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ABSTRACT
Intelligent connected vehicles, as the focus of the global automotive industry, 
are currently at a critical stage of large-scale commercialization. However, 
during the development process of vehicles from mechanical systems with  
limited functions to mobile intelligence with complex and multiple functions, 
the issues of functional safety, cybersecurity, and safety of the intended 
functionality are the main challenges of the industrialization of intelligent  
connected vehicles, including multiple safety risks such as hardware and  
software failures, insufficient performance in edge scenarios, cyber-attacks and 
data leakage. In this paper, the safety and security issues of intelligent connected 
vehicles, the challenges posed by emerging technology applications, and related 
solutions are systematically reviewed and summarized. A fusion safety system 
framework with the safety cube as the core of protection and control is pro-
posed innovatively based on a field-vehicle-human safety interactional model,  
realizing stereoscopic, deep, and comprehensive safety protection through 
end-cloud collaboration. Meanwhile, an X-shaped fusion safety development 
process based on CHAIN is proposed. Through the empowerment of digital 
twin and AI technologies, it could approach interaction between physical  
entities and digital twin models and the automation of the development pro-
cess, thereby satisfying the demands of fusion safety system design, intelligent 
development, rapid delivery, and continuous iteration. The fusion safety  
system framework and X-shaped development process proposed in this paper 
can provide important insight into intelligent transportation vehicles and sys-
tems' safety and security design and development.
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1 Introduction

The era is witnessing an unprecedented disruptive 
transformation in the automotive industry, with 
autonomous driving and telematics technologies at the 
core of this revolutionary wave. Intelligent connected 
vehicles (ICVs) are next-generation vehicles that utilize 
advanced technologies involving chips, big data, and 
artificial intelligence, facilitating highly effective, safe, 
comfortable, and energy-efficient driving.

Leading vehicle-producing countries are accelerating 
the industrialization of ICVs, progressively providing 
licenses in regulations and policies [1]. Germany 
passed the Act on Autonomous Driving in 2021, which 
permits L3 vehicles to operate nationwide and permits 
L4 vehicles to function under specific conditions [2]. 
Automotive manufacturers are enabled to apply for 
relevant qualifications from the German government. 
Occupant Protection Safety Standards for Vehicles Without 
Driving Controls, adopted by the U. S. National High 
Way Traffic Safety Administration (NHTSA) in March 
2022, provides a regulatory framework for deploying 
autonomous vehicles without steering wheels and 
pedals [3]. The European Union issued Uniform Proce-
dures and Technical Specifications for the Type-Approval of 
the Automated Driving System (ADS) of Fully Automated 
Vehicles in August 2022, marking the world's first  
regulation to allow the registration and sale of vehi-
cles of L4 and above [4]. In November 2023, China 
issued the Guidelines for the Safety of Autonomous Vehicle 
Transportation Services (Trial), permitting L3 and L4 
autonomous driving vehicles to engage in passenger 
and freight transportation in designated areas and 
delineating explicit accident liabilities [5]. Following 
nearly a decade of rapid development, ICVs are now at 
the dawn of large-scale commercial applications.

However, safety concerns represent the most 
significant challenge to the mass commercialization 
of ICVs. Driven by multidimensional cutting-edge 
technologies, automobiles have gradually evolved from 
mechanical systems with limited functions to mobile 
intelligence with composite functions. The highly 
complex intelligent driving cyber-physical systems face 
the risk of multiple software and hardware failures; 
the intelligent driving system in edge scenarios may 

suffer from insufficient design of intended functions; 
and multi-level network access may trigger malicious 
attacks on vehicles and privacy leakage problems. These 
raise the issues of functional safety, cybersecurity, and 
safety of the intended functionality (SOTIF) for ICVs. 
Furthermore, there is an interconnectedness and 
mutual influence among these three safety categories. 
The safety of vehicles is no longer confined to the 
traditional domains of passive and active safety. Under 
the complex and diverse new challenges, it is urgent 
to review and study the security of ICVs deeply and 
systematically. Meanwhile, the rapid development of 
new technologies such as artificial intelligence (AI) 
algorithms and large models and their application in 
the automotive field present a series of new challenges 
to the safety of ICVs.

With the rapid development and fusion of the inter-
net, big data, and AI, the automobile is being promoted 
to transform from a vehicle to an intelligent terminal. 
Cyber hierarchy and interactional network (CHAIN) is 
proposed as one of the digital solutions to break through 
the efficient and cross-discipline control of ICVs [2, 3]. 
CHAIN is an open architecture that integrates and 
designs data, algorithms, and users to maximize the 
potential of data. CHAIN has a cloud-based multi-level 
structure and "physical entity-virtual model" mapping 
interactions to satisfy the demands of multi-scale and 
multi-dimensional modeling. The CHAIN architecture 
has excellent realism and real-time capability and is 
promising to provide more complete digital solutions 
and promote industrial upgrades and transformation 
of ICVs.

This paper comprehensively analyzes the three 
categories of safety issues and the emerging challenges 
faced by ICVs and discusses the existing methods 
and their limitations. In response to the difficulty 
of single safety methods in addressing multiple 
security challenges, this study innovatively proposes 
a novel intelligent connected vehicle safety protection 
framework, integrating the concept of fusion safety. 
This framework is based on the field-vehicle-human 
safety interaction model and edge-cloud collaboration, 
directing the future development of safety protection 
for ICVs. Additionally, this research introduces, for 
the first time, a CHAIN-based [6, 7] X-shaped fusion 
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safety development process. This process facilitates 
interaction between physical entities and their virtual 
twin models, effectively meeting the needs of ICVs in 
terms of safety design, intelligent development, rapid 
deployment, and continuous iteration. The fusion 
safety design methodology proposed in this paper 
provides valuable guidance for the safety design and 
development of ICVs.

The remainder of this paper is organized as follows. 
In Section 2, we discuss safety & security issues 
and challenges for ICV. Section 3 presents existing 
methods and techniques for safety & security. Section 4 
discusses fusion safety for ICVs, including the concept, 
framework, and development process of Fusion 
Safety. Conclusions and perspectives are presented in 
Section 5.

2 Safety & security issues and 
challenges for ICVs

Safety, as a fundamental attribute of automobiles, has 
been accompanying the development process of auto-
mobiles over time. Before applying intelligence and 
connectivity technologies in vehicles, the focus was 
on passive and active safety. Nowadays, information 
technology has made rapid development and deep 
integration with the automobile industry, promoting 
the accelerated evolution of automobiles in the direc-
tion of intelligence and internet connectivity. Figure 1 
presents the development of the vehicle electronics and 
safety. On the one hand, the basic attributes of the auto-
mobile have transformed from a mechanical system to 
a mechatronic system and to a cyber-physical system 
with the addition of internet connectivity and intelli-
gence attributes. The control of vehicles has shifted 
from human drivers to human-machine co-piloting 
and is further evolving towards complete autonomous 
driving. Additionally, the boundary of vehicle control 
has expanded from individual vehicles to multiple vehi-
cles and further integrated vehicle-road-cloud systems. 
On the other hand, there have been significant changes 
from hardware to software for the vehicle. In terms of 
hardware, the electrical and electronic architecture (E/E 
architecture) of vehicles changed from a distributed 
control architecture to a domain-centralized architec-
ture and will further develop into a central computing 

architecture in the future. Automotive chips have also 
evolved from early 8-bit processors to 64-bit processors 
and then to the multi-core processors currently used 
in autonomous driving systems. In terms of software, 
automotive software architecture has changed from 
signal-driven architecture to service-oriented and has 
experienced the development of Non-AUTOSAR to 
Classic AUTOSAR and then to Adaptive AUTOSAR. 
Accompanied by the gradual increase in software  
complexity, the automated driving software architec-
ture has also evolved from a modularized solution to 
the current end-to-end solution. AI technology has been 
widely applied in the autonomous driving system.

Over the past decade, automobiles have rapidly 
undergone the developments above, with the pace 
and scale of evolution surpassing the previous 
100 years of automotive history. Accompanying this 
rapid development are a series of safety & security 
challenges, including issues of functional safety, 
SOTIF, and cybersecurity. To clarify, "safety" in this 
paper refers to the prevention or mitigation of hazards 
arising from accidents, including SOTIF or functional 
failures, while "security" denotes the protection against 
malicious attacks that may originate from hackers 
or similar threats. As vehicles evolve from single-
function mechanical systems to intelligent carriers with 
multiple attributes, their safety implications become 
increasingly rich, facing more complex and diverse 
safety challenges. this paper focuses on elaborating new 
issues encountered in functional safety, cybersecurity, 
and safety of intended function faced by ICVs. 
Traditional safety issues are not extensively discussed 
in this paper.

2.1 Functional safety

With the development of automotive electronics 
technology and increasing functionality, the complexity 
and number of electronic control units (ECUs) on the 
vehicle are increasing, resulting in a significant increase 
in the probability of systematic failures and random 
hardware failures in electronic control systems [8]. 
At the same time, the new intelligent functions often 
require coupling and linkage of multiple controllers to 
achieve. Therefore, if a controller fails, the consequences 
will not only affect the realization of the module's 
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Figure 1 The development of vehicle electronics and safety.
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function but also further extend to the whole system 
and even affect the driver's life.

Functional safety has emerged to address the safety 
issues caused by such hardware and software failures. 
Functional safety refers to the absence of unreasonable 
risk due to hazards caused by the malfunctioning 
behavior of Electrical/Electronic (E/E) systems [9]. 
Functional safety in automobiles mainly addresses the 
risks caused by hardware and software failures in the 
vehicle's E/E systems. For example, the failure of the 
EHB's (Electric Hydraulic Brake) software may result 
in incorrect power delivery to the value and pump 
motor, reducing braking effectiveness and significantly 
increasing the risk of an accident.

To cope with the above failures that may occur 
in automobiles and to standardize the design and 
development process of functional safety for ICVs, a 
functional safety standard for electrical and electronic 
systems that meets the requirements of the automotive 
industry was compiled by the Technical Committee on 
Road Vehicles (ISO/TC22) based on IEC 61508 in 2011, 
named ISO 26262 [10]. The ISO 26262 series defines 
the Automotive Safety Integrity Level (ASIL) based on 
the Safety Integrity Level (SIL) from IEC 61508, which 
contains five levels from QM to D. ASIL is composed 
of three parameters together: severity (S), exposure (E), 
and controllability (C), which improves operability for 
vehicle engineers. To address the need for functional 
safety development and analysis of high-computing 
power, complex controllers, and autonomous driving 
algorithms, the ISO organization released a revised 
version in 2018. The new standard forms a separate 
requirement for functional safety development for 
semiconductors. At the same time, requirements and 
descriptions for a Fail-Operational System (FOS) have 
been added to the Fail-Safe System, which is crucial for 
the development of functional safety for autonomous 
driving systems.

In recent years, with the changes in vehicle E/E 
architecture, as well as the further development of 
intelligence and network connectivity, the functional 
safety design analysis and development process based 
on ISO 26262 has encountered some new challenges.

The new generation of E/E architecture means 
new system and controller architectures. After the 

Distributed E/E architecture, automotive E/E architec-
tures are moving towards Domain-Centralized E/E 
architecture and Domain Fusion E/E architecture. The 
evolution is driven by the continuous improvement in 
the integration level of controllers, particularly in the 
field of autonomous driving [11]. A typical autono-
mous driving domain controller will contain multiple 
heterogeneous compute units such as CPUs, DSPs, 
APUs (BPUs), etc., and can run multiple operating 
systems and perform multiple complex tasks simulta-
neously. This makes the verification and monitoring of 
functional safety more complicated, having the trend of 
multi-dimensional and multi-level and putting forward 
higher requirements for functional safety development 
and design.

Vehicle-road-cloud collaboration allows devices out-
side the vehicle to participate in the control link. The 
new generation of vehicle E/E architecture introduces 
cloud computing and V2X, which means the vehicle can 
connect and communicate with the road infrastructure 
and other traffic participants, including pedestrians. 
In this working environment, many out-of-vehicle 
devices or nodes will be deeply involved in the vehi-
cle's perception, decision-making, control, and other 
automated driving tasks, providing more comprehen-
sive information for the vehicle or undertaking part of 
the computation and data processing. However, these 
devices and nodes are mainly developed and produced 
by third-party enterprises or organizations and are 
not directly linked to the vehicle's design process. 
Therefore, this collaborative approach introduces new 
functional safety risks to the vehicle. The scope of func-
tional safety analysis of this type of question has gone 
beyond the boundaries of traditional vehicle functional 
systems [12]. To realize comprehensive and reliable 
functional safety in the environment of vehicle-road-
cloud collaboration has aroused the attention of the 
industry, and there is an urgent need to develop new 
methods and technologies to address this new risk of 
functional safety.

The black-box nature of artificial intelligence (AI) 
algorithms creates new challenges for functional safety. 
Traditionally, functional safety has been designed 
primarily through hardware and software to ensure 
that automotive systems remain safe in the face of 
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abnormal conditions. However, with the rise of AI 
technology, more and more functions in automotive 
systems, especially autonomous driving perception 
and decision-making, rely on complex machine learn-
ing and deep learning models. Traditional functional 
safety analysis methods are difficult to apply directly 
to AI models. While functional safety analysis meth-
ods are usually based on well-defined rules and strict 
system architectures, AI models are characterized 
by autonomous learning and adaptability, and their  
internal decision-making processes are complex to 
explain [13, 14]. As a result, understanding the behavior 
of models for functional safety analysis becomes com-
plex and challenging. Methods such as failure mode 
and effect analysis (FMEA) often struggle to manage 
models' interpretability, robustness, and ability to 
handle uncertainty effectively. This leads to a limited 
comprehensive understanding of the potential risks of 
the models and the limitations of traditional means in 
assessing the safety of AI models. Therefore, in the new 
generation of intelligent vehicle systems, functional 
safety analysis methods applicable to AI models must 
be innovatively developed to ensure that these models 
can operate safely and reliably in various complex 
scenarios, which is also a key challenge facing the auto-
motive industry with the convergence of AI.

Over the past 20 years, functional safety has accompa-
nied the development of automotive E/E systems along 
the way and made remarkable progress, providing a reli-
able framework and laying the cornerstone for the safe 
development of the industry. However, with the con-
tinuous development of technology and the increasing 
complexity of automotive systems, functional safety 
is facing new challenges. Therefore, further in-depth 
research is needed to adapt to the continuous evolution 
of emerging technologies and systems to ensure that 
automobiles will still be able to operate safely and reli-
ably in the future.

2.2 Cybersecurity

Emerging communication and intelligence technologies 
have led to substantial progress in automobile electronic 
control systems. Consequently, the automobile has 
transcended its erstwhile status as a self-contained 
entity. It has evolved into a mobile terminal endowed 

with communicative capabilities and a discernible 
degree of autonomous decision-making functionality. 
The ICVs can connect and transmit information to other 
vehicles, roads, clouds, and people, make judgments, 
and execute decisions based on the information 
collected and transmitted. However, while this brings 
more convenience and better experience, it also 
introduces cybersecurity threats, such as cyber-attacks 
and theft of sensitive data. Therefore, besides functional 
safety, cybersecurity has become a necessary concern 
in the automotive field. Ensuring that the automotive 
network communication process is normal and that the 
data is in a state of effective protection and legitimate 
utilization is the goal of cybersecurity in ICVs. The 
following section will introduce cybersecurity issues, 
the development of standards and regulations, and 
some new challenges of ICVs.

The cybersecurity threats faced by ICVs mainly 
originate from the automobile's internal and external 
communication networks. The cybersecurity problems 
of internal automobile communication are mainly in 
the following aspects. First, the in-vehicle network 
is used for information interaction between ECUs, 
domain controllers, and in-vehicle gateways inside the 
vehicle [15, 16]. Sensing, decision-making, and control 
data rely on the in-vehicle network for transmission. A 
cybersecurity attack on the in-vehicle network will seri-
ously affect the vehicle's function. Attackers can directly 
or indirectly access the in-vehicle network through the 
diagnostic interface, USB, Bluetooth, Wi-Fi, and other 
interfaces. As a typical in-vehicle network protocol, the 
CAN bus lacks a security protection mechanism, and 
the open channel has the potential risk of malicious 
eavesdropping and illegal message injection. Back 
in 2013, Charlie Miller and Chris Valasek hacked the 
Toyota Prius through OBD [17]. In addition, many 
researchers have attacked vehicle infotainment sys-
tems by accessing malicious devices to interfere with 
the driver's decisions [18]. Nowadays, with the devel-
opment of smart cockpits, a large number of assistive 
functions of the vehicle are integrated into it and 
controlled through smart vehicle computers. The latest 
upstream report shows increased automotive cyber-
security attacks triggered by third-party apps [19]. 
External automotive communications include vehicle- 
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to-vehicle, vehicle-to-infrastructure, vehicle-to-cloud, 
vehicle-to-user device, and vehicle-to-satellite com-
munications. Many of these communication processes 
have cybersecurity risks. Attackers may be able to 
disrupt the movement of a vehicle and cause traffic 
congestion by jamming, eavesdropping, tampering, or 
falsifying information in the communication channel. 
For example, in 2015, two well-known hackers, Charlie 
Miller and Chris Valasek, successfully compromised a 
Jeep Liberty through a remote attack, sending unau-
thorized messages to interfere with its steering and 
braking functions, controlling the vehicle to deviate 
from the direction of travel, and ultimately run into an 
incline, resulting in an emergency for 1.4 million related 
Chrysler Corporation models recall [20]. Albouq and 
Redericks impersonated vehicle nodes and pretended 
to have the best routes between source and target 
nodes, deceiving other nodes in the network and real-
izing the black hole attack [21]. In addition, an attacker 
can affect the vehicle navigation through GPS spoofing 
attacks [22], causing the vehicle to deviate. In summary, 
the attackers may hack into a vehicle through its inter-
nal and external interfaces to gain access to information 
on the vehicle and interfere with its functionality.

As part of cybersecurity, data security cannot be 
overlooked. The software and hardware critical infor-
mation of the vehicle itself, the personal privacy of 
drivers and passengers, and the sensitive data in the 
external environment of the vehicle may all become the 
target of attackers. The software and hardware infor-
mation of the vehicle encompasses inherent attributes 
such as the VIN code, as well as data collected and pro-
cessed by sensors during operation, including vehicle 
speed, acceleration, and other pertinent parameters. 
The development of intelligent cockpits has led to the 
collection of more frequent and varied data about the 
personal privacy of drivers and passengers, such as 
faces, voices, and driving habits. Sensitive data of the 
vehicle's external environment include license plates 
and faces of traffic participants that are collected when 
sensed by autonomous driving technologies. There is 
not only data directly associated with the subject but, 
more importantly, sensitive content that is mined from 
multiple data types and thus inferred. It is conserva-
tively estimated that ICVs can generate 1–10 TB of data 

per day, with complex data types covering structured 
data sets, text, audio, video, trajectory, and images, etc., 
involving subjects such as drivers, other people in the 
cockpit, traffic participants, and the automobile manu-
facturer. In addition, automotive cloud platforms also 
have data security issues. Due to the substantial value 
of data encompassed within cloud platforms, these 
platforms may become targets for attackers aiming to 
acquire vehicle data and breach vehicular control sys-
tems illicitly. In 2018, Tesla was exposed to the hacking 
of its cloud server account, and a significant amount 
of sensitive data was leaked, including telemetry data, 
map information, and vehicle maintenance records [23]. 
In 2023, Toyota was exposed to several sensitive data 
leaks, including telemetry data, map information, and 
vehicle maintenance records, due to misconfigurations 
in its cloud environment [24]. The importance of data 
security is not only reflected at the individual level but 
also lies in its far-reaching impact on national security 
and social stability. However, the various data leakage 
and illegal utilization incidents that have emerged in 
recent years have significantly reduced the public's 
confidence in the data security of ICVs and seriously 
hindered the development of ICVs.

The issues above have prompted widespread atten-
tion, leading several countries and organizations 
to progressively formulate cybersecurity standards 
and regulations for ICVs over the past decade. These 
initiatives serve to standardize the design and man-
agement processes of cybersecurity. For example, 
the European Union initiated a standard for E-Safety 
Vehicle Intrusion Protected Applications (EVITA) in 
2008 to standardize the design and management of 
cybersecurity throughout the life cycle of ICVs based 
on the four requirements of operability, safety, privacy, 
and finance. EVITA protects the network components 
in the security architecture according to four require-
ments. In addition, Europe has also proposed relevant 
standards such as PRESERVE and OVERSEE, etc. In 
2016, SAE released the world's first vehicle cyberse-
curity standard, J3061, which refers to the V-model 
and proposes safeguarding automotive cybersecurity 
throughout the entire automotive lifecycle in terms of 
risk assessment and management, product develop-
ment, operation/maintenance, and process auditing. 
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The U. S. SAE and the ISO began jointly developing 
the international standard Road Vehicles – Cybersecurity 
Engineering (ISO/SAE21434) in 2018. ISO/SAE21434 
is the first international standard for constructing 
automotive cybersecurity, marking that a reliable 
cybersecurity guarantee mechanism has become an 
essential attribute of future automotive products. In 
January 2021, the first global mandatory cybersecurity 
standard for automobiles was adopted. In January 2021, 
the world's first mandatory automotive cybersecurity 
regulation, UNECE WP.29 R155, was released, which 
requires vehicles to pass both the cybersecurity Man-
agement System Certification (CSMS) and the Vehicle 
cybersecurity Type Approval (VTA). The former mainly 
requires OEMs to develop cybersecurity management 
processes during the complete life cycle of the vehicle, 
and the latter reviews the implementation of specific 
work in cybersecurity development to ensure that the 
vehicle's cybersecurity protection technology covers 
the entire life cycle of security. In terms of data secu-
rity, the EU's Guidelines 01/2020 on processing personal 
data in the context of connected vehicles and mobility-related 
applications, released in January 2020, categorizes per-
sonal data in telematics according to its sensitivity and 
proposes the principle of data minimization to ensure 
that vendors and data users only collect personal data 
that is relevant and necessary for processing, to ensure 
the security and confidentiality of the data. The above 
standards and regulations have ensured the cyber-
security of ICVs to a certain extent and improved the 
standardization of cybersecurity in the design and use 
of vehicles. Still, many new challenges have emerged 
by introducing more cutting-edge intelligent and con-
nected technologies.

The advent of sophisticated and novel attacks poses 
challenges to the communication infrastructure of 
automotive networks. Some studies have shown that 
attackers with a high level of experience in automotive 
network communication protocols and understanding 
of vehicle functions may design more complex attacks 
and utilize artificial intelligence methods to generate 
more covert network attacks [25], significantly increas-
ing the difficulty of attack detection. In addition, new 
types of vulnerabilities may be introduced by the grad-
ually updated hardware and software systems of ICVs, 

and some new types of attacks based on unknown 
vulnerabilities may bypass the protection of rule-based 
firewalls or intrusion detection systems.

The development of foundation models also brings 
new challenges to automotive cybersecurity. Firstly, 
foundation models with deep feature mining capabil-
ity and reasoning ability can mine deep and sensitive 
information from the massive amount of data related to 
ICVs. As a result, even data that has been desensitized 
may be exploited by foundation models to portray user 
profiles or predict human or vehicle behaviors [26]. This 
poses new challenges for the data security and privacy 
protection of ICVs. Second, the existing encryption 
during internal and external communication of ICVs 
usually uses pseudo-random passwords, which may 
be violently broken by foundation models supported 
by large-scale data and significant computational 
resources. It will lead to severe problems in access and 
authentication, and static protection systems will face 
the risk of failure.

With the advancement of low earth orbit (LEO) 
satellites such as Starlink and XingYun, vehicular sat-
ellite Internet has become a potential communication 
method for automobiles. However, some satellite inter-
net communications use brand-new network protocols, 
and their communication behavior and content are 
difficult to monitor. This results in the vehicle-sensitive 
data being able to be transmitted to any designated 
place via satellite Internet. At the same time, attackers 
can gain control of the autonomous driving system and 
manipulate the vehicle driving behavior via satellite 
Internet. This also poses new challenges to traditional 
cybersecurity.

To sum up, ICVs still face serious cybersecurity 
threats. Many research institutions, enterprises, and 
government agencies actively promote the construc-
tion of automotive cybersecurity systems. Compared to 
cybersecurity issues in the IT domain, the cybersecurity 
landscape of ICVs exhibits significant disparities across 
threat origins, attack repercussions, security design 
constraints, standards, and regulations. With the contin-
uous integration of new technologies in ICVs, emerging 
issues in novel cybersecurity pose ongoing challenges. 
Traditional techniques and methods in cybersecurity 
may prove insufficient to meet the evolving security 
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requirements introduced by these advancements. 
Therefore, it remains imperative to place continued 
emphasis on automotive cybersecurity.

2.3 SOTIF

Advanced intelligence systems, such as automated 
advanced driver assistance systems or self-driving 
systems in vehicles, may still face situations where they 
do not work correctly in the intended manner when 
there is no functional failure in the system, which can 
lead to potential dangers [27]. In March 2018, Uber's 
self-driving car accidentally struck and killed a pedes-
trian in the United States. The pedestrian was crossing 
a section of road that was not directly illuminated by 
streetlights, and the sensing system, in the absence of 
a malfunction, interpreted the pedestrian information 
captured as unknown objects, vehicles, and bicycles 
in the first six seconds of the collision [28]. In March 
2020, Volvo announced a worldwide recall of nearly 
740,000 vehicles involving nine models on sale due to 
the Autonomous Emergency Braking System (AEB)
not effectively recognizing objects in some scenarios, 
resulting in the AEB not functioning correctly in the 
intended operating scenario [29]. In June 2020, a Tesla 
Model 3 in autopilot mode crashed directly into an 
overturned truck, mistakenly identifying the truck as 
a white cloud.

To address such issues, the concept of SOTIF was 
proposed, and the International Organization for 
Standardization (ISO) was the first to publish ISO 
21448∶2019 in 2019 to standardize the development 
and design of SOTIF, followed by a revised version, 
ISO 21448∶2022, in 2022. In contrast to its predecessor, 
the 2022 version extends its application to encompass 
all levels of automated driving, providing specific 
clarifications on the Hazard Model and introducing the 
Operation Phase of the system [30].

SOTIF issues arise due to system performance 
constraints that prevent the practical realization of the 
intended functionality or due to reasonably foreseeable 
human misuse [31]. The root causes of these problems 
are manifold, such as encountering unknown scenarios 
where the system is unable to perceive the environ-
ment accurately or where the functional modules or 
algorithms within the system may lack the necessary 

robustness, making it difficult to maintain stability under 
complex and changing operating conditions [32]. The 
hardware performance and algorithmic performance 
of the system directly affect the SOTIF. There are a 
series of problems and challenges for the SOTIF in edge 
scenarios, design operation domains, human-machine 
interaction, and testing and verification [33].

The unpredictability of edge scenarios poses problems 
and challenges. Real-world driving scenarios are an 
infinite collection of rare, extreme, or never-before-ex-
perienced edge scenarios. The unpredictability of these 
scenarios leads to the impossibility of exhausting all 
possibilities at the beginning of the system's design, 
and exhaustive testing and validation at the later stages 
of development becomes very challenging [34]. It isn't 
easy to exhaustively test and validate all possible sce-
narios, and the system still encounters edge scenarios 
that cannot be safely dealt with during operation. 
Edge scenarios expose the lack of system performance, 
which causes SOTIF problems. The sensing system of 
an autonomous driving system is limited under specific 
conditions, such as bad weather and insufficient light, 
leading to insufficient understanding of the surround-
ing environment around the system, directly affecting 
vehicle safety [35]. For the decision-making system, the 
system is unable to make safe and reasonable decisions 
promptly due to the complex and variable uncertainty 
of the upstream information caused by sensor errors, 
unusual road conditions, and sudden emergencies [36]. 
For the control system, it is impossible to ensure that 
the decision-making commands can be executed effec-
tively and rapidly in different scenarios, and the lack 
of real-time and follow-ability of the control system in 
the face of unexpected situations may lead to vehicle 
destabilization.

Determining the Operational Domain of Design 
(ODD) poses problems and challenges. The ODD 
describes the applicable scenarios and operating con-
ditions of an automated driving system, including a 
range of factors such as geographic location, weather 
conditions, traffic conditions, road types, etc., as well 
as a variety of complexities and uncertainties that 
the system is capable of handling [37]. Designing the 
operational domain is critical to the safe operation of 
the system. However, the boundaries of the ODD are 
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difficult to define clearly and precisely, which may 
result in the system unintentionally operating in con-
ditions that are not appropriate, thus compromising 
safety. Another issue is the dynamic change of ODD; 
the design operational domain may change over time, 
such as the implementation of new traffic regulations, 
irreversible degradation of the system hardware due 
to time (hardware aging), and the update of urban 
planning. The system needs to adapt to the ODD's 
dynamic change and update and validate the ODD as 
it changes. Monitoring the design operational domain 
and determining whether the system is operating 
within the design operation domain directly affects the 
system's performance. Establishing an efficient real-
time data acquisition and analysis system is essential. 
However, there is a lack of practical techniques and 
methods to quantitatively assess the deviation of the 
actual operating conditions from the design operation 
domain, and it is not possible to reasonably determine 
the relationship between the actual operating scenarios 
and the design operation domain.

The complexity of human-machine interaction poses 
problems and challenges. Human-vehicle cooperative 
driving conditional automatic driving will continue to 
exist for a period. The human-machine two sides need 
to reach a consistent understanding of the driving task 
in a particular scenario to carry out close, deep inter-
action and different people's habits and behavioral 
patterns lead to the human consciousness and behavior 
being difficult to predict [38]. In addition, even if the 
same driver faces the complexity of the working con-
ditions due to the fluctuation of their brain load, such 
as attention distraction or comprehension of the sce-
nario, it is straightforward to lead to misuse. In some 
emergency scenarios, personnel misuse will directly 
cause safety accidents. SOTIF Human misuse is also 
an essential concern for the SOTIF. With the increased 
system complexity, this problem is more prominent 
in human-machine interaction. The effectiveness of 
human-machine interaction is based on a person's full 
knowledge of the system. However, the complexity of 
system functionality often increases the difficulty of 
HCI design, making it challenging to ensure that the 
driver and passenger fully understand each system 
function. This complexity can also lead to incorrect 

expectations of the driver and passenger about the sys-
tem and incorrect assumptions about how the system 
is designed to interact, which creates direct or indirect 
misuse of the intended functionality and increases the 
safety risk [39].

SOTIF encounters problems and challenges in testing 
and validation. One of them is insufficient scenario  
coverage. Testing needs to cover as many road and traf-
fic conditions as possible in a limited time, especially 
safety-critical edge scenarios, so efficiently generating 
edge scenarios is a hot research topic in the testing field, 
i.e., how to design relatively rare or unique driving sce-
narios within a limited testing time [40] to ensure that 
the system can operate safely under various extreme 
conditions. To solve the problem of insufficient scenario 
coverage requires innovative approaches, including 
model-based scenario generation, data-driven scenario 
generation, and the application of digital twin technol-
ogy, to cover the various challenges of the system more 
comprehensively. Secondly, the testing of human-ma-
chine interaction, different behavioral patterns, cultural 
differences, etc., are difficult to quantify in testing for 
simulation testing. Human-machine interaction testing 
requires considering the complex interactions between 
the driving system and the driver, including language 
differences, cultural differences, and behavioral habits. 
Accurately modeling and evaluating these factors in 
testing is essential to ensure that the system can oper-
ate safely in real-world road conditions. Meanwhile, 
the system's handling of uncertainty, including sensor 
errors, environmental transformations, and algorithmic 
uncertainty, should also be considered in the testing 
process to ensure that the system can still maintain 
safety under uncertain conditions [41]. The fourth is 
the validation of the residual risk of unknown scenar-
ios. Since unknown scenarios cannot be predicted in 
advance, it is difficult for the validation process to cover 
all possible unknown situations. Traditional validation 
methods are usually based on previous experience 
and data from known scenarios, making it difficult to 
consider the complexity and variability of unknown 
scenarios comprehensively. Meanwhile, the definition 
of reasonable risk in SOTIF is ambiguous, and the 
definition of reasonable risk varies depending on the 
environment, regulations, and even the understanding 
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of different people, which increases the subjectivity 
and complexity of validation [42].

The application of AI technology brings new chal-
lenges. Autonomous driving systems apply a vast array 
of artificial intelligence technologies, from perception 
to decision-making. Regarding perception, such as con-
volutional neural networks are used to process image 
data to detect and recognize targets. Decision-making, 
such as end-to-end decision-making methods and deep 
learning methods, are employed to directly map the 
original input data to the output control commands, 
forming an end-to-end learning framework. Artificial 
intelligence technology improves the intelligence of 
autonomous driving and realizes a more human-like 
decision-making process, thus better adapting to var-
ious driving scenarios [43]. However, it also brings a 
series of problems, one of which is the limitation of data-
sets. AI models are usually based on a large amount of 
training data, which cannot exhaust all the possibilities 
relative to the actual scenarios. Models may produce 
uncertain predictions in the face of unseen situations, 
leading to the SOTIF problem [44]. Second, the process 
is not interpretable: complex AI models such as deep 
learning are often considered "black boxes", making 
it difficult to explain the model's decision-making 
process and affecting the feasibility of model valida-
tion and regulation. Thirdly, the unreliability of the 
output: when training the model, the data distribution 
used in the model may differ from that of the actual 
application, leading to conceptual bias [45]. The bias 
between the data distribution exposed during training 
and the data distribution in real applications makes the 
model output unreliable in the face of factual scenarios. 
Fourth, the effectiveness of algorithm generalization 
ability. Migration learning and continuous learning 
have been proposed as solutions to cope with the "long-
tail problem" of scenarios. However, the introduction 
of new scenario data may bring new security risks. This 
may lead to fluctuations or even severe degradation of 
model performance in new scenarios, thus affecting the 
security of the system.

Along with the intelligent development of automo-
biles, the new issue of SOTIF has been derived [46], 
and the development of the ISO 21488 standard marks 
an essential step in SOTIF, which standardizes the 

development process of SOTIF of a system. However, 
compared with functional safety, the concept of SOTIF 
is relatively new, and it is still challenging to propose 
clear, quantitative standards and means of prevention 
and control, as is done for functional safety issues. 
Many related types of research are still in the prelim-
inary exploration stage, and the concrete application 
of SOTIF into practice still faces many urgent prob-
lems [47].

2.4 Interrelations of the safety & security 
issues

From the application perspective, the work on func-
tional safety (FuSa), cybersecurity (CS), and SOTIF is 
currently viewed as independent domains. However, 
from the problem perspective, as shown in Fig. 2, these 
three categories of safety issues demonstrate mutual 
influence and tight coupling [48]. Functional safety is 
the foundation for achieving SOTIF and cybersecurity. 
A failure in functionality can lead to a decline in system 
performance or expose vulnerabilities in cybersecurity. 
For instance, in August 2023, doctoral students from 
the Technical University of Berlin, in collaboration 
with independent researcher Oleg Drokin, successfully 
bypassed the MCU-Z AMD Security Processor (ASP) 
of a Tesla Model 3 through physical contact with the 
Infotainment and Connected Electronic Control Unit 
(ICE) board, using voltage fault injection. This enabled 
unrestricted access to the Tesla vehicle, including 
unlocking paid features [49]. Concurrently, malicious 
cyber-attacks can pose threats to functional safety. For 
example, attackers can incapacitate vehicle ECUs by 
overloading them with redundant information through 
intrusions into the vehicle's internal network, leading to 
excessive consumption of ECU resources. The SOTIF of 
the system relies on real-time and reliable sensor data. 
Cyber-attacks can affect SOTIF by altering sensor data, 
such as injecting previous video streams into the per-
ception system through replay attacks, causing errors 
in road marking recognition. The functional safety of 
the system may depend on the correct implementation 
of SOTIF. Design flaws in SOTIF or failure to consider 
all possible usage scenarios can threaten functional 
safety or cybersecurity. For example, limitations in 
system performance can lead to inadequate defenses 
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against specific cyberattacks, resulting in cybersecurity 
issues.

From the perspective of international standards, the 
connections and distinctions among the three categories 
of safety—functional safety, network and data security, 
and expected functional safety—are reflected through 
ISO 26262, ISO/SAE 21434, and ISO 21448, respectively. 
Each standard encompasses common areas such as 
management, concept development, system design, 
hardware development, software development, vali-
dation, verification, etc. However, there are differences 
in the specific content descriptions. For example, in the 
concept design phase, both functional safety and SOTIF 
undertake a crucial activity called Hazard Analysis and 
Risk Assessment (HARA), which involves analyzing 
and identifying hazardous events and setting safety 
goals to prevent and mitigate these events, avoiding 
unreasonable risks. In contrast, cybersecurity performs 
Threat and Risk Assessment (TARA), identifying threat 
scenarios and assessing risks based on the impact of 
damage and the feasibility of attacks. Furthermore, 
each domain has different focal points, and each area's 
work is usually relatively isolated. In functional safety, 
analyzing design concepts or system architecture and 

considering technical measures is essential. In cyberse-
curity, considerations extend beyond safety to financial, 
operational, and privacy aspects (SFOP). Additionally, 
discussing cybersecurity strategies requires specific 
system specifications, such as communication methods, 
data exchange, asset location and type, and updates dur-
ing post-development operations. In SOTIF, numerous 
issues related to advanced technologies, such as safety 
challenges posed by autonomous driving and artificial 
intelligence, are involved. Addressing these potential 
safety issues requires complex and comprehensive 
analysis, covering unknown potential hazardous sce-
narios, driver misuse, insufficient specifications, and 
inadequate performance. Moreover, compared to ISO 
26262 and ISO/SAE 21434, ISO 21448 is relatively new. 
It faces a series of challenges in practical application, 
including the standard for quantitative assessment of 
risks related to SOTIF.

The mutual influences among the three aspects of 
safety introduce higher complexity and uncertainty 
into the safety design of ICVs. The interplay between 
functional safety, cybersecurity, and SOTIF signifi-
cantly increases the complexity of the overall system 
design. ICVs must not only meet traditional functional 

Figure 2 Interrelation of safety & security.
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safety requirements but also address issues arising from 
cybersecurity and SOTIF. During system design, test-
ing, and verification, it is necessary to consider safety 
issues across multiple dimensions and layers, involving 
expertise from various fields, thus making the overall 
development process more intricate. Furthermore, the 
lack of explicit interconnection mechanisms among 
these three safety aspects adds to the complexity. 
Measures for functional safety may impact cyberse-
curity, while requirements for SOTIF may need to be 
considered within the framework of information net-
work security. This potential lack of clarity introduces 
uncertain variables in system design. Additionally, 
SOTIF involves advanced technologies like artificial 
intelligence and machine learning, with the system's 
efficacy dependent on the correct functioning of these 
technologies. However, these new technologies may 
introduce novel risks related to functional safety and 
cybersecurity, such as attacks on or misusing models. 
The introduction of new technologies increases overall 
system uncertainty. Therefore, it is imperative to sys-
tematically study these three categories of safety issues 

to deeply understand their interrelationships, identify 
commonalities and intersections, and thereby develop 
more comprehensive and effective safety methods and 
techniques.

3 Existing methods and techniques 
for safety & security

With the rapid development of intelligent and con-
nected technologies in the automotive industry, the 
industry is also conducting parallel research on func-
tional safety, cybersecurity, and the SOTIF of ICVs. 
At present, many countries have carried out a lot of 
work on intelligent connected vehicle safety in terms 
of regulations, standards, and technology research 
and development. This paper summarizes the existing 
methods and technologies of functional safety, cyber-
security, and SOTIF of ICVs, as in Fig. 3, and analyzes 
the bottlenecks and problems that may exist in the 
existing methods and technologies when facing the 
new challenges of ICVs.

Figure 3 Existing safety technologies and associations.
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3.1 Methods and techniques for functional 
safety

Functional safety emphasizes designing safety mecha-
nisms correctly and reasonably to avoid risks or mitigate 
hazards. Currently, the functional safety research of 
ICVs focuses on the vehicle's electronic and electrical 
(E/E) system, concerned with the abnormal behavior of 
the vehicle function after the failure of E/E components 
and the possible harm.

Since the Road Vehicle functional safety release in 2011, 
many industry organizations and enterprises have 
continuously enriched the content of functional safety 
based on the ISO 26262 standard and related practices. 
Many scholars have also researched the functional 
safety of ICVs [9]. It covers power functions such as 
the vehicle's battery management system (BMS) [50], 
drive motor [51], chassis functions such as electric 
power steering (EPS) system [52] and electronic stabil-
ity control [53], autonomous driving functions such as 
forward collision warning (FCW) and adaptive cruise 
Control (ACC) system [54], and related autonomous 
driving controllers and microchips [55]. Although 
functional safety standards and research results focus 
on different ICV systems, their ideas on functional 
safety analysis, verification, and evaluation all follow 
functional safety methods and activity processes.

The functional safety method covers the whole auto-
motive system design, development, and operation 
process, mainly including functional safety design, 
fault diagnosis & fault tolerance control, and functional 
safety testing.

3.1.1 Functional safety design

Functional safety analysis of automotive systems is 
the key to the functional safety design process. Safety 
analysis methods mainly include failure mode effect 
and diagnostic analysis (FMEDA), failure mode and 
effect analysis (FMEA), and fault tree analysis (FTA). 
These methods start with failure mode analysis and 
assess its impact on the overall system or process. 
However, these methods rely on expert experience or 
large amounts of prior data and may not be able to 
cover all failure modes fully. The hazard analysis meth-
ods mainly include Hazard and Operability Analysis 
(HAZOP), Signal Error Factor Analysis (SEFA), and 

System-Theoretic Process Analysis (STPA), which are 
analyzed respectively from the functional, architec-
tural, and system theory levels to explore the impact 
of different threats on system failure. Some scholars 
have combined several analysis methods above to deal 
with the highly integrated and complex E/E systems of 
ICVs. Reliability refers to the capability of ICV systems 
to perform their functions successfully under speci-
fied conditions, effectively complementing functional 
safety. Reliability can be quantitatively analyzed by the 
Markov model and Monte-Carlo simulation [56], and 
possible failure points of the system can be analyzed by 
simulating failure modes.

In addition to safety analysis, some studies intro-
duce validation at the early design stage to verify the 
feasibility of design optimization before proceeding to 
cost design optimization. If design optimization is not 
feasible, designers can avoid unnecessary design work. 
If feasible, designers can reduce the design burden by 
using validation results as a basis [57]. In Refs. [58, 59], 
the design optimization of safety development cost, 
hardware cost, and resource consumption cost for safe 
automotive applications is studied.

The system should inherit the safety requirements of 
safety analysis output and implement various protec-
tion mechanisms. In Ref. [60], a redundant Autonomous 
Vehicle Control (AVC) Module Strategy is proposed. 
The main idea is to design a redundant control mod-
ule, which can be controlled and protected when the 
vehicle fails. Safety requirements are also observed in 
hardware and software design. In the hardware design, 
attention should be paid to the electrical independence 
between the functional and safety mechanism circuits 
and the physical independence between the redundant 
designs. Functional safety protection should be carried 
out in software design and implementation; for exam-
ple, defensive programming should be adopted [61], 
and input types and boundary values should be 
checked [62]. Forward recovery or backward recovery 
is used in case of failure [63]. In software, memory 
protection for critical safety functions [64], time protec-
tion, and sequential monitoring of tasks [65] are also 
effective functional safety methods in the design stage.

Each analysis method has its advantages and limi-
tations and is often used in combination to meet the 
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functional safety requirements of systems. It is often 
necessary to consider factors such as the complexity of 
the system, the data required, the resources available, 
and the time.

3.1.2 Fault diagnosis & fault tolerance control

Functional safety monitors the operational process 
and focuses on the design process. When a failure 
occurs, the functional safety mechanism is activated. 
The functional safety mechanism is divided into fault 
diagnosis and fault tolerance control. Fault diagnosis 
refers to the analysis of the location, type, and dura-
tion of the fault after the fault occurs to obtain the 
severity of the fault. Fault diagnosis is divided into 
three methods: model-based, signal-based, and learn-
ing-based [66]. The model-based method uses filters 
or observers to estimate the parameters and states of 
the control system, analyzing the residual sequence 
with the estimated values and the actual values of the 
system, through which the fault information of the sys-
tem can be obtained [62]. In reality, most systems are 
nonlinear, and the system robustness is compromised 
under the influence of external disturbance and noise. 
The established model is usually simplified because 
of the calculation requirements, which can reduce 
the difficulty of fault diagnosis and tolerance control 
but cannot reflect the actual system fault degree and 
location. The signal-based fault diagnosis method 
uses signal models, such as correlation function and 
spectrum, to analyze measurable signals directly and 
extract features such as amplitude, frequency, variance, 
and phase to identify and evaluate the state of the 
system [67]. When a system with a complex structure 
fails, the learning-based method extracts fault features 
through pattern recognition, expert systems, neural net-
works, deep learning, and other ways according to the 
knowledge of related faults. The diagnostic technology 
based on learning has universality and anti-interfer-
ence ability, but its computation is also more extensive, 
which will be limited by the controller's performance. 
A variety of methods are often combined to achieve the 
classification of motor faults. For example, a heuristic 
feature selection method is used to analyze the motor 
current features, and the sampled current signal is used 
as the SVM input signal after the Stockwell Transform 
(ST). Finally, the actual motor fault category is obtained 

through machine learning [68].
Fault tolerant control (FTC) refers to taking appropri-

ate measures based on fault diagnosis to ensure that the 
system enters the safe mode in the case of faults (sensors, 
actuators, or other system components) and completes 
the specified tasks as far as possible. Fault-tolerant con-
trol methods are generally divided into Passive fault 
tolerant control (Passive FTC) and Active fault tolerant 
control (Active FTC). Passive FTC adopts a robust con-
troller with a fixed structure to ensure that the system 
is not sensitive to faults and does not depend on fault 
diagnosis results. However, this method is only appli-
cable to a limited set of faults, and the risk of failure is 
high in extreme cases [69]. Active FTC compensates the 
system's control parameters or changes the controller's 
structure according to the fault diagnosis results after 
the fault occurs. The former is used when the fault 
can be isolated, estimated, and not severe. When the 
fault cannot be estimated or serious, the compensation 
control is no longer applicable. In this case, isolation of 
the fault loop is needed, and the system control loop 
should be reconfigured. When there are redundant 
parts or loops in the system, the fault tolerance mecha-
nism can be realized by switching; when a specific part 
of the system fails, isolating the parts and the spare 
parts without fault are connected to the control loop. 
Sensors, actuators, controllers, and communication 
buses are all suitable for this fault tolerance method, 
such as the open phase fault and the open switch fault 
in the driver of the two-three-phase permanent magnet 
synchronous machine. However, the effect of fault-tol-
erant switching is closely related to the speed of fault 
diagnosis and location accuracy [70]. Too long diagno-
sis time or positioning errors will cause fault-tolerant 
switching failure. The past and current state of the 
system can also be used to predict the future output for 
Active FTC. For example, the model predictive control 
can effectively adjust the system performance failure 
by minimizing the error between the reference signal 
and the predicted system output [71].

3.1.3 Functional safety testing

Functional safety testing is also the key to functional 
safety. Functional safety testing involves hardware, 
software, and systems. Fault injection testing is a 
testing session required for every type of testing that 
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aims to introduce a fault into software, hardware, or 
system and analyze its response. Fault injection testing 
checks whether functions implemented in a fault-tol-
erant manner fail and also analyzes the behavior of 
non-fault-tolerant functionalities when they fail due 
to specific faults. The vehicle operating conditions and 
test cases are designed according to the hazards of the 
vehicle and the functional safety standards of the sys-
tem under study before the fault injection test program 
execution. Then, the functional safety is integrated and 
verified using simulation, hardware-in-the-loop, vehi-
cle-in-the-loop, and other experimental methods. The 
design of fault injection methods and test cases is the 
key to verification. Failure modes that violate security 
goals are derived from security analysis methods. These 
failure modes are simulated by designing use cases 
and injecting manually or through automated scripts 
into the software, hardware, or system operation. 
The software, hardware, or system execution process 
is then analyzed to see if it meets expectations, i.e., if 
the security mechanisms are implemented correctly. 
"Correctly" should include functional performance, 
accuracy, and temporal behavior. Many studies deal 
with parameter uncertainty in verification computa-
tions and correlation analysis based on Monte-Carlo 
and Markov models [72] for more efficient and faster 
test verification.

As ICVs continue to develop, functional safety 
technologies are being refined. The development 
and validation of safety-critical vehicle components 
through functional safety guidance can enable the 
development of safety-related elements, such as E/E 
and software, to meet the requirements of functional 
safety. However, it is worth noting that the information 
state and physical functions of ICVs are coupled with 
each other, and many problems cannot be solved by 
relying on functional safety alone, such as functional 
failure under edge scenarios and cyber-attack scenarios 
mentioned in Section 2. Meanwhile, the collaborative 
safety assessment and safety response of SOTIF and 
cybersecurity are also needed under failure scenarios 
to realize the overall effective safety of the vehicle.

3.2 Methods and techniques for cybersecurity

With the development of automotive technology, 

vehicle systems no longer mean just the traditional 
combination of mechanical and electrical components 
but also involve software and network connectivity. 
Therefore, protecting automotive cybersecurity has 
become a crucial task. The objective of automotive 
network security protection is to ensure the security 
of automotive network communication and guarantee 
that data remains in a state of adequate protection and 
lawful utilization, particularly in the context of the 
increasingly intelligent and interconnected trends in 
modern vehicles. This Section introduces regular auto-
motive cybersecurity technologies.

3.2.1 Assessment and analysis methods for cyberse-
curity

The primary method for cybersecurity of ICVs is threat 
analysis and risk assessment (TARA). TARA provides 
the basis for positive cybersecurity development and 
security vulnerability repair. TARA identifies the 
possible risks of the vehicle/system and determines 
its risk level, which provides the basis for positive 
cybersecurity development and security vulnerability 
remediation. TARA is the missing link in the previous 
vehicle development, and it can be carried out at all 
stages of the vehicle's whole life cycle. For example, the 
cybersecurity risk of the whole vehicle is identified in 
the concept stage, which serves as an input to the cyber-
security concept of the whole vehicle. Vulnerabilities 
are analyzed in the post-development stage to deter-
mine the risk level of the vulnerabilities, which guides 
the subsequent vulnerability disposal. In the published 
version of ISO21434, TARA is mainly divided into seven 
steps: asset identification, threat scenario identification, 
impact rating, attack path analysis, attack feasibility 
level, risk determination, and risk disposal decision. 
In recent years, researchers have proposed improve-
ments based on the existing TARA. The contribution of 
text [73] shifts the focus from procedural adjustments 
to quantitative recommendations, aiming to improve 
the risk matrix and, thus, the objectivity of the assess-
ment. Vogt et al. [74] proposed a comprehensive TARA 
methodology for cooperative intelligent transport sys-
tems (C-ITS) that includes ICVs, combining qualitative 
and quantitative threat modeling and risk scoring tools 
to provide flexibility in asset assessment for any C-ITS.

The data security analysis of ICVs should start from 
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data classification and grading for data security. Data 
classification and grading can effectively improve the 
efficiency and robustness of data security technology. 
Qualitative classification and grading methods based 
on parallel classification and hierarchical classification 
are obviously difficult to meet data security needs. 
Scholars in Ref. [75] have already transformed the data 
classification problem into a multi-label classification 
problem, thus reducing the difficulty of data classifica-
tion and improving end-to-end processing. In addition 
to the data from attributes, statistical characteristics, 
and the user's subjective feelings, the proposed quanti-
tative sensitivity model and algorithm are also effective 
data classification methods [76].

3.2.2 Cybersecurity protection methods

Conventional technologies for automotive cyber-
security include encryption, authentication and 
privacy protection, intrusion detection, and emergency 
response. They ensure that automotive network com-
munications are secure and regular, and that sensitive 
data is not leaked through active detection and passive 
constraints. The details regarding data security will be 
elaborated in Section 3.2.3.

Encryption methods in the communication process 
and cloud data storage can ensure the confidentiality 
of data in telematics and prevent sensitive information 
from leaking. Common encryption methods are sym-
metric encryption and asymmetric encryption.

Symmetric encryption algorithms involve both par-
ties using the same key to encrypt and decrypt data 
during communication or data processing, which has 
the advantage of breakneck encryption speed and is 
suitable for the encryption and decryption process 
of large-volume data. Still, its security is not as good 
as asymmetric encryption algorithms, and the key 
management is complex. conventional symmetric 
encryption algorithms are DES, 3DES, TDEA, Blowfish, 
RC2, RC4, RC5, IDEA, AES, and so on. Asymmetric 
encryption algorithms have a pair of public and private 
keys; the information encrypted with the public key 
can only be decrypted with the corresponding private 
key; similarly, the information encrypted with the pri-
vate key can only be decrypted with the corresponding 
public key. The advantage of asymmetric encryption is 
its high security and relatively easy key management; 

its disadvantage is that it is slow and suitable for small 
data volume encryption and decryption or data sig-
nature. Common asymmetric encryption algorithms 
include RSA, elliptic curve cryptography (ECC), etc.

Since some vehicular network uses open channels 
and the deployment of secure communication mecha-
nisms is not comprehensive, once a vehicle malicious 
node or device gets access to the in-vehicle network or 
inter-vehicle network, it may eavesdrop on the private 
data of other vehicles or attack the whole system of 
the vehicular network by sending malicious messages, 
which may lead to traffic accidents. In addition, the 
leakage of sensitive information may even threaten the 
road traffic system and national security. Therefore, 
authentication and privacy protection must be con-
sidered in the Telematics architecture. The standard 
approaches are Public Key Infrastructure (PKI)-based 
authentication [77] and privacy protection [78], Iden-
tity-based cryptographic authentication and privacy 
protection [79], Pseudonym-based authentication and 
privacy protection [80], and Group Signature-based 
authentication and privacy protection [81], block-
chain-based authentication and privacy protection [82].

Unlike passive cybersecurity protection methods 
such as authentication and data encryption, intrusion 
detection in vehicular networks is the proactive detec-
tion of data, communication messages, etc., to look 
for possible malicious attacks and intrusions so that 
appropriate measures can be taken in time to prevent 
damages caused by such activities such as blocking the 
access of malicious nodes to the network to prevent fur-
ther damages caused by them. More research has been 
done on intrusion detection for in-vehicle and VANETS. 
An intrusion detection system (IDS) can be categorized 
into host-based IDS and network-based IDS regarding 
application objectives [83]. Host-based IDS monitors 
specific nodes and local hosts. Network-based IDS 
monitors network status and data transmission in 
wired or wireless networks [84]. From the deployment 
perspective, IDS can be categorized into centralized and 
distributed deployment IDS. Centralized deployment 
of IDS is usually deployed in the in-vehicle gateway or 
VANETs in the RSU and other locations, with unified 
detection of the entire network between the nodes of the 
communication process. The distributed deployment of 
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IDS is in the network of all nodes, or part of the impor-
tant ones are deployed in the IDS [85]. The IDS can also 
be divided into rule-based IDS and learning-based IDS. 
Rule-based IDS sets rules through a priori knowledge 
to form a database of signatures of various intrusions, 
and detection is realized by matching the input model's 
information with the intrusion rules' information in the 
database [86]. Learning-based IDS is to build a machine 
learning or deep learning model based on existing data 
to build a learning model and then use the model to 
detect anomalies in the network [87]. Typically, when 
the IDS detects a malicious intrusion, it takes several 
emergency response measures, such as disconnecting 
the malicious ECU in the CAN bus from the bus as pro-
posed in Ref. [88]. These emergency response measures 
target network nodes, VANETs, or in-vehicle networks. 
The infrastructures with centralized IDSs also have 
some emergency response measures after detecting the 
malicious nodes in the network, such as revoking their 
legitimate certificates, informing their identity infor-
mation to other vehicles, or lowering their trust value, 
etc., to quarantine the malicious nodes, to prevent the 
malicious vehicles from continuing to attack the net-
work. In addition, emergency response mechanisms for 
malicious packets are often deployed in the in-vehicle 
network. When abnormal communication packets or 
packets are detected, retransmission or overwriting of 
malicious packets can be used to restore the damaged 
functions of ICVs in a short period. In short, intrusion 
detection and emergency response should complement 
each other. To realize active protection of cybersecurity 
in the vehicle network, both fast and accurate intrusion 
detection and efficient emergency response methods 
are needed.

3.2.3 Data security technologies

Data accompanies the entire process of the vehicle, 
with complex, heterogeneous, complex flow, sensitive 
range, and user-based characteristics; from the perspec-
tive of the entire life cycle of the data, it is conducive to 
clarifying the source and destination of the data, as well 
as the required security protection technology. Gener-
ally, data will go through the process of data collection, 
data transmission, data storage, data processing, data 
exchange, and data destruction, and each stage will 
face corresponding risks. The basic principles of data 

security protection technology should be to ensure 
that in-vehicle processing, accuracy range application, 
default non-collection, and desensitization are met. 
This series of principles provides a foundation for the 
security of vehicle data and, at the same time, poses 
a challenge for a comprehensive response to data 
security. Comprehensive protection is provided from 
the perspective of the entire life cycle of data, covering 
data asset grooming, sensitive data identification, data 
encryption, desensitization, data destruction, and other 
important technologies.

Data asset grooming is generally centered around 
knowledge graph technology, which utilizes the knowl-
edge graph inference function to identify new subjects 
and new relationships of vehicle data. In particular, 
the prominent visualization effect is more effective 
for data grooming of ICV data assets. The EVKG [89] 
encapsulates essential EV-related knowledge, includ-
ing EV adoption, electric vehicle supply equipment, 
and electricity transmission network, to support deci-
sion-making related to EV technology development, 
infrastructure planning, and policymaking by provid-
ing timely and accurate information and analysis. In 
a word, data asset grooming from the perspective of 
data security is an essential foundation for subsequent 
identification and desensitization of sensitive data.

Sensitive data identification and desensitization are 
the focus of data processing. On the one hand, there are 
sensitive data specified in laws and regulations, such as 
face and license plate information collected inside and 
outside the vehicle that can identify individuals, and 
sensitive personal information, such as voiceprints, fin-
gerprints, heart rhythms, etc., collected from the driver 
and passengers in the cockpit; on the other hand, the 
high-dimensional and hidden relationships between 
data have the risk of Membership Inference Attacks 
and Linkage Attack, such as speculating on the latitude 
and longitude of the state authorities and the personal 
information of the passengers through the linkage of 
an external database with the vehicle trajectory data. 
Currently, the use of neural networks [90], heuristic 
algorithms, information theory [91], and other methods 
to mine sensitive data has significant results.

Specific identification and desensitization efforts are 
carried out in the form of data, e.g., structured data, 
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text, image data, audio data, and trajectory data, and 
have applications in healthcare, finance, military, 
and government agencies. Structured datasets have 
quasi-identifiers and sensitive attributes, and unlike 
quasi-identifiers that can be intuitively recognized as 
sensitive data, sensitive attributes often need to be iden-
tified in conjunction with background knowledge and 
external databases. In addition, quantifying sensitivity 
based on sensitive identification is also the main iden-
tification idea. Among them, information entropy is a 
vital sensitivity identification index, as well as TF-IDF 
and other statistical features, which, to a certain extent, 
can react to the sensitivity of the data. The sensitivity 
of image data is more intuitive, but the difficulty is to  
realize image encryption under the premise of main-
taining usability. The sensitivity of track data [92] is 
reflected in semantic features and geographic location 
privacy, and the identification and decryption process 
has high requirements for real-time accuracy. The 
sensitivity of audio data is reflected in both voiceprint 
features and audio content [93].

Sensitive data processing has been well-established in 
other fields, focusing on classical cryptography schemes 
and privacy-preserving data mining. These techniques 
have not only been intensively researched in the aca-
demic field but also have demonstrated strong results in 
practical industrial applications. In structured datasets, 
the desensitization strategies of FPE [94] and hash func-
tion [95] are generally adopted for direct identifiers. On 
the other hand, sensitive attributes are dominated by 
privacy-preserving data mining. Privacy-preserving 
data mining can be classified into randomization, 
anonymization, and cryptography-based. The classical 
algorithms based on anonymization are k-anonymity, 
l-diversity, and t-closeness. However, it is still difficult 
to fully protect against background knowledge attacks, 
as well as the lack of applications in ICV. Cryptogra-
phy-based privacy protection methods for data mining 
are secure multi-party computation, homomorphic 
encryption, differential privacy, and secret sharing or 
homomorphic secret sharing. Among them, differential 
privacy [94] does not change the statistical character-
istics with the change of a single piece of data and has 
better security against inference attacks; Homomorphic 
encryption [96] has a high balance between privacy 

protection and data utility due to its "computable but 
invisible" property and can be applied to both struc-
tured datasets and unstructured audio and video data.

Based on reinforced supervision and management, 
proposing a method of data encryption to meet the 
requirements of anonymization is also a practical 
approach, which involves gradually reducing data 
availability, thereby leading to data destruction. The 
clock factor is added to the image encryption, and the 
image decryption result is unavailable when the preset 
value is reached [97].

3.2.4 Cybersecurity testing

Cybersecurity testing includes compliance testing and 
vulnerability discovery testing. Compliance testing 
refers to verifying whether the security policies of 
various components and related functions of telematics 
meet the requirements under the guidance of security 
specifications or testing standards; vulnerability dis-
covery testing refers to analyzing and detecting the 
possible vulnerabilities in Telematics systems by using 
various technical methods to assess the security of the 
whole system. Commonly used vulnerability discovery 
testing technology methods mainly include vulner-
ability testing, penetration testing, and fuzz testing. 
Vulnerability testing aims to scan for vulnerabilities 
in the system and even utilize exploratory testing and 
more aggressive testing to break, bypass, or tamper with 
security protections to find weak points in the system. 
Penetration testing is mainly the process of detecting the 
presence of security issues in telematics and in-vehicle 
networks and their applications and data using various 
vulnerability discovery techniques and attack methods. 
Fuzz testing is attacking the telematics systems and 
functions with data or signals to see if the systems or 
functions will react abnormally, thus exposing vulnera-
bilities that can be exploited. The framework for testing 
cybersecurity in ICV is still immature, and the related 
technology is still in the research stage.

This section summarizes the standard methods and 
techniques of cybersecurity, which are used to solve 
some of the cybersecurity problems described in Sec-
tion 2. However, the existing methods still have the 
problem of inapplicability and mismatch for the rapidly 
developing ICV. In particular, under the trend of increas-
ing vehicle intelligence and communication capabilities, 
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cybersecurity, there is a growing correlation between 
functional safety, cyber safety, and intended functional 
safety. A single cybersecurity protection method may 
make it difficult to address the above new challenges.

3.3 Methods and techniques for SOTIF

ISO 21448 provides a complete set of methods and 
guidelines for the development and design of SOTIF, 
and the standard uses the "V-model" to describe the 
flow of development activities for SOTIF. Compared 
to functional safety and cybersecurity standards, 
SOTIF clearly defines some specific steps in its process, 
including identifying potential functional deficiencies 
and triggers, assessing known and unknown scenar-
ios, and assessing SOTIF results [98]. Among them, 
potential functional deficiency and trigger condition 
identification aim to analyze the planning algorithms, 
sensors, actuators, and environmental conditions and 
foreseeable misuse in the autonomous driving system 
to identify the trigger conditions that may lead to a 
hazardous event. Unknown scenarios assessment is the 
most challenging issue, which focuses on confirming 
that the residual risk from unknown scenarios meets 
the acceptance criteria through many long-term tests. 
In the SOTIF achievement evaluation, the standard lists 
methods and criteria for assessing the SOTIF but lacks 
clear quantitative criteria [99].

There are three basic principles for the design of 
SOTIF technologies: system performance enhancement, 
functional degraded use, and driver takeover. On the 
one hand, system performance enhancement can fun-
damentally solve the problem of system performance 
limitations and insufficient design specifications [100]; 
on the other hand, based on the infinity of real-world 
scenarios, it ensures the safe operation boundaries 
of the system by defining clear design operation 
domains [32], and once exceeding the design operation 
domains of the system, it is necessary to carry out 
performance degradation and use; when the system is 
degraded and used, the driver and passenger, as the 
only subject with independent judgment and action 
ability in the vehicle, play an essential role in ensur-
ing the SOTIF of the system [101]. Based on the above 
three principles, the critical technologies for the SOTIF 
will be divided into system design, system testing and 

verification, and system operation safety [102].
The technology of SOTIF for system design involves 

environment sensing technology, decision planning 
technology, and human-machine interaction tech-
nology. The hardware level of environment sensing 
technology includes utilizing multiple sensors, 
including millimeter-wave radar, camera, and LiDAR, 
to obtain comprehensive and multidimensional envi-
ronmental information [103]. At the algorithmic level, 
heterogeneous sensor data are fused, and the data 
are cross-analyzed and integrated to enhance the 
system's ability to understand the scene [104]. In the 
fusion process, the confidence and accuracy of differ-
ent sensors are considered, giving higher weight to 
the high-reliability sensors, which has weakened the 
influence of other less powerful sensors. In addition, 
the perception must react adequately to so-called edge 
cases, such as overexposure of the sensed image or 
unexpected and potentially dangerous traffic situa-
tions. In other words, the perception system has to be 
extremely robust to environmental sensing [105] and 
still be able to perceive and understand the environ-
ment correctly in case of data anomalies. For decision 
planning, the industry has mainly adopted rule-based 
techniques that apply to regular scenarios and have 
shown good performance in specific scenarios, such 
as Baidu's Apollo [106]. Numerous researchers have 
also researched data-driven decision planning-based 
algorithms, such as end-to-end decision planning [107], 
where the algorithmic models have been trained to 
show good performance for test scenarios. However, 
both model-based and data-driven algorithms are a 
simple integration of decision planning for a single sce-
nario and cannot meet the requirements of advanced 
autonomous driving. The core challenge of high-level 
decision-making algorithms lies in understanding and 
reasoning about driving scenarios [108]. Advanced 
autonomous driving requires a decision-planning 
technique that can cope with different scenarios, espe-
cially with a strong generalization ability for extreme 
scenarios. Like a good human driver, it can understand 
and reason about complex driving scenarios and 
extract valuable information to make the right maneu-
vers and navigate the environment well, regardless 
of the encountered situation [109]. Of particular note, 
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the timeliness of decision-making is critical when 
responding to emergencies, and responding quickly 
and generating appropriate safety strategies, including 
emergency response behavior selection and real-time 
path planning, is essential to ensure that a vehicle can 
be driven safely in uncertain or dangerous situations. 
Emergency response behavior selection can be imple-
mented using a finite state machine (FSM) algorithm 
that maps emergencies and corresponding behavioral 
rules to states and transfers of the FSM [110]; for real-
time path planning, the key is the prediction of the 
movement of other traffic participants, Shao et al. pro-
pose a self-aware trajectory prediction method [111], 
which achieves online by combining a self-awareness 
module and a two-stage training performance evalua-
tion to cope with possible scenarios where the expected 
functionality is insufficient. Similarly, human-machine 
interaction is an important concern in the SOTIF, on the 
one hand, to avoid safety problems caused by foresee-
able human misuse, and on the other hand, to perform 
a safe transfer of driving rights when the system is 
downgraded for use. To avoid human misuse, the sys-
tem cognition and operation ability of the driver and 
passengers can be improved by increasing the training 
of the driver and passengers; in addition, it is necessary 
to improve the design of the system human-machine 
interface (HMI), combining the visual, auditory, tactile 
and other sensory interactions through the graphical 
user interface (GUI) technology, the intelligent voice 
interaction technology, and the multi-modal inter-
action technology to improve the intuitiveness and 
comprehensibility of the HMI. When the system sends a 
takeover request to the driver, the system should adopt 
an effective feedback mechanism according to the driv-
er's status to help the driver return to the driving task 
in time. It is possible to recognize driver fatigue and 
distraction state and assess emotional state through 
the technology of multi-dimensional comprehensive 
monitoring of vision, hearing, touch, and smell, and 
strengthen HMI feedback through enhanced display 
technology, intelligent voice interaction technology 
and haptic virtual display technology, etc., to help the 
driver understand the driving environment quickly and 
make driving decisions promptly [112]. Furthermore, 
the utilization of brain-computer interface technology 

represents an exploratory approach to enhancing 
SOTIF. A positive correlation between cerebral oxygen 
and the driving risk field is discovered in the litera-
ture [113]. Passengers' electroencephalography (EEG) 
signals are analyzed to distinguish between emergency 
and non-emergency situations in literature [114]. Both 
pieces of research illustrate the potential to enhance 
driving safety by considering humans' perception of 
driving risk.

Testing and verification play a crucial role in ensur-
ing the SOTIF. For SOTIF testing of perceptual systems, 
diverse test cases are generated using a high-coverage 
test-set generation method with basic scenarios [115]. 
For SOTIF testing of decision planning systems, the 
dynamic adaptive design and optimization experi-
ment (ADOE) approach is divided into scenario-based 
and mileage-based tests [116]. Through an adaptive 
approach, scenario-based testing focuses on quickly 
identifying scenarios that challenge the decision-mak-
ing system in a complex logical scenario space. In 
contrast, mileage-based testing constructs various 
interactive driving models in a simulation environ-
ment to mimic actual traffic conditions and evaluates 
the system's performance in a natural traffic flow. In 
addition to independent testing of the perception 
and decision-making systems, testing and validation 
of the process from the perception system to the 
decision-planning system involves the use of error-in-
jection-based reinforcement testing to generalize the 
error results produced by the perception system and 
to test the robustness of the decision-planning system 
through the error-injection method [117].

To ensure the SOTIF in system operation, performing 
real-time driving safety risk assessment is extremely 
important. Real-time driving safety risk assessment 
involves a variety of techniques, including temporal 
logic-based assessment techniques, which assess the 
risk based on temporal metrics such as time-to-colli-
sion (TTC) and time-headway (THW) [118]; physical 
model-based assessment techniques, which assess the 
driving safety risk of vehicles by simulating the vehi-
cle's kinematics and dynamics behavior [119]; collision 
probability-based assessment techniques, which per-
forms driving safety risk assessment by calculating the 
probability of all potential collision trajectories [120]; 
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and statistical learning-based assessment techniques, 
including traditional machine learning, deep neural 
networks, and deep reinforcement learning, which pre-
dicts risk through big data analysis [121]. In addition, 
artificial potential field (APF) models are used to build 
driving risk fields to assess safety risks in dynamic 
environments [122]; safety force field-based approaches 
utilize the concept of physical forces to assess safety 
distances and collision risks; and entropy-based risk 
assessment techniques deal with system stochasticity 
and uncertainty by calculating the entropy value of a 
system's state to assess risk [123]. The comprehensive 
application of various technologies and algorithms is 
set to become a trend [124], aiming to achieve a more 
holistic and precise assessment of vehicular safety 
risks. For the SOTIF in system operation, in addition to 
real-time risk assessment, the importance of emergency 
response should not be neglected. Feng et al. proposed 
an active collision avoidance strategy based on the 
uncertainty of pedestrian motion [125], which realizes 
fast and accurate planning of optimal paths to respond 
to emergencies in complex road environments.

With the development of cutting-edge technologies 
such as autonomous driving and artificial intelligence, 
the concept of SOTIF has been derived, becoming a 
new safety concept independent of functional safety 
and cybersecurity. Although the ISO 21448 standard 
provides a series of guidelines and methods, there 
remains a gap in its practical implementation and 
application. Meanwhile, SOTIF technology is still in the 
early stages and has not yet been well developed. The 
application of artificial intelligence and deep learning 
in the field of autonomous driving not only raises con-
cerns about SOTIF itself but also has a profound impact 
on the methods and techniques of functional safety and 
cybersecurity [126].

3.4 Integrated design for safety

When contemplating the safety design of future 
ICVs, it is important to recognize the integrated and 
interdependent relationship among functional safety, 
cybersecurity, and SOTIF. The interconnection of dif-
ferent categories of safety risks has gained attention, 
leading to the release of ISO/TR 4804∶2020 by the Inter-
national Standards Organization in 2020. This standard 

focuses on the safety of autonomous driving systems 
and integrates it with cybersecurity. ISO/TS 5083 has 
introduced cybersecurity considerations in the design, 
validation, and confirmation methods of autonomous 
driving. Additionally, the ISO/IEC DTR 5469 and 
ISO 8800 standards, currently under development by 
the International Standards Organization, attempt 
to combine vehicle functional safety with artificial 
intelligence technologies. Beyond these standards, the 
analysis of the relationship between cybersecurity and 
safety in the field of autonomous driving is discussed 
in the 2019 whitepaper titled Safety First for Automated  
Driving (SaFAD). This publication elucidates the 
impact of cybersecurity on functional safety and SOTIF. 
Researchers are also exploring the fusion of various 
safety technologies. Suo et al. [127] present a novel 
approach, combining hazard analysis and risk assess-
ment (HARA) with threat analysis and risk assessment 
(TARA) analyses. Martin et al. [129] proposed a work-
flow based on the Safety Pattern, which considers both 
functional safety incidents and information security 
incidents as a safety pattern. Research on various safety 
coupling issues is a significant engineering challenge, 
and its scope extends beyond the automobile domain. 
Dotsenko et al. [130] introduce a method for enterprise 
security management. This methodology introduces an 
additional ecological safety management unit, fostering 
mutual coordination among cybersecurity, functional 
safety, and other safety facets within its purview.

In general, the interconnectivity of various safety 
issues has begun to be noticed, with some correspond-
ing international standards currently in the drafting 
stage and preliminary research foundations established 
in related fields. However, it is crucial to note that no 
unified standard or methodology encompasses all 
three categories of safety issues.

3.5 Limitations of existing methods and 
techniques

As automotive electronic and electrical systems become 
increasingly complex, functional safety, the earliest pro-
posed concept, has relatively matured in its methods 
and technologies. However, the development of ICVs 
has led to significant expansion in the definition and 
boundaries of vehicles. Traditional functional safety 
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Table 1 Summary of Existing Techniques for Safety & Security

Category Means Technical description Typical approaches

Functional safety

Risk analysis
Analyze failure modes and assess their impact on the 
entire system or process.

FMEDA,FMEA,FTA,SEFA, 

HAZOP

Fault diagnosis
Analyze the position, type, and duration of faults 
occurring after a failure to determine the severity of 
the fault.

Model-based [62], signal-based 
[67], and learning-based [68]

Fault tolerance control

Drawing on the results of fault diagnosis, implement 
appropriate measures to ensure that the system, in 
the event of a fault (sensor, actuator, or other system 
components), transitions into the corresponding safe 
state and endeavors to fulfill specified tasks to the best 
extent possible.

Passive FTC [69] and Active FTC 
 [70, 71]

Redundancy design

In critical areas where the system plays a pivotal role 
in task completion, introduce multiple redundant func-
tional channels or components performing the same 
function to ensure the system continues to operate 
normally in the event of a failure.

Redundant control modules [60], 
defensive programming [61], 
memory protection [64], and time 
protection [65]

Early validation

Introduce functional safety verification in the early 
stages of development to avoid unnecessary design 
work or alleviate the design burden during later opti-
mization phases.

Fast functional safety verification 
[57] Safety cost verification [58, 59]

Fault injection testing
Introducing faults into the software, hardware, or 
system and analyzing their responses.

Artificial fault injection [52] 
Markov model [72]

Cybersecurity

Cybersecurity assess-
ment

Identifying security risks in-vehicle networks and 
data.

TARA Enhanced TARA [73, 74] 
Data classification and categoriza-
tion [76]

Encryption
Encrypting essential data to ensure the confidentiality 
of information.

Symmetric encryption and asym-
metric encryption [78, 79]

Certification
Verifying the identity of communication nodes to 
ensure their authenticity and integrity.

PKI [77] Identity-based [80] Group 
signature [81] Blockchain [82]

IDS
Detecting potential network attacks and malicious 
activities on automotive networks and systems, and 
implementing defensive measures.

Rule-based IDS [86] Learning-based  
IDS [87]

Data anonymization
Employing specific strategies for data protection, and 
preventing attacks related to external database connec-
tions or background knowledge.

k-anonymity l-diversity [108] 
t-closeness Differential privacy 
[91] Homomorphic encryption [95]

Data desensitization De-identifying data that directly identifies individuals.
FPE encryption [161] Hash func-
tion [93]

Network security 
testing

Verifying whether automotive components, systems, 
and the entire vehicle comply with regulations  
and identifying potential vulnerabilities. 

Compliance testing Vulnerability 
scanning testing

methods and technologies are insufficient to address 

the novel issues brought about by new technologies. For 

example, the development of vehicle-cloud collabora-

tive technologies has shifted important functionalities 

to the cloud. Traditional functional safety primarily 

focuses on the vehicle system itself, often neglecting 

the security of cloud systems. The failure of cloud-side 

system functionalities may result in the inability of 

ICVs to receive critical traffic information in real-time, 

thereby increasing safety risks. Simultaneously, with 

the application of big data and large models in the 

automobile industry, emerging cybersecurity issues 
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such as large-scale data mining, model-based data 
encryption, and the processing of remote uncontrolled 
information are becoming increasingly apparent. These 
problems become more challenging due to the vehicle's 
limited computing power, storage resources, and cost 
considerations. Hence, there is a need to reassess and 
address these emerging cybersecurity issues to adapt 
to the specific requirements and challenges of ICVs. 
Compared to functional safety and cybersecurity, the 
concept of SOTIF is the latest to be introduced. Despite 
the growing recognition of the importance of SOTIF, 
this field still lacks a mature, quantifiable methodology 
and technology, with no clear solutions. This implies 
that the actual implementation of SOTIF concepts still 

faces significant gaps.
While there has been some research on the intercon-

nection of different types of safety issues, the study of 
composite safety problems often involves the combina-
tion of only two types of safety issues. There is a lack of 
a comprehensive, systematic framework that unifies the 
consideration of all three types of safety. This isolated 
research approach and technology are challenging to 
address the increasingly complex safety requirements 
of ICVs effectively.

4 Fusion safety for ICVs

In facing the complex and uncertain interconnections 

Category Means Technical description Typical approaches

SOTIF

Sensor fusion

Through algorithmic synthesis, diverse sensor data, 
including cameras, radar, and lidar, is processed 
comprehensively to obtain more accurate and compre-
hensive environmental information as well as object 
detection results.

3-D object detection [128] Real-
time multi-object tracking [131] 
SSD [132]

Rule-based decision 
and planning

Make decisions and plans based on predefined rules 
and logic.

Baidu Apollo EM motion planner 
[106] Finite state machine (FSM) 
[110]

Data-driven decision 
and planning

Rely on extracting information and patterns from large 
real-world data, establishing a mapping between input 
data and decision planning results.

End-to-end decision and planning 
[133] Self-aware trajectory prediction 
method [111]

human-machine 
interface optimiza-
tion

Enhance the interaction experience between users and 
the system, making the system more user-friendly, 
efficient, and user-centric.

Enhanced display technology [134] 
Intelligent voice interaction tech-
nology [135] Haptic virtual display 
technology [136]

Test scenario gener-
ation

Design and simulate various environments and condi-
tions reflecting real-world driving scenarios to assess 
and validate the system's performance.

Scenario-based Testing [115] Mile-
age-based Testing [116]

Error injection-based 
testing

Introduce errors or anomalies into the system inten-
tionally to evaluate its robustness and error-handling 
capabilities.

Enhanced testing based on error 
injection [117]

Real-time driving 
safety risk assessment

Continuously monitor and analyze the vehicle's opera-
tional environment and status information to identify 
potential safety risks in real-time.

Assessment technology based on 
physical models [119] Assessment 
technology based on  collision 
probability [137] Risk Assessment 
Based on Security Entropy [123] 
Risk Assessment Based on Artifi-
cial Potential Field [122]

Integrated Safe 
Design

Threats joint analysis
Quantify and decompose threats across multiple 
domains, drawing attack trees.

Integrated analysis of HARA and  
TARA [127]

Development process 
optimization

Integrate and optimize the workflows of different 
security engineers to enhance collaboration.

Normalization of Security 
Issues [129]

(Table 1 Continued)
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of these three types of problems, developing a high-di-
mensional, integrated security approach based on 
three categories of safety technologies and methods 
is necessary. This involves not only the fusion at the 
technological level, such as data sharing, comprehen-
sive assessment, and integrated protection, but also the 
integration of development processes and toolchains 
to adapt to the future's complex and variable security 
protection requirements.

This section first expounds on the concept of integrated 
security from four dimensions and then introduces a 
theoretical framework model for field-vehicle-human 
safety interaction. Based on this theoretical framework 
model, a potential integrated security system frame-
work is proposed. Lastly, a new security design and 
development process that supports rapid development 
and continuous iteration is designed based on CHAIN 
to meet future complex and dynamic security needs.

4.1 The concept of fusion safety

Fusion Safety is a high-dimensional security concept 
developed from functional safety, cybersecurity, 
and SOTIF. Fusion Safety is not a mere aggregation 
and integration of these three safety categories but 
an organic, systematic, and multi-layered fusion. In 
Fig. 4, the relationship between safety and security is 
akin to a Möbius strip, representing the dual aspects 
of the same concept. Their interdependence and close 
connection render them an inseparable whole. From a 
dynamic development perspective, safety and security 
are intertwined and spiral upwards in their evolution, 
continuous and boundless, analogous to the shape of a 
Möbius strip and the infinity symbol in mathematics. 
The close integration of Safety and Security forms the 
core concept of Fusion Safety.

Surrounding this core concept, Fusion Safety inte-
grates and intercommunicates across four dimensions: 
value, process, toolchain, and information. At the 
process level, the fusion concept encompasses concept 
definition, system design, testing, verification, and pro-
duction, comprehensively considering all three safety 
types at every stage. At the toolchain level, the unifi-
cation and collaboration in areas like code generation, 
model development, test calibration, and simulation 
platforms provide robust support for Fusion Safety. 

At the information level, the seamless integration and 
fusion of data collection, mining, transmission, and 
integration maximize and enhance data value. Finally, 
at the value level, the design philosophy of Fusion 
Safety extends beyond the direct safety of vehicles and 
humans to play a pivotal role in promoting societal and 
ecological values, aiming to foster coordinated, symbi-
otic development in these areas.

The fusion of these four dimensions creates a closely 
linked ecosystem. Value creation drives the develop-
ment of the entire process, which is supported and 
realized by the toolchain. The toolchain, in turn, adds 
value to data, benefiting the entire system. Ultimately, 
the value of this data further promotes and shapes value 
creation, forming a closed-loop interactive system. In 
the design philosophy of Fusion Safety, each dimen-
sion is interconnected and interdependent, collectively 
enhancing the overall safety and efficacy of the system.

4.2 Framework for fusion safety protection 
system

Based on the concept of Fusion Safety and guided by 
the field-vehicle-human safety interaction model, a 
"Safety Brain System" aimed at Fusion Safety is pro-
posed, as illustrated in Fig. 5. A field-vehicle-human 
safety interaction model is proposed to thoroughly 
consider the complex driving scenarios faced by 
ICVs within the Fusion Safety design. This model 
comprehensively and hierarchically depicts the mul-
ti-dimensional characteristics of driving scenarios and 
the dynamic interactions between different factors 
within the Field. In the model, "Field" includes both 
the physical space and the cyber space, corresponding 
to the physical world and the data-constructed virtual 
world. At the same time, "Human" refers not only to 
the driver but also to the passengers in the vehicle. The 
field-vehicle-human safety interaction model serves as 
the foundation and input for the design of the Safety 
Brain System. The protection system is divided into 
the primary Safety Brain System and cloud collabora-
tion [138]. The Safety Brain System provides real-time 
safety protection, while the cloud offers intelligent 
remote protection, ensuring Fusion Safety through 
end-cloud collaboration.

The vehicle-edge "Safety Brain" encompasses three 
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key functional modules: monitoring, assessment, and 
prevention & control. The monitoring module imple-
ments real-time global safety risk monitoring, utilizing 
multi-fusion sense technology and overall perception 
to capture information about vehicle status and the 
external environment. The assessment module quanti-
tatively evaluates the vehicle's Fusion Safety status in 
real-time based on data from the monitoring module, 
involving risks of functional failure, performance deg-
radation, and cybersecurity. It performs an integrated 
assessment of Fusion Safety risks based on independent 
analysis of these factors. The prevention and control 
module, based on assessment results, generates Fusion 
Safety strategies and implements protective measures 
to ensure Real-time Vehicle-edge Protection.

The cloud acts as an information and strategy 
processing center, equipped with Safety Risk Alert 
capabilities, recording (Critical Scenario Record) 
and analyzing (Scenario Reasoning and Analysis) 
critical scenarios. Utilizing its big data storage and 

high-performance computing capabilities, the cloud 
optimizes safety strategies [139] to ensure optimal 
safety performance of the entire system. The cloud is 
capable of providing Remote Intervention Control 
when necessary [140], serving as a redundancy plan 
for vehicle-edge protection. The Safety Brain enables 
ICVs to adapt dynamically to complex and variable 
traffic environments. End-cloud collaboration not only 
enhances the vehicle's safety protection capabilities 
but also strengthens its ability to respond to external 
safety risks, thus realizing a comprehensive, integrated 
Fusion Safety management system.

4.2.1 Field-vehicle-human safety interaction model

The field-vehicle-human safety interaction model is 
proposed to comprehensively understand and address 
the complex safety challenges in the environment 
around ICVs. The environment, vehicle, and humans 
interact, forming a complex system that collectively 
determines the system's safety. The field-vehicle-human 

Figure 4 Concept and design of fusion safety.
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Figure 5 Fusion safety system framework.
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model allows for a systematic analysis of the interac-
tions between these three components, thereby more 
thoroughly identifying and addressing potential 
safety risks. As shown in Fig. 6, the field in the field- 
vehicle-human safety interaction model is divided into 
physical space and cyber space. Physical space includes 
the natural domain and the traffic domain, where the 
natural domain encompasses natural environments 
like weather, climate, and lighting, and the traffic 
domain includes traffic elements such as infrastructure, 
traffic signals, traffic flow, and road conditions [141]. 
Cyber space is categorized into near-field and far-field 
communication domains based on communication 
distance, where the local communication domain [142] 
primarily refers to the information domain created 
through short-distance communication methods such 
as V2X and mobile communication with the vehicle, 
and the global communication domain refers to the 
information domain that involves long-distance data 
exchange with the vehicle through satellite communi-
cation. Physical space and cyber space, surrounding 
the microsystem of vehicles and humans, collectively 
form a macro-system for safety interaction.

In the field-vehicle-human safety interaction theory, 
safety risks are considered due to the system state, 
which we define as "Safety Potential Energy". This 
concept draws from the idea of potential energy in 
physics, which describes the likelihood and severity of 

potential safety risks in a given system state. The level 
of Safety Potential Energy depends on the interaction 
of various factors, specifically in the physical space 
through "energy" transformations representing interac-
tions [143] and in the cyber space through data exchange 
representing the influence between different elements. 
Both energy transformation and data exchange affect 
the system's state, influencing changes in safety poten-
tial energy. If the safety potential energy exceeds the 
safety margin of the system under study, safety risks 
may evolve into hazardous events, leading to systemic 
safety collapse. In the field-vehicle-human safety inter-
action model, the vehicle and human form an intelligent 
entity capable of cognition, decision-making, and action, 
considered as the microsystem in field-vehicle-human, 
with the surrounding field forming the macro-system. 
The macro-system and microsystem interact through 
energy transformation and data exchange. Within 
the microsystem, the interaction between vehicles 
and humans is reflected in the complementary role in 
driving tasks, with human attributes divided into per-
sonal, intrinsic, and extrinsic characteristics. Personal 
characteristics include age, gender, race, etc.; intrinsic 
characteristics cover physiological and psychological 
features like reaction ability, cognitive ability, atten-
tion, etc.; extrinsic characteristics represent driving 
takeover ability, decision-making ability, driving style, 
etc., directly influencing vehicle-human interaction. In 
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terms of the vehicle, it is divided into three levels: the 
functional layer, including basic functional modules 
such as the power system, steering system, and braking 
system; the intelligent layer, including advanced func-
tional modules like the intelligent cockpit and ADAS 
system [144]; and the connectivity layer, consisting 
of the vehicular network made up of CAN/FD, LIN, 
Ethernet, etc. [145], responsible for data transmission 
between different layers.

4.2.2 "Safety brain" system

Monitoring module. The "Monitoring" module inte-
grates various sensory methods such as vision, hearing, 
and touch to monitor and assess the safety risks of ICVs 
comprehensively. It considers unsafe factors caused by 
natural environments, such as adverse weather con-
ditions [146], potential risks in traffic conditions, such 
as congestion and accident-prone areas, and safety 
hazards that may arise during vehicle-cloud commu-
nication (Fig. 7). Additionally, the module focuses 
on the safety state of the vehicle itself, including 
the reliability of the vehicle's essential systems, the 
performance of advanced intelligent systems, and 

the security of onboard network communications. 
The status of drivers and passengers, including their 
behavioral intentions [147] and potential erroneous 
operations, are also crucial monitoring points as they 
significantly impact vehicle safety. By real-time moni-
toring and analysis of this multifaceted information, the 
module comprehensively perceives potential threats, 
monitors global safety risks, and provides information 
support to other parts of the system to ensure safe  
vehicle operation.

Assessment module. The "Assessment" module, 
building upon the risk information provided by the 
"Monitoring" module, further identifies and analyzes 
sources of safety risks, including unsafe conditions in 
the field, unsafe states of the vehicle, and unsafe behav-
iors of humans (Fig. 8). The unsafe conditions in the 
field encompass severe weather in the natural domain, 
intricate traffic scenarios in the traffic domain, and 
either packet loss of vital traffic information or cyber-at-
tacks in the informational domain. Concerning the  
vehicle, unsafe states arise from malfunctions at 
the function layer, connectivity disruptions at the 

Figure 6 Field-vehicle-human safety interaction model.
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Figure 7 Monitoring module of the safety brain.
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communication layer, and performance insufficiencies 
at the intelligence layer. Beyond mere misuse related to 
SOTIF, human unsafe behaviors extend to disregarding 
safety alerts, thereby increasing the risk to functional 
safety and engaging in actions threatening cyberse-
curity, such as connecting virus-infected devices to 
the vehicle. It conducts an in-depth analysis of safety 
risks due to functional failure [148], SOTIF risks, and 
cybersecurity risks from network attacks. This module 
is not limited to assessing individual safety risks but 
also considers the occurrence of multiple safety risks 
simultaneously to evaluate potential safety risks 
comprehensively. After separately assessing the three 
categories of safety risks, it conducts a joint analysis of 
the concurrent multiple safety risks and their composite 
harmful impacts, revealing their potential interplay 
and combined effects. Combining the vehicle's level 
of safety risk response capability, it quantitatively 
assesses the vehicle's Fusion Safety risk state.

Prevention and control module. Based on the results 
from the "Assessment" module (Fig. 9), the "Prevention 
and Control" module addresses various identified 
safety protection needs, including protection against 
functional failure, performance degradation, and net-
work attack safety protection [149]. It solves strategies 

within the designed safety strategy space, generating 
a tiered combination of safety protection strategies 
(Strategy Portfolio). This module elevates traditional 
singular protective measures to a more comprehen-
sive defensive level, transitioning from passive to 
active adaptive protection, thus constructing a safety 
prevention and control system that is in-depth, highly 
adaptive, and integrates multiple safety measures. 
The core of this module lies in its ability not only to 
respond precisely to a specific category of safety risk 
but also to dynamically adjust protection strategies 
in real-time according to various compound safety 
protection needs, adapting to the ever-changing safety 
environment. This comprehensive approach to safety 
prevention and control enhances the vehicle system's 
ability to withstand safety risks and strengthens the 
safety resilience of the entire macro-traffic system.

4.2.3 Edge-cloud collaboration

In the safety protection system of ICVs, digital twin 
technology plays a key role [150]. Digital twins cre-
ate a virtual model of a physical entity in the cloud, 
simulating the system interrelations and risk evolu-
tion mechanisms of the actual physical space world. 
Advanced data exchange protocols and real-time data 
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Figure 9 Protection & control module of the safe brain.
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Figure 8 Assessment module of the safety brain.
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processing frameworks are employed for real-time 
data synchronization between the physical entity 

and its virtual model. This framework encompasses 
immediate collection and transmission of vehicle data, 
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ensuring timeliness and accuracy. In this manner, data 
is efficiently obtained from the vehicle's sensing system, 
including but not limited to speed, location, and envi-
ronmental information. After immediate processing, 
the real-time collected data, including data cleaning, 
normalization, and feature extraction, is used for real-
time monitoring of vehicle performance and predicting 
safety states. Additionally, when potential safety risks 
are detected as uncontrollable, the cloud can perform 
remote diagnostics and intervention through the dig-
ital twin model and even remotely control the vehicle 
in emergencies to prevent accidents [151]. Recording 
high-risk safety-critical scenarios and analyzing syn-
chronized data makes it possible to trace and analyze 
the scenarios of safety incidents, infer the causes of 
safety risks, and thereby provide a basis for optimizing 
future preventive measures. Combining historical data 
with real-time monitoring data, the cloud collaboration 
platform can deduce optimal safety strategies through 
algorithms based on large-model analysis and, through 
OTA (Over-The-Air) technology, continuously opti-
mize these strategies on the vehicle edge to adapt to the 
ever-changing driving environment and conditions.

Through edge-cloud collaboration (Fig. 10), the 
"Safety Brain" system leverages the complementary 
advantages of both the vehicle-edge and cloud systems. 
The vehicle edge focuses on real-time data collection 
and rapid response, while the cloud provides robust 
data storage, analysis capabilities, and superior compu-
tational power [152]. The protection system can execute 
highly real-time monitoring and protection while 
possessing the ability to self-evolve through learning 
and experience accumulation. This dual functionality 
ensures that the system can react to immediate risks 
and address new safety challenges through self-itera-
tion and continuous learning.

4.3 X-shaped fusion safety development 
process

4.3.1 Fusion safety development process

In the era of traditional fuel vehicles, the develop-
ment cycle of a vehicle product typically spanned 
5 to 6 years, with German brands taking about 5 to 
7 years, while Japanese brands reduced this cycle to 
about four years by introducing parallel development 

models [153]. Entering the era of new energy vehicles, 
this development cycle has been further shortened 
to approximately 36 months. Some new automotive 
manufacturers have even reduced this period to 9 to  
12 months. As the automotive industry fully enters 
the era of ICVs, development cycles are expected to 
compress further. On the other hand, the diversity 
and variability of user demands necessitate a focus on 
continuous iteration and rapid updating of in-vehicle 
product development to promptly meet customer needs 
[154]. Shorter development cycles and rapid functional 
iterations inevitably lead to insufficient safety testing 
and validation time, thereby increasing safety risks. In 
the rapid iteration and upgrading of ICVs, a major chal-
lenge in safety design and development is effectively 
addressing unknown or insufficiently understood 
scenarios [155]. Scenarios not considered during design 
and encountered during operation can lead to new 
safety issues, necessitating swift responses and timely 
functional upgrades.

Currently, the mainstream development model 
adopted in automotive electronics and electrical sys-
tems development is the V-model, with the left side 
of the V representing the design phase and the right 
side representing the testing phase [156]. The V-model 
delineates different software development and testing 
stages with well-defined documents and test cases. 
However, its relative rigidity and linearity pose chal-
lenges in dealing with changes and flexibility [157]. 
Additionally, the sequential execution model of the 
V-model leads to extended delivery cycles, failing to 
meet the demands for rapid delivery and continuous 
iteration of ICVs. Since all testing is concentrated in 
the latter stages of the project, issues identified during 
testing are complex to rectify promptly, increasing the 
risk of delays. The linear structure of the V-model is 
not flexible enough to rapidly deliver and iterate in 
response to frequently changing requirements.

In the software development field, new develop-
ment processes like CI/CD (Continuous Integration/
Continuous Delivery) have emerged [158]. CI/CD, by 
automating code integration and deployment, enhances 
software delivery speed and quality, but its automated 
processes may introduce potential security risks 
that require appropriate safeguards. Containerized 
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development processes use container technology 
(such as Docker) [159] to package applications and 
their dependencies into portable containers, thereby 
improving development, testing, and deployment 
consistency and efficiency. However, in containerized 
environments, isolation between containers is achieved 
through the container runtime and operating system. 
Despite many security measures, improper config-
uration can lead to security vulnerabilities between 
containers. Moreover, if a component in a container-
ized environment fails, it can impact the availability of 
the entire application.

A comprehensive analysis reveals that traditional 
development processes like the V-model, with their 
rigid workflows, lack sufficient speed and continuous 
integration capabilities to meet the rapid and chang-
ing development needs of ICVs. New development 
processes in the software field, while enabling rapid 

delivery, struggle to ensure product safety and relia-
bility. A new type of safety design and development 
process is urgently needed to meet the new challenges 
of ICV safety and fulfill the demands of Fusion Safety, 
encompassing functional safety, cybersecurity, and 
SOTIF. This paper proposes an X-shaped development 
process based on CHAIN, as shown in Fig. 11.

The CHAIN architecture is presented as one of the 
digital solutions to the interconnection of open com-
plex giant systems [6, 7]. As an interactive multi-layer 
collaborative network architecture, CHAIN possesses 
powerful generalization capabilities and universality 
in facing complex dynamic system challenges, enabling 
the design, development, rapid deployment, and sys-
tem iteration of ICVs' Fusion Safety.

The X-shaped development process integrates phys-
ical space and cyber space development processes, 
retaining the traditional V-model while mapping 

Figure 10 End-to-cloud collaboration for fusion safety system.
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complex design and development processes from 
physical space to cyber space based on digital twins. 
This approach accelerates product delivery while 
ensuring design development rigor and compliance. 
In the physical process, for system, integration, and 
component levels, the left side of its V-model includes 
system concept, system design, aggregate design, and 
component design. In contrast, the right side encom-
passes component testing, aggregate testing, system 
testing, and release. In the cyber space, cyber system, 
cyber aggregate, and cyber components construction 
are performed for elements according to physical 
space, followed by the creation of high-fidelity virtual 
testing environments.

The physical and cyber processes interact during the 
design and testing phases in the X-shaped development 
process, enhancing development efficiency and relia-
bility. On the one hand, in the physical process, after 
completing the system requirements, design, aggregate 
design, and component design, it can directly connect 
to the testing process in the cyber space, conducting 
functional and performance validation of cyber com-
ponents, cyber assemblies, and cyber systems; on the 
other hand, after constructing cyber systems, cyber 
assemblies, and cyber components in the cyber space, 

hardware-in-the-loop and whole vehicle-in-the-loop 
testing and validation can be directly conducted in the 
physical space. Interactive design and development 
across Physical and cyber spaces significantly improve 
the efficiency of the Fusion Safety development model. 
Additionally, cross-testing and validation across 
Physical and cyber spaces enhance system safety and 
reliability.

In the fusion safety design and development process, 
the importance of the system's overall development 
and iteration cannot be overlooked. In the design and 
development phase, comprehensive consideration of 
planning, modeling, generation, and architecture is 
required, followed by interaction between the physical 
and cyber processes to achieve safer and smarter devel-
opment design. After the product release phase, it's still 
necessary to focus on product deployment, operation, 
and safety monitoring, as well as achieve continuous 
integration and delivery through CI/CD, supporting 
rapid iteration of product functions.

This paper innovatively proposes a CHAIN-based 
X-shaped fusion safety development process, as pre-
sented in Fig. 11. The X-shaped development process 
is an advanced safety design method for ICVs, mir-
roring and integrating the two V-models of physical 

Figure 11 X-shaped fusion safety development process.
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and cyber worlds through an interactive multi-layer 
collaborative network architecture. Combining digital 
twin and artificial intelligence technology, it achieves 
collaborative development between physical space 
and cyber space, effectively shortening development 
cycles and significantly improving the efficiency of 
Fusion Safety system development while enhancing 
system safety and reliability through cross-testing 
and validation in physical and cyber processes. The 
X-shaped development process has the following 
features:

(1) Digital Twin: The proposed fusion safety develop-
ment model encompasses both the physical space and 
the cyber space, constructing a V-model in both parts 
and connecting the two processes, breaking through 
the two development workflows, and realizing inter-
active development between physical space and cyber 
space. Starting from the physical V process end, it not 
only points to the physical space testing end but also to 
the cyber space's testing end. Starting from the virtual 
development end of the cyber world, it can point to the 
virtual testing end of the cyber space and the actual 
physical world's testing end. By bridging the devel-
opment processes of the physical space and the cyber 
space, the system's development time is considerably 
shortened, development and testing costs are reduced, 
and a large number of physical and simulation cross-
tests further ensure system safety [160].

(2) Rapid Delivery and Continuous Iteration: The 
proposed fusion safety development process combines 
the characteristics of new development processes across 
disciplines, designing corresponding development 
processes on both the development and testing sides, 
ensuring rapid delivery and continuous iteration. On 
the development side, from the system, aggregate, and 
component levels, a plan-modeling-generation-archi-
tecture development structure is designed, integrating 
the development processes of physical space and cyber 
space, and shortening the time cost of system devel-
opment from an architectural perspective. On the 
testing side, considering the operation phase, a deploy-
ment-operation-monitoring-CI/CD iterative process is 
designed and integrated into the testing ends of Physi-
cal and cyber space, ensuring continuous iteration and 
upgrade after system release [161].

(3) Enhanced Safety: First, the process combines 
Physical and cyber space, allowing complex and 
costly design development and testing validation 
steps involved in functional safety, cybersecurity, 
and SOTIF to be directly conducted in cyber space. 
Additionally, digital twins can expand and enrich 
edge scenarios and new attack types and reduce safety 
risks due to difficulties obtaining test samples and 
insufficient testing validation. In addition, the pro-
posed fusion safety development process incorporates 
the traditional V-model [162], ensuring the rigor and 
completeness of the development process. The fusion 
safety development model, in both the physical space 
and the cyber space, is based on the V process archi-
tecture, with each stage having clearly defined tasks 
and objectives. Clear stage divisions clarify the tasks 
and roles of each stage, ensuring system safety and 
security [163]. Since the V-model requires establishing 
clear links between the design and testing phases, 
issues can be discovered and fixed early in the devel-
opment process, reducing the cost of finding issues in 
later stages. Moreover, the traditional single-dimen-
sionality safety development process cannot satisfy 
the rapid development of ICVs. In contrast, the three 
types of safety in the X-shaped development process 
are coupled in models, data, and scenarios at each 
stage. Developing and designing according to the 
X-shaped development process can address some 
fusion safety issues.

(4) Intelligence: The proposed fusion safety develop-
ment architecture adopts a digital twin development 
process that integrates physical space with cyber space. 
In cyber space, the latest deep-learning algorithms can 
be modularly integrated. By cleaning and analyzing vast 
amounts of system data and extracting core features, 
targeted models for cyber systems, aggregates, and 
components are constructed, ensuring high fidelity 
of test and validation in cyberspace. Additionally,  
generative AI algorithms can be applied to generate 
many simulation test cases specifically for different 
scenarios, creating comprehensive testing strategies to 
test and verify the functionality of cyber components, 
aggregates and systems. Furthermore, the X-shaped 
development process adopts an automated develop-
ment process throughout the entire development and 
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iteration cycles, enhancing development efficiency 
significantly.

The new safety development architecture proposed 
in this paper, while designed for ICVs, also has appli-
cation value and significance in other domains. For 
example, in the context of web applications, mobile 
applications, and embedded systems, adopting this 
new safety development architecture can ensure sys-
tem safety and reliability while shortening the delivery 
cycles and achieving rapid iteration. Additionally, the 
proposed new safety development architecture is not 
limited by project scale and is applicable to develop-
ment processes for projects of various sizes. This new 
safety development process allows new safety compo-
nents or modules to be expanded according to different 
development needs, offering substantial flexibility to 
other development projects. Each safety component 
within it is relatively independent and replaceable, 
allowing for modifications or replacements according 
to specific requirements. Moreover, this new safety 
development architecture can be easily integrated into 
different development tools and integrated develop-
ment environments (IDEs), supporting new extensions 
to various development luggage and requirements.

4.3.2 AI-enabled fusion safety development process

Artificial intelligence applications provide a powerful 
development tool for the fusion safety development 
process. For instance, AI can be used for automated 
business analysis, scientifically planning project 
schedules, accurately assessing development progress, 
optimizing resource allocation, and balancing devel-
opment time [164]. In empowering the fusion safety 
development model, as shown in Fig. 12, AI is mainly 
reflected in the following aspects.

In database construction, AI can automatically collect, 
store, and utilize data from various sources, including 
driving scenario databases, safety event databases, 
vehicle malfunction databases, driver behavior data-
bases, and user feedback databases [165]. AI facilitates 
the mining of interrelated features between databases, 
further summarizing development laws. AI has 
advantages in data anonymization and encryption, 
strengthening user privacy and data security [166]. 
Through Natural Language Processing (NLP), AI can 
extract essential user requirements and accurately 

depict user profiles, thereby enhancing the directional-
ity and effectiveness of product development.

In modeling fusion safety development architec-
ture, AI automatically creates and updates views 
of large and complex models, aiding developers in 
better understanding and analyzing the structure 
and internal mechanisms of the fusion safety system. 
With automated vulnerability mining, AI can uncover 
potential security risks in the architecture, identify the 
root causes of risks, and determine appropriate safety 
measures. During model creation, AI can rapidly 
auto-generate model code [167], reducing development 
time and minimizing the risk of human errors.

In terms of testing and validation, AI can automate 
repetitive testing tasks such as functional testing, 
performance testing, and regression testing, thereby 
improving testing efficiency and coverage. By analyz-
ing historical test data and identifying critical issues 
in the testing process, AI helps develop more effective 
testing strategies [168]. With extensive safety events 
and data, AI technology can automate the generation 
of test cases for critical scenarios, enhancing the effi-
ciency of system testing and validation. Additionally, 
AI's in-depth test results analysis can uncover security 
vulnerabilities and update the system promptly to fix 
bugs, enhancing system safety.

To enhance the capability of ICVs in dealing with 
unknown scenarios in real-world operations, it's 
essential to ensure that the developed systems have 
continuous optimization capabilities to improve gen-
eralization performance in various new scenarios. In 
recent years, the concept of continual learning has been 
proposed in artificial intelligence [169]. Continual learn-
ing methods enable accumulating new knowledge from 
new data, tasks, or environments without significantly 
forgetting previously learned knowledge. Integrating 
continual learning with the X-shaped development pro-
cess can help vehicles update the fusion safety model in 
real time, allowing vehicles to make safer decisions in 
new scenarios based on the constantly updated knowl-
edge base. Additionally, continual learning ensures 
that models maintain high performance in complex 
dynamic environments, which is crucial for ICVs to 
address safety risks in physical space [170]. Therefore, 
by introducing continual learning methods into the 
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X-shaped development process, the self-optimization 
ability of ICV systems is enhanced, improving vehicle 
safety in unknown and complex scenarios to meet new 
requirements of functional safety, cybersecurity, and 
SOTIF.

5 Conclusions and perspectives

In summary, this paper firstly reviews the current issues 
and challenges of functional safety, cybersecurity, and 
SOTIF for ICVs. Then, the existing safety assessment, 
protection, and testing methods are summarized, and 
the limitations are also analyzed. Further, this paper 
proposes a fusion safety systematic framework based 
on CHAIN and introduces the concept of fusion safety, 
which is not only a technical merger but also involves 

the merge of four levels: process, toolchains, value, 
and information. Based on the concept of fusion safety, 
this paper further proposes a fusion safety protection 
framework for ICVs based on the field-vehicle-human 
safety interaction model and end-cloud collaboration, 
which systematically defines the future development 
direction of safety protection for ICVs. Innovatively, 
a CHAIN-based X-shaped fusion safety development 
process is presented, enabling the interaction between 
physical entities and digital twin models to meet the 
needs of ICV safety design, intelligent development, 
rapid delivery, and continuous iteration.

Based on the fusion safety concept, fusion safety 
protection system framework, and X-shaped fusion 
safety development process proposed in this paper, the 
safety ecology of ICVs can be further constructed. In 

Figure 12 AI-enabled development process.
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terms of hardware, various components such as chips, 
sensors, and actuators play a vital role in intelligent 
and internet-connected systems. These elements could 
be designed and developed based on fusion safety 
principles at the element level to contribute to the 
development of a foundational safety hardware plat-
form, which serves as the foundation for vehicle-level 
safety. Additionally, by implementing fusion safety 
design and development at various vehicle system 
levels, Fusion Safety can be integrated into the entire 
automotive industry, thus forming a comprehen-
sive ecological component supply chain. In terms of 
software, the operating system, basic software, and 
automotive development toolchain involved in the 
X-shaped fusion safety development process are crucial 
elements that will facilitate the creation of an integrated 
safety software development platform. The operating 
system provides a stable and safe foundation, ensuring 
application reliability and efficiency. Basic software 
acts as the middle layer, offering essential services and 
libraries. The automotive development toolchain, tai-
lored specifically for the demands of ICVs, streamlines 
the entire development process from coding to testing.

This approach aims to construct a comprehensive 
and reliable safety protection system for ICVs from an 
industry-wide perspective, thereby enhancing the vehi-
cles' ability to respond to safety risks and supporting 
the mass commercialization of ICVs. The fusion safety 
concept, fusion safety protection system framework, 
and X-shaped fusion safety development process can 
be further applied to intelligent transportation vehicles 
and systems.
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