shown in Fig. 8. Wildcat has two
major modules: 1) lidar-inertial odometry and 2) pose-graph
optimization (PGO). In the following, we briefly describe
each module and present our SLAM results in the prize run
of the DARPA SubT Challenge Final Event.

Wildcat odometry is a real-time sliding-window optimiza-
tion method that fuses IMU and lidar measurements collected
within a 3-s window to estimate robot trajectory at a high
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FIGURE 8. Diagram of Wildcat, our multiagent lidar-inertial SLAM system. This diagram shows the components of Wildcat ran on each
robot (left) and those that ran on the base station (right).

rate. The odometry module runs on each robot independently.
First, Wildcat generates surfels from lidar points by voxelis-
ing them and fitting an ellipsoid to the points residing in each
voxel. Only those surfels that are sufficiently planar are kept.

After establishing an initial set of correspondences
between the surfels, Wildcat then estimates robot trajec-
tory by minimizing the point-to-plane distance between the
matched surfel pairs and also the error between the predicted
and collected IMUmeasurements (angular velocity and linear
acceleration). Wildcat odometry alternates between matching
surfels and estimating robot trajectory for a fixed number of
iterations. Our method uses cubic B-spline interpolation to
remove distortion from lidar points (caused by the motion of
the robot and lidar) and to efficiently fuse asynchronous mea-
surements from lidar and IMU in the previously mentioned
optimization problem; see [27].

Every 5 s, the locally optimized robot trajectory is used
to create a local surfel map. We call each rigid local map
(together with additional information such as the correspond-
ing segment of trajectory estimate) a frame. Frames remain
rigid after creation and thus their state can be represented by
one of the underlying poses. Each robot stores its own frames,
as well as frames received from other robots in a database.
Frame databases are synchronized between the agents (robots
and the base station) using Mule whenever peer-to-peer
communication is possible (see Section II-C4); frames are
suppressed from being shared if the overlap to the previously
shared frame exceeds a threshold. Wildcat’s PGO module
(also referred to as Atlas) runs separately on each agent and
aims to produce an independent, globally consistent esti-
mate of the team’s map and trajectories. This module detects
intrarobot and interrobot loop closures using all available
frames. Each agent then independently optimizes the team’s
collective pose graph whose nodes correspond to (unknown)
frames’ representative poses, and whose edges correspond to
odometry and loop-closure measurements. In the prize run,
the average total size of frames generated by our four UGVs
(introduced in Section II-A) was about 21.5 MB per robot.

Fig. 9 shows the map created collaboratively by our robots
by the end of the prize run. According to DARPA, this

FIGURE 9. Multiagent globally optimized Wildcat SLAM map
from the robots deployed by team CSIRO Data61 during the
60-min prize run. Point clouds collected by different robots are
shown by color, while white lines delineate the three-course
environments (i.e., urban, tunnel, and cave).

map has ‘‘0% deviation’’ from the surveyed ground truth
where ‘‘deviation percentage’’ is defined as the percentage
of points that are further than one meter from the surveyed
point cloud.5 Fig. 10 shows the maps created by all teams by
the end of the prize run. Green (respectively, orange) points
correspond to map points whose distance from the surveyed
point cloud is less (respectively, more) than 1 m. Our team
produced the most accurate map at the final event, while also
having ‘‘91% coverage’’ according to DARPA.We conducted
our own quantitative analysis using the surveyed point cloud
map provided by DARPA in [27]; the results show that the
average distance between our map points and the nearest
point in the reference map (after aligning the two maps) is
about 3 cm.

Moreover, Fig. 11 depicts the collective pose graph
based on one of the agents during the prize run. In total,
3950 frames (gray nodes) were shared between four agents
out of which only 49 nodes were considered as root nodes
(green nodes) whose poses were estimated through the pose
graph optimization. If frames sufficiently overlapped with a

5https://www.youtube.com/watch?v=SyjeIGCHnrU&t=1932s
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FIGURE 10. Visual comparison of online mapping data reported
to DARPA during the competition runs for the eight finalist
teams during the final prize run, with points matching ground
truth shown in green, and nonmatching points shown in
orange. ∗https://youtu.be/SyjeIGCHnrU?t=1676

FIGURE 11. Pose-graph collected from four agents on one of the
agents whose location is indicated by the red and green
coordinate frame, during frame sharing. The white lines
represent the connectivity between the children frames whereas
the green lines indicate the connectivity between root nodes.

root node, they are considered as child nodes and they are
rigid relative to the root node. This strategy decreases the
number of root nodes as a result the number of parameters
in the pose graph optimization allowing Wildcat to deal with
scalability in an efficient manner.

IV. AUTONOMY
Autonomy is critical in SubT due to the dual limitations of
a single human supervisor, and the communications chal-
lenges of underground environments. This section describes
the solution utilized for this. For UGVs, we first describe the
local autonomy in Section IV-A, then the global autonomy
in Section IV-B, and finally the multirobot task allocation in
Section IV-C. Subsequently, we describe the UAV autonomy
in Section IV-D.
Block diagrams of the respective UGV and UAV autonomy

systems are shown in Fig. 12. The key component in common
between the two is the Wildcat SLAM system, described in
Section III-A.

A. UGV LOCAL AUTONOMY
The Wildcat SLAM system, described in Section III-A,
is a key underpinning technology to the solution. Local

navigation primarily utilizes the point cloud provided by the
Wildcat odometry process. This is integrated into a 3-DGPU-
based occupancy map through the GPU-based occupancy
homogeneous map (OHM) system, detailed in [34]. The
occupancy grid is populated to a minimum range of 10 m
(with discrete jumps due to region-based addressing), and
a resolution of 0.1 m. Height maps are extracted from the
OHM grid. Support was included for multiple vertical layers
in height maps, e.g., to support navigation up a staircase in
an area where the region beneath the staircase is also visible,
but this remained to be fully utilized in the downstream parts
of the stack at the time of the competition. The height maps
include awareness of the clearance height required by the
respective platform, and so will not output a ground level
beneath an overhang with insufficient clearance.

As described in [10], an important feature of the height
map generation is the identification of virtual surfaces. These
represent horizontal frontiers, where the space above has been
identified as free space, but the space below is unknown.
Consequently, they are surfaces that have not been directly
observed, but observed data implies the potential presence of
a surface beneath. The navigation stack utilizes this by ini-
tially treating them as traversable, so that the agent will move
toward them and either observe the surface itself, or identify
the fatal incline descending from the top edge, as illustrated
in Fig. 13.

Traversability is assessed using the height map at two dif-
ferent ranges and rates. Local traversability analyses terrain
at a shorter range (4 m) but at a higher rate (5 Hz), whereas
global traversability analyses terrain at a longer range (6 m)
but at a lower rate (1 Hz). The traversability analysis consists
of tests on slope and steps. The slope analysis considers
hypothetical (circular) robot footprints at each location in the
map, and evaluates the resulting attitude. The cell is consid-
ered fatal if the slope exceeds a threshold. The step analysis
searches for discrete steps exceeding a threshold in small
local regions around each cell. The result of the traversability
analysis is a classification of unknown (unobserved height),
traversable, or fatal, along with the classification of observed
or virtual provided with the height map.

The main planner utilized is hybrid A*, as detailed in [10].
Planning is conducted on a graph where nodes are positioned
on a 3-D grid with the same 0.1 m spacing utilized in the
height map, and 30◦ in yaw. Edges are derived from motion
primitives and cost dynamically as they are visited by A*.
Costs were tuned to provide the desired balance between
longer paths with gentler slopes and shorter paths with steeper
slopes.

1) PATH FOLLOW
In order to improve robot navigation performance and
efficiency, and prolong the lifespan of robot hardware,
improvements to the velocity command generation were
deemed necessary, leading to the development of a new tra-
jectory generation behavior.
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FIGURE 12. Block diagram of autonomy system, (left) for the UGV, and (right) for the UAV.

FIGURE 13. Virtual surface processing during final circuit event: (top left) a spot robot autonomously traverses the subway platform,
showing a virtual surface falling off the edge of the platform down to the tunnel. (Top center) As the edge is approached, the virtual
surface becomes steeper. (Top right) This progresses until the steepness reveals the fatal cost at the edge of the obstacle. (Bottom
left) The robot moves toward the front part of the platform, identifying a virtual surface above the stairs leading to the base of the
tunnel. (Bottom right) The stairs are observed, revealing traversable terrain leading to the tunnel base.

The new ‘‘Path Follow’’ behavior was developedwith three
key requirements in mind as follows.

1) Generated trajectories must strictly adhere to set veloc-
ity and acceleration limits.

2) Generated velocity commands must be continuous and
smooth.

3) Overall performance must match or exceed previous
systems.

The new Path Follow behavior meets these requirements
through the use of actively updated tenth-order Bézier
curves to generate trajectories from the robot base link
to a local goal pose. Trajectory generation is optimized
such that the form of the trajectory fits the input path
as close as possible whilst also adhering to the kinematic

constraints of the robot and minimizing trajectory completion
time.

The Path Follow behavior makes use of a dynamic short
horizon envelope which reaches out from the base link of the
robot platform out to the nearest obstacle, defined as at least
one fatal cell in the cost map. The horizon defines the pose of
the local goal, used as the target for all trajectory generation.
The local goal is located on the local path at its intersection
with the horizon. The horizon shrinks and grows as the robot
moves closer to or further from obstacles and as it does, Path
Follow dynamically adjusts the scaling of the robot’s kine-
matic limits thus slowing the robot as it approaches obstacles.
This slowing around obstacles allows for more precise path
tracking around obstacles, and is essential for narrow-gap
navigation.
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A key component of Path Follow is the generation of
smooth and continuous trajectories and velocity commands.
Newly generated trajectories are generated with specifically
set control nodes such that the initial state of the trajectory
matches the last robot command. This ensures a smooth con-
tinuous kinematic command profile sent to the robot platform
whilst constantly regenerating trajectories, and is essential for
accurate path tracking.

Active trajectory regeneration is attempted at a rate
of 25 Hz. If a new active trajectory is generated, robot com-
mands are set as R = T (1t), where R is the generated set
of robot velocity commands in a twist format and T is the
trajectory function with t time as input. If a new trajectory
cannot be generated which fits current kinematic constraints
the existing active trajectory is iterated and robot commands
are set as R = T (t + 1t). In the rare occurrence that
trajectory regeneration fails continuously and a full trajectory
is executed, a safety mechanism is built into every generated
trajectory to ensure a safe stopping procedure is commanded
at the end of each trajectory.

Path Follow works in conjunction with the rest of the
behavior stack and as such has been tuned to be quite aggres-
sive. Path Follow will attempt to follow any given path as
best it can regardless of whether the route of the path may
result in collision with obstacles. Instead, Path Follow will
merely slow the robot down to a minimum speed, continue
to follow the path, and rely on other recovery behaviors
such as the decollide and orientation correction behaviors to
recover the robot from any potentially dangerous collision
state (described under other behaviors below).

2) GAPS PLANNER
The 0.1 m discretization resolution utilized in the hybrid
A* planner is a significant limitation when seeking to pass
through 800 mm doors with an ATR that is 780 mm wide.6

The gaps planner was developed to handle this type of case.
Initially, the development focused on RL approaches. The

method in [36] was successful 93% of the time in simula-
tion, and 73% of the time in on-robot tests. Despite these
promising results, in the context of SubT where the a priori
unseen environment is a large part of the challenge, a con-
ventional planning approach was preferred. The final course
demonstrated the motivation for this decision: the course
contained many tunnels that were far narrower than antici-
pated or previously encountered. The hand-engineered gaps
planner adapted well to this type of environment, whereas the
RL-based method that was not trained on data similar to this
would not have been expected to generalize well.

The gaps planner can be seen as an extension of hybrid
A*, which integrates a continuous optimization step into the
search to allow fine repositioning of search nodes within their
respective discretization cells. The search proceeds similar
to regular A*, but when cells are visited, the optimization

6The smaller width of the Spot robots was such that difficulties were not
encountered and this behavior was not required for that platform.

step seeks to improve the continuous position and yaw of the
node based on the predecessor node and the nearby obstacles.
Critically, this allows search nodes to be reliably found when
passing through tunnels and doorways that were within one
cell’s dimensions of the vehicle size (as with hybrid A*, the
position discretization was 0.1 m, and the yaw discretization
was 30◦).
In addition to the improved planner, it was also critical

to raise the platform’s capability to accurately execute the
plans. The combination of the hardware upgrades described
in Section II-A1 and the development in Section IV-A1 pro-
vided the required enhancement. Particularly important was
Path Follow’s adaptive speed control, which reduces velocity
based on the distance to an obstacle, allowing for the most
accurate control in critical circumstances.

3) OTHER BEHAVIORS
Specialized recovery behaviors were developed that have pri-
ority in scenarios that may place the robot in an unrecoverable
state. The orientation correction behavior activates if the pitch
or roll of the robot may lead to the agent tipping over. The
Decollide behavior moves the robot to a nearby nonfatal
region, recovering from the case where a fatal cost appears
within the footprint of the first search node preventing a valid
path from being generated.

For the urban circuit, a dedicated stair climb behavior
was developed for the Superdroid tracked platforms. This
behavior utilized the extension of the robot flipper arms to
extend the functional base of the robot, lengthening the lever
arm required to tip the agent and preventing toppling down
the stairs during ascension or descent. This behavior could
be manually activated by the operator or set to automatically
activate when the agent orientation exceeds a pitch threshold.
This allowed the operator to teleoperate the agent onto stairs
at which point the behavior would take over and complete the
rest of the traversal in a safe manner (demonstrated during
the urban circuit). Work on autonomous stair detection was
deprioritized along with the Superdroids after the addition
of the Boston Dynamics Spot robots to the team. Not only
were the Spot’s much more agile over a wider range of terrain
conditions, their ability to handle stairs was superior to the
tracked platforms that are unable to perform complex maneu-
vers on stairs (for example, stopping and turning). Details on
stair climbing with Spot are discussed in Section IV-A4.

4) SPOT INTEGRATION
The Spot platform was a late inclusion in the team, with
integration work commencing in April 2021. The platform
quickly evolved into a highly capable team member which
provided unique capabilities traversing stairs and tight pas-
sages.

We found it critical to integrate Spot’s internal cameras
in order to address stairs and negative obstacles, since the
location of our pack (see Fig. 2) provided limited visibility at
steep elevation angles in front of the robot, and no visibility
behind (note that the Spot robot must reverse down stairs
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due to its leg design). Spot’s internal navigation capabilities
presented many choices for integration with the autonomy
stack. Spot internally generates a high-resolution (0.03 m)
heightmap to a range of 1.9m based on its five depth cameras.
Initially, this height map was blended with the lidar height
map generated by OHM, and the plan produced by hybrid A*
was truncated at the point where it departed the local map.
However, this resulted in two problems, first relating to the
plans themselves, and second relating to the quality of the
height map.

The difficulty encountered with the first approach for
path planning was that Spot’s internal planner appeared to
generate plans that approximated a slerp (spherical linear
interpolation) of the current pose and the provided goal pose,
rather than constructing plans that are logically consistent
with the environment. This was acceptable in more open
environments, but sometimes prevented navigation in narrow
corridors. Consequently, the local plan produced by hybrid
A* was passed to Spot as a timed trajectory; this improved
performance significantly and the trajectory was generally
well-followed.

The difficulty with the height map was found when
developing the capability to autonomously navigate stairs.
Specifically, the difficulty occurred when the Spot com-
menced from the top of a platform from which stairs
descended, but was positioned such that the stairs were not
visible, but part of the ground plane at the bottom of the stairs
was visible. In this circumstance, rather than marking the
unobserved region as unknown, the processing hallucinated
the continuation of the ground plane up to the edge of the top
platform, without stairs. This was indistinguishable from an
instance where there was a genuine negative obstacle, and so
would prevent the platform from moving toward the edge to
look for stairs.

In contrast, the OHM-based virtual surface processing
would continue to approach the edge until either the stairs
become visible, or the free space observed implies a non-
traversable slope. To exploit this capability with the Spot,
the native depth cameras were integrated into OHM. The
front-left, front-right, and rear cameras were integrated into
OHM at 5 Hz; the lidar provided adequate visibility on the
sides and the side cameras were not found to be required.
Due to the focus on supplementing lidar coverage at close
ranges, camera rays were truncated to 2 m, and the resolution
was decimated to match the height map resolution at that
range. Online processing of this data stream and genera-
tion of virtual surfaces was possible with the GPU-based
OHM implementation on the Intel NUC’s integrated
graphics.

Spot provides gaits for walking, crawling, and stairs. The
stair gait is documented as slowing speed and pitching the
body to observe stairs; testing appeared to indicate that it
also conditions the robot to expect flat foot holds. Difficul-
ties with autonomous identification of stairs due to the poor
visibility from common viewing angles led to an approach
which utilized the walk gait exclusively. This was partly

motivated by testing which showed that stair traversal in
the walk gait was generally acceptable, whereas traversal of
slopes or rough terrain of similar pitch in the stair gait was
usually catastrophic. Because the spot leg design necessi-
tates backward descent of stairs, the path cost was tuned to
penalize forward motion down greater than a given angle,
resulting in the desired effect. As discussed in Section VII-C,
this approach was successful, and stairs were autonomously
ascended and descended by Spot robots out of communica-
tions range during the final event. It is possible that improved
stability could be obtained by switching to the crawl gait on
rough terrain; experimentation with this concept is the subject
of future work.

Typical battery life for the Spot was 40–45 min, which is
insufficient to last an entire run. For this reason, a ‘‘battery
return’’ behavior was incorporated, which forced the robot to
navigate back to the base area when the battery percentage hit
a critical threshold.

B. UGV GLOBAL AUTONOMY
The role of the global navigation system is to build an
expandingmap of the traversable terrain observed by all UGV
agents, allowing any agent to navigate to any point observed
by itself or any other agent. This is made possible by the
PGO-based SLAM system described in Section III-A. Sepa-
rate traversability maps (submaps) are generated for each root
node in the SLAM graph, and like the SLAM frames them-
selves, traversability submaps are shared between agents.

As described previously, global autonomy utilizes the same
traversability analysis as local navigation, but with maps
generated with a longer range and at a lower rate. Subse-
quent observations which fall within the time range of the
same SLAM root node are merged into the same image
representation. Data with mismatching heights are handled
by incorporating additional layers in the submap. The maps
incorporate data for observed traversable and lethal surfaces;
virtual surfaces are not incorporated into the map. Height
maps and cost maps are also shared between agents; the
data rate involved with these representations was found to
be an order of magnitude lower than the SLAM frames.
Compact graph representations of submaps are obtained by
applying superpixel methods to the images, incorporating
channels for the fatal traversability signal and height. Con-
nections between submaps and submap layers are identified
by finding superpixels which overlap between them. Global
path planning is conducted utilizing A* on the graph with
nodes corresponding to superpixels. Edge costs are obtained
through distances, with additional penalties based on slope
and roughness (averaged over the superpixel for each node),
which are designed to match the penalties used in local path
planning.

Dynamic obstacles present a particular challenge as paths
previously observed as traversable must be updated to reflect
the path that has been closed. The local navigation stack
was capable of traversing extremely difficult terrain, but this
sometimes took several attempts. It was important for the
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globalmap update process to be tuned accordingly. It was also
made difficult because both local and global navigation were
based on height maps, and thus were unable to distinguish
between a changed environment and difference in observa-
tion perspective of the same, unchanged 3-D structure. For
example, from one perspective, wemay observe the underside
of a ramp crossing to an upper level, and declare an obstacle
only where the clearance becomes insufficient. From another
perspective, we may observe the top of the ramp, continuing
up to the next level.

Because of this difficulty, the approach operated directly
on the global superpixel graph. Specifically, whenever nav-
igation failures occurred (i.e., timeouts without significant
progress toward the goal), the source and destination nodes
locations in the global graph were stored, and edges between
superpixels containing those two positions were subsequently
suppressed. The exception to this was edges which had pre-
viously been traversed by an agent. Because the cost of
falsely mistaking the path home was high (e.g., preventing
robots from returning to synchronize data), rather than sup-
pressing these edges altogether, instead a high traversal cost
was applied to them. Accordingly, any path not utilizing
that edge would be preferred. In the case where the edge
is still utilized, traversal failures will trigger task failures as
described in Section IV-C, which will in turn trigger the selec-
tion of exploration tasks that have the potential to discover
the necessary alternative routes. Overall, this approach was
effective, but could take some time to resolve the correct
map.

Whereas UGV exploration in earlier stages of the program
was based on the 3-D point cloud visibility work in [42],
in finals we utilized traversability frontiers, exploring to the
boundary between observed traversable and unknown space.
Thus, frontiers were attached to superpixels which bordered
unknown space, performing a natural clustering of frontier
pixels. Again, due to the multiagent global navigation repre-
sentation, a region will only be marked as a frontier if it has
not been observed by any UGV.

Connections are only made between submaps that are
within a local neighborhood in the SLAM graph. Accord-
ingly, if a region is revisited but loop closure has not occurred,
the previously visited area will be explored as if it is being
observed for the first time. This is a desirable behavior, as this
additional exploration provides the data required for loop
closure to occur. The process could likely be made more
rapid by explicitly reasoning over the exact data necessary
for loop closure (e.g., active SLAM, [26], executing actions
aimed at collecting the data necessary for loop closure to
occur).

Conceptually, the UAV could contribute to the UGV maps
in the same way, but this was not exploited since the UAV
does not run the same occupancy mapping, height mapping,
and traversability analysis pipeline, and the raw data is pro-
hibitively large.

Part of the global navigation graph from the final prize run
is shown in Fig. 14.

FIGURE 14. Portion of the topometric (global) graph constructed
during the final prize run. The railway platform and stair
portions correspond to the traversability maps illustrated in
Fig. 13.

C. MULTIROBOT TASK ALLOCATION
The multirobot task allocation system provides the method-
ology for agents to autonomously and collaboratively agree
on assignments of tasks to robots, based on a decentralized
market-based process. This allows the collaborative assign-
ment of tasks to continue as the communications topology
changes. For example, if two robots are deep in the course
and have communication with each other but not with the
base station, they can seamlessly continue negotiating task
assignments.

Each agent is allocated a bundle of tasks. The metric which
task allocation seeks to optimize is the total reward of the bun-
dles, where rewards have an exponential time discount based
on the expected completion time of the task. For example,
if we denote the bundle for agent a as pa = (ja,1, . . . , ja,na ),
the reward of task j as cj, the traversal cost from task j′ to j as
t(j′, j), and the duration of task j as T (j), then the total reward
is

S (p) =

A∑
a=1

na∑
i=1

λτ a,i(pa)cja,i (1)

where

τ a,i
(
pa

)
=

i∑
k=1

t
(
ja,k−1, ja,k

)
+ T

(
ja,k

)
(2)

where τ a,i denotes the time when execution of the ith task
ja,i completes, and t(ja,0, ja,1) denotes the cost of navi-
gating from the agent’s current position to the first task.
The consensus-based bundle algorithm (CBBA) operates by
building the bundle incrementally, bidding on the task which
produces the largest increase in the bundle reward, where the
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reward increase is evaluated by inserting the task into the best
position in the bundle.

The primary task utilized by the task allocator is explo-
ration. For the exploration task, frontier nodes identified by
global navigation are clustered to provide tasks consisting
of frontiers that are nearby in terms of global path distance.
Each agent independently generates its own set of fron-
tiers and tasks based on traversability data received from all
agents. This avoids the solution of a decentralized clustering
problem (which would be greatly complicated by regular
periods of disrupted communication). Duplicate assignments
are avoided by treating nearby tasks belonging to different
agents as equivalent for the purposes of bidding, so that the
assignment of an agent to a task requires outbidding another
agent assigned to nearby tasks.

Tasks can be bid upon at any time, and new tasks contin-
ually arrive as agents move through the region. Each agent
maintains its task bundle, which is limited to a maximum
number of tasks, and a maximum expected duration. Because
of the open-ended nature of exploration tasks, their duration
is set such that two exploration tasks will not be added to the
bundle at the same time. In order to allow the bundle to be
adapted once it is full, we consider bidding actions which
drop the final element from the bundle sequence and add a
new element (into an optimized position, as is standard in the
bidding process).

Methods were developed which estimated the reward of
a frontier through bounds on the new volume that might
be observed from the candidate pose. However, this was
found to be counter-productive, since features such as narrow
tunnels and tight doorways were of critical importance. Thus,
without cognizance of this higher level semantic information,
the standard reward estimates were found to be unhelpful,
frequently triggering undesirable behavior (e.g., stopping
exploration of a region of interest in favor of a more open
area). For this reason, exploration tasks have a fixed reward,
such that selection is based purely on the path cost.

Motivated by Brass et al. [4] and by the tree-like structure
of many of the environments of interest, we encourage the
agents to separate by penalizing the shared component of
the path from each robot back to the base. In [22], this is
shown to improve performance in environments that are well
approximated as trees.

As well as exploration tasks, the task allocator also sup-
ports ‘‘return to synchronize’’ tasks (i.e., return toward the
base until all data is uploaded to and downloaded from the
base), and ‘‘drop node’’ tasks. Synchronization tasks benefit
from multiagent implementation so that if another agent is in
a location that allows it to return more quickly and it has all
of the data from the agent that needs to synchronize, it can
bid on the task. Drop node tasks are manually generated,
and can be executed by any agent that has a communications
node available. Logic was developed to automatically deploy
communications nodes based on signal strength, but it was
not deployed in competition due to the risk of rendering a

narrow tunnel impassable. Further details of the task alloca-
tion method can be found in [22].

D. UAV AUTONOMY
The UAV autonomy used in the final competition broadly
follows the autonomy used in previous competitions, with
improvements focused on exploration. The UAV utilizes the
navigation functionality commercially offered by Emesent
as Autonomy Level 2, providing both local and global nav-
igation solutions.7 The UAV features a manager node to
coordinate local and global planning, and implement core
behavioral primitives. The manager receives higher level
tasks from the operator, such as move to these waypoints and
explore. It coordinates activities to achieve these tasks, and
interfaces with the lower level autonomy. This modular archi-
tecture has simplified the process of continual improvement
to our higher level autonomy functionality.

To ease operator load, the UAV supports four major con-
trol modes: exploration, 3-D waypoints, 2-D waypoints, and
planar waypoints. Three-dimensional waypoints specify an
exact position in space where the UAV must move, useful to
get the UAV into narrow openings when other alternatives
are available (i.e., moving into a shed). Two-dimensional
waypoints specify a location in the horizontal plane, but leave
height free, which is useful for general-purpose commands.
Planar waypoints simply require that the UAV reach any
point on a user-specified plane, but does not specify where.
It is often selected as a vertical plane, in order to provide a
direction of travel without the need for a precise goal. This
is useful for sending the UAV to a general location (i.e., not
just basic exploration) in a space whose approximate layout is
very roughly known, e.g., go 100 m down a tunnel and then
turn left at the branch. It can also serve as another form of
more directed exploration.

Frontier generation and selection broadly follow that
described in [42], with frontier selection based on a scoring
function balancing frontier size, proximity, and alignment
with previous exploration. Improvements focused on deal-
ing with invalid waypoints, motivated by experiments at an
indoor paintball course. The paintball course featured many
small windows, narrow doorways, and other nontraversable
apertures which generated a large number of frontiers that
were not reachable by the UAV, causing exploration to
become stuck for significant periods of time. Mitigation
efforts focused on utilizing traversability information pro-
vided by the planner. The planner published its search tree
after every planning iteration, which the exploration code
used in two ways. The first was checking whether the planner
was able to find a path sufficiently deep into a given frontier.
If so, the frontier was marked as reachable, and its score
for selection purposes was increased, strongly biasing explo-
ration toward known-reachable frontiers. Furthermore, the
closest point to the center of a reachable frontier was retained

7Emesent AL 2 (2021) https://www.emesent.io/autonomy-level-2.
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FIGURE 15. Trajectory of UAV (red line) performing exploration at
an indoor paintball course prior to the final competition. The
background color shows height, illustrating the UAV’s path
through the maze-like course.

as awitness point.When a frontier was cleared, other frontiers
that contained the witness point of the cleared frontier would
be marked as reachable. This provided additional robustness
when frontiers were modified at distances that exceeded the
planning horizon, which was particularly important for large
open spaces. An example exploration trajectory of the indoor
paintball course is shown in Fig. 15.

Previously, a frontier was onlymarked as unreachable if the
UAV had failed to make substantial progress toward a frontier
for 20 s. These delays caused by unreachable frontiers were
reduced by identifying when the UAVwasmoving away from
the target frontier, indicating that the frontier was unreach-
able. To do so, the exploration manager would compute the
minimum distance from the search tree to the target frontier,
and if below a threshold (3.2 m) indicating that the UAV was
in close proximity to the target frontier, it would compare
the search tree distance to the distance from the end of the
actual plan associated with the search tree to the frontier. The
path end distance being significantly larger than the search
tree distance (2 m) indicated that the path directly to the
frontier was blocked, and the planner was attempting to find
an alternate route. In this case, the explorationmanager would
mark the frontier as unreachable, and exclude it, and any other
frontiers with centers inside the unreachable frontier, from
consideration.

The previous iterations of the UAV exploration code
ignored the global structure of the environment, using only
the direct Euclidean distance between UAV and frontier when
selecting frontiers, with obvious downsides in larger or more

complex environments. For the final competition, the UAV
exploration manager was enhanced to use the SLAM pose
graph to reason about the global environment. When a fron-
tier was created, it was associated with a frame in the pose
graph, and the UAV was continuously associated with the
currently active frame used by the SLAM module. Unfor-
tunately, global SLAM optimization had significant latency,
often exceeding 10 s, leading to poor associations. As a result,
frontiers and the UAV were reassociated with the closest of
their original frame and neighboring frames in the pose graph.
When selecting a frontier, the UAVwas limited to considering
frontiers that were, after reassociation, associatedwith frames
adjacent to the UAVs current frame in the pose graph. This
limited consideration to frontiers that could be reasonably
expected to be reachable by the local planner. If there were no
frontiers in the adjacent frames, the UAV timed out in making
progress toward a frontier, or the UAV marked its current
frontier as unreachable, then the exploration manager would
check if relocation was required. The relocation was required
if there were no frontiers marked as reachable associated with
the current UAV frame or adjacent frames. If relocation was
required, the UAV chose the frame associated with the most,
reachable frontiers, tie-breaking in favor of frames with more
total associated frontiers. The exploration manager then used
the SLAM pose graph to compute a path to the target frame,
relocated there, and then restarted exploration.

V. PERCEPTION
The camera-based perception framework used in the final
event was similar to that used in the earlier circuit events,
wherein artifacts detected in the camera stream by the DeNet
object detector [39], [40] were localized in 3-D using lidar
depth measurements. Two major additions to the framework
for the final event were the introduction of multiagent artifact
tracking and sending updated information of a previously
detected artifact.

The main purpose for the introduction of the multiagent
artifact tracking was to reduce the number of artifact reports
seen by the operator. For the urban circuit, each agent tracked
artifact locations in the odometry coordinate system and thus
any drift in the odometry trajectory could possibly result
in new detections being erroneously associated with known
artifacts. These errors were mitigated at the urban circuit by
removing known artifacts from the trackermemorywhen they
had not been detected for 30 s or the agent was more than
30 m away from the artifact. Unfortunately, this meant that
an agent would redetect artifacts when visiting previously
explored space. Maintaining the position of artifacts in the
global map alleviates the issue of drift and thus artifacts can
be remembered indefinitely. The similar problem of one or
more agents visiting the same area and detecting the same
artifacts can also bemitigated by usingWildcat’s loop closure
capability to establish correspondence between each agent’s
global map (see Section III-A for more details).

The need to update information of a previously detected
artifact was to address a common problem when using the
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artifact tracker to eliminate duplicate detections. In some
instances, a true-positive would be correctly identified by the
object detector but the operator was unable to confidently
confirm the detection in the image because the artifact was
either poorly illuminated or too small. For the final event,
we introduced a policy where the operator GUI was updated
with subsequent detections if the detection was at least 1 m
closer than a previously sent detection. The operator could
then scroll through all of the artifact observations in order
to more confidently confirm the detection. This functionality
was easily implemented by assigning every tracked artifact a
globally unique identifier and including the identifier in every
sent artifact report.

The training dataset continued to expand after the urban
circuit. The dataset used to train the DeNet detector model
for the final event consisted of over 30 000 images of the
nine artifacts at 12 different locations (21 000 annotated and
9000 negatives). The images were captured using a variety of
mobile phones as well as the cameras used by the UGVs and
UAVs.

WiFi and gas detections were presented to the user as a
marker located at the position of the respective agent when
detection occurred, and colored by the strength of the detec-
tion (i.e., RSSI for WiFi, and detected density for gas). This
provided the necessary information for the human supervisor
to either detect and locate the respective artifact, or command
a robot to collect additional information. As discussed in
Section II-C5, the active scanning required for Bluetooth
detection was found to cause significant communications
disruption, so Bluetooth detection was disabled. Accordingly,
we were reliant on WiFi detection for cell phone artifacts (a
visual detector was trained, but in practice due to the small
size and indistinct appearance, it was rarely detected), and
visual detection for the cube artifact.

VI. HUMAN–ROBOT TEAMING
The role of the human supervisor was to provide high-level
guidance to the robots while assessing incoming object detec-
tions and sending reports to the DARPA server. As the
number of platforms increases, the bandwidth for a single
human supervisor to manage individual agents becomes lim-
ited.

Previous experience showed the value of providing the
human supervisor with a full control range of the robots.
While the dominant mode of operation was autonomous, fall-
back modes including waypoint navigation (or, more gener-
ally, missions consisting of scripted sequences of operations)
and teleoperation proved useful in unexpected situations.
With the focus on autonomous operation, interfaces were
provided to permit entry of high-level guidance, in the form
of prioritization regions. These were specified geometrically,
altering task priorities either within a region, or for any task
downstream of the region in the shortest path tree commenc-
ing from the base location; examples of this are illustrated in
Fig. 16. These latter graph-based priority regions were found
to be a particularly valuable improvement, as they allowed

prioritization of a region of unknown shape and extent which
lay beyond a junction.

A multimodal task-based graphical user interface (GUI)
enabled the human supervisor to efficiently assess the status
of each platform at a glance and provide mixed-level com-
mands as needed (from teleoperation to fully autonomous
exploration). Chen et al. [6] described details of the user
interface employed at the final event.

The operator interface was separated into two distinct
windows: an artifact review window for efficiently assessing
RGB images from detected objects and their localization, and
an operations window for interfacing with the robots. The
example in Fig. 16 shows the operations window for interfac-
ing with three robots in autonomous exploration, illustrating
prioritization regions, and interactive task markers, which
allow the operator to manually assign or cancel individual
tasks. The human supervisor can assess several components
of the robot’s health by glancing at the colored octagonal ring
around the robot markers, including the communication rate,
percentage of data missing from the ground station, mission
state, and any errors. The robot markers are a depiction
of the robot type, and for the ATRs, display the number
of remaining communications nodes and the UAV launch
state.

The artifact review window presents the operator with both
a list of objects and a map view showing their locations. The
operator can quickly scan through new detections and either
save or reject them. Gas andWiFi detections are illustrated by
markers showing the detection location, with opacity indicat-
ing the concentration and signal strength, respectively. In this
case, the operator infers and indicates the source location on
the map.

VII. RESULTS AT THE FINAL CIRCUIT EVENT
The final event was held at the Louisville Mega Cavern
in Kentucky, USA, on September 21–24, 2021, and con-
sisted of two preliminary rounds (30-min runs conducted
on September 21 and 22) and a final prize round (a 60-
min run conducted on September 23). Team CSIRO Data61’s
objectives for the preliminary runs were to maximize infor-
mation gained from the course and ensure each platform
was fielded before the prize run while minimizing risk to
hardware. Without a full set of either human or robot team
members (due to COVID-19 travel restrictions), the robot
roster for the three circuits faced in Louisville was carefully
deliberated. Any postrun repairs could only be performed by
a skeleton crew with over-the-shoulder support from experts
in Australia using telepresence robots.

Based on extensive testing, the ATR robots (Rat and Bear)
were trusted as exceptionally robust in a wide range of
unstructured conditions, while the Spot platforms (Bluey and
Bingo) had greater strengths in terrain coverage, and were
particularly critical in urban areas (for example, with nar-
row stairs). The aerial vehicles (H1 and H2) were reserved
for open locations in the course with high ceilings. These
preconceptions guided strategic planning for the preliminary
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FIGURE 16. Example of the map-based GUI in the operations user interface. Interactive ‘‘lollipop’’ markers enable the operator to
manually assign or cancel tasks. The box in the lower left of the image defines a geometric prioritization region ‘‘Task: r3/3’’ for robot
r3, and ‘‘Task: r1/2’’ defines a graph-based priority region for robot r1 (where the affected part of the graph is shown with purple
shading). The octagon indicator surrounding the robot shows various aspects of status including SLAM, navigation,
communications, and tasking.

FIGURE 17. Aerial view of the shade-cloth tunnel with an overall length of over 300 m built at CSIRO’s QCAT site in Pullenvale, QLD,
Australia (left), an inside view (center), and stairs and mezzanines built inside the tunnel (right).

runs. For each preliminary run, both ATRs would enter the
course carrying deployable communications nodes, alongside
a single Spot. For the first preliminary run a single UAV
was carried by one of the ATRs, in the second preliminary
run a UAV was attached to each ATR. This roster allowed
for redundancy, in the event of misfortune with a Spot or
UAV, there would be a set of platforms available for the final
event.

The Spot robots were generally more agile over a wider
range of terrain conditions than the large ATRs. The strategy

that evolved through testing was to send in a Spot robot
first, followed by an ATR to bridge communications. Spot
robots were able to autonomously traverse stairs, favoring
urban settings, whereas the ATRs proved their robustness in
challenging cave conditions. The confidence of the human
supervisor in the abilities and limitations of each platform
was cemented through extensive testing (based primarily on
weekly test sessions at the CSIROQCAT site, which incorpo-
rated urban industrial regions, a terrain park, and a synthetic
tunnel environment shown in Fig. 17).
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FIGURE 18. Course coverage and successful object reports for preliminary run 1. The starting area is located at the top left of each
image. (Left) Robot paths by color for Spot robot Bluey, ATRs Rat and Bear, and UAVs H2 (which was not launched). (Right) The final
map and object reports are based on information from the base station. The various artifact detections are shown as small dots in
corresponding colors, while successfully scored artifacts are shown as large spheres, marked with the artifact time and scoring time
(in seconds).

A. PRELIMINARY RUN 1
The agents sent into the first preliminary run were Rat (ATR)
with marsupial UAV platform H2, Bear (ATR), and Bluey
(Spot). Blueywas the first robot sent into the course, and upon
confirming three distinct environment types (urban, tunnel,
and cave, see Fig. 9), the supervisor elected to send Bluey
to explore the urban section. Rat was sent into the tunnel
environment, and Bear into the cave section. Fig. 18 shows
the course traversal from each robot [see Fig. 18(a)], and
the object class and location of reports that were correct [see
Fig. 18(b)].

Communication nodes were placed at the entrance to the
three sections, however, Bluey quickly lost communication
with the ground station exploring the urban section. The
connection was maintained between the ground station and
the ATRs throughout the run. A connection was established
between Rat and Bluey late in the run, enabling map infor-
mation to be regained on the ground station. The recovered
information revealed that Bluey had fallen while traversing
train tracks in the urban environment (within the first 10 min
of the run).

A total of seven objects were correctly detected and
reported in the 30-min run; five were detected visually and
two were WiFi detections of cellphones. Another three were
successfully detected, however, did not make their way back
to the ground station, or were not efficiently displayed to the
human supervisor before the end of the run. One artifact was

detected but not reported as its probability was below the
threshold for reporting. Postrun analysis revealed a fault on
the 2.4-GHz channel of one of the communication nodes at
the ground station, this was replaced before preliminary run 2.

The UGVs attempted to send a total of 188 visual arti-
fact reports to the operator (6.26 reports per minute from
all UGVs). Postanalysis of the sent reports showed that
13 reports were true positives and the remaining 175 were
false positives. Approximately one-quarter of the false posi-
tives were due to artifacts being detected on the robot itself.
This image mask configuration error was easily corrected in
time for the second preliminary run.

Fig. 18 highlights that two or more robots explored the
area near the start of the course as well as a passage which
connects the cave and tunnel circuits. Analysis of the new
artifact-sharing capability of the artifact tracker showed that
13 artifacts (true and false positives) were detected by more
than one robot. This feature reduced the number of artifact
reports sent to the operator for inspection by 17 reports.

B. PRELIMINARY RUN 2
The agents sent into the second preliminary run were Rat and
Bear (ATRs) both with marsupial UAVs (H1 and H2), and
Bingo (Spot). Bingo entered first, and was sent into the urban
environment. The human supervisor was unable to prevent
Bingo from following the fate of Bluey from the first run. The
robot quickly lost communication with the ground station,
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FIGURE 19. Course coverage and successful object reports for preliminary run 2. The starting area is located at the top left of each
image. (Left) Robot paths by color for Spot robot Bingo, ATRs Rat and Bear, and UAVs H1 and H2. (Right) The final map and object
reports are based on information from the base station. The various artifact detections are shown as small dots in corresponding
colors, while successfully scored artifacts are shown as large spheres, marked with the artifact time and scoring time (in seconds).

and slipped on the train tracks early in the run (∼8 min). Data
from this robot was not recovered during the run.

Rat was tasked to operate in the cave environment and a
small cavern was identified for launching a UAV. The UAV
(H2) was launched successfully and thoroughly explored the
cavern. Rat became immobilized soon after launch with a
suspected motor fault and remained in the cavern for the
remainder of the run.

Bear was sent after Bingo into the urban section attempt-
ing to improve the communications backbone, however,
a dynamic obstacle had activated as Bingo entered a ware-
house area preventing Bear from pursuing Bingo directly.
A communications node was dropped with Bear at a junction
expected to help with communications to Bingo, but this was
not successful.

Bear explored several small office rooms before discover-
ing an alternative entrance to the warehouse area. A second
UAV (H1) was successfully launched in this area, however,
the robot crashed spectacularly after ingesting debris soon
after launch. Bear was the last active robot, and the final
minutes were spent attempting to recover data from the lost
Spot through the tunnel environment as in the previous run.
Time ran out before this was achieved.

A total of eight artifacts were successfully reported during
the 30 min run. Seven of the artifact detections were from
visual detections and the remaining artifact was detected
using WiFi. Importantly, we detected every artifact we
observed. The UGVs sent a total of 106 reports for the run
(average of 3.53 reports per minute). Postanalysis of the sent
reports showed that 11 were true positives and the remaining

95were false positives. Sharing artifact reports with all agents
reduced the number of artifact reports sent to the operator for
inspection by five reports.

Fig. 19 shows the course traversal and correct object
reports from the second preliminary run. Fig. 20 shows
examples of object detections from the UAVs. After the
run, several repairs were conducted including replacing an
ATR motor and fixing antennas on damaged communication
nodes. Repairs were performed with long-distance support
from Australia through ‘‘Double 3’’ telepresence robots from
double robotics.

C. FINAL PRIZE RUN
All available robots were taken into the final prize run, includ-
ing two ATRs (Rat and Bear), two Spot robots (Bluey and
Bingo), and two UAVs (H1 and H2). Both Spot robots were
sent in first, one into the urban environment (Bluey), and
one into the cave environment (Bingo). Both ATRs placed
communication nodes at the intersection of the three envi-
ronments, then Rat was sent into the tunnel section, and Bear
into the cave.

Bingo rapidly progressed through the cave environment,
and quickly disappeared from communications. The human
supervisor carefully de-prioritized the region leading to the
train tracks in the urban section, preventing Bluey from
repeating the mistake of the two preliminary runs. Bluey lost
communications as it headed toward the train platform at the
end of the urban section.

Rat explored the tunnel section, making slow progress over
a tangled fire hose. The robot dropped a communications
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FIGURE 20. Example object detections from the UAVs.

node at a junction, and made an unsafe turn over the rail of
a mine track resulting in the de-tracking and immobilization
of the robot (∼28 min into the run). The tunnel was nar-
row and the ceiling height was too low to launch the UAV
without risking catastrophic failure of the map. Bear made
slow progress through the cave environment, successfully
detecting an object in the small cavern (previously explored
in preliminary run 2), then returning to the main channel of
the cave to follow Bingo’s path.

Approximately 30 min into the run, communications with
Bluey were reestablished. While out of communications,
Bluey had climbed stairs to reach the subway platform,
explored the top of the platform, descended stairs to the
subway tunnel, and exited toward the tunnel course. In the
process, Bluey briefly reconnected with Bingo, and was sub-
sequently able to mule part of its data back to the ground
station. Bingo had located a large cavern at the end of the
cave section, and had appeared to have fallen (postrun anal-
ysis confirmed Bingo fell at 22 min). The human supervisor
directed Bluey toward the large cavern, and prioritized getting
Bear to this location with a UAV.

Bear was unable to make progress through the cave envi-
ronment with the UAV mounted on the back due to the low
clearance of the tunnel. There appeared to be a path leading
to the large cavern through to the tunnel section, and the
human supervisor directed Bear to backtrack to this location.
However, a dynamic obstacle had closed the passage behind
Rat, and the only alternative route was blocked by Rat, which
was immobile. The human supervisor had to remove the UAV
to enable the traversal of the narrow cave to recover data
from the Spots. With time running out, the human supervisor
relied heavily on teleoperation for faster traversal, ensuring
communications were maintained (by dropping communica-
tion nodes along the way). Bear was controlled to the smaller
cavern to launch the UAV, then made quick progress through
the cave section toward the large cavern. In the final minutes,
Bear established a connection with Bluey (fallen at∼40min),
and the final scored object detection came through to the
ground station (reported at 25 s remaining).

A total of 23 objects were successfully detected. Another
four objects were detected but not reported. Of these, one
detection did not make it back to the ground station in time,
and three nonvisual detections (gas and two cellphones) were
difficult to localize given the high load of the human supervi-
sor at the end of the run (see Table 3). Fig. 21 shows the course
traversal for each ground platform and the scored object
reports. Table 4 shows the percentage of object reports by
platform type (ATR, Spot, and UAV). These results indicate
the Spot robots were slightly better at detecting objects than
theATR’s (more detections for eachmeter of terrain covered).
This can be explained by the increased FOV from an elevated
perception pack and reduced occlusion compared with the
UAV-carrying ATRs. The UAVs successfully detected objects
in the preliminary runs but were not utilized for object detec-
tions in the final prize run, as the ideal launch locations were
not able to be reached by the UAV-carrying ATRs. The UAV
that was launched in the prize run did not move from its
hover position and did not report any detections; as previously
described, it was launched in an already-explored cavern for
the purpose of providing additional clearance for the ATR.

The mode of operation of each robot as a function of time
is shown in Fig. 22, illustrating the use of the directed auton-
omy functionality to achieve the results previously described.
A common pattern is the use of waypoints to position a robot
in the desired area, followed by autonomous operation, either
in the default mode (without prioritization), or using prioriti-
zation to ensure continued progress in the desired direction.
For example, Bingo (r5) shows extensive use of prioritization
regions to achieve the desired result, while Bluey (r2) shows
both task prioritization regions andmanual task assignment to
direct it to the region of interest. Once Bear (r3) was the only
functional agent within communications range, it was con-
trolled using waypoints and later, in the time-critical period,
using teleoperation. The percentage of a robots run under
each mode of operation is provided in Table 5, showing the
degree of operator intervention for each agent as a percentage
of the robot’s total operational time.
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FIGURE 21. Course coverage and successful object reports for the final prize run. The starting area is located at the top left of each
image. (Left) Robot paths by color for Spot robots Bluey and Bingo, ATRs Rat and Bear, and UAVs H1 and H2 (the latter of which was
not launched). (Right) The final map and object reports are based on information from the base station. The various artifact
detections are shown as small dots in corresponding colors, while successfully scored artifacts are shown as large spheres, marked
with the artifact time and scoring time (in seconds).

FIGURE 22. Mode of operation of the autonomy system by time
for each UGV during the prize run. Teleoperation denotes direct
joystick control, whereas waypoint command denotes
navigation to a specified waypoint. Drop comm node command
denotes an operator command to navigate to a specified
location and drop a communications node. Default task
denotes the regular autonomous mode of task allocation
(without prioritization), whereas manual task denotes an
operator override to execute a specific task, and prioritized task
denotes task allocation where the selected task was in a region
that had been prioritized by the operator.

The distribution of time that the ATRs spent using each
planner, i.e., default hybrid A*, or the gaps planner of
Section IV-A2, is shown in Table 6. The Spot robots are not
shown as they only use hybrid A* (with the smaller agent
dimension, the gaps planner was not found to be necessary).
The table shows that the ATRs utilized the gaps planner
for 21.3% of the time, or 22.9% of the time where a plan
was active. This was much larger than expected, and is due

FIGURE 23. Number of loop closure edges (i.e., edges not
implied by odometry) as a function of time during the final prize
run. Note that the run ends at 60 min; loop closures after that
point are due to the additional data subsequently relayed.

to the extensive narrow tunnels in the course. In most test
environments, the gaps planner only activated in order to pass
through narrow doorways; in this course, it enabled (slow)
progress across parts of the course that would have been
otherwise impassible.

The distribution of time that the robots spent using each
behavior is shown in Table 7, focusing on autonomous
motion-based behaviors, i.e., excluding teleoperation and
stopped behaviors. As expected, the decollide behavior is
utilized for a small proportion of the time, though its use
reenables the path planning behavior. Orientation correction
exists to prevent robot tipping, and saw a single activation for
a fraction of a second.

The final pose graph for one agent (Bluey-r2) is shown in
Fig. 11. The total number of loop closure edges in this graph
is three. Fig. 23 shows the number of loop closure edges in the
pose graph as a function of time (i.e., the number of edges that
are not implied by odometry). When a loop closure occurs,
there are often additional transient edges, which subsequently
disappear as the graph is simplified, demoting some of the
root nodes to become child nodes. The figure also shows that
additional loop closures occurred after the end of the run (i.e.,
after the 60-min mark); these occurred as data from Bear (r3)
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FIGURE 24. Example object detections from the UGVs.

TABLE 3. Summary of detection results in final prize run. *Cube
counted as a visual, cell phone as nonvisual. †Data not
communicated to base in time. ‡Nonvisual detection but too
sparse/nonspecific.

TABLE 4. Percentage of object detections and terrain coverage
by robot type in the final prize run.

continued to be relayed through a slow (due to low SNR)
communications link.

The agents sent a total of 203 artifact reports to the oper-
ator during the 1-h mission (an average of 3.38 reports per
minute). Of the 203 reports, 29 reports were of true positives
and the remaining 174 were false positives. An analysis of the
new multiagent artifact tracking system showed that multiple
agents had detected the same artifact (true positive or false
positive) at 16 different locations and had reduced the number
of duplicate artifact observations seen by the operator by

TABLE 5. Percentage of the prize run in each mode of operation
for each platform, summarizing data in Fig. 22. See Fig. 22 for
description of robot modes.

27 reports. Fig. 24 shows examples of object detections from
the UGVs.

Fig. 25 shows the cumulative data generated by each of
the autonomy processes of each ground agent during the
final prize run. The figure shows that by far the largest
contributor is the SLAM odometry frames required to permit
each agent to build a unified map. Cost map bundles are the
second contributor, which allows the building of the unified
traversabilitymap on top of the SLAMsolution. Object detec-
tions utilize a similar amount of data, enabled by the tracking
methods described in Section V. Task definitions and bundles
and sync auctions represent data used by the task allocator to
achieve a common understanding of the task set and robot-
task assignments. Note that Bingo (r5) fell at around 20 min,
but due to its resting position, odometry frames did not appear
sufficiently similar to be suppressed, and thus the agent
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TABLE 6. Percentage of the prize run where ATR robots utilized
each planner (out of time when path follow behavior was
active). ‘‘None’’ indicates that no planner was active, i.e., either
the planner(s) are still generating a plan, or that no feasible plan
was found.

TABLE 7. Percentage of the prize run where ATR robots utilized
behaviors orientation correction, path follow, and decollide
(focusing on autonomous motion behaviors, excluding stopped
and teleoperation-related behaviors). *Path following is
achieved through different behaviors on ATR and Spot, utilizing
the method in Section IV-A1 for ATR, Section IV-A4 for Spot.

FIGURE 25. Cumulative data load (megabytes) for each of the
ground robots during the 60-min final prize run.

continued to generate significant odometry data. Conversely,
Bluey (r5) fell at around 40min, and generated little odometry
data thereafter.

Table 8 shows the average CPU usage for each of the
processes on the perception pack, while Table 9 shows the
average CPU usage for processes on the autonomy com-
puter. SLAM, image processing, and object detection use
similar CPU resources, although the latter two also use GPU
resources. The heaviest CPU usage on the autonomy com-
puter is OHM, which utilizes the GPU for ray tracing, and
the CPU for data preprocessing and height map generation.
Differences between ATRs and Spots are caused by the Spot’s
different set of behaviors (e.g., passing a trajectory for a spot
to follow rather than using path follow), higher speed, greater
use of autonomous exploration (and hence task allocation),
and processor differences.

As reported by Chung et al. [7], Team CSIRO Data61
excelled in the final prize run using alternate relevant

TABLE 8. Average percentage of CPU usage on the perception
pack in the final prize run (where 100% denotes utilization of a
full virtual core). Image processing encompasses image
acquisition, rectification, and recording, and likewise, lidar/IMU
encompasses the respective signal acquisition and recording.

TABLE 9. Average percentage of CPU usage on the autonomy
computer in the final prize run (where 100% denotes utilization
of a full virtual core).

evaluation metrics, achieving the lowest map devia-
tion, greatest map coverage, highest report success rate
(scored/submitted), and most accurate report with the small-
est detection error (meters from ground truth). We were also
the fastest team to enter the course with a robot (seconds from
run start).

VIII. LESSONS LEARNED
The intensive development of the SubT program has provided
us with a number of useful insights about how to conduct an
activity of such scale. Some of these reflect things that our
team did well, while others are hard-learned lessons where
in hindsight we see the need to do things differently. In this
section, we aim to chronicle some of these.

A. DEVELOPMENT AND TESTING
Prior to the tunnel circuit, a synthetic tunnel environment
was constructed on-site, as illustrated in Fig. 17. Over time,
this was expanded to include stairs, mezzanines, and a terrain
park. Testing initially focused on this environment, but grew
to incorporate as many elements as we could recreate on-
site, for example, incorporating a long traverse from the
tunnel to industrial warehouse regions. In the end, the team’s
strengths and weaknesses reflect the environments to which
we had regular access. We did not have regular access to

126 VOLUME 2, 2025



KOTTEGE ET AL.: HETEROGENEOUS ROBOT TEAMS WITH UNIFIED PERCEPTION AND AUTONOMY

a representative underground communication environment,
which made the development of features such as autonomous
communications node dropping difficult to validate (thus this
task remained manual).

Throughout the program, we maintained a regular cadence
with weekly integration testing. These test activities served
several functions; providing the team with a holistic view of
where each person’s work fits into the capability as a whole,
enabling clear prioritization of work by regularly demonstrat-
ing the significance of different issues, and quickly revealing
problems that arise when integrating work from multiple
developers. While this process was invaluable in the lead-up
to challenge events, during other development periods, some
team members found it limiting due to the time occupied
by the test itself, as well as the posttest analysis of results.
Subsequently, in follow-on work, we have dropped back to
fortnightly tests.

The weekly test regime greatly clarified the robustness
requirements for agents. Platforms were run for many hun-
dreds of hours, and the need to address issues arising from
intermittent failures was highlighted by the impact they had
on the overall test conduct and consequent team efficiency.

The team benefited from high standards in software devel-
opment, including the use of continuous integration servers,
and peer review through enforced pull requests. The high-
quality Gazebo-based simulation environment was critical
to development, and productivity was noticeably slower on
features that were not adequately modeled in simulation but
rather required extensive on-robot testing.

Due to the aggressive development schedule, it was reg-
ularly the case that hardware was not complete on the full
robot fleet until shortly before each event. This last-minute
scale-up of the robot fleet led to a range of issues. Again, this
can be viewed as being related to limitations in simulation.
For example, communications were not well-modeled in sim-
ulation, so extensive difficulties were experienced when the
fleet was scaled up toward the end of the campaign, providing
higher traffic andmore complications unique to each platform
class. Similarly, computational limitations of the simulation
environment, in general, did not support testing of the full
fleet size on available hardware; work has since been con-
ducted to enable the use of parallel computing environments
in simulation, permitting greater scaling.

B. PLATFORMS
Reflecting on the progression of our team’s platforms, a key
strength of our approach was a willingness to pivot rapidly,
embracing opportunities to leverage developments in com-
mercial offerings. Our original concept of operations centered
around a bespoke hexapod design [33], with the goal of
providing the ability to navigate extreme terrain. This concept
was adapted based on two major learnings. First, the surpris-
ing capability of the tracked BIA5 OzBot ATR platform on
rough terrain (e.g., slopes up to 60◦) significantly changed
our view of the tradeoff between platform types. Second,

the engineering effort involved in developing a platform to
the point where it has sufficient robustness to be a viable
candidate in the challenge context was difficult to sustain
under resource constraints. As new, commercially available
platforms emerged with the benefit of far greater engineering
investments, the cost/benefit of bespoke development became
less compelling.

Another aspect of our team’s experience with plat-
forms was the significant engineering effort required to
adapt commercial platforms intended for teleoperation to
robust autonomous operation. As described in Section II-A1,
autonomous systems sometimes exerted control outside the
designers’ expectations, which led to outcomes such as motor
burnout, and additionally, stock control systems made pre-
cise motion difficult. This was experienced with a range of
wheeled and tracked platforms.

Throughout the duration of the program, the capability of
commercial quadruped platforms has also increased greatly.
As discussed above, our initial concept was on hexapod plat-
forms based on the intuition that the additional legs would
provide valuable improvements to stability on rough terrain.
Again, the tremendous commercial investment in platforms
such as Boston Dynamics Spot and ANYbotics ANYmal
shows that the additional maturity of these quadruped plat-
forms overcomes any advantage that an early prototype
hexapod may hold. While these have come a long way, our
own experience with Spot shows that falls on rough terrain is
still an issue, and our original hypothesis regarding hexapod
platforms may still stand, though the engineering investment
necessary to test it would be large.

Finally, our approach of a common sensing pack and nav-
igation stack paid large dividends throughout the program.
All ground platforms utilized the same sensing solution and
autonomy varied only throughminor configuration parameter
changes, and utilizing outputs at different levels (e.g., sending
trajectories to Spot versus low-level control of tracked plat-
forms).

C. SLAM
Our SLAM solution evolved significantly during the course
of the program, especially in aspects relating to multiagent
systems. Our solution was quite sufficient in the environ-
ments tested, and rarely presented a limitation to overall
performance. However, there are a variety of qualifications
for that outcome as follows.

1) The sensor payload with the spinning lidar is both
expensive and heavy. In many applications, it is desir-
able or essential to use smaller, lighter, and cheaper
sensor configurations. Understanding whether these
sensor configurations can provide similarly adequate
performance is a topic of further study.

2) SLAM performance appeared sufficient in the dust and
smoke (e.g., fog machine) obscurants tested in SubT.
This is specific to the obscurants encountered; each
obscurant may react differently with the lidar signals.
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3) Issues with place recognition for robot wake-up were
addressed procedurally, in accordance with the com-
petition rules. Robust and reliable wake-up location in
more general problems remains a topic of interest.

4) Due to the environment scale and excellent odometry
performance, place recognition was not found to be
necessary for loop closure. This problem is still open
for larger scale (spatial or temporal) missions, or sys-
tems with poor odometry performance.

5) The regime of sharing frames between robots and solv-
ing the SLAM problem independently on each agent
was shown to be highly effective, but there are lim-
its to its scalability. True distributed computation that
accommodates larger scale but maintains the ability to
address problems with poor communication remains an
interesting, open problem.

D. AUTONOMY
One key point of realization for our team occurred in our local
cave circuit event in September 2020. As described in [10]
and [13], the ATR robots covered extreme terrain exception-
ally well. They rolled on a number of occasions, each of
which was a subject of close investigation. Some were due to
subsidence of the terrain under the robot, a difficult problem
that was un-modeled in the terrain analysis approach. Some
were identified as unexpected conditions in the behavior
stack, which were easily addressed. Most, however, occurred
under teleoperation when the operator intervened to force
the robot to navigate to areas where autonomy was refusing
to go. The conclusion from this point was that the local
navigation capability was at the point where, subject to the
situation awareness constraints and latency experienced by
the operator, autonomous navigation performed better on this
terrain than teleoperation.

The conclusion on global navigation was somewhat differ-
ent. Although performance has steadily improved throughout
the development, it remains the case that the global maps
have imperfections that benefit considerably from operator
input. Most difficult is the tradeoff between falsely clearing
frontiers in narrow doorways and failing to correctly clear
frontiers when visited, leading to revisits of the same space.
This is exacerbated by the fact that it is often difficult to
distinguish traversable and nontraversable openings without
attempting them.

A related lesson was on the scoring used for selecting
frontiers. As discussed in Section IV-B, it was found that
size-based scoring as is common in next-best view planners,
often led to undesirable behavior such as declining to enter a
small opening. In the SubT context where such traversals are
of prime importance, our conclusion was that, in the absence
of semantic analysis covering cases such as doors, size-based
scoring was unhelpful.

Finally, the human/robot interface concept has come
on an interesting journey, starting from a highly manual
waypoint-based interface in the tunnel circuit, to relying on
fully autonomous explore without the option for human input

FIGURE 26. Raw colored point cloud showing a mural in the
circuit, calculated online by Team CSIRO Data61’s Bluey
platform during the final event.

in the urban circuit, and finally arriving at a system which
permits directed autonomy, with a complete set of tools for
operator prioritization at the final event. The emphasis on the
human/robot team in this concept significantly contributed to
our result.

E. PERCEPTION
The object detection capability had interesting lessons related
to the generalization error imposed by the competition struc-
ture. As much as we could collect test data in as wide a range
of environments as possible, the unique and unpredictable
nature of the environments presented in the challenge events
inevitably led to significant model mismatch. Consequently,
false detections were often a challenge, for which the only
effective mitigation was temporal analysis (i.e., object track-
ing).

Another approach attempted but not deployed was to
improve the operator’s overall situational awareness via the
use of a persistent colored point cloud. The goal was to
augment the 3-D structure information computed by Wildcat
from lidar data with color information obtained from each
agent’s onboard cameras. The displayed point cloud would
dynamically update as the agents explored the unknown envi-
ronment and would remain visible for the entire duration
of the mission. It was hoped that the persistence would
allow the operator to virtually teleport to any point in the
explored environment in order to look for artifacts and/or
make more informed decisions on each agent’s progress or
current task [41].

The feature was implemented to run in real-time on the
agents with a resolution of one point per 30 mm3 voxel, and a
rate of 4 Hz per camera, limiting bandwidth by compressing
and sending only new points to the base station for visualiza-
tion. The work required to reconstruct the point cloud on the
base station was unable to be completed in time for the final
event due to competing priorities.

A complete study of this functionality (including band-
width impacts) will be pursued in the future; an example of
the colored point cloud is shown in Fig. 26.
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FIGURE 27. Engineer from the Australia-based team providing remote advice via telepresence robot to a U.S.-based team member to
perform emergency electrical repairs on the Boston Dynamics Spot Quadruped’s Autonomy payload (left), a U.S.-based team member
providing run debrief to the Australia-based team after a preliminary run (center), and an engineer from the Australia-based team
working U.S. East coast hours from Brisbane to provide support during the final event (right).

F. REMOTE SUPPORT
Finally, due to COVID-19 induced limitations on the compo-
sition of our deployed team for the final event led to a very
challenging experience, wheremuch of the development team
provided remote support from the opposite side of the world.
The Australian development team switched to the U.S. East
coast time zone for the period of the deployment (i.e., both the
lead-up and the actual event), and provided support through
telepresence robots and video conferencing (see Fig. 27).
Sending robot recordings back to Australia was challenging
due to the lack of high-bandwidth connections in the deployed
location, andwas generally only achievable after stripping out
all but the most critical data from the log files.

Hardware work performed by the deployed team included
replacing an ATR motor, fixing wiring faults with an auton-
omy computer on a Spot robot, and replacing broken drop
node compute modules. In each case, with the help of
duplicate hardware held back in Australia, the development
team performed the procedure, capturing detailed step-by-
step instructions and photographs, which were sent to the
deployed team who executed the procedure under remote
supervision.

It was also necessary to be realistic about the robot team
composition that could be supported. For example, a decision
was made to not ship the DTR as it was not considered feasi-
ble for the small deployed team to support a fourth platform
type.

IX. CONCLUSION
We have presented the system TeamCSIROData61 deployed
at the DARPA SubT Challenge finals. Special emphasis was
given to the improvements and changes made to our systems
and approach since Phase I (tunnel circuit) and Phase II
(urban and cave circuits) of the challenge. The reasons for
these changes were also explained. Results from the final
event were presented and analyzed.We also provided insights
and lessons learned over the overall campaign. The paradigm
of using the same sensing and autonomy payloads on different

robot platforms allowed us to effectively scale our fleet. This
also allowed us to pivot to new platform types with minimum
lead time as demonstrated by us fully integrating the Spot
platform into our fleet just a few months before the final
event. In the final prize run, we had all but one of our robots
being immobilized due to various challenge elements in the
course leading up to the final minutes of the run. Despite this
attrition of agents, the overall system performed as designed
to provide resilience against this and we managed to create
the most accurate maps of the environment as well as tie
for the top score. Therefore, we have demonstrated how our
paradigm of heterogeneous robot teams with unified percep-
tion and autonomy allowed Team CSIRO Data61 to achieve
a remarkable outcome at the SubT Challenge finals, even
without being able to send the full development team from
Australia to the event in the U.S.
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