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SUMMARY Four-wave mixing (FWM) is a crucial impairment factor in 

optical wavelength-division-multiplexing (WDM) transmission systems 

over dispersion-shifted fibers. This paper presents an FWM suppression 

scheme that places dispersive elements (DEs) such as dispersion 

compensation fibers at optically repeating points in transmission lines. In a 

DE, the relative phase of the transmitted signal lights and the FWM light 

generated in the previous spans is shifted. Consequently, the FWM lights 

generated in each span are summed in random phases and the total FWM 

power at the end of the transmission lines is reduced from that in straight 

transmission lines with no DEs. We conduct proof-of-principle experiments 

to confirm the mechanism of the FWM reduction. Calculation for 

evaluating the FWM reduction ratio in a WDM transmission system is also 

presented. 

key words: Fiber four-wave mixing, suppression scheme, chromatic 

dispersion, modulated signal. 

1. Introduction 

Four-wave mixing (FWM) is a nonlinear optical 

phenomenon that generates new wavelengths of light from 

two or three optical signals of different wavelengths [1]. 

This phenomenon can degrade wavelength-division-

multiplexing (WDM) transmission systems, in which the 

generated FWM lights overlap onto the signal light and 

serve as noise [2, 3]. FWM is efficiently generated in 

dispersion-shifted fibers (DSFs) because the phase-

matching condition, under which the nonlinear polarization 

wave and signal waves co-propagate in phase, is easily 

satisfied in DSFs [4]. Therefore, DSFs are not employed in 

optical transmission systems because FWM hinders WDM 

transmission. However, previously installed DSFs are still 

used in some transmission systems. The performance of 

such transmission systems would be improved if FWM 

generation could be reduced.  

  Conventionally, the use of non-zero dispersion fibers or 

the dispersion management has been known as a 

countermeasure against FWM in WDM systems over DSFs. 

However, non-zero dispersion fibers must be intentionally 

installed for this scheme. The use of the L band instead of 

the C band is also effective to mitigate FWM over DSF 

transmission lines [5]. However, this countermeasure wastes 

the C band or cannot be applied to the C-band transmission, 

for which the fiber attenuation is minimum and standard 

Erbium-doped fiber amplifiers are available. 

 On the above background, this paper presents a scheme to 

mitigate FWM in optical repeating transmission systems 

over DSFs, where WDM lights are positioned in the zero-

dispersion wavelength of the DSFs in the worst case. 

Dispersive elements (DEs) such as dispersion compensation 

fibers (DCFs) are inserted into transmission lines. Through 

a DE, the relative phase between the nonlinear polarization 

wave and the FWM lights generated in the previous spans is 

shifted. Consequently, the phases of the FWM lights 

generated in each span are randomized, and the total FWM 

power is reduced from that in straight transmission lines 

without DEs. We analyze the FWM generation in 

transmission lines with DCFs and conduct proof-of-

principle experiments. Subsequently, calculations for 

evaluating FWM reduction in WDM systems are presented.   

2. Analysis 

2.1 System model 

The transmission system model considered in this study is 

illustrated in Fig. 1. It is an optically repeating system over 

DSFs, in which optical amplifiers are placed between the 

transmitter and receiver at equal intervals. The amplifier 

gain is set to a value that compensates for the transmission 

loss of one span. At the output of each amplifier, a DCF is 

placed as a DE, which introduces a phase shift between the 

nonlinear polarization wave and the FWM light, as will be 

described later. WDM signal lights with identical 

polarization states are assumed to be transmitted over this 

transmission line. 

 

 

 
Fig. 1  Transmission system model. Tx: transmitter, Rx: receiver, DSF: 

dispersion-shifted fiber, OA: optical amplifier, DCF: dispersion 

compensation fiber. 
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2.2 FWM generation 

The FWM light at the receiver can be regarded as the sum 

of FWM lights generated in each span that linearly 

propagate to the receiver. We denote the amplitude of the 

FWM light generated in the kth span at position z by AF
(k)(z). 

This amplitude at the end of the kth span can be expressed 

as [6, 7] 
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where the FWM light generated at frequency fF = f1 + f2 – f3 

is considered, where fj is the signal-light frequency (j = 1 – 

3); Aj(z) denotes the signal light amplitude of frequency fj at 

position z;  is the nonlinear coefficient; d is the degeneracy 

factor, which is 2 for f1 ≠ f2 and 1 for f1 = f2,  ≡ 1 + 2 – 

3 – F denotes the phase mismatch in a DSF; j is the 

propagation constant for light of frequency fj;  is the fiber 

loss coefficient; L0 is the length of one span; and zk denotes 

the position of the input of the kth span.  

   The signal light at position zk can be expressed as 

0 0 d( ) exp[ ( 1)( )]j k j j jA z A i k L b L= − + ,       (2) 

where Aj0 denotes the signal amplitude at z = 0, bj is the 

propagation constant in a DCF for fj frequency light, and Ld 

is the DCF length. Substituting Eq. (2) into Eq. (1) yields 
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where b ≡ b1 + b2 – b3 – bF denotes the phase mismatch in 

a DCF. 

  The FWM light generated in the kth span propagates 

linearly to the receiver. Its amplitude at the receiver can be 

expressed as 
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where N is the total number of spans from the transmitter to 

the receiver. Substituting Eq. (3) into Eq. (4) and expanding 

the formula, we obtain the following expression for the 

FWM light generated in the kth span and reaching the 

receiver: 
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The total FWM light amplitude at the receiver, AF, is expressed by 

the sum of FWM lights generated in each span and reaching the 

receiver, as shown below: 
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Subsequently, the FWM power at the receiver, PF, is 

expressed as 
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where P0 = |Aj0|2. For Ld = 0, i.e., the case without DCFs, this 

equation can be rewritten as [8] 
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2.3 FWM reduction 

Using Eqs. (7) and (8), the power ratio of the FWM light 

with and without DCFs, R, can be evaluated as 
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For L0 = 0, i.e., the case where the phase matching 

condition is satisfied in the DSFs, Eq. (9) can be rewritten 

as 
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This expression indicates that R takes a value from 0 to 1, 

depending on bLd. Therefore, the ratio R can be used as an 

index to represent the FWM power reduction by inserting 

DCFs.  

  The reduction ratio, R, depends on bLd, as shown in Eq. 

(9), which can be expressed as [9] 

  

2

d d d 1 3 2 3

2
( )( )bL D L f f f f

c

 
 = − − ,        (11) 

where  is the light wavelength, c is the light velocity, and 

Dd is the dispersion parameter of a DCF. Equations (10) and 

(11) indicate that the reduction ratio varies periodically as a 

function of the signal frequencies, such as R = 1 at the signal 

frequencies satisfying bLd/2 = m where m is an integer. 

 Here, we consider the frequency interval between the 

neighboring peaks of R for FWM generation at fF = 2f1 – f3 

from signal lights of frequencies f1 and f3. For this partially 
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degenerate FWM process, Eq. (11) can be rewritten as 
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where f = f1 – f3 is the frequency separation between the 

two signal lights. Denoting the frequency interval as f, the 

following equation is obtained: 
2 2

2 2

d d d d

2 2
( ) 2D L f f D L f

c c


   
 + −  = ,  (13) 

from which f is expressed as 
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where f << f is assumed. For example, when Dd = –160 ps/km-

nm, Ld = 2 km, and f = 100 GHz, f is approximately 2 GHz. 

   In general, the frequency spectrum of a modulated signal light 

is broadened around the carrier frequency according to signal 

modulation. Subsequently, the frequency separation f is 

broadened around the mean value of the modulated signal lights. 

When this frequency broadening is larger than the frequency 

interval f, the FWM reduction ratio R is averaged over the 

frequency separation as 
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where < > represents the average over the frequency separation f 

or bLd. The average term in Eq. (15) is calculated as [Appendix] 
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Subsequently, Eq. (15) is rewritten as 
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For 0 0L  , this equation becomes 
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The analysis above indicates that the FWM generation is reduced 

by a factor of the number of repeating spans in systems where the 

phase matching condition is satisfied in the DSFs.  

3. Experiment 

To confirm the mechanism of the FWM reduction described in the 

previous section, we conducted a proof-of-principle experiment 

using the setup shown in Fig. 2. Two wavelength lights were 

combined via an optical coupler, optically amplified, and incident 

into two cascaded 2.5-km DSFs with an identical zero-dispersion 

wavelength, between which an optical amplifier and a DCF with a 

dispersion parameter of -164 ps/km-nm and a length of 2.0 or 0.5 

km, were inserted.  

The DSFs with a length of 2.5 km were employed simply 

because they were available in our laboratory. The basic ideal of 

the proposed scheme reducing the FWM power at the end of the 

transmission line is to randomize the phase relationship between 

FWM lights generated in each repeating span. Therefore, the 

FWM power generated in each span, or the span length, is 

irrelevant to the reduction ratio, and any length of DSFs could be 

used in the proof-of-principle experiment. 

 In the above setup, one light was a continuous wave (CW), 

called “pump light” hereafter, whose wavelength was fixed at the 

zero-dispersion wavelength of the DSFs. The other light was 

generated from a wavelength-tunable LD, called “signal light” 

hereafter, which was CW, quadrature-phase-shift-keying (QPSK) 

modulated at 12.5 Gbaud, or on-off-keying (OOK) modulated at 

12.5 Gbps. The signal wavelength was varied in the longer 

wavelength side of the pump light. The optical paths from the two 

light sources to the coupler were constructed using polarization-

maintaining fibers, owing to which the two lights were incident to 

the DSFs in an identical polarization state. The amplifier gain 

between the DSFs was adjusted such that the optical powers at the 

inputs of the first and second DSFs were identical as approximately 

11 dBm. 

 The output from the DSFs was incident to an optical spectrum 

analyzer, and the FWM light power generated in the shorter 

wavelength side of the pump light was measured. This is because 

the proposed reduction scheme is effective for FWM satisfying the 

phase matching condition  = 0, as indicated by Eqs. (9) and (10), 

and the FWM light at the shorter wavelength side satisfied the 

phase matching condition in the above wavelength allocation.  

 

 

 
 

Fig. 2  Experimental setup. DSF: dispersion-shifted fiber, OA: 

optical amplifier, and DCF: dispersion-compensation fiber. 

 

 

  For the above system condition, the FWM reduction ratio for 

CW lights can be expressed from Eq. (10) as 
2

0 d( 2, 0) cos ( / 2)R N L bL=  = = 
,         (19) 

where 
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In the present experiment, the FWM lights generated in the first 

and second DSFs interfered with each other at the output end. 

Therefore, a dual-beam interference pattern would be observed as 

indicated in Eq. (19). We conducted the following measurement to 

confirm the formula. 

   First, a 2.0-km DCF was inserted, and the CW signal was 

incident. The observed output spectrum is shown in Fig. 3, where 

the outputs with and without the DCF are indicated by solid and 

dashed lines, respectively. In this measurement, the signal light 

wavelength was carefully chosen at which the FWM power was 

most effectively reduced. The FWM light in the shorter 

wavelength side of the pump light was our concern, whose power 
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was significantly reduced by the DCF. On the other hand, the 

power reduction of the FWM generated in the longer wavelength 

side was not so significant, because the phase matching condition 

was not satisfied, i.e.,  ≠ 0, for this FWM light. 

 

 

 
Fig. 3  Output spectrum. DCF length was 2.0 km and signal light 

was CW. Solid and dashed lines denote outputs with and without 

DCF, respectively. 

 

 

  The measurement above was performed while the signal-light 

wavelength was changed, from which the relative FWM power as 

a function of the frequency separation between the signal and 

pump lights was plotted. The optical frequency was quoted from 

the value displayed in the wavelength-tunable LD. The results are 

shown in Fig. 4(a); additionally, the FWM reduction ratio R 

calculated using Eq. (19) is shown in Fig. 4(b). As expected from 

the analytical formula, a periodic output was observed in the 

experiment, although the extinction ratio was insufficient 

especially for large frequency separations, and the absolute value 

of the frequency separation was different between the experimental 

and calculation results by approximately 1 GHz. 

The insufficient extinction ratio was owing to the experimental 

condition of measuring points in one period being few. In the 

measurement, we focused on to observe a periodicity or an 

interference pattern, without caring for the extinction ratio, and 

thus did not finely change the signal light frequency, being 

afraid that the experimental conditions varied during the 

measurement. Subsequently, the number of measuring points 

were not sufficient to observe a high extinction ratio. The absolute 

frequency difference between the experiment and calculation 

might be because the frequency-monitoring system equipped in the 

wavelength-tunable LD did not have an accuracy within 1 GHz, 

and the actual frequency differed from the value displayed on the 

LD module.  

 

 

 
Fig. 4  FWM power as a function of frequency separation 

between signal and pump lights. DCF length was 2.0 km and signal 

light was CW. 

 

 

  Next, the signal light was QPSK modulated instead of CW. The 

output spectrum and the measured FWM power are shown in Figs. 

5 and 6, respectively. Figure 5 indicates that the signal-light 

spectrum was broadened owing to the QPSK modulation, as was 

the FWM light. Owing to this spectrum broadening, the FWM 

power was averaged over the frequency separation and observed 

to be almost constant at a value that was 3 – 4 dB less than the 

FWM power without the DCF, as shown in Fig. 6. This 

experimental result confirmed the FWM reduction for the 

modulated signals, as suggested by Eq. (18). 

 

 

 
Fig. 5  Output spectrum. DCF length was 2.0 km and signal light 

was QPSK modulated. Solid and dashed lines denote outputs with 

and without DCF, respectively. 
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Fig. 6  FWM power as a function of frequency separation 

between signal and pump lights. DCF length was 2.0 km and signal 

light was QPSK modulated at 12.5 Gbaud. 

 

 

   Next, the signal light was OOK modulated instead of QPSK 

modulated. The measured FWM power as a function of frequency 

separation is shown in Fig. 7. In contrast to the result for the QPSK 

modulated signal shown in Fig. 6, a periodic FWM output was 

observed even though the modulated light was incident. However, 

the depth of the periodicity was smaller than that for the CW signal 

shown in Fig. 4, which is an intermediate property between those 

of the CW and QPSK signals. This might be because the spectrum 

of the OOK-modulated light contained a peak at the carrier 

frequency and was not uniformly broadened, unlike the QPSK 

signal. Therefore, the OOK signal was in an intermediate state 

between the CW and QPSK signals in terms of the spectrum, for 

which the FWM power was partially averaged. As shown in Fig. 

7, the discrepancy between the peak FWM level with and without 

the DCF was larger in the frequency region of 120 – 130 GHz than 

in the range of 60 – 70 GHz. This might be because the frequency 

period in the former frequency region was narrower and the 

averaging effect was more effective. 

 

 

 
Fig. 7  FWM power as a function of frequency separation 

between signal and pump lights. DCF length was 2.0 km and signal 

light was OOK modulated at 12.5 Gbps. 

 

 

   Subsequent to the use of a 2.0-km DCF, we examined a DCF 

with a length of 0.5 km. The results for the CW signal are shown 

in Fig. 8, where the measured FWM power and FWM reduction 

ratio calculated using Eq. (19) are plotted in (a) and (b), 

respectively. Frequency periodicity was observed, similar to the 

results for the 2.0-km DCF shown in Fig. 4; however, the period 

was four times larger than that for the 2.0-km DCF, thus 

corresponding to the fact that the 0.5-km DCF is four times shorter 

than the 2.0-km DCF.  

 

 

 
Fig. 8  FWM power as a function of frequency separation 

between signal and pump lights. DCF length was 0.5 km and signal 

light was CW. 

 

 

   Additionally, we examined the 12.5-Gbaud QPSK signal for 

the system with a 0.5-km DCF; the result is shown in Fig. 9. In 

contrast to the result of the system with a 2.0-km DCF, periodicity 

was observed in the frequency region of 40 – 90 GHz, even when 

the signal light was QPSK modulated. This is attributed to the 

insufficient averaging effect arising from the wide frequency 

period shown in Fig. 8. The experimental results above based on 

the 0.5-km DCF indicate that the DCF length should be selected 

appropriately by considering on the frequency separation and 

signal modulation bandwidth to obtain the averaging effect. 

 

 

 
Fig. 9  FWM power as a function of frequency separation 

between signal and pump lights. DCF length was 0.5 km and signal 

light was QPSK modulated at 12.5 Gbps. 
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   The experimental results above showed the FWM generation 

characteristics expected from the theoretical analysis in the 

previous section, confirming the mechanism of FWM reduction by 

inserting DEs.  

 

4. FWM reduction in WDM system 

  The analytical formula indicating the FWM suppression is 

presented in Section 2, and its validity is experimentally confirmed 

in Section 3. Subsequently, this section calculates the FWM 

reduction ratio in an optically repeating WDM transmission 

system over DSFs, using the formula derived in Section 2 and 

experimentally confirmed in Section3. 

 Based on Eq. (7), the total FWM power generated at the sth 

channel in a WDM transmission system with DEs can be 

expressed as 
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where {p, q, r} indicate the channel numbers;  ≡ 2P0
3exp(-L0); 

and the fiber dispersion is assumed to be uniform along the 

transmission lines, considering the worst-case scenario. The first 

summation represents the FWM power generated from 

nondegenerate processes satisfying fs = fp + fq – fr, and the second 

summation represents that from partially degenerate processes 

satisfying fs = 2fp – fr. 

  Provided that DCFs of an appropriate length, with which the 

spectrum bandwidth of the FWM light is sufficiently wider than 

the frequency period, e.g., 2.0-km DCFs for 12.5 Gbaud QPSK 

systems, are used, Eq. (21) is averaged as follows: 
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Subsequently, the FWM reduction ratio for QPSK-modulated 

signal lights, <R> = <PF(Ld ≠ 0)>/ PF(Ld = 0), is evaluated as 
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The phase mismatch in this equation is expressed as [3] 
4

2cc

02
( 2 )( )( )pqr p q

D
f f f p r q r f

c


 = + − − − 

,  (24a) 
4

2 2cc

02

2
( )( )ppr p

D
f f p r f

c


 = − −  ,           (24b) 

where Dcc = dDc/d with Dc being the dispersion parameter of the 

DSFs; f is the channel frequency spacing; and f0 is the zero-

dispersion frequency of the DSFs.  

   Using Eq. (23), we calculated the FWM reduction ratio as a 

function of the number of spans for the center channel in a 100-

GHz spaced 11-channel WDM system. The span length was 80 

km, and the center channel was assumed to be positioned at the 

zero-dispersion wavelength of the transmission fibers, considering 

the worst-case scenario. The signal lights were assumed to have a 

single and identical polarization state. However, the result obtained 

under this condition of the polarization state would be applicable to 

polarization-multiplexed systems, because the FWM reduction 

mechanism of randomizing the relative phases of FWM lights 

generated in each span works independently on the two orthogonal 

polarization components and the FWM reduction is obtained in 

each polarization state. 

The results are presented in Fig. 10. As shown, the FWM 

reduced efficiently as the number of spans increased. Although the 

previous section indicated that the reduction ratio was 1/N for a 

phase-matched FWM component in an N-span system, the 

reduction ratio shown in Fig. 10 did not reach this level. This is 

because FWM in WDM systems includes components that do not 

satisfy the phase-matching condition, i.e., pqr ≠ 0, and the 

efficiency of FWM reduction for those components is not 

comparable to that for phase-matched components.  

 

 

 
Fig. 10  FWM reduction ratio at center channel, positioned at 

zero-dispersion wavelength of transmission fibers, in 11-channel 

WDM system. Channel spacing was 100 GHz and repeater spans 

was 80 km.  



IEICE TRANS. ELEC 

7 

 

 

 

  In the last of this section, we briefly discuss how the 

FWM power reduction improves the WDM transmission 

performance. In general, FWM lights overlapped onto signal 

light serve as noise lights. Therefore, the reduction of the 

FWM power by x dB is equivalent to the improvement of 

the optical signal-to-noise ratio (OSNR) by x dB, roughly 

speaking. Subsequently, the OSNR penalty owing to FWM 

is expected to be improved by x dB in the BER performance. 

5. Conclusion 

A scheme for FWM reduction in optically repeating WDM 

transmission systems over DSFs was presented. DEs such as 

DCFs were inserted at repeating points, through which the 

relative phase between the transmitted signal lights and 

FWM lights generated in the previous spans was shifted. 

Consequently, FWM lights generated in each span 

overlapped in random phases, and the total FWM power at 

the receiver was lower than that in systems with no DEs. 

Proof-of-principle experiments were conducted, and the 

results confirmed the FWM reduction mechanism above. 

Calculation for evaluating the reduction ratio in WDM 

systems was presented. 

 

Appendix 

In this section, we derive Eq. (16). First, we introduce 

variable x = (L0 + bLd)/2 to simplify the left-hand side 

of Eq. (16) as follows: 

  

22

0 d

2

0 d

sin [ ( ) / 2] sin( )

sinsin [( ) / 2]
N

N L bL Nx
S

xL bL





 +   
= =  

 +   
. 

                                   (26) 

  For N = 2 and 3, SN can be calculated as 

   

2

2

2

sin(2 )
4 cos 2

sin

x
S x

x

 
= = = 

 
         (27) 

and 

   

2

2

3

sin(3 )
{1 2cos(2 )} 3

sin

x
S x

x

 
= = + = 

 
.    (28) 

Next, we calculate SN for larger values of N, through which 

the following expressions are supposed to be satisfied: 
/2

1

sin( )
2 cos[(2 1) ]

sin

N

k

Nx
k x

x =

= −          (29a) 

for even N, and  

  
( 1)/2

1

sin( )
1 2 cos(2 )

sin

N

k

Nx
kx

x

−

=

= +           (29b) 

for odd N. 

  Subsequently, we prove Eq. (29) using mathematical 

induction. First, Eq. (29) is assumed to be satisfied for N – 

1. Subsequently, sin(Nx)/sin(x) is developed as follows: 

sin( ) 1
{sin[( 1) ]cos cos[( 1) ]sin }

sin sin

Nx
N x x N x x

x x
= − + −  

       
( 2)/2

1

1 2 cos(2 ) cos cos[( 1) ]
N

k

kx x N x
−

=

 
= + + − 

 
  

       
/2 1

1

cos {cos[2( 1) ] cos[2( 1) ]}
N

k

x k x k x x
−

=

= + + + −  

cos[( 1) ]N x+ −  

       
/2

1

2 cos[(2 1) ]
N

k

k x
=

= −              (30a) 

for even N, and  

sin( ) 1
{sin[( 1) ]cos cos[( 1) ]sin }

sin sin

Nx
N x x N x x

x x
= − + −  

      
( 1)/2

1

2 cos[(2 1) ]cos cos[( 1) ]
N

k

k x x N x
−

=

= − + −  

   
( 1)/2

1

{cos(2 ) cos[2( 1) ]}
N

k

kx k x
−

=

= + −  

cos[( 1) ]N x+ −  

( 1)/2 ( 1)/2

1 2

cos(2 ) 1 cos[2( 1) ]
N N

k k

kx k x
− −

= =

= + + −   

   
1

cos[2 ]
2

N
x

−
+    

   
( 1)/2

1

1 2 cos(2 )
N

k

kx
−

=

= +          (30b) 

for odd N, where Eq. (29) with N – 1 is applied. Eq. (30) 

indicates that Eq. (29) is satisfied provided that it is satisfied 

for N – 1. Futhermore, the validity of Eq. (29) for N = 1 and 

2 are confirmed in Eqs. (27) and (28), respectively. 

Therefore, Eq. (29) is satisfied for any N.  

  Using Eq. (29), we can derive Eq. (26) as 

  

2
/2

1

4 cos[(2 1) ]
N

N

k

S k x
=

 
= − 

 
  

     
/2

2

1

4 cos [(2 1) ]
N

k

k x
=

= −  

'

8 cos[(2 1) ]cos[(2 ' 1) ]
k k

k x k x


+ − −  

      N=                             (31a) 

for even N, and 
2

( 1)/2

1

1 2 cos(2 )
N

N

k

S kx
−

=

 
= + 

 
  

( 1)/2
2

1

1 4 cos (2 )
N

k

kx
−

=

= +   

     
'

4 cos(2 )cos(2 ' )
k k

kx k x


+   

N=                            (31b) 

for odd N. Therefore, Eq. (16) is derived.  
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