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ABSTRACT
In this paper,  F-augmented closure spaces are generalized to F-closure spaces, and the concept of  F-closed
sets are introduced. Properties of their ordered structures are investigated. Representations of various algebraic
domains such as algebraic lattices, algebraic L-domains, BF-domains via F-closure spaces are considered. As
applications of these methods, more direct approaches to representing various algebraic domains via classical
closure space are given, respectively. F-relations between F-closure spaces are defined and properties of them
are examined. It is also proved that the category of algebraic domains with Scott continuous maps is equivalent
to that of F-closure spaces with F-relations.
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1    Introduction

D omain  theory,  developed  from  continuous  lattices  introduced  by  Scott[1] in  the  1970s  as  a
denotational model for functional languages, is one of the important research fields of theoretical
computer  science[2].  Mutual  transformations  and  infiltrations  of  the  mathematical  structures  of

orders  and  topologies  are  the  basic  features  of  domain  theory.  A  closure  system  on  a  set  is  a  family  of
subsets  which  is  closed  under  arbitrary  intersections.  An  underlying  set  equipped  with  closure  system  is
called a closure space. Thus, closure spaces are generalized topological spaces. Many studies have shown that
closure spaces are closely related to domain theory and play a key role in various completions of  ordered
structures (see Refs. [3−6]).

Representing ordered structures by families of sets is an interesting research topic in domain theory[7]. To
represent/characterize  ordered  structures,  or  domains,  one  can  use  a  suitable  and  familiar  family  of  their
structures  ordered  by  the  set-theoretic  inclusion with  some general  way.  Closure  spaces  were  successfully
used  in  representing  various  lattices.  For  example,  Birkhoff’s  famous  representation  theorem  for  finite
distributive lattices[8] and Stone’s duality theorem for Boolean algebras[9]. Another fact is that the closed sets
of  an algebraic closure space (called a topped algebraic intersection structure in Ref.  [10]) ordered by set- 
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theoretic inclusion is an algebraic lattice, and conversely, every algebraic lattice is isomorphic to the family
of all closed sets of an appropriate algebraic closure space ordered by set-theoretic inclusion[10].  These facts
are well-known results in representation theory of ordered structures.

Recently,  Li  et  al.[11] generalized  algebraic  closure  spaces  to  continuous  closure  spaces  and  gave
representations  for  continuous  lattices.  In  Ref.  [12],  Guo and Li  defined F-augmented closure  spaces  and
provided alternative representations of algebraic domains. In Ref. [13], Wu et al. provided a new approach
to represent algebraic domains and algebraic L-domains by algebraic closure spaces. In Ref. [14], Su and Li
generalized the representations of algebraic lattices by means of algebraic closure spaces to the fuzzy setting.
In Ref. [15], Yao and Li proposed the notion of BF-closure spaces and gave representations of BF-domains
by  means  of  families  of  morphisms.  In  Ref.  [16],  Zhang  et  al.  provided  a  representation  for  arithmetic
semilattices by closure spaces. Convex spaces are special algebraic closure spaces with empty set as a closed
set[17].  Shen et al.[18] gave representations for algebraic lattices by sober convex spaces. In Ref. [19], Yao and
Zhou gave representations for join-semilattices by sober convex spaces. The above work shows that closure
spaces  played  an  important  role  in  representing  ordered  structures  and  various  domains.  For  more
discussion of representations for various domains via closure spaces, please refer to Refs. [20−22].

As mentioned, there are more than one method for representing algebraic domains in terms of closure
spaces. However, each of the above representations is based on closure spaces with additional conditions or
structures,  such  as  algebraic  closure  spaces  and  F-augmented  closure  spaces.  These  representations  mean
that algebraic domains were not directly generated from classical closure spaces. It is thus natural to ask if
there  is  a  direct  representation  of  algebraic  domains  by  classical  closure  spaces.  In  order  to  solve  this
problem,  we introduce  the  concept  of  F-closure  spaces,  which is  more  general  than F-augmented closure
spaces, and give representations for algebraic domains. It will be seen that classical closure spaces are special
F-closure spaces. Based on this fact, we naturally obtain direct methods for representing algebraic domains
via classical closure space. Moreover, being different from the method in Ref. [15], a set-theoretic method
without  using  morphisms  to  represent  BF-domains  is  given  with  the  notion  of  bifinite  F-closure  spaces,
which is the second innovation of this paper. Finally, we introduce the notion of F-relations between two F-
closure spaces which is different from the F-morphisms defined in Ref. [12]. Since the compositions of F-
relations are precisely the composition of binary relations, the proof of categorical results will be simplified
to some extent.

This  paper  is  organized  as  follows:  In  Section  2,  we  recall  some  basic  notions  in  domain  theory  and
closure spaces. In Section 3, we introduce the concepts of F-closure spaces and F-closed sets,  discuss their
properties and then give the representation theorem for algebraic domains, algebraic lattices and algebraic
semilattices.  In  Section  4,  we  give  set-theoretic  representations  for  algebraic  L-domains  and  BF-domains,
which are objects of two maximal cartesian closed full subcategories of algebraic domains respectively (see
Ref.  [23]).  In  section  5,  we  give  direct  approaches  to  representing  various  algebraic  domains  via  classical
closure  space.  In  section  6,  we  give  the  concept  of  F-relations  and  discuss  the  relationship  between  F-
relations  and  Scott  continuous  maps.  In  Section  7,  we  establish  an  equivalence  between  the  category  of
algebraic domains with Scott continuous maps and that of F-closure spaces with F-relations.
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2    Preliminary

In this section, we recall some basic notions and results in lattice theory, domain theory and closure spaces.
For notions not explicitly defined herein, please refer to Refs. [2, 3, 10, 24].

X⊆ U P(U) Pfin(U)
F⊆fin X

For a set U and   , we use    to denote the power set of U, and    to denote the family of
all nonempty finite subsets of U. The symbol    means that F is a finite subset of X.

Next, let us recall the notions of closure spaces which are taken from Refs. [3, 10].
C

(X, C) C ∈ C (X, C)
A closure system is a family    of subsets of a set X that is closed under arbitrary intersections (including

empty intersection). The pair    is called a closure space and    is called a closed set of   .
c : P(X)−→ P(X)A closure operator on a set X is a map    satisfying:

A,B ∈ P(X) A⊆ B=⇒ c(A)⊆ c(B)(1) for all   ,   ;
A ∈ P(X) A⊆ c(A)(2) for all   ,   ;
A ∈ P(X) c(c(A)) = c(A)(3) for all   ,   .

CcGiven a closure operator c on X, the related closure system    on X is obtained by defining

Cc = {A ∈ P(X) | A= c(A)}.

C cCConversely, given a closure system    on X, the related closure operator    is obtained by defining

∀B ∈ P(X), cC(B) = ∩{C ∈ C | B⊆ C}.

Cc cC
C

It is well known that the closure operator induced by the    is c, and the closure system induced by  

is   . That is,

cCc = c; CcC = C.

(X, C) B⊆ X B cC(B) = ∩{C ∈ C | B⊆ C}
So there is a one-to-one correspondence between closure systems on X and closure operators on X. For a

closure space   ,   , we use    to denote   . Clearly,

C= {B ∈ P(X) | B= B}= {B | B⊆ X}.

cCNoticing that    defined above is a closure operator, we have Lemma 2.1.
(X, C) A,B ∈ P(X)Lemma 2.1　Let    be a closure space. Then for all   , we have

A⊆ B=⇒ A⊆ B(1)   ;
A⊆ A(2)   ;
A= A(3)   .

Next, we recall some terminology and results of order and domain theory.
⩽ ↓x= {y ∈ L | y⩽ x} A⊆ L

↓A= {y ∈ L | ∃ x ∈ A, y⩽ x} ↑A= {y ∈ L | ∃ x ∈ A, x⩽ y}
A= ↓A A= ↑A

A⊆↑z A⊆↓z ∨
A sup A∧

A inf A A⊆↓x⊆ L
∨

xA
(↓x,⩽)

Let (L,   ) be a poset. A principal ideal of L is a set of the form   .  For   ,  we
write    and   .  A subset A is a lower set (resp.,
an upper set) if    (resp.,   ). We say that z is a lower bound (resp., an upper bound) of A if

  (resp.,   ). A subset B is said to be up-bounded if B has an upper bound. The supremum of A
is the least upper bound of A, denoted by    or   . The infimum of A is the greatest lower bound of
A, denoted by    or   . If   , then we use    to denote the supremum of A in sub-poset

 , where the order inherits from L. A nonempty subset D of L is directed if every finite subset of D
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d ∈ D e ∈ E d⩽ e

has an upper bound in D.  A poset L is  a  directed complete partially ordered set  (dcpo,  for short)  if  every
directed subset of L has a supremum. A poset L is said to be pointed if L has a least element. A subset E of
the directed set D is cofinal, if for every  , there exists    such that   .

supD
∪n

i=1Ai = D
Aj (1⩽ j⩽ n) supAj = supD

Lemma 2.2　Let D be a directed subset of a poset P and D has a supremum   . If   , then
there is some    which is a cofinal subset of D, and   .

i ∈ {1,2, . . . ,n} Ai

i ∈ {1,2, . . . ,n} di ∈ D Ai di
{di | 1⩽ i⩽ n} d ∈ D=

∪n
i=1Ai {di | 1⩽ i⩽ n} ⊆ ↓d

j ∈ {1,2, . . . ,n} d ∈ Aj dj ⩽ d dj
Aj (1⩽ j⩽ n) supAj = supD

Proof　 Assume  that  for  all   ,    is  not  a  cofinal  subset  of D.  Then  for  every
 , select    such that there is no element in    greater than   . Since D is directed and
  is  finite,  there  is    such  that   .  Hence,  there  is
  such  that    and   ,  contradicting  to  the  choice  of   .  Thus,  there  is  some

  which is a cofinal subset of D. Clearly,   . □
x≪ y

supD⩾ y d ∈ D x⩽ d x≪ x
{x ∈ P | x≪ x} K(P) {y ∈ P | x≪ y} ↑↑x

{y ∈ P | y≪ x} ↓↓x x ∈ P
↓↓x ↓x∩K(P) x=

∨
↓↓x x=

∨
(↓x∩K(P))

x ∈ P Bx ⊆ B∩↓↓x Bx

supBx = x
K(P)

Recall  that  in  a  poset P,  we  say  that x way-below y,  written   ,  if  for  any  directed  set D having  a
supremum with   ,  there  is  some    such  that   .  If   ,  then x is  called  a  compact
element of P. The set    is denoted by   . The set    will be denoted by 

and    denoted by   .  A poset P is said to be continuous (resp., algebraic) if for all   ,
  is  directed  (resp.,    is  directed)  and    (resp.,   ).  If  a  dcpo P is

continuous  (resp.,  algebraic),  then P is  called  a  continuous  domain  (resp.,  an  algebraic  domain).  A
semilattice  (resp.,  sup-semilattice)  is  a  poset  in  which  every  pair  of  elements  has  an  infimum  (resp.,  a
supremum).  A  complete  lattice  is  a  poset  in  which  every  subset  has  a  supremum  (equivalently,  has  an
infimum). A subset B of of a poset P is called a basis of P if for all   , there is    such that  

is directed and   . It is well known that a poset P is continuous if and only if (iff) it has a basis, and
that P is algebraic iff    is a basis.

f : L−→ P D⊆ L
f(
∨
D) =

∨
f(D)

[L−→ P]

Let L and P be  two  dcpos,  and  let    be  a  map.  If  for  every  directed  subset   ,
 ,  then f is  called  a  Scott  continuous  map.  It  is  customary  to  denote  the  set  of  all  Scott

continuous maps from L to P by   .
A⊆ P s, t

∨
sA∨

tA
∨

sA⩽ t
∨

sA=
∨

tA
Lemma 2.3　Let P be a poset,    and    be two upper bounds of A. If the supremums    and

  exist and   , then   .∨
sA⩽ t

∨
sA ↓ t

∨
tA⩽∨

sA∨
tA⩽∨

sA⩽ s
∨

tA ↓ s
∨

sA⩽∨
tA

∨
sA=

∨
tA

Proof　 It  follows  from    that    is  a  upper  bound  of A in   .  Thus   .  By
 , we have    is a upper bound of A in   . So   . Thus   . □

x,y,u,z ∈ PLemma 2.4[2]　Let P be a poset. Then for all   ,
x≪ y⇒ x⩽ y(1)   ;
u⩽ x≪ y⩽ z⇒ u≪ z(2)   ;
x≪ y y≪ z x∨ y x∨ y≪ z(3) if   ,    and    exists, then   ;

⊥ ⊥≪ x(4) if P has a least element   , then   .
Definition 2.5[2, 25]　(1) A poset P is called a cusl, if any finite up-bounded subset A of P has a supremum.
(2) A poset P is called a bc-poset, if any up-bounded subset B of P has a supremum.

p ∈ P ↓p(3) A poset P is called an sL-cusl, if for all   ,    is a sup-semilattice.
p ∈ P ↓p(4) A poset P is called an L-cusl, if for all   ,    is a sup-semilattice with a bottom element.

x ∈ L(5) A continuous domain L is called acontinuous sL-domain (sL-domain, for short), if for all   , the
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↓xset    is a sup-semilattice.
x ∈ L

↓x
(6) A continuous domain L is called a continuous L-domain (L-domain, for short), if for all   ,  the

set    is a complete lattice.
(7) If a bc-poset L is also a continuous domain, then L is called a bc-domain. An algebraic bc-domain is

called a Scott domain.
It is well-known that a bc-domain is a pointed L-domain and that a pointed sL-domain is a pointed L-

domain.  However,  a  pointed  L-domain  may  not  be  a  bc-domain.  Clearly,  a  continuous  domain L is  a
pointed L-domain iff L is a pointed sL-domain.

x ∈ L ⊥x ↓x ⊥xLemma 2.6　Let L be an L-domain and for all    and let    be the least element of   . Then    is
a compact element.

⊥x D⊆ L ⊥x ⩽
∨
D= t

⊥x ⊥x ⩽ t ⊥x =⊥t d ∈ D d⩽ t ⊥x =⊥t ⩽ d
⊥x ∈ K(L)

Proof　It is obvious that    is a minimal element. If    is directed and   , then by the
minimality  of    and   ,  we have   .  Let   .  It  follows from    that   ,
showing that   . □

Definition 2.7[2]　Let L be a dcpo.
D⊆ [L−→ L] supD= idL

idL [L−→ L]
(1) An approximate identity for L is defined to be a directed set    satisfying   ,

where    is  the identity on L,  and the symbol    stands for the set  of  all  Scott  continuous maps
from L to L.

δ : L−→ L Mδ

x ∈ L m ∈Mδ δ(x)⩽m⩽ x
(2) A Scott continuous map    is said to be finitely separating if there exists a finite set    such

that for each   , there exists    satisfying   .
(3) If there is an approximate identity for L consisting of finitely separating maps, then L is called an FS-

domain.
(4) If L is an algebraic FS-domain, then L is called a BF-domain.
Lemma 2.8[2]　Let L be a dcpo.

D⊆ [L−→ L] D′ = {δ2 = δ◦ δ | δ ∈D}(1)  If    is  an  approximate  identity  for L,  then    is  also  an
approximate identity.

δ ∈ [L−→ L] δ(x)≪ x x ∈ L(2)  If    is  finitely  separating,  then    for  all   .  Thus  an  FS-domain  is  a
continuous domain.

k : P−→ PDefinition 2.9[2]　Let P be a poset,    a monotone map. If k satisfies
k(x)⩽ x (∀x ∈ P)(1)      ;
k(k(x)) = k(x) (∀x ∈ P)(2)      ,

then k is called a kernel operator.
Lemma 2.10[2]　For a dcpo L, the following statements are equivalent:
(1) L is a BF-domain;
(2) L is an algebraic domain and has an approximate identity consisting of maps with a finite range;
(3) L has an approximate identity consisting of kernel operators with a finite range.

3    F-closure Space and Algebraic Domain

In this section, we introduce the notion of F-closure spaces and F-closed sets, and then give representation
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theorems for algebraic domains and algebraic lattices in new approaches.
(X, C) /0 ̸= F⊆ Pfin(X)∪{ /0} (X, C,F)

F ∈ F
B⊆fin F F′ ∈ F B⊆ F′ ⊆ F

Definition 3.1[12]　Let    be a closure space,   . The triple    is called
a finite-subset-selection augmented closure space (for short,  F-augmented closure space) if,  for any  

and   , there exists    such that   .
(X, C) /0 ̸= F⊆ Pfin(X)∪{ /0} (X, C,F)Definition  3.2　Let    be  a  closure  space,   .  Then  the  triple    is

called an F-closure space.
An F-augmented closure space must be an F-closure space. But the following example shows that an F-

closure space may not be an F-augmented closure space.
X= N= {0, 1,2, . . .} C= {A⊆ N |↓A= A}

F= {{5}} (X, C,F) K= {0} ⊆fin {5}= {0, 1, . . . ,5}
F ∈ F K⊆ F

Example 3.3　Let    equipped with the order of numbers,  

and   . Then    is an F-closure space. For   , but there is
no    such that   . This shows that an F-closure space may not be an F-augmented closure space.

(X, C,F) E⊆ X K⊆fin E
F ∈ F K⊆ F⊆ E (X, C,F)

(X, C,F) C(X, C,F)

Definition  3.4　Let    be  an  F-closure  space,   .  If  for  any   ,  there  always  exists
  such that   , then E is called an F-closed set of   . The collection of all F-closed sets

of    is denoted by   .
(X, C,F)Proposition 3.5　Let    be an F-closure space. The following statements hold:

F ∈ F F ∈ C(X, C,F)(1) For all   , we have   ;
E ∈ C(X, C,F) B⊆fin E B⊆ E(2) If   ,   , then   ;
{Ei}i∈I ⊆ (C(X, C,F),⊆)

∪
i∈IEi ∈ C(X, C,F)(3) If    is directed, then   ;

(C(X, C,F),⊆)(4) The poset    is a dcpo.
Proof　It is routine to check by Definition 3.4. □

(X, C,F) E⊆ XProposition  3.6　 Let    be  an  F-closure  space,   .  The  the  following  statements  are
equivalent:

E ∈ C(X, C,F)(1)   ;
A= {F | F ∈ F and F⊆ E} E=

∪
A(2) The family    is directed, and   ;

{Fi}i∈I ⊆ F {Fi}i∈I E=
∪

i∈IFi(3) There exists family    such that    is directed and   .
(1)⇒ (2) E= /0 ∈ C(X, C,F) /0 ∈ F /0 = /0 A= { /0}

E=
∪

A E ̸= /0 A ̸= /0 F1,F2 ∈ F F1 ⊆ E F2 ⊆ E F1∪F2 ⊆fin E
E ∈ C(X, C,F) F3 ∈ F F1∪F2 ⊆ F3 ⊆ E

F1,F2 ⊆ F3 F3 ∈A A E=
∪

A x ∈ E
E ∈ C(X, C,F) F ∈ F {x} ⊆ F⊆ E F⊆ F⊆ E
F ∈A x ∈

∪
A E⊆

∪
A 3.5

∪
A⊆ E E=

∪
A

Proof　   :  If   ,  then    and   .  So    is  directed  and
 . If   , then   . Let    with    and   . Then   . It follows

from    that  there  exists    such  that   .  By  Lemma  2.1,  we  have
  and   .  Thus    is  directed.  To  prove   ,  let   .  It  follows  from

  that  there  exists    such  that   .  Noticing  that   ,  we  have  that
  and   , showing that   . By Proposition   (2), we have   . Thus   .

(2)⇒ (3)  : Trivial.
(3)⇒ (1) B⊆fin E=

∪
i∈IFi {Fi}i∈I

i ∈ I B⊆ Fi ⊆ E E ∈ C(X, C,F)
  : If   . Noticing that    is directed and B is finite, we have that there

exists    such that   , showing that   . □
(C(X, C,F),⊆)The following result characterizes the way-below relation in  

(X, C,F) E1,E2 ∈ (C(X, C,F),⊆) E1 ≪ E2

F ∈ F E1 ⊆ F⊆ E2

Proposition 3.7　Let    be an F-closure space,   . Then    if and
only if there exists   , such that   .
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⇒ E2 ∈ C(X, C,F)
{Fi}i∈I E2 =

∪
i∈IFi {Fi}i∈I ⊆ F E1 ≪ E2 i0 ∈ I E1 ⊆ Fi0 ⊆

E2

Proof　   :  It  follows  from    and  Proposition  3.5(3)  that  there  exists  directed  family
  such that   ,  where   .  By   ,  there exists    such that  

 .
⇐ {Ei}i∈I ⊆ C(X, C,F) E2 ⊆

∨
i∈IEi =

∪
i∈IEi

F ∈ F E1 ⊆ F⊆ E2 F⊆ F⊆
∪

i∈IEi {Ei}i∈I
i0 ∈ I F⊆ Ei0 F⊆ Ei0

E1 ⊆ F E1 ⊆ Ei0 E1 ≪ E2

  : For any directed family   , if   , then by the assumption,
there exists    such that   . Therefore   . Noticing that    is directed and
F is a finite set, we know that there exists    such that   . By Proposition 3.5(2), we have   .
Since   , we have   , showing that   . □

(X, C,F) E ∈ (C(X, C,F),⊆)

F ∈ F E= F K(C(X, C,F),⊆)) = {F | F ∈ F}
Corollary 3.8　Let    be an F-closure space. Then    is a compact element iff

there exists    such that   . That is   .
Proof　The proof follows directly from Proposition 3.7. □

(X, C,F) {F | F ∈ F} ((C(X, C,F),⊆)Corollary 3.9　For an F-closure space   ,    is a basis of   .
Proof　The proof follows from Proposition 3.6. □

(X, C,F) (C(X, C,F),⊆)Theorem 3.10　Let    be an F-closure space. Then    is an algebraic domain.
Proof　The proof follows from Proposition 3.5(4) and Corollaries 3.8 and 3.9. □

(L,⩽) FL =

{F⊆fin K(L) | F has a greatest element cF} CL (K(L),⩽)

CL = {A⊆ K(L) | A=↓A∩K(L)} CL K(L)

Next,  we  consider  the  reverse  case.  Given  an  algebraic  domain   ,  let  

  and    be  the  family  of  all  lower  sets  of   ,  that  is
 . The family    forms an Alexandrov topology on   .

(L,⩽) (K(L), CL,FL)

C(K(L), CL,FL) = {↓x∩K(L) | x ∈ L}
Theorem  3.11　Let    be  an  algebraic  domain.  Then    is  an  F-closure  space,  and

 .
(K(L), CL) (K(L), CL,FL)

F ∈ FL F=↓cF∩K(L) E ∈ CL

D⊆ K(L) E=
∪
{↓d∩K(L) | d ∈ D}

E=↓
∨
D∩K(L) C(K(L), CL,FL)⊆ {↓x∩K(L) | x ∈ L}. x ∈ L

K⊆fin↓x∩K(L) ↓x∩K(L)
y ∈ ↓x∩K(L) K⊆ ↓y∩K(L) F= {y} ∈ FL K⊆ ↓y∩K(L) = F⊆ ↓x∩K(L)

↓x∩K(L) ∈ C(K(L), CL,FL) {↓x∩K(L) | x ∈ L} ⊆ C(K(L), CL,FL).

C(K(L), CL,FL) = {↓x∩K(L) | x ∈ L}.

Proof　Clearly,    is a closure space and    is an F-closure space. It is easy to see
that for all   ,   . Let   , it follows from Proposition 3.6 that there exists a directed
set    such  that   .  Since L is  an  algebraic  domain,  we  have

 ,  showing  that    Conversely,  let    and
 .  Since L is  an  algebraic  domain,  we  have  that    is  directed.  Thus  there  exists

  such  that   .  Set   .  We  have   ,
showing  that   .  Thus    To  sum  up,

  □
(K(L), CL,FL)Given an algebraic domain L, we call    the induced F-closure space corresponding to L.

(L,⩽)

(X, C,F) (L,⩽)∼= (C(X, C,F),⊆)

Theorem  3.12　 (Representation  Theorem  I:  for  algebraic  domains)  A  dcpo    is  an  algebraic
domain iff there exists some F-closure space    such that   .

⇐Proof　  : Follows directly from Theorem 3.10.
⇒ (K(L), CL,FL)

f : (L,⩽)→ (C(K(L), CL,FL),⊆) ∀x ∈ L f(x) = ↓x∩K(L)
C(K(L), CL,FL) = {↓x∩K(L) | x ∈ L} f : (L,⩽)→ (C(K(L), CL,FL),⊆)

(L,⩽)∼= (C(K(L), CL,FL),⊆)

  : Let L be an algebraic domain,    the induced F-closure space. Define a map
  such  that   ,  we  have   .  Since L is  an  algebraic

domain  and   ,  we  have  that    is
an order isomorphism, showing that   . □

Next,  in  order  to  give  representations  for  pointed  algebraic  domains,  algebraic  lattices  and  algebraic
semilattices, we add some appropriate conditions to F-closure spaces respectively.
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(L,⩽)

(X, C,F)
O ∈ {F | F ∈ F} (L,⩽)∼= (C(X, C,F),⊆)

Theorem 3.13　(Representation Theorem II: for pointed algebraic domains) Let    be a dcpo. Then
L is  a  pointed  algebraic  domain  iff  there  exists  some  F-closure  space    with  a  least  element

  such that   .
⇐ (C(X, C,F),⊆)

(C(X, C,F),⊆) (L,⩽)∼=
(C(X, C,F),⊆)

Proof　   :  It  follows  directly  from  Proposition  3.5(4)  and  Theorem  3.10  that    is  an
algebraic  domain  with O being  the  least  element  in   .  It  follows  from  

  that L is a pointed algebraic domain.
⇒ (L,⩽) ⊥

(K(L), CL,FL) {⊥} ∈ {F | F ∈ FL}
  : Given a pointed algebraic domain    with the least element   . Then the induced F-closure

space    satisfies that there is the least element   , as desired. □
(L,⩽) B⊆ L (B,⩽)

(L,⩽)

Lemma  3.14　 Let    be  a  continuous  domain  and  let    be  a  basis.  If    is  a  sup-
semilattice, then    is a sup-semilattice.

(B,⩽) x,y ∈ L D= {a∨B b | a ∈ ↓↓x∩B,b ∈ ↓↓y∩B}
a∨B b (B,⩽)

∨
D

x,y⩽∨
D x,y⩽ z a ∈ ↓↓x∩B b ∈ ↓↓y∩B a≪ z

b≪ z ↓↓z∩B t ∈ ↓↓z∩B a,b⩽ t
a∨B b⩽ t a∨B b ∈ D

∨
D⩽∨

(↓↓z∩B) = z
∨
D

x∨ y=
∨
D

Proof　 Let    be  a  sup-semilattice.  For  any   ,  set   ,
where    denotes  the  supremum  of a and b in   .  Clearly, D is  directed  and    exists.  It  is
obvious  that   .  Let   .  Then  for  all    and   ,  we  have  that   ,

 .  Since B is  a  basis,  we  have    is  directed.  Thus  there  exists    such  that   .
Therefore   .  Noticing that   ,  we have   .  This  shows that    is
the least upper bound of x and y, namely,   . Thus L is a sup-semilattice. □

(L,⩽)

(X, C,F) ({F | F ∈ F},⊆)

(L,⩽)∼= (C(X, C,F),⊆)

Theorem 3.15　(Representation Theorem III: for algebraic lattices) Let    be a dcpo. Then L is an
algebraic  lattice  iff  there  exists  some F-closure  space    satisfying  that    is  a  sup-
semilattice with a least element and that   .

⇐ (C(X, C,F),⊆)

(C(X, C,F),⊆) (C(X, C,F),⊆)

Proof　   :  By  Theorem 3.13,  we have  that    is  a  pointed algebraic  domain.  It  follows
from Lemma 3.14 and Corollary 3.9 that dcpo    is a sup-semilattice. Thus  

is a complete lattice, hence an algebraic lattice.
⇒ (L,⩽) K(L)  : Given an algebraic lattice   . By Lemma 2.4, we have that    is a sup-semilattice with a least

element. It follows from

({F | F ∈ FL},⊆) = ({↓a∩K(L) | a ∈ K(L)},⊆)∼= (K(L),⩽),

({F | F ∈ FL},⊆)that    is a sup-semilattice with a least element. □
(X, C,F)

(X, C,F)
Theorem 3.16　(Representation Theorem IV: for algebraic semilattices) Let    be an F-closure

space. If    satisfies

(∗) F1∩F2 ∈ C(X, C,F)(∀F1,F2 ∈ F),

(C(X, C,F),⊆)then    is an algebraic semilattice.
(L, CL,FL)

(∗)
Conversely,  if L is  an  algebraic  semilattice,  then  the  induced  F-closure  space    satisfies

condition   .
(C(X, C,F),⊆)

E1,E2 ∈ C(X, C,F) {F1i}i∈I {F2j}j∈J∪
i∈IF1i = E1

∪
j∈JF2j = E2 {F1i}i∈I ⊆ F {F2j}j∈J ⊆ F

Proof　 Firstly,  we  prove  the  first  half  of  the  theorem.  It  suffices  to  prove  that    is  a
semilattice.  Let   .  Then  there  exist  directed  families    and    such  that

  and   ,  where    and   .  By completely distributive law, we
have
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E1∩E2 = (∪i∈IF1i)∩ (∪j∈JF2j) = ∪ϕ∈Φ(F1ϕ(1)∩F2ϕ(2)),

Φ= {ϕ : {1,2}→ I∪ J | ϕ(1) ∈ I,ϕ(2) ∈ J} {F1i}i∈I {F2j}j∈J
{F1ϕ(1)∩F2ϕ(2)}ϕ∈Φ (∗)

E1∩E2 ∈ C(X, C,F) (C(X, C,F),⊆)

where   . By the directedness of    and   , we have
that    is  directed.  It  follows  from  condition    and  Proposition  3.5(3)  that

 . Thus,    is a semilattice.
F1,F2 ∈ FLConversely, for an algebraic semilattice L, let   . we have

F1∩F2 =↓cF1∩ ↓cF2 ∩K(L) = (↓cF1 ∧ cF2)∩K(L).

F1∩F2 ∈ C(K(L), CL,FL) (K(L), CL,FL) (∗)By Theorem 3.11,   , showing that    satisfies condition   . The
theorem is thus proved. □

4    Representation for Algebraic L-Domains and BF-Domains

In this section, we discuss representations for algebraic L-domains and BF-domains. We first give a useful
lemma.

(L,⩽)Lemma 4.1　Let    be a continuous domain and let B be a basis of L.
(B,⩽) (L,⩽)(1) If    is a cusl, then    is a bc-domain.
(B,⩽) (L,⩽)(2) If    is an sL-cusl, then    is an sL-domain.
(B,⩽) (L,⩽)(3) If    is an L-cusl, then    is an L-domain.

(B,⩽) ⊥ ⊥
x,y,z ∈ L x,y⩽ z a ∈ ↓↓x∩B b ∈ ↓↓y∩B a∨B b

x,y⩽ z a≪ z,b≪ z c ∈ ↓↓z∩B a,b⩽ c a∨B b
(B,⩽)

x∨ y=
∨
{a∨B b | a ∈ ↓↓x∩B,b ∈ ↓↓y∩B}

Proof　(1) Let    be a cusl. Since B has the least element   , obviously,    is the least element of L.
For any    satisfying   ,  we show that for all    and   ,    exists.  By

 ,  we  have   .  Since B is  a  basis,  there  is    such  that   .  That  

exists  by  that    is  a  cusl.  Similar  to  the  proof  of  Lemma  3.14,  we  have  that
  and L is a cusl. Noticing that L is a dcpo, we have that L is a bc-

domain.
(B,⩽) x,y,z ∈ L x⩽ z y⩽ z(2) Let    be an sL-cusl. For any   , let    and   . Set

D= {a∨c(B) b | a ∈ ↓↓x∩B,b ∈ ↓↓y∩B,c ∈ ↓↓z∩B,a,b ∈ ↓c},

a∨c(B) b ↓c∩B ai ∈ ↓↓x∩B,bi ∈ ↓↓y∩B,ci ∈ ↓↓z∩B
ai,bi ∈ ↓ci(i= 1,2) a1∨c1(B) b1 a2∨c2(B) b2 ∈ D a3 ∈ ↓↓x∩B
b3 ∈ ↓↓y∩B ai ⩽ a3,bi ⩽ b3 (i= 1,2) {a3,b3,c1,c2} ⊆ ↓↓z∩B
c3 ∈ ↓↓z∩B {a3,b3,c1,c2} ⊆ ↓c3 ai ⩽ a3,bi ⩽ b3 ai∨c3(B) bi ⩽
a3∨c3(B) b3(i= 1,2) {c1,c2} ⊆ ↓c3 a1∨c1(B) b1 = a1∨c3(B) b1
a2∨c2(B) b2 = a1∨c3(B) b1 a1∨c1(B) b1 ⩽ a3∨c3(B) b3 a2∨c2(B) b2 ⩽ a3∨c3(B) b3∨

D x,y⩽∨
D⩽ z t ∈ L x,y⩽ t⩽ z

a ∈ ↓↓x∩B,b ∈ ↓↓y∩B,c ∈ ↓↓z∩B a,b ∈ ↓c a∨c(B) b ∈ D a,b ∈ ↓↓t∩B
c′ ∈ ↓↓t∩B a,b ∈ ↓c′ a∨c′(B) b ∈ D a∨c′(B) b⩽ t

c,c′ ∈ ↓↓z∩B d ∈ ↓↓z∩B c,c′ ⩽ d
a∨c′(B) b= a∨d(B) b= a∨c(B) b a∨c(B) b⩽ t a∨c(B) b ∈ D

∨
D⩽ t

where    denote  the supremum of a and b in   .  Let    and
 .  Then   ,   .  Since B is  a  basis,  there  exists    and

  such that     . Clearly, we have   . So, there exists
  such  that   .  It  follows  from    that  

 .  By  Lemma  2.3  and   ,  we  know  that    and
 . Hence,    and   , this shows that D

is  directed.  Thus,    exists.  It  is  obvious  that   .  Let    with   .  For  any
  with   ,  we  have    and   .  Since B is  a

basis,  there  exists    such  that   .  Obviously,    and   .  Since
 ,  we  know  that  there  exists    such  that   .  By  Lemma  2.3,  we  have

 .  Thus   .  By  arbitrariness  of   ,  we  have   ,
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x∨z y=
∨
D (L,⩽)showing that   . Hence,    is an sL-domain.

x ∈ L a ∈ ↓↓x∩B ta ↓a∩B ta
↓x y ∈ ↓x b ∈ ↓↓y∩B⊆ ↓↓x∩B a,b ∈ ↓↓x∩B c ∈ ↓↓x∩B
a,b ∈ ↓c ta = tc = tb ⩽ y ta ⩽ y ta

↓x (L,⩽)

(3) Let    and   . We use    to denote the least element in   . To prove    is the least
element in   , let   . Then there exists   . By   , there exists  

such that   , It is obvious that   . Hence,   , showing that    is the least element
in   . By Part (2), we know that    is an L-domain. □

(X, C,F)
({F | F ∈ F},⊆) (C(X, C,F),⊆)

(K(L),⩽) (K(L), CL,FL)

({F | F ∈ FL},⊆)

Theorem  4.2　 (Representation  Theorem  V:  for  algebraic  sL-domains)  Let    be  an  F-closure
space.  If    is  an  sL-cusl,  then    is  an  algebraic  sL-domain.  Conversely,  if

  is  an  algebraic  sL-domain,  then  the  induced  F-closure  space    satisfies  that
  is an sL-cusl.

Proof　The  first  half  of  this  theorem  follows  by  Corollary  3.9  and  Lemma  4.1(2).  Next  we  prove  the
second half of this theorem.

a ∈ K(L) x,y ∈↓a∩K(L) D⊆ L x∨a y⩽
∨
D= t

x∨a y= x∨t y x,y ∈ K(L) x∨a y⩽
∨
D d1,d2 ∈ D

x⩽ d1 y⩽ d2 d3 ∈ D d1,d2 ⩽ d3
d3 ⩽ t x∨d3 y= x∨t y x∨a y= x∨t y x∨a y= x∨d3 y⩽ d3

x∨a y ∈↓a∩K(L) x∨a y x,y ↓a∩K(L) ↓a∩K(L)
(K(L),⩽)

Let    and   . If    is a directed set and   . By Lemma 2.3, we
have   .  It  follows from    and    that  there  exist    such that

  and   .  By  the  directedness  of D,  there  is    such  that   .  By  Lemma 2.3  and
 ,  we  have   .  Notice  that   .  Therefore   ,  showing

that   . Thus    is the supremum of    in   , showing that    is a
sup-semilattice and    is an sL-cusl. It follows from

({F | F ∈ FL},⊆) = ({↓a∩K(L) | a ∈ K(L)},⊆)∼= (K(L),⩽),

({F | F ∈ FL},⊆)that    is an sL-cusl. □
An L-domain is  a  special  sL-domain.  Based on representations  for  algebraic  sL-domains,  the  following

theorem gives a representation for algebraic L-domains.
(X, C,F)

({F | F ∈ F},⊆) (C(X, C,F),⊆)

(L,⩽) (K(L), CL,FL)

({F | F ∈ FL},⊆)

Theorem  4.3　 (Representation  Theorem  VI:  for  algebraic  L-domains)  Let    be  an  F-closure
space.  If    is  an  L-cusl,  then    is  an  algebraic  L-domain.  Conversely,  if

  is  an  algebraic  L-domain,  then  the  induced  F-closure  space    satisfies  that
  is an L-cusl.

Proof　The first half of this theorem follows by Corollary 3.9 and Lemma 4.1(3). The second half of this
theorem follows from Lemma 2.6 and the proof of Theorem 4.2. □

A bc-domain is a special L-domain. A Scott domains are precisely algebraic bc-domains. The following
theorem gives a representation for Scott domains.

(X, C,F)
({F | F ∈ F},⊆) (C(X, C,F),⊆) (L,⩽)

(K(L), CL,FL) ({F | F ∈ FL},⊆)

Theorem 4.4 (Representation Theorem VII: for Scott domains) Let    be an F-closure space. If
  is a cusl, then    is a Scott domain. Conversely, if    is a Scott domain,

then the induced F-closure space    satisfies that    is a cusl.
Proof　The first half of this theorem follows by Corollary 3.9 and Lemma 4.1(1).

(L,⩽)

K(L) a,b,c ∈ K(L) a⩽ c b⩽ c a∨b
a≪ a,b≪ b a∨b≪ a∨b a∨b ∈ K(L) a∨K(L) b= a∨b

a∨K(L) b a,b (K(L),⩽) (K(L),⩽)

To prove the second half of this theorem, let    be a Scott domain. Clearly, the least element of L is
also the least element of   . If    with    and   , then    exists. It follows from

  and  Lemma  2.4  that   ,  showing  that    and   ,
where    denote  the  supremum  of    in   .  Thus    is  a  cusl.  It  follows  from
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({F | F ∈ FL},⊆)∼= (K(L),⩽) ({F | F ∈ FL},⊆)  that    is a cusl. □
To give representations of BF-domains, we need a concept of bifinite F-closure spaces.

(X, C,F) K⊆fin

X MK ⊆fin F
Definition 4.5　A bifinite F-closure space is an F-closure space    satisfying that for all  

 , there is a finite family    such that
P(K)∩F⊆MK(BF 1)　  ;
(∀F ∈ F)(G⊆MK,

∪
G⊆ F) =⇒ (∃M ∈MK)(

∪
G⊆M⊆ F)(BF 2)　  .

(X, C,F)Remark 4.6　For a bifinite F-closure space   , we have
K⊆fin X F

K⊆fin X MK ⊆fin F
(1) for the same   ,  we may have more than one finite family of    satisfying conditions (BF 1)

and  (BF  2),  however,  we  can  use  the  axiom  of  choice  for  all    to  select  a  fixed  one  

satisfying conditions (BF 1) and (BF 2).
K⊆fin X G= /0 MK ̸= /0(2) for all   , set   , then by (BF 2) in Definition 4.5, we have that   .

(X, C,F) (C(X, C,F),⊆)Theorem 4.7　If    is a bifinite F-closure space, then    is a BF-domain.
(C(X, C,F),⊆) (C(X, C,F),⊆)Proof　Clearly,    is an algebraic domain. To show that    is a BF-domain,

we divide the proof into several steps by Lemma 2.10.
D= {K⊆fin X | ∃F ∈ F s.t. F⊆ K} DStep  1.  Set   .  Then  in  set-theoretic  inclusion  order,    is  clearly  a

directed family.
K ∈D δK : C(X, C,F)−→ C(X, C,F) E ∈ C(X, C,F) δK(E) =∪

{M |M ∈MK and M⊆ E} MK

For  all   ,  define    such  that  for  all   ,  

 , where    is stated in Remark 4.6(2).
K ∈D δKStep 2. Assert that for all   ,    is well defined and has finite range.

E ∈ C(X, C,F) MK MK ⊆fin F
∪
{M |M ∈MK and M⊆

E} ⊆fin E E ∈ C(X, C,F) F ∈ F
∪
{M |M ∈MK and M⊆

E} ⊆ F⊆ E {M |M ∈MK and M⊆ E} ⊆MK M∗ ∈MK∪
{M |M ∈MK and M⊆ E} ⊆M∗ ⊆ F⊆ E M∗ ⊆ E M∗

{M |M ∈MK and M⊆ E}
δK(E) =M∗ ∈ C(X, C,F) δK MK

M∗ ∈MK δK

Let   .  By  the  finiteness  of    and   ,  we  have  

 .  It  follows  from    that  there  exists    such  that  

 .  It  follows  from    and  (BF  2)  that  there  is    such
that   .  By  Lemma  2.1,  we  see  that    and    is  the
greatest  element  in    equipped  with  set-theoretic  inclusion  order.  Hence

 ,  showing  that    is  well  defined.  It  follows  from  the  finiteness  of    and
  that    has finite range.

K ∈D δKStep 3. Assert that for all   ,    is Scott continuous.
δK {Ei}i∈I ⊆ (C(X, C,F),⊆)

E=
∨

i∈IEi =
∪

i∈IEi ∈ C(X, C,F) M∗
E ∈MK M∗

E ⊆ E
δK(E) =M∗

E M∗
E ⊆fin

∪
i∈IEi = E j ∈ I M∗

E ⊆ Ej δK(Ej) =∪
{M |M ∈MK and M⊆ Ej} ⊇M∗

E = δK(E) δK(E)⊆ δK(Ej)⊆
∪

i∈I δK(Ei)⊆ δK(E)
δK(

∪
i∈IEi) =

∪
i∈I δK(Ei) δK

Obviously,    is  order-preserving.  Let    be  a  directed  family  and
 .  By  the  proof  of  Step  2,  there  is    and    such  that

 .  Since   ,  there  exists    such  that   .  So,  

 .  Therefore   .  Thus
 , showing that    is Scott continuous.

{δK}K∈D (C(X, C,F),⊆)Step 4. Assert that    is an approximate identity on   .
{δK}K∈D K1,K2 ∈D K= K1∪K2∪

∪
(MK1 ∪MK2) K ∈D

MK1 ∪MK2 ⊆ P(K)∩F⊆MK E ∈ C(X, C,F)
To  show    is  directed,  let    and   .  Then    and

 . For all   , we have that

δKi(E) = ∪{M |M ∈MKi and M⊆ E} ⊆ ∪{M |M ∈MK and M⊆ E}= δK(E)(i= 1,2),

{δK}K∈Dshowing that    is directed.
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F ∈ F F⊆ E ∈ C(X, C,F) MF ⊆fin F P(F)∩F⊆MF

F ∈ P(F)∩F⊆MF F⊆
∪
{M |M ∈MF and M⊆ E}= δF(E)

F ∈ F⊆D F⊆
∨

K∈D δK(E)
E= {F | F ∈ F,F⊆ E} ⊆

∨
K∈D δK(E)

∨
K∈D δK(E)⊆ E

∨
K∈D δK(E) = E∨

K∈D δK = idC(X,C,F)

Let    and   . Then by (BF 1), there exists    satisfying   .
It  follows  from    that   .  Noticing  that

 ,  we  have   .  By  Proposition  3.6(2)  and  the  arbitrariness F,  we  have
 . Obviously,   . Thus,   . This shows

that   .
(C(X, C,F),⊆)Summing up Step 1 to Step 4, by Lemma 2.10, we have that    is a BF-domain. □

(K(L), CL,FL)

(K(L), CL,FL)

Theorem  4.8　 Let L be  a  BF-domain  and  let    be  the  induced  F-closure  space.  Then
  is a bifinite F-closure space.

{δi}i∈I
i ∈ I (δi) δi m ∈ (δi)

m= δi(m)≪m (δi)⊆ K(L)

Proof　By Lemma 2.10, there is an approximate identity    for L consisting of kernel operators with
finite range. For all   , we use Im   to denote the range of   . For any    Im  , by Lemma 2.8
(2), we have that    and m is compact, showing that Im  .

H⊆fin K(L) H ̸= /0
∨

i∈I δi(a) = a ia ∈ I a⩽ δia(a)
a ∈H⊆ K(L) δia(a)⩽ a δia(a) = a {δia | a ∈H} ⊆fin {δi}i∈I

{δi}i∈I j ∈ I δia ⩽ δj a ∈H a ∈H
a⩾ δj(a)⩾ δia(a) = a a= δj(a) H⊆ Im(δj) MH = P(Im(δj))∩FL

H⊆ Im(δj) P(H)∩FL ⊆MH MH MH

F ∈ F G⊆MH
∪

G⊆ F= ↓cF∩K(L) M= {δj(cF)} ⊆ Im(δj)
M ∈MH δj(cF)⩽ cF M= ↓δj(cF)∩K(L)⊆ ↓cF∩K(L) = F g ∈

∪
G∪

G⊆ Im(δj) δj(g) = g
∪

G⊆ F= ↓cF∩K(L) g⩽ cF
g= δj(g)⩽ δj(cF)

∪
G⊆ ↓δj(cF)∩K(L) =M

∪
G⊆M⊆ F

MH

For    and   , it follows from    that there is    such that    for
all   .  Clearly,    and   .  For   ,  it  follows from the
directedness of    that there exists    such that    for all   . Thus for all   , we have
that   ,  and   ,  showing  that   .  Set   .  It
follows from    that   , showing that    satisfies (BF 1). To show    satisfies
(BF 2),  let    and    satisfying   .  Take   .  Clearly,

 . It follows from    that   . For all   , notice

that   ,  we  have   .  It  follows  from    that   .  Thus
 ,  showing  that   .  Thus,  we  obtain  that   ,

showing that    satisfies (BF 2).
H⊆fin K(L) H= /0 P(H)∩FL = /0 M /0 = P(Im(δi))∩FL i ∈ I

M /0 ⊆fin FL M /0 H ̸= /0

For    and   ,  we  have   .  Let   ,  for  any   .
Obviously,    and    satisfies (BF 1). The checking of (BF 2) is similar to the case of   . □

(L,⩽)

(X, C,F) (C(X, C,F),⊆)∼= (L,⩽)

Theorem 4.9　(Representation Theorem VIII: for BF-domains) A poset    is a BF-domain iff there
is a bifinite F-closure space    such that   .

⇐Proof　  : Follows from Theorem 4.7.
⇒ (L,⩽) (K(L), CL,FL)

(K(L), CL,FL) (C(K(L), CL,FL),⊆)∼= (L,⩽)

  : Let    be a BF-domain,    the induced F-closure space. It follows from Theorem
4.8 that    is a bifinite F-closure space and   .

□

5    Direct Approach to Representing Algebraic Domains

(X, C)

As  can  be  seen  from  the  previous  sections,  F-closure  spaces  and  F-augmented  closure  spaces  are  triples,
which are different from the form of classical closure spaces. As is well known, a usual closure space is a pair

 .  In  Ref.  [13],  Wu  et  al.  used  algebraic  closure  spaces  rather  than  usual  closure  spaces  to  give
representations for algebraic domains. In this section, we discuss direct approaches to representing algebraic
domains by classical closure spaces.
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(X, C) E⊆ X K⊆fin E
x ∈ X K⊆ x⊆ E

(X, C) S(X, C)

Definition  5.1　 Let    be  a  closure  space  and   .  If  for  any   ,  there  always  exists
  such that   , then E is said to be FinSet-bounded. The collection of all FinSet-bounded sets

of    is denoted by   .
(X, C) F= {x | x ∈ X} S(X, C) =

C(X, C,F)
Remark  5.2　 (1)  Given  a  closure  space   ,  let   .  It  is  easy  to  see  

 . So, closure spaces can be seen as special F-closure spaces.
(2)  In  Ref.  [13],  the  definition of  FinSet-bounded sets  is  corresponding to  the  case  of  algebraic  closure

spaces.
(X, C) (S(X, C),⊆)Theorem 5.3　(1) Let    be a closure space. Then    is an algebraic domain.

(L,⩽) CL (K(L),⩽)

S(K(L), CL) = {↓x∩K(L) | x ∈ K(L)}
(2)  Let    be  an  algebraic  domain and let    be  the  family  of  all  lower  sets  of   .  Then

 .
Proof　(1) The proof follows directly from Theorem 3.10 and Remark 5.2.
(2) The proof is similar to the proof of Theorem 3.11. □

(K(L), CL) (L,⩽)In the following, the closure space    is called the induced closure space of   .
(L,⩽)

(X, C) (L,⩽)∼= (S(X, C),⊆)

Theorem  5.4　 (Representation  Theorem  I':  for  algebraic  domains)  A  dcpo    is  an  algebraic
domain iff there exists some closure space    such that   .

Proof　The proof follows directly from Theorem 5.3. □
CDefinition 5.5[26]　A non-empty family    of subsets of a set X is called a locally algebraic intersection

structure if
{Ai ∈ C | i ∈ I}

∪
i∈IAi ∈ C(L1)　for every directed family   , one has   ; and

C ∈ C {Aj ∈ C | Aj ⊆ C, j ∈ J}
∩

j∈JAj ∈ C(L2)　for every    and non-empty family   ,   .
C (C,⊆)Remark 5.6[26]　(1) Let    be a locally algebraic intersection structure on a set X. Then the dcpo  

is an algebraic L-domain.
(L,⩽) C

(C,⊆)∼= (L,⩽)

(2) Let    be an algebraic L-domain. Then there is a locally algebraic intersection structure    such
that   .

(X, C) ({x | x ∈ X},⊆) S(X, C)Proposition 5.7　Let    be  a  closure  space.  If    is  an L-cusl,  then    is  a
locally algebraic intersection structure.

S(X, C) S(X, C)
C ∈S(X, C) {Aj ∈S(X, C) | Aj ⊆ C, j ∈ J}∩

j∈JAj ∈S(X, C) K⊆fin
∩

j∈JAj i ∈ J K⊆fin Ai xi ∈ X
K⊆ xi ⊆ Ai ({x | x ∈ X},⊆) {k | k ∈ K}
({x | x⊆ xi,x ∈ X},⊆)

∨
xi{k | k ∈ K} j ∈ J xj ∈ X

K⊆ xj ⊆ Aj {k | k ∈ K} ({x | x⊆ xj,x ∈ X},⊆)∨
xj{k | k ∈ K} {xi,xj} ⊆ C xt ∈ X {xi,xj} ⊆ xt ⊆ C∨

xi{k | k ∈ K}=
∨

xt{k | k ∈ K}
∨

xj{k | k ∈ K}=
∨

xt{k | k ∈ K}∨
xi{k | k ∈ K}=

∨
xj{k | k ∈ K}

∨
xi{k | k ∈ K} ⊆ xj ⊆ Aj

K⊆
∨

xi{k | k ∈ K} ⊆
∩

j∈JAj
∩

j∈JAj ∈S(X, C)

Proof　 It  follows  from  Proposition  3.5  that    satisfies  (L1).  Next,  we  prove  that  

satisfies (L2). For any    and non-empty family   , we will show
that   .  Let   .  For   ,  then   .  So,  there  exists    such  that

 .  Since    is  an  L-cusl,  the  supremum  of    in
  exists,  denoted  by   .  For   ,  then  exists    such  that

 .  Therefore  the  supremum  of    in    exists,  denoted  by
 . Since   , there exists    such that   . It follows from Lemma

2.3  that    and   .  This  shows  that

 .  Thus   .  By  the  arbitrariness  of j,  we  have

 . Thus   . □
(X, C)Theorem 5.8　(Representation Theorem VI': for algebraic L-domains) Let    be a closure space. If
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({x | x ∈ X},⊆) (S(X, C),⊆) (L,⩽)

(K(L), CL) ({x | x ∈ K(L)},⊆)

  is  an  L-cusl,  then    is  an  algebraic  L-domain.  Conversely,  if    is  an
algebraic L-domain, then the induced closure space    satisfies that    is an L-
cusl.

Proof　The proof follows directly from Theorem 4.3 and Remark 5.2. □
CDefinition  5.9[10]　 A  non-empty  family    of  subsets  of  a  set X is  called  an  algebraic  intersection

structure if
{Ai ∈ C | i ∈ I}

∪
i∈IAi ∈ C(A1)　for every directed family   , one has   ; and

{Aj ∈ C | j ∈ J}
∩

j∈JAj ∈ C(A2)　for every non-empty family   , the intersection   .
C (C,⊆)Remark 5.10[10]　(1) Let    be an algebraic intersection structure on a set X. Then the dcpo    is a

Scott domain.
(L,⩽) C

(C,⊆)∼= (L,⩽)

(2)  Let    be  a  Scott  domain.  Then  there  is  an  algebraic  intersection  structure    such  that
 .

(X, C) ({x | x ∈ X},⊆) S(X, C)Proposition  5.11　Let    be  a  closure  space.  If    is  a  cusl,  then    is  an
algebraic intersection structure.

S(X, C)
{Aj | j ∈ J} ⊆S(X, C)

∩
j∈JAj ∈S(X, C) K⊆fin

∩
j∈JAj ({x | x ∈ X},⊆)

{k | k ∈ K} ({x | x ∈ X},⊆)
∨
{k | k ∈ K}

K⊆
∨
{k | k ∈ K} ⊆

∩
j∈JAj

∩
j∈JAj ∈S(X, C)

Proof　 It  suffices  to  prove  that    satisfies  (A2).  For  any  non-empty  family
 , we will show that   . Let   . Since  

is  a  cusl,  the  supremum  of    in    exists,  denoted  by   .  Clearly,
 , showing that   . □

(X, C)
({x | x ∈ X},⊆) (S(X, C),⊆) (L,⩽)

(K(L), CL) ({x | x ∈ K(L)},⊆)

Theorem  5.12　 (Representation  Theorem  VII':  for  Scott  domains)  Let    be  a  closure  space.  If
  is a cusl, then    is a Scott domain. Conversely, if    is a Scott domain,

then the induced closure space    satisfies that    is a cusl.
Proof　The proof follows directly from Theorem 4.4 and Remark 5.2. □

CDefinition 5.13[10]　A non-empty family    of subsets of a set X is called a topped algebraic intersection
structure if

{Ai ∈ C | i ∈ I}
∪

i∈IAi ∈ C(T1)　for every directed family   , one has   ;
{Aj ∈ C | j ∈ J}

∩
j∈JAj ∈ C(T2)　for every non-empty family   , the intersection   ; and

X ∈ C(T3)　  .
C

(C,⊆)

Remark  5.14[10]　 (1)  Let    be  a  topped  algebraic  intersection  structure  on  a  set X.  Then  the  dcpo
  is an algebraic lattice.

(L,⩽) C

(C,⊆)∼= (L,⩽)

(2) Let    be an algebraic lattice. Then there is a topped algebraic intersection structure    such that
 .

(X, C) ({x | x ∈ X},⊆)

S(X, C)
Proposition 5.15　Let    be a  closure space.  If    is  a  sup-semilattice with a  least

element, then    is a topped algebraic intersection structure.
S(X, C)

X ∈S(X, C) ({x | x ∈ X},⊆) {x | x ∈ X}
X=

∪
{x | x ∈ X} X ∈S(X, C)

Proof　Similar to the proof of Proposition 5.11, it follows that    satisfies (T2). Next, it suffices to
prove  that   .  Since    is  a  sup-semilattice,  we  see  that  the  set    is
directed. It follows from    and Proposition 3.6 that   . □

(X, C)Theorem  5.16　 (Representation  Theorem  III':  for  algebraic  lattices)  Let    be  a  closure  space.  If
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({x | x ∈ X},⊆) (S(X, C),⊆)

(L,⩽) (K(L), CL)

({x | x ∈ X},⊆)

  is  a  sup-semilattice  with  a  least  element,  then    is  an  algebraic  lattice.
Conversely,  if    is  an  algebraic  lattice,  then  the  induced  closure  space    satisfies  that

  is a sup-semilattice with a least element.
Proof　The proof follows directly from Theorem 3.15 and Remark 5.2. □

(X, C)
(X, C) K⊆fin X MK ⊆fin X

Theorem  5.17　 (Representation  Theorem  VIII':  for  BF-domains)  Let    be  a  closure  space.  If
  satisfies that for all   , there is a finite set    such that

(†1) K⊆MK  　  ;
(†2) (∀x ∈ X)(G⊆MK∩x) =⇒ (∃m ∈MK)(G⊆m⊆ x)  　  ,
(S(X, C),⊆)then    is a BF-domain.

(L,⩽) (K(L), CL)

K⊆fin K(L) MK ⊆fin K(L) (†1) (†2)
Conversely,  if    is  a  BF-domain,  then  the  induced  closure  space    satisfies  that  for  all

 , there is a finite set    such that conditions    and    hold.
Proof　Follows directly from Remark 5.2 and the proofs of Theorems 4.7 and 4.8. □

6    F-Relation and Scott Continuous Map

In order to investigate more relationship between F-closure spaces and algebraic domains,  in this  section,
we introduce F-relations between two F-closure spaces.

(X1, C1,F1) (X2, C2,F2)

Θ⊆ F1×F2

Definition  6.1　 Let    and    be  two  F-closure  spaces.  Then  a  binary  relation
  is called an F-relation, if it satisfies
F ∈ F1 G ∈ F2 FΘG(1) for all   , there is    such that   ;
F,F′ ∈ F1 G,G′ ∈ F2 F⊆ F′ G′ ⊆ G FΘG F′ΘG′(2) for all   ,   , if   ,   , and   , then   ; and
F ∈ F1 G1,G2 ∈ F2 FΘG1 FΘG2 G3 ∈ F2 G1∪G2 ⊆ G3

FΘG3

(3) for all   ,   , if    and   , then there is    such that    and
 .

Since closure spaces can be seen as special F-closure spaces, we give the following definition.
(X1, C1) (X2, C2) Θ⊆ X1×X2

Θ
Definition  6.2　Let    and    be  two  closure  spaces.  Then  the  relation    is

called an approximable relation, if    satisfies the following conditions:
x ∈ X1 y ∈ X2 xΘy(1) for all   , there is    such that   ;
x,x′ ∈ X1 y,y′ ∈ X2 x ∈ x′ y′ ∈ y xΘy x′Θy′(2) for all   ,   , if   ,   , and   , then   ;
x ∈ X1 y1,y2 ∈ X2 xΘy1 xΘy2 y3 ∈ X2 {y1,y2} ⊆ y3

xΘy3
(3)  for  all   ,   ,  if    and   ,  then  there  is    such  that    and

 .
Θ (X1, C1,F1) (X2, C2,F2)Proposition 6.3　Let    be an F-relation between F-closure spaces    and   . Then

following statements are equivalent:
FΘG(1)   ;

F′ ∈ F1 F′ ⊆ F F′ΘG(2) There exists    such that    and   ;
G′ ∈ F2 FΘG′ G⊆ G′(3) There exists    such that    and   ;
F′ ∈ F1 G′ ∈ F2 F′ ⊆ F G⊆ G′ F′ΘG′(4) There exists    and    such that   ,    and   .

Proof　Follows directly from Lemma 2.1(1), (2) and Definition 6.1. □
(X, C,F)Definition 6.4　Let    be an F-closure space and
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Id(X,C,F) = {(F,G) | F,G ∈ F,G⊆ F} ⊆ F×F.

Id(X,C,F) (X, C,F) Id(X,C,F)

(X, C,F)
Then it  is  easy  to  check  that    is  an  F-relation  from    to  itself.    is  called  the

identity F-relation on   .
Θ (X1, C1,F1) (X2, C2,F2) E ∈ C(X1, C1,F1)

D= {G | F ∈ F1,F⊆ E,G ∈ F2 and FΘG}
Proposition  6.5　 Let    be  an  F-relation  from    to    and   .

Then the family    is directed.
D ̸= /0

X1,X2 ∈D Fi ∈ F1 Gi ∈ F2 Fi ⊆ E FiΘGi Xi = Gi (i= 1,2)
F3 ∈ F1 F1∪F2 ⊆ F3 ⊆ E

F3ΘG1 F3ΘG2

G3 ∈ F2 G1∪G2 ⊆ G3 F3ΘG3 X1∪X2 ⊆ G3

D= {G | F ∈ F1,F⊆ E,G ∈ F2 and FΘG}

Proof　 It  is  easy  to  see  by  Definition  3.4  and  the  condition  (1)  in  Definition  6.1  that   .  Let
 .  Then  there  are    and    such  that   ,    and      .  It

follows  from  Definition  3.4  that  there  exists    such  that   .  It  follows  from  the
condition (2) in Proposition 6.3 that    and   . By the condition (3) in Definition 6.1, there exists

  such  that    and   .  By  Lemma  2.1,  we  have   ,  showing  that
  is directed. □

C(X1, C1,F1) C(X2, C2,F2) (X1, C1,F1)

(X2, C2,F2)

The  following  results  shows  that  there  is  a  one-to-one  correspondence  between  the  set  of  all  Scott
continuous  maps  from    to    and  that  of  all  F-relations  from    to

 .
Θ (X1, C1,F1) (X2, C2,F2)

fΘ : C(X1, C1,F1)−→ C(X2, C2,F2) E ∈ C(X1, C1,F1)

Theorem  6.6　 (1)  Let    be  an  F-relation  from    to   .  Define  a  map
  such that for all   ,

fΘ(E) =
∪
{G | F ∈ F1,F⊆ E,G ∈ F2 and FΘG}.

fΘThen    is a Scott continuous map.
f : C(X1, C1,F1)−→ C(X2, C2,F2) Θf ⊆ F1×F2(2) Let    be a Scott continuous map. Define    such that

∀F ∈ F1,G ∈ F2,FΘfG⇔ G⊆ f(F).

Θf (X1, C1,F1) (X2, C2,F2)Then    is an F-relation from    to   .
f : C(X1, C1,F1)−→ C(X2, C2,F2) Θ

(X1, C1,F1) (X2, C2,F2) ΘfΘ = Θ fΘf = f
(3)  Let    be  a  Scott  continuous  map,    be  an  F-relation  from

  to   . Then    and   .
fΘ fΘ

{Ei}i∈I ⊆ C(X1, C1,F1) fΘ(
∪

i∈IEi) =
∪

i∈I fΘ(Ei)

Proof　(1) Clearly,    is order-preserving. To prove that    is Scott continuous, by Proposition 3.5(3), it
suffices to prove that for any directed family   , one has   . In
fact,

fΘ(
∪
i∈I

Ei) =
∪
{G | F ∈ F1,F⊆

∪
i∈I

Ei,G ∈ F2 and FΘG}=∪
i∈I

∪
{G | F ∈ F1,F⊆ Ei,G ∈ F2 and FΘG}

(by directedness of {Ei}i∈I) =∪
i∈I

fΘ(Ei).

Θf(2) It follows from Definition 3.4 that    satisfies the condition (1) in Definition 6.1.
F1,F2 ∈ F1 G1,G2 ∈ F2 F1 ⊆ F2 F1ΘfG1 G2 ⊆ G1 ΘfLet   ,   .  If   ,    and   ,  then by the definition of   ,  we have
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G1 ⊆ f(F1)⊆ f(F2) f(F2) ∈ C(X2, C2,F2) G1 ⊆ f(F2) G2 ⊆ G1

G2 ⊆ f(F2) F2ΘfG2 Θf

 . By    and Proposition 3.5(2), we have   . Since   ,
we have   . Thus   , showing that    satisfies the condition (2) in Definition 6.1.

F ∈ F1 G1,G2 ∈ F2 FΘfG1 FΘfG2 G1∪G2 ⊆fin f(F)
f(F) ∈ C(X2, C2,F2) G3 ∈ F2 G1∪G2 ⊆ G3 ⊆ f(F) G3 ⊆ G3 ⊆ f(F)

FΘfG3 Θf

Let    and   .  If    and   ,  then   .  It  follows  from
  that  there  exists    such  that   .  Thus   .

Therefore   , showing that    satisfies the condition (3) in Definition 6.1.
Θf (X1, C1,F1) (X2, C2,F2)To sum up,    is an F-relation from    to   .

F ∈ F1,G ∈ F2(3) Let   . We have

(F,G) ∈ ΘfΘ ⇔G⊆ fΘ(F)⇔

∃F′ ∈ F1,G′ ∈ F2 such that G⊆ G′,F′ ⊆ F and (F′,G′) ∈ Θ

(by Propositions 6.5,6.3 and the finiteness of G ∈ F2)⇔

(F,G) ∈ Θ (by Proposition 6.3).

ΘfΘ = ΘThus   .
E ∈ C(X1, C1,F1)Let   ,

fΘf(E) =
∪
{G | F ∈ F1,G ∈ F2,F⊆ E and FΘfG}=∪
{G | F ∈ F1,G ∈ F2,F⊆ E and G⊆ f(F)}=∪
{G | G ∈ F2 and G⊆ f(E)} (by Scott continuity) =

f(E) (by Proposition 3.6(2) and f(E) ∈ C(X2, C2,F2)).

fΘf = fThus   . □
Next,  inspired  by  the  ideals  and  methods  in[15],  we  give  another  representation  for  BF-domains  by  F-

relations. First of all, we give a definition as follows.
(X, C,F)

{Θi}i∈I (X, C,F)
Definition 6.7　An F-closure space    is called a weak bifinite F-closure space if there exists a

directed family    of F-relations on    satisfying the following conditions:∪
i∈IΘi = Id(X,C,F)(FS 1)　  ;

Θi (i ∈ I) Mi ⊆fin F F ∈ F M ∈Mi(FS 2)　For all   , there is    such that for every   , there exists    satisfying

∀G ∈ F,FΘiG⇒ G⊆M⊆ F.

(X, C,F) (C(X, C,F),⊆)Theorem 6.8　For a weak bifinite F-closure space   ,    is a BF-domain.
(C(X, C,F),⊆)

(C(X, C,F),⊆) {Θi}i∈I
(X, C,F) i ∈ I fΘi

(C(X, C,F),⊆) Θj,Θk ∈ {Θi}i∈I Θj ⊆ Θk

fΘi(E) =
∪
{G | F,G ∈ F,F⊆ E and FΘiG} (i ∈ I) E ∈ C(X, C,F)

fΘj(E)⊆ fΘk(E) E ∈ C(X, C,F) {fΘi}i∈I
{Θi}i∈I E ∈ C(X, C,F)

Proof　Clearly,    is  an  algebraic  domain.  Next  we  prove  that  there  is  an  approximate
identity for    consisting of finitely separating maps. Let    be a directed family of F-
relations on    satisfying the condition (FS 1) and (FS 2) in Definition 6.7. For all   , the map  

is  a  Scott  continuous  maps  on    by  Theorem 6.6(1).  Let    and   .
Notice  that       for  all   .  Then  we  have

  for all   , showing that the family    is directed by the directedness of
 . For all   , we have
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(
∨
i∈I

fΘi)(E) =
∨
i∈I
(fΘi(E))(by Lemma II−2.5 in Ref. [2]) =∪

i∈I
(fΘi(E)) (by Lemma 3.5(3)) =∪

i∈I
(
∪
{G | F,G ∈ F,F⊆ E and FΘiG}) =∪

{G | F,G ∈ F,F⊆ E and (F,G) ∈
∪
i∈I

Θi}=∪
{G | F,G ∈ F,F⊆ E and (F,G) ∈ Id(X,C,F)} (by (FS 1)) =∪
{G | F,G ∈ F,F⊆ E and G⊆ F}=∪
{F | F ∈ F and F⊆ E}(by Propositions 3.5(1) and 3.6(2)) =

E (by Proposition 3.6(2)).∨
i∈I fΘi = idC(X,C,F)This shows that   .

i ∈ I fΘi

Mi F F ∈ F N ∈Mi

Next we verify that for all   ,    is finitely separating. By the condition (FS 2) in Definition 6.7, we
have a finite subfamily    of    such that for all   , there exists    satisfying

∀G ∈ F,FΘiG⇒ G⊆ N⊆ F.

M ∈Mi E ∈ C(X, C,F)For    and   , set

DM = {F | (F ∈ F,F⊆ E) and (∀G ∈ F,FΘiG⇒ G⊆M⊆ F}.∪
M∈Mi DM = {F | F ∈ F and F⊆ E} {F | F ∈

F and F⊆ E} Mi M0 ∈Mi DM0

{F | F ∈ F and F⊆ E}
∪

DM0 =
∪
{F | F ∈ F and F⊆ E}∪

DM0 = E Mi = {M |M ∈Mi} F,G ∈ F F⊆ E and FΘiG
DM0

∪
DM0 = E F0 ∈ F F0 ⊆ E

Then  we  have   .  By  by  Proposition  3.6(2),  family  

  is  directed.  Since    is  finite,  by  Lemma  2.2,  there  exists    such  that    is  a
cofinal  subfamily  of    and   .  It  follows  from
Proposition  3.6(2)  that   .  Set   .  For    with   ,  by
finiteness of F, directedness of    and that   , we can find some    satisfying    and,

∀G ∈ F,F0ΘiG⇒ G⊆M0 ⊆ F0.

F0 ∈DM0 F⊆ R(F0) F⊆ F0 FΘiG F0ΘiG
G⊆M0 ⊆ F0 G⊆M0

(hence   ) such that   . It follows from    and    that    by Propositon 6.3.
Thus    and   . Since

fΘi(E) =
∪
{G | F,G ∈ F,F⊆ E and FΘiG},

fΘi(E)⊆M0 ⊆ E M0 ∈Mi Mi fΘiwe have    and   . By finiteness of   , we see that    is finitely separating.
(C(X, C,F),⊆)To sum up, it is proved that    is a BF-domain. □

Proposition 6.9　A bifinite F-closure space is a weak bifinite F-closure space.
(X, C,F) D= {K⊆fin X | ∃F ∈ F such that F⊆ K}

K ∈D ΘK F
Proof　 Let    be  a  bifinite  F-closure  space.  Then  

defined in the proof of Theorem 4.7 is a directed family. For all   , define a binary relation    on  

such that

∀F,G ∈ F,(F,G) ∈ ΘK ⇐⇒∃M ∈MK such that G⊆M⊆ F,

MKwhere    is stated in Remark 4.6(2).
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{ΘK}K∈D
(X, C,F)

To  show  the  proposition,  it  suffices  by  Definition  6.7  to  show  that  the  family    is  a  directed
family of F-relations on    satisfying (BF 1) and (BF 2) in Definition 6.7. To this end, we divide the
proof into several steps.

K ∈D ΘKStep 1. Show that for all   ,    is an F-relation.
ΘK (X, C,F)It is a routine work to check    is an F-relation on   .

({MK}K∈D,⊆)

{ΘK}K∈D
Step  2.  It  follows  from  Step  4  in  the  proof  of  Theorem  4.7  that    is  directed.  Thus

  is directed.
{ΘK}K∈DStep 3. Check the condition (FS 1) in Definition 6.7 for   .

K ∈D ΘK ⊆ Id(X,C,F) F,G ∈ F (F,G) ∈ Id(X,C,F) G⊆ F
{δK}K∈D C(X, C,F)

E ∈ C(X, C,F) δK(E) =
∪
{M |M ∈MK and M⊆ E}

∨
K∈D δK(F) = F F

(C(X, C,F),⊆) J ∈D δJ(F) = F G⊆ δJ(F)
M∗

F ∈MJ δJ(F) =M∗
F ⊆ F G⊆M∗

F ⊆ F
(F,G) ∈ ΘJ ⊆

∪
K∈DΘK

∪
K∈DΘK = Id(X,C,F) {ΘK}K∈D

Clearly, for all   ,   . Conversely, let   . If   , then   . By
the  proof  of  Theorem  4.7,  we  have  an  approximate  identity    on   ,  where  for  all

 ,   .  Thus   .  Since    is  a  compact
element  of   ,  there  exists    such  that   .  Thus   .  By  Step  2  of
Theorem  4.7,  there  exists    such  that   .  Hence,   ,  showing  that

  and   .  This  shows  that    satisfies  the  condition
(FS 1).

{ΘK}K∈DStep 4. Check that    satisfies the condition (FS 2) in Definition 6.7.
K ∈D MK ⊆fin F F ∈ F

M∗ ∈MK M∗ {M |M ∈MK and M⊆ F} G ∈ F
(F,G) ∈ ΘK M ∈MK such that G⊆M⊆ F M∗

{M |M ∈MK and M⊆ F} G⊆M∗ ⊆ F {ΘK}K∈D

For all   , let    be the one stated in Remark 4.6(2). Let   . By the proof of Theorem
4.7,  there  is  an    such that    is  the  greatest  element  in   .  If  

and   , then there is   . Noticing that    is the greatest element in
 , we have   , showing that    satisfies the condition (FS 2).

(X, C,F)To sum up,    is a weak bifinite F-closure space. □
It is natural to ask that weak bifinite F-closure spaces are bifinite F-closure spaces? We leave this problem

as  an  open  question  to  interested  readers.  However,  as  the  following  theorem  shows,  we  can  also  give
representations for BF-domains by weak bifinite F-closure spaces.

(L,⩽)

(X, C,F) (C(X, C,F),⊆)∼= (L,⩽)

Theorem  6.10　 (Representation  Theorem  VIII'':  for  BF-domains)  A  poset    is  a  BF-domain  iff
there is a weak bifinite F-closure space    such that   .

⇐Proof　  : Follows from Theorem 6.8.
⇒ (L,⩽) (K(L), CL,FL)

(K(L), CL,FL)

(K(L), CL,FL)

  : Let    a BF-domain,    the induced F-closure space. By Theorem 3.12, it suffices
to  show  that    is  a  weak  bifinite  F-closure  space.  It  follows  from  Theorem  4.8  that

  is a bifinite F-closure space, hence a weak bifinite F-closure space. □

7    Categorical Equivalence between Related Categories

In this section, we establish a categorical equivalence between the category of F-closure spaces and that of
algebraic domains. For some basic notions and results in category theory, please refer to Ref. [27].

(X1, C1,F1) (X2, C2,F2) (X3, C3,F3)

Θ⊆ F1×F2 Υ⊆ F2×F3 Υ◦Θ⊆ F1×F3 Υ Θ
F1 ∈ F1,F3 ∈ F3 (F1,F3) ∈ Υ◦Θ F2 ∈ F2 (F1,F2) ∈ Θ

Definition  7.1　 Let   ,    and    be  three  F-closure  spaces,  and  let
  and    be two F-relations. Then the composition    of    and    is

define  by  that  for  any   ,    iff  there  exists    satisfying  
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(F2,F3) ∈ Υand   .
(X1, C1,F1) (X2, C2,F2) (X3, C3,F3)

Θ⊆ F1×F2 Υ⊆ F2×F3 Υ◦Θ
(X1, C1,F1) (X3, C3,F3)

Proposition  7.2　 Let   ,    and    be  F-closure  spaces,  and  let
  and    be  F-relations.  Then  the  composition    is  an  F-relation  from

  to   .
◦

Υ◦Θ
Proof　Since the composition of F-relation “  ” is precisely the composition of binary relation, we have

that    satisfies the condition (1) in Definition 6.1.
Υ◦Θ F1,F2 ∈ F1 H1,H2 ∈ F3To check that    satisfies the condition (2) in Definition 6.1, let    and   ,

F1 ⊆ F2,H2 ⊆H1 and (F1,H1) ∈ Υ◦Θ⇒
∃G ∈ F2 such that F1 ⊆ F2,H2 ⊆H1,F1ΘG and GΥH1 ⇒
∃G ∈ F2 such that F2ΘG,GΥH2 (by Proposition 6.3)⇒
∃(F2,H2) ∈ Υ◦Θ.

Υ◦ΘThis shows that    satisfies the condition (2) in Definition 6.1.
Υ◦Θ F ∈ F1 H1,H2 ∈ F3To check that    satisfies the condition (3) in Definition 6.1, let   ,   .

(F,H1) ∈ Υ◦Θ and (F,H2) ∈ Υ◦Θ⇒
∃G1,G2 ∈ F2 such that FΘG1,FΘG2;G1ΥH1,G2ΥH2 ⇒
∃G3 ∈ F2 such that G1∪G2 ⊆ G3,FΘG3;G1ΥH1,G2ΥH2

(by Θ satisfying (3) in Definition 6.1)⇒
G3ΥH1,G3ΥH2 and FΘG3 (by Proposition 6.3)⇒
∃H3 ∈ F3 such that H1∪H2 ⊆H3,G3ΥH3 and FΘG3

(by Υ satisfying (3) in Definition 6.1)⇒
∃H3 ∈ F3 such that H1∪H2 ⊆H3 and (F,H3) ∈ Υ◦Θ.

Υ◦Θ (X1, C1,F1) (X3, C3,F3)To sum up,    is an F-relation from    to   . □
Θ (X1, C1,F1) (X2, C2,F2)Proposition 7.3　Let    be an F-relation from F-closure space    to   . Then

Θ◦ Id(X1,C1,F1) = Id(X2,C2,F2) ◦Θ= Θ,

Id(X1,C1,F1)where the identity F-relation    is defined in Definition 6.4.
F ∈ F1,G ∈ F2Proof　For all   , we have

(F,G) ∈ Θ⇔∃G′ ∈ F2 s.t. FΘG′,G⊆ G′ (by Proposition 6.3)⇔
∃G′ ∈ F2 s.t. FΘG′,(G′,G) ∈ Id(X2,C2,F2) ⇔
(F,G) ∈ Id(X2,C2,F2) ◦Θ.

Id(X2,C2,F2) ◦Θ= Θ Θ◦ Id(X1,C1,F1) = ΘThis shows that   . Similarly, we have   . □
By  Propositions  7.2,  7.3,  F-closure  spaces  as  objects  and  F-relations  as  morphisms  form  a  category,

denoted by F-CLS.  Similarly,  closure spaces  as  objects  and approximable relations as  morphisms can also
form  a  category,  denoted  by  CLS.  In  this  paper,  we  use  AL-DOM  to  denote  the  category  of  algebraic
domains with Scott continuous maps.

C C ob(C)
Mor(C)

For a category   ,  it  is customary to denote the class of objects of    by    and denote the class of
morphisms of C by   .
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C,D Φ : C−→DLemma 7.4[27]　Let    be two categories. If there is a functor    such that
Φ A,B ∈ ob(C) g ∈MorD(Φ(A),Φ(B)) f ∈MorC(A,B)

Φ(f) = g
(1)    is full, namely, for all   ,   , there is    such that

 ;
Φ A,B ∈ ob(C) f,g ∈MorC(A,B) f ̸= g Φ(f) ̸= Φ(g)(2)    is faithful, namely, for all   ,   , if   , then   ;

B ∈ ob(D) A ∈ ob(C) Φ(A)∼= B(3) for all   , there is    such that   ,
C Dthen    and    are equivalent.

Theorem 7.5　F-CLS is equivalent to AL-DOM.
Ψ : → (X, C,F) ∈ ob Ψ((X, C,F)) =

(C(X, C,F),⊆) ∈ ob( Θ ∈Mor Ψ(Θ) = fΘ ∈Mor
Proof　 Define    F-CLS   AL-DOM  such  that  for  all   (F-CLS),  

 AL-DOM); for all   (F-CLS),   (AL-DOM).
E ∈ C(X, C,F)Give an F-closure space, for any   , we have

Ψ(Id(X,C,F))(E) =fId(X,C,F)(E) =∪
{G | F,G ∈ F,F⊆ E and (F,G) ∈ Id(X,C,F)}=∪
{G | F,G ∈ F,F⊆ E and G⊆ F}=∪
{F | F ∈ F, and F⊆ E}=

E (by E ∈ C(X, C,F) and Proposition 3.6) =
idC(X,C,F)(E).

Ψ(Id(X,C,F)) = idC(X,C,F)This shows that   .
(X1, C1,F1) (X2, C2,F2) (X3, C3,F3) Θ⊆ F1×F2 Υ⊆ F2×F3For F-closure spaces   ,    and   , let    and    are

F-relations, we have
Ψ(Υ)◦Ψ(Θ)(E) = fΥ(fΘ(E)) =∪
{G | F⊆ fΘ(E),F ∈ F2,G ∈ F3 and FΥG}=∪
{G | F1 ∈ F1,F1 ⊆ E,G1 ∈ F2,F1ΘG1,F⊆ G1,F ∈ F2,G ∈ F3 and FΥG}

(by the definiton of fΘ(E), Proposition 6.5 and finiteness of members in F2) =∪
{G | F1 ∈ F1,F1 ⊆ E,G1 ∈ F2,F1ΘG1,G ∈ F3 and G1ΥG}

(by F⊆ G1,FΥG, and Proposition 6.3) =∪
{G | F1 ∈ F1,F1 ⊆ E,G ∈ F3 and (F1,G) ∈ Υ◦Θ} (by F1ΘG1 and G1ΥG) =

fΥ◦Θ(E) = Ψ(Υ◦Θ)(E).

Ψ(Υ)◦Ψ(Θ) = Ψ(Υ◦Θ) ΨThis shows that   , and thus    is a functor.
ΨTo show that F-CLS is equivalent to AL-DOM, it suffices to check that    satisfies the three conditions in

Lemma 7.4.
(X1, C1,F1) (X2, C2,F2) Ψ

f : C(X1, C1,F1)−→ C(X2, C2,F2)

Θf ∈Mor Ψ(Θf) = fΘf = f Ψ Ψ

Let    and    be  two  F-closure  spaces.  It  follows  from  Theorem  6.6(3)  that    is
faithful.  Let    be  a  Scott  continuous  map,  by  Theorem  6.6(3),  there  is

 (F-CLS) such that   , showing that    is full. It follows from Theorem 3.12 that  

satisfies the condition (3) in Lemma 7.4. Thus, F-CLS is equivalent to AL-DOM. □
Similarly,  we  can  also  establish  a  categorical  equivalence  between  CLS  and  AL-DOM,  which  builds  a

direct  bridge  between  classical  closure  spaces  and  algebraic  domains.  Following  this  ideal,  the  categorical
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equivalences between some special F-closure spaces and subclasses of algebraic domains can also be directly
obtained. We leave these details to the interested readers.

8    Conclusion

This paper generalized the notion of F-augmented closure spaces to that of F-closure spaces. The family of
all  F-closed  sets  of  F-closure  spaces  ordered  by  inclusion  was  used  to  form  an  algebraic  domain  and,
conversely, all the algebraic domains can be generated in this way. It was also shown that the collection of F-
closed sets  is  a  tool  of  building bridges  between some special  F-closure  spaces  and subclasses  of  algebraic
domains.  Being  different  from  the  method  in  Ref.  [15],  a  skillful  set-theoretic  method  without  using
morphisms to represent BF-domains was given. We also constructed a categorical equivalence between the
category  of  F-closure  spaces  with  F-relations  and  that  of  algebraic  domains  with  Scott  continuous  maps.
Following  this  idea,  we  gave  a  representation  of  various  algebraic  domains  in  terms  of  classical  closure
spaces and constructed a categorical equivalence between the category of closure spaces with approximable
relations  and  that  of  algebraic  domains  with  Scott  continuous  maps,  establishing  a  direct  connection
between classical closure spaces and algebraic domains.

The work in this paper enriched the links between closure spaces and domain theory. In the future, we
will consider extending these links to fuzzy settings, that is to say, representing for fuzzy algebraic domains
via fuzzy closure spaces will be a future topic to work with.
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