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Abstract—As conventional synchronous generators are 

replaced by large-scale converter-interfaced renewa-

ble-energy sources (RESs), the electric power grid en-

counters the challenge of low rotational inertia. Conse-

quently, system frequency deviation is exacerbated and 

system instability may occur when the frequency deviates 

beyond the acceptable range. To mitigate this effect, this 

study proposes a virtual inertia control (VIC) strategy 

based on a fractional-order derivative and controller 

parameter-tuning method. The tuning method uses the 

stability boundary locus and provides a stability criterion 

for identifying the stability region in the parameter space. 

The controller parameters are then optimized within the 

identified stability region to suppress frequency deviation 

and enhance system robustness. The proposed controller 

and tuning method is applied to a battery energy-storage 

system (BESS) in a low-inertia power system with the 

integration of RESs. Time-domain simulations are carried 

out to verify the stability region and compare the per-

formance of the optimized proposed controller to that of 

the traditional integral-order controller. The simulation 

results show that the stability-analysis method is effective 

and that the fractional-order VIC, tuned with the pro-

posed method, outperforms the traditional method in 

both frequency-regulation performance and parametric 

robustness. 

Index Terms—Virtual inertia control, frequency regu-

lation, fractional-order controller, stability region, pa-

rameter tuning. 
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Ⅰ.   INTRODUCTION 

n recent years, the scale of renewable-energy sources 
(RESs) integrated into electrical-power systems 

through power electronic converters has increased con-
siderably. Unlike conventional synchronous machines, 
power electronic devices do not inherently store kinetic 
energy, and they decouple the system frequency from the 
speed of the rotating machines. Hence, convert-
er-interfaced RESs, such as photovoltaic (PV) generation 
and doubly fed induction generator (DFIG) wind turbines, 
neither provide inertial support nor participate in primary 
frequency regulation. As more conventional synchronous 
generators are replaced by RESs, the rotational inertia 
and primary frequency support of power systems will 
decrease considerably. Consequently, power systems are 
more prone to frequency instabilities [1], [2].  

To address these issues, various approaches have 
been proposed to improve the frequency-regulation 
performance and enhance frequency stability. Electro-
chemical energy-storage systems (ESSs) can provide a 
fast response and are therefore applicable to fast fre-
quency response (FFR) services, that is, inertial re-
sponse and primary frequency regulation (PFR) [3]. 
Hence, the exploitation of ESSs for frequen-
cy-regulation services has gained significant attention 
from both academia and industry. Typical ESSs applied 
in frequency regulation include batteries, supercapaci-
tors, and superconducting magnetic energy storage. 

An effective control scheme for ESSs to provide in-
ertial support and PFR is to implement virtual inertia 
control (VIC) on the converter to mimic the rotor dy-
namics of a synchronous machine. Numerous control 
techniques have been proposed to implement VIC. They 
can be classified into two categories based on their 
synchronization modes: grid-following (GFL) and 
grid-forming (GFM) controls [4]. A typical VIC for the 
GFM converter is the virtual synchronous generator 
(VSG) control, in which the controller directly dictates 
the frequency (or phase) of the output voltage [5], [6]. 
The GFL converter follows the frequency (or phase) of 
the voltage at the point of common coupling (PCC) via 
the phase-lock loop (PLL). Compared with the GFM 
converter, the GFL converter is more common and 
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mature at present and is therefore more applicable. For 
GFL converters, most studies employed droop or de-
rivative control as the VIC algorithm to emulate me-

chanical inertia [7][11]. The converter was controlled 
to inject active power in proportion to the frequency 
deviation or rate of change of frequency (ROCOF). 

The fractional-order controller (FOC) is a generalized 
concept of the conventional integer-order controller 
(IOC). In contrast to the traditional IOC, the order of the 
derivative or integral in the FOC is a fraction. The FOC 
has been widely applied in recent studies. In [12], a 
fractional-order regulator was applied to the active 
power-control law of a VSG, which significantly im-
proved the inertial and damping effects. Reference [13] 

designed a fractional order PI  controller for the 
two-stage vehicle to grid (V2G) converter, and exper-
iment results verified its effectiveness. In [14], the FOC 
was implemented in a DC/AC system to provide inertial 
support for the bus voltage of a DC microgrid. In addi-
tion to performance, some studies have applied the FOC 
to promote control robustness. The FOPID-based outer 
voltage controller in [15], applied to a microgrid VSC 
system, outperformed the conventional PI controller. 
Additionally, more advanced fractional order (FO) 
control techniques are available. For example, reference 
[16] proposed a sliding FOC to enhance the robustness 
of converter-interfaced distributed generation (DG). In 
[17], a variable FOPID trained online by a neural net-
work was applied to tune the inertia constant of an ESS, 
thereby improving the frequency-regulation perfor-
mance. These studies confirmed that with extra tuning 
degrees of freedom, the FOC always outperforms the 
traditional IOC in terms of both performance and ro-
bustness. 

With respect to frequency regulation, a fractional 
order lead-lag controller was applied to the control loop 
of an ESS for frequency regulation in [18], and the 
results showed that the FOC was better than the IOC in 
terms of dynamic performance. Reference [19] em-
ployed FOC for load frequency control (LFC) for in-
terconnected power systems and proposed a novel pa-
rameter tuning method based on chaos game optimiza-
tion. Reference [20] proposes a data-driven adaptive 
FOC-based virtual inertia and damping control for a 
GFL DFIG, where the controller parameters were tuned 
using the gradient-descent method. Most related studies 
focused on improving the frequency-regulation per-
formance of the VIC. However, few of them focused on 
the stability analysis and robustness of the controller. 

From the viewpoint of system-frequency stability, the 
VIC must determine the appropriate parameter values. 
Conservative values reduce the frequency-regulation 
performance, whereas aggressive values can lead to 
frequency instability. A widely used offline design 
method that considers frequency stability involves 
building a frequency-response model of the power 
system and determining the stability boundary locus 
(SBL) in the parameter space [21]. The area enclosed by 
the SBL curve corresponded to a stable region. The SBL 

method has also been applied to tune the FOC parame-
ters in [11] and [19]. This method is feasible for fre-
quency-stability analysis. However, the parameter 
space is divided into numerous parts by the SBL curve. 
Most studies selected an intuitionally reasonable part as 
the stability region without any rigorous mathematical 
proof. In addition, although the parameters are tuned 
within the stability region, a parameter setpoint close to 
the stability boundary is typically preferred for a better 
frequency-regulation performance [20], which makes 
the controller vulnerable to system disturbances. 

Based on the above mentioned issues, this work 
proposes an FOVIC for battery energy-storage system 
(BESS) and a parameter-tuning method for the FOVIC. 
This method uses the SBL method to determine the 
stability region in the parameter space. In particular, a 
stability criterion is introduced to the tuning method to 
identify the stability region. An optimization model is 
also developed to determine the finest values of the 
FOVIC parameters within the identified stability region. 
Time-domain simulations are performed to verify the 
identified stability region and compare the frequen-
cy-regulation performance and robustness of the 
well-tuned FOVIC and integer order VIC (IOVIC). The 
significant findings of this study are as follows: 

1) Fractional order calculus is applied innovatively to 
the VIC algorithm. With the introduction of an extra 
degree of freedom, a well-tuned FOVIC outperforms 
the traditional IOVIC. 

2) Few studies have focused on parameter tuning and 
the stability analysis of VIC. This study proposes a pa-
rameter-tuning method that identifies the stability region 
of FOVIC in the parameter space, which is the basis of 
parameter tuning. Moreover, a rigorous mathematical 
proof is provided to identify the stability region. 

3) An optimization model is established to tune the 
parameters of the FOVIC from the perspective of sup-
pressing frequency deviation and enhancing system 
robustness. Notably, the robustness of the parameter 
setpoint is quantized geometrically and included in the 
optimization model. 

The remainder of this paper is structured as follows. 
In Section Ⅱ, the description and frequency-response 
model of the studied power system and BESS are pre-
sented. In Section Ⅲ, the theory and implementation of 
the FOC are briefly introduced and the FOVIC for the 
BESS is proposed. Section Ⅳ elaborates on the pa-
rameter-tuning framework for the FOVIC. Section Ⅴ 
presents the parameter tuning results of the FOVIC and 
two other typical ⅥCs, and compares their frequen-
cy-regulation performance and robustness. Section Ⅵ 
concludes the paper. 

Ⅱ.   SYSTEM MODELING 

The power system investigated in this study in-
cludes conventional power plants, such as reheated 
thermal power plants and hydraulic power plants. 
Renewable-energy generation, such as PV generation, 
is also included. The installed capacity of the genera-
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tion system is 550 MW for the thermal power plant, 
250 MW for the hydraulic plant, and 200 MW for the 
PV system. To alleviate the negative effect of RESs on 
the inertia and damping characteristics of the system, a 
100 MW BESS is embedded in the system to provide 
frequency-regulation services.  

A frequency-response model for investigating the 
frequency stability of the system is depicted in Fig. 1. 
The parameters and related variables of the studied sys-
tem are summarized in Table I. The frequency deviation 
of the power system can be represented as follows: 

 *

c L BESS

1
( )f P P P

Ms D
      


           (1) 

where f  is the frequency deviation; cP  is the output 

power of the conventional plants; 
*

LP  is the load dis-

turbance; and BESSP  is the output power of the BESS. 

TABLE Ⅰ 

PARAMETERS OF THE STUDIED POWER SYSTEM 

Parameter/Variable Value 

Base power 
BS  (MW) 1000 

System inertia M (s) 5 

System damping D (MW/Hz) 1.5 

Participation factor of thermal and hydraulic power 

plants 
thP , hyP  0.55, 0.25 

Steam turbine primary droop factor 
tR  (Hz/MW) 0.0025 

Steam turbine governor time constant gtT (s) 0.1 

Steam turbine reheat time constant 
rhT (s) 7 

Steam turbine reheat constant hpF  0.3 

Steam turbine time constant 
tT (s) 0.4 

Hydro turbine primary droop factor 
hR  (Hz/MW) 0.0025 

Hydro turbine governor time constant ghT (s) 0.2 

Hydro turbine speed governor reset time 
rT (s) 4.9 

Hydro turbine speed governor transient droop time 

constant 
tdT (s) 

28.75 

Starting time of water in hydro turbine 
wT (s) 1.1 

Time constant of the inner current loop of  

BESS 
ESST  (s) 

0.05 

Communication delay τ (s) 0.1 

Damping ratio of PLL ζ 1.2 

Inherent frequency of PLL 
n (Hz) 20 

Maximum capacity of ESS 
ESSMP  (p.u.) 0.1 

 

Fig. 1.  Frequency-response model of the investigated power 

system. 

A. Conventional Power Plants 

The conventional power plants of the investigated 

system consisted of a reheated thermal power plant 

and hydraulic power plant, the parameters of which 

are described in [22]. Because the dynamics of the 

power-system stabilizer and automatic voltage regu-

lation are relatively fast, the model omits their impact 

on the low-frequency dynamics. This simplification 

was verified to be effective in [23]. However, such a 

model may not be suitable for applications involving 

fast dynamics [24].  

The output power of the conventional plants cP  can 

be represented as follows:  

c t hP P P                              (2) 

where tP  and hP  are the output powers of the ther-

mal and hydraulic power plants, respectively.  

The frequency-response model of the thermal and 

hydraulic plant is given in Fig. 2 [22], and tP  and hP  

can be derived in (3) and (4) according to the model. 

rh hpth

t t

t gt rh

11
( )

1 1

T F sP
P G s f f
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 
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h h
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      (4) 

The transfer function of the whole conventional 

power plant can be represented by: 

c t h( ) ( ) ( )G s G s G s                       (5) 

 

Fig. 2.  Model of thermal and hydraulic power plant. 

B. PV Generation and Domestic Load 

The output power of the PV array is stochastic and 

fluctuates because it depends on weather conditions. To 

obtain a realistic output profile of solar-power genera-

tion, the output fluctuation can be modelled as the 

standard deviation multiplied by white noise [25]. The 

PV generation of the investigated system is controlled 

to inject maximum power into the power system and 

does not participate in frequency regulation. Hence, the 

deviation in PV power generation can be aggregated 

into an external disturbance of the system with a do-

mestic load. 

Similarly, the real-time stochastic power fluctuation 

in a domestic-load profile can be simulated by multi-
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plying the standard deviation by the random output 

fluctuation of white noise [25]. Eventually, the external 

disturbance input of the system can be described as the 

sum of the PV-power generation fluctuation PVP  and 

domestic load variation LP : 

*

L L PVP P P                             (6) 

C. BESS with VIC 

A BESS is installed to provide frequency support, 

including the inertial response and primary frequency 

control. The BESS does not provide those services with 

considerable energy throughput, such as LFC or peak 

shaving. The BESS only provides an FFR service, 

which has insignificant energy throughput, and the SOC 

limit of the BESS is not considered here. 

The BESS is connected to the main grid using a GFL 

converter. A general GFL control structure is described 

in [26]. The DC/AC converter is controlled to inject real 

and reactive power into the main grid according to the 

power setpoints [27]. The power setpoints are deter-

mined by a VIC controller that used the measured fre-

quency of the grid as its input. This controller is dis-

cussed in detail in the following section. In electrome-

chanical timescale dynamics, the dynamics of the inner 

current loop can be ignored or reduced to a first-order 

lag element with a small time constant ESST  [28]. 

Typically, a PLL is used to synchronize the GFL 

converter to the grid and measure the grid frequency. 

The dynamics of the PLL can be approximated using a 

first- or second-order transfer function [29]. This study 

adopts a second-order transfer function: 

 
2

n n
PLL 2 2

n n

2
( )

2

s
G s

s s

 

 




 
                 (7) 

where ζ and n  are the damping ratio and inherent 

frequency, respectively. 

In most studies related to VIC, the control algorithm 

is implemented within the DSP-based digital controller 

of the power converters. However, such an implemen-

tation can lead to difficulty in upgrading the control 

algorithms in the DSP-based controller and incur addi-

tional development efforts and costs. Hence, reference 

[30] proposed an external controller that implemented 

the VIC algorithm. The external controller, such as the 

front-end PLC of the power converters, communicates 

with the DSP-based controller via a standard commu-

nication link. Such a PLC is already available in most 

commercial power converters and is more economical 

than embedding a control algorithm in the converter 

controller [31]. Because communication between the 

front-end PLC and DSP-based controller is introduced, 

communication delays inevitably occur. The delay time 

depends on the communication protocol, network con-

dition, and topology and is often in the range of a few to 

dozens of milliseconds [32]. This study adopts the 

above-mentioned external control method. Thus, the 

communication delay in the control loop must be con-

sidered in the model.  

In conclusion, the active power-control loop of the 

BESS comprises a communication delay, PLL, VIC 

controller, and an inner current loop. The frequen-

cy-response characteristics of the BESS can be de-

scribed by the model shown in Fig. 3, and the transfer 

function of the BESS can be represented by (8), where 

VICG (s) is the transfer function of the virtual inertia 

controller introduced in Section Ⅲ. 

 
2

n n
ESS VIC2 2

ESS n n

2e
( ) ( )

1 2

s s
G s G s

T s s s

  

 

 
 
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    (8) 

 
Fig. 3.  Model of BESS. 

Ⅲ.   FRACTIONAL-ORDER VIRTUAL INERTIA CONTROL 

An FOVIC that possesses better dynamic perfor-

mance and robustness than a conventional IOVIC based 

on an integer-order derivative operator is proposed in 

this section. 

A. Essentials of Fractional-order Control 

The fractional differentiation extends the powers of 

the differentiation operator (d /d , )n nt n to real or 

complex number powers. Several definitions of frac-

tional differentiation exist, including the Rie-

mann-Liouville (R-L), Caputo, and Grünwald-Letnikov 

(G-L) definitions [33]. Because the fractional algorithm 

is implemented in a digital controller, a definition in 

discrete form, which is the G-L definition, would be 

more suitable. The G-L fractional-order derivative 

definition is the generalized form of the Cauchy order 

n  derivative and is expressed as follows: 

 
0

0

( 1) ( )
d ( )

lim
d

l
k

v

k

v vh
l

v
f t kh

kf t

t h






 




           (9) 

where v is the order of the derivative; h is the sampling 

time; and  v
k

 is the generalized Newton binomial co-

efficient, given by: 

  ( 1)

! ( 1)

vv
k k v k








 
                     (10) 

Notably, calculating  v
k

 according to (10) in the 

DSP program exceeds the range of floating-point 

numbers because k! increases steeply. Hence, a recur-
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sion formula is provided in (11) to address this problem 

and the proof of the formula is provided in [34]. 

  
1

1, 0
1( 1)

1 , 1,2,
k

k
k

k
v vw

w kk
k




         

  (11) 

Similarly, the conventional integer-order propor-

tional derivative (IOPD) controller can be generalized 

using fractional-order derivatives. Replacing the La-

placian operator s by its fractional powers ,vs the classic 

PD controller becomes PD  defined by: 

 p d( ) vC s K K s                          (12) 

where 
pK  and dK  are the proportional and derivative 

gains, respectively. 

B. Fractional-order PD-based VIC 

In some studies, most conventional VICs provided an 

inertial effect by responding to frequency variations of 

the grid. In general, a derivative term is adopted in the 

VIC algorithm to provide an active power reference for 

the control loop of the power conversion system (PCS), 

and the output power of the BESS changes accordingly. 

Some studies have also proposed the concurrent imita-

tion of virtual inertia and damping, simultaneously 

providing both. Such an imitation of virtual inertia and 

damping is typically realized by a VIC algorithm com-

prising both proportional and derivative terms, which is 

a PD controller. 

Compared with the IOPD, the fractional-order PD 

(FOPD) controller possesses an extra degree of freedom. 

Therefore, the FOPD always outperforms the IOPD in 

terms of dynamic response and robustness, as long as 

the controller parameters are well tuned. To enhance the 

system-frequency stability and robustness, an FOPD 

was adopted as the VIC algorithm rather than an IOPD. 

The structure of the VIC controller block is shown in 

Fig. 4, where vJ  and vD  are the gains of virtual inertia 

and damping control, respectively. The transfer function 

of the FOVIC is expressed as: 

VIC v v( ) ( )vG s J s D                       (13) 

 

Fig. 4.  Block diagram of FOVIC. 

Ⅳ.   STABILITY ANALYSIS AND PARAMETER TUNING 

This section proposes a framework for tuning the con-

troller parameters. The stable region of the FOPD-based 

VIC, or FOVIC, is determined using the SBL method and 

proved mathematically. An optimization model is also 

proposed to determine the finest value of v v( , , )J D v  

that enables the BESS with VIC to provide superior 

frequency support for the system while retaining a cer-

tain stability margin. 

The transfer function of every element in the studied 

system is obtained, and the transfer function from the 

system disturbance to the frequency response of the 

system is derived from (1): 

 
*

L ESS c

1

( ) ( )

f

P Ms D G s G s


 

   
         (14) 

The characteristic equation of the system is the de-
nominator of the transfer function and can be expressed 
as (15). P(s) and Q(s) are polynomials in s with real 
coefficients. The coefficients of the two polynomials 

can be deduced using a simple bracket expansion. se   

is introduced based on the communication delay shown 
in Fig. 3. 
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A. Stability Boundary Locus 

The SBL curve is the set of v v( , )J D  that satisfies (16) 

when ω is swept from zero to positive infinity.  
j

v v v v( , , ) ( j ) ( j )[ ( j ) ]e 0vJ D P Q J D          (16) 

To solve the above equation, the characteristic equa-

tion (15) should be rearranged using: 
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              (17) 

After replacing the relevant elements with the above 

statements, equation(15) can be divided into real and 

imaginary parts, as follows: 

v v v 1 v 1 1
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By individually equalizing the real and imaginary 

parts of (18) to zero, we obtain: 
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1 2 2 1
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






 

      (20) 

The characteristic equation has two stability bounda-

ries on the v v-J D  plane under a fixed fractional order v: 

the real root boundary (RRB) and complex root 

boundary (CRB). When ω is swept from 0 to positive 

infinity, RRB and CRB can be plotted. The SBL curve 

for the studied system is shown in Fig. 5 for 0.1v   and 

0.1s  . 

 

Fig. 5.  SBL curve of the studied system for 0.1v  and 0.1s.   

B. Stability-region Identification 

As shown in Fig. 5, the v v-J D  plane is divided into 

many parts, including 0 1 2, ,N N N , etc., by the RRB and 

CRB. Mathematical methods are introduced to identify 

the stability region in the parameter plane where the 

system can remain stable. The stability criterion of the 

fractional-order system is presented in [35]. 

Lemma 1. The system is described by a fractional-order 

quasi-polynomial:  

v v v v( , , ) ( ) ( )[ ( j ) ]ev ss J D P s Q s J D            (21) 

The system is stable if and only if all zeros w of the 

transformed equation v v v vΔ( , , ) ( ) ( )[ ]w J D P w Q w J w D    

1/

e ,
vw  where ,vw s  satisfy: 

π
| arg( ) |

2

v
w ＞                         (22) 

This lemma can also be illustrated on a complex plane, 

such as in Fig. 6. When all zeros of the transformed 

characteristic equation lie in the white area, the system 

is stable.  

 

Fig. 6.  Stability region of the fractional-order system. 

Based on the lemma, a further conclusion was pro-

posed in [36] which helped us determine the stability 

region on the v v-J D   plane. 

Lemma 2. Consider the transformed characteristic 

equation
1/

v v v v( , , ) ( ) ( )( ) ,
vww J D P w Q w J w D e     and 

note that v v( , )J Dk . One root of Δ will cross through 

the zeros from the left to the right of the stability 

boundary as k crosses the SBL curve on the v v-J D  

plane through 
k  in the increasing direction of vJ  or 

vD  if 

 * *( , ) 0XS w ＞k                          (23) 

where 
k is a point on the SBL curve, { , }X J D , and 

JS  and DS  denote the root sensitivity to vJ  and vD , 

respectively. ( , )XS w 
k  can be calculated as follows:  
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(25) 

This lemma determines the system stability according 

to the root sensitivity to the controller parameters. If the 

root crosses the imaginary axis from the left half to the 

right half of the complex plane or 
* *( , ) 0XS w ＞k , the 
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system is unstable because some of its roots lie on the 

right-half plane (RHP).  

Points on each line that form a closed curve with the 

RRB are selected and the root sensitivities to vJ  and 

vD  are calculated, that is, JS  and DS , on these points. 

From the sign of the root sensitivities, the stability of 

each closed region can be judged according to Lemma 2: 

if the JS  value of point 
k  is positive, it indicates that 

when 
k  moves towards the direction in which vJ  

increases, one root of the transformed characteristic 

equation moves into the unstable region, as shown in . 

Consequently, the system is unstable when vJ  is on the 

upper side of 
k  in the v v-J D  plane. Similarly, if the 

DS  value of point 
k  is positive, we similarly conclude 

that the system is unstable when vD  is on the right side 

of 
k . Hence, a stability criterion can be derived. 

For a region enclosed by the RRB and CRB, consider 

sensitivities JS  and DS  of point 
k  in the CRB. If JS  

or DS  are negative when vJ  or vD  change towards the 

interior of this region, this region is stable.  

For example, we consider the stability of region 3N  

in Fig. 5 and calculate the sensitivities of point (1)k . If 

JS or DS  are negative when vJ  or vD  change towards 

the interior of N3, that is, vJ  or vD  decrease, 3N  is the 

stability region. If the sensitivities of any points do not 

meet the stability criterion, the region is unstable. In the 

stable region, the sensitivity of each point on the CRB 

boundary can satisfy the stability criterion. Therefore, 

identifying the stability region using this stability crite-

rion is simple. 

C. Parameter-optimization Model 

The parameters of the fractional controller have a 
significant impact on the effectiveness of virtual inertia 
and damping. A comprehensive optimization model is 
required to finely tune the controller parameters 

v v( , , )J D v . 

Because the aim of VIC is to suppress frequency de-
viation, the objective function of the optimization model 
should include the frequency deviation multiplied by a 
high weighting factor. A widely used performance in-
dex is the integral of the squared error (ISE), which is 
defined as: 

2

1
0

( ) d
T

I f t                           (26) 

The timescales of the inertial and primary frequency 
responses are typically within 30 s [37]. Therefore, the 
integral time T is set to 30 s. In general, the output 
power of the BESS is considered in the objective func-
tion in the form of an integral of the squared deviation of 
the control output (ISDCO), which is defined as fol-
lows: 

2

2 BESS
0

( ) d
T

I P t                        (27) 

In addition, to achieve a lower ISE, a higher value of 

the controller parameters v v( , )J D  is preferred, which 

often lies near the boundary of the stability region or 
SBL curve. However, in scenarios in which the system 
parameters undergo significant variations, such 

v v( , )J D  values are likely to fall outside the stability 

region, thereby posing a significant threat to the ro-
bustness of the system. Geometrically, the most likely 
point to remain within the stability region in the case of 
system-parameter variation is the geometric center of 
the stability region. Hence, from the perspective of 

enhancing system robustness, v v( , )J D  should prefera-

bly be set at the centroid of the stability region. To avoid 
the degradation of robustness, the distance d from the 

parameter setpoint v v( , )J D  to the center of the stability 

region should also be included in the objective function, 
and d is given as follows: 

 2 2

v v( ) ( )J Dd J C D C                (28) 

where ( , )J DC C  is the geometric centroid of the stabil-

ity region. The SBL curve depicted in Fig. 5 is actually 
approximated by a polygon consisting of the line seg-

ments between n vertices v v( , , , )J j D j , j is from 0 to 

( 1)n  . Thus, the centroid can be calculated using the 

centroid formula for a polygon [38]: 
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where 
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

              (30) 

Overall, the objective function comprises the ISE, 
ISDCO, and d. The optimization model can be ex-
pressed as: 

 v v
1 1 2 2 3

, ,

v v

min

s.t. ( , ) ( ), 0 1.5

J D v
J w I w I w d

J D v v

  


 ＜ ＜R
         (31) 

where 1w , 2w , and 3w  are the weighting factors and 

R(v) is the stability region of v v( , )J D  under fractional 

order v. Notably, the system tends to be unstable under 
excessive v, therefore, this value is limited to the range 
of (0, 1.5). The optimization model is solved offline 
using the particle-swarm optimization (PSO) algorithm. 
This study primarily focuses on identifying the stability 
region and formulating the optimization model, and the 
optimization model is solved offline. Thus, the details 
of the optimization are not elaborated in this study. See 
reference [39] for the detailed optimization process. 

Every step of the procedure for the proposed param-
eter-tuning method has been presented. Figure 7 shows 
a flowchart of the proposed tuning method. 
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Fig. 7.  Flowchart of the proposed parameter-tuning method for FOVIC. 

Ⅴ.   CASE STUDY 

In this section, a time-domain simulation and analysis 

are performed in Matlab/Simulink to verify the effec-

tiveness of the FOVIC and proposed parameter-tuning 

method. The sampling time in Simulink is set to 45e s, 

and the solver is ode3 (Bogacki-Shampine method). 

A. Stability-region Identification 

As shown in Fig. 6, the SBL curves of the character-

istic equation (15) under 0.1v   are depicted according 

to (19) and (20). Four points on the curve are selected, 

denoted as (1) ,k (2) ,k (3) ,k  and (4) .k  The JS  and DS  

values of these points are calculated according to (24) 

and (25), and the results are summarized in Table Ⅱ. The 

JS  and DS  values of (1)k are both positive; thus, region 

2N  is unstable according to the abovementioned sta-

bility criterion. Similarly, we can conclude that regions 

0 ,N 1,N and 4N are all unstable. The JS and DS values 

of (1)k are positive, whereas those of (2)k are negative, 

indicating that the painted region 3N is the stability 

region. 

The behavior of JS and DS  near knee points a and b of 

the SBL curve presented in Fig. 8 confirms the conclu-

sions. Figure 8(b) shows that the sign of JS  changes 

from negative to positive at knee point a as vJ increases.  

This suggests that the regions above the lower part of the 

SBL (purple line) and below the upper part of the SBL 

(orange line) are stable. A similar conclusion can be 

inferred from Fig. 8(c), which shows that the region 

above knee point b is stable. Every point on the CRB 

boundary of 3N meet the stability criterion. Thus, 3N is 

rigorously proven to be a stable region. 

We now verify the correctness of the identified sta-

bility region. Three points are selected:
(5) (7.61, 20)k  , 

(6) (11.61,20), andk  (7) (9.61,20)k  , which are located 

inside, outside, and at the boundary of 3N . The corre-

sponding frequency responses of the studied power 

system subject to a 0.01 p.u. load perturbation for (5)k , 
(6)k , and (7)k are presented in Fig. 9, which are con-

vergent, divergent, and oscillatory, respectively. The 

responses further verified the identified stability region. 

Similarly, the stability region R(v) on the v v-J D  

plane of the studied system under any fractional-order 

(0,1.5)v  can be determined, which serves as the basis 

for the following parameter tuning. The stability region 

under different v values is represented by the space en-

closed by the painted surface and RRB in Fig. 10. After 

identifying the stability region in the parameter space, 

the optimized parameters for FOVIC can be obtained by 

solving the optimization model shown by (31).  



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 5, SEPTEMBER 2024 78 

TABLE II 

ROOT SENSITIVITY OF POINTS ON SBL CURVE 

Point (1)k  
(2)k  (3)k  (4)k  

vJ  23.3991 -12.3861 15.6008 6.1893 

vD  8.7871 8.7871 -30.0113 -24.1132 

ω 4.6840 1.1080 0.0081 5.3550 

JS  46.3638 10  -0.0081 0.0279 47.2883 10  

DS  47.5203 10  -0.0064 0.0432 47.6737 10  

 

 

 

Fig. 8.  
JS  and 

DS  behavior near the inflection points. (a) De-

tailed view of Fig. 6. (b) 
JS  behavior near knee point a. (c) 

DS  

behavior near knee point b. 

 

Fig. 9.  System frequency response subject to a 0.5% load per-

turbation. 

 

Fig. 10.  Stability region of FOVIC in parameter space. 

B. Parameter Tuning and Controller Performance 

The different values of v v( , , )J D v  of the FOVIC 

have a significant influence on its frequency regulation 

performance. Increasing the virtual inertia vJ  improves 

the dynamic performance by reducing the frequency 

nadir and deviation during the transient phase, whereas 

an excessive increase in vJ  degrades the settling per-

formance. Virtual damping vD  improves the settling 

performance and marginally attenuates the transient 

frequency deviation; however, an aggressive vD  value 

can lead to large secondary overshoots [11]. The frac-

tional-order v also influences FOVIC performance. As 

shown in Fig. 11, the frequency nadir and ROCOF de-

crease as v increases. However, a high v value may also 

lead to instability. Hence, the values of v v( , , )J D v  must 

be comprehensively optimized, for which a novel pa-

rameter-tuning method is proposed in this study. 

The FOVIC is optimized using the proposed tuning 

method. In addition, the widely used droop VIC 

v(i.e., 0)J  and IOVIC (i.e., 0)v   are optimized in 

the same manner. The optimization results of the three 

controllers are presented in Table Ⅲ. 

 

Fig. 11.  Frequency response with different fractional order. 

TABLE Ⅲ 

CONTROLLER PARAMETER-OPTIMIZATION RESULTS 

Controller vJ  
vD  v J 

Droop VIC 0 15.1274 1 0.0078 

Integral-order VIC 6.6141 30.5018 1 0.0038 

Fractional-order VIC 7.5181 35.7871 1.0792 0.0031 



ZENG et al.: FRACTIONAL-ORDER VIRTUAL INERTIA CONTROL AND PARAMETER TUNING… 79 

The performances of the three well-tuned controllers 
are compared in Table Ⅲ. The frequency response of 
the investigated power system under different optimized 
controller parameters subjected to a 0.5% load-step 
change is shown in Fig. 12. As expected, a considerable 

frequency decrease (0.07 Hz) occurs in the low-inertia 
power system without a VIC controller. This deviation is 
significantly alleviated when a BESS with a VIC con-
troller is connected to the grid. Compared with the droop 

VIC (0.029 Hz) and IOVIC (0.017 Hz), the FOVIC 

controller raises the frequency nadir (0.012 Hz), and 
hence decelerates the ROCOF and provides better fre-
quency support. Moreover, both the FOVIC and IOVIC 
outperform the droop VIC in transient dynamics. This is 
attributed to their derivative term, which magnifies the 
output of the BESS during the transient process and 
reduces the ROCOF. In the steady state, besides LFC, 

f is mainly determined by the proportional item, i.e., 

the vD value. f tends to be smaller with a larger vD , 

which also indicates a higher output of BESS at the 
steady state. 

 

Fig. 12.  Frequency response of the studied power system under 

different optimized controllers subject to a 0.5% load perturbation. 

In fact, the FOVIC is likely to outperform the conven-
tional droop VIC and IOVIC. Figure 10 shows that as v 

increases, the stability region moves upward on the v v-J D  

plane. As v increases, a higher parameter value is available, 
and a better frequency-regulation performance can be 
achieved. However, an excessive v value also leads to a 
smaller stability region, and hence, less robustness. The 
optimization method achieves a tradeoff between fre-
quency-regulation performance and robustness. Because 
FOVIC has three degrees of tuning freedom, it outper-
forms those with one or two degrees of freedom. 

To further compare their performances, a simulation 
is conducted considering the stochastic fluctuation of 
PV generation and domestic load; the related data were 
generated according to Section Ⅱ. The profiles of do-
mestic load and solar-power generation are shown in 

Fig. 13(a), and they are aggregated into LP  as the 

external-disturbance input of the studied system. The 
frequency response under these disturbances is shown 
in Fig. 13(b). The maximum frequency deviations under 
droop-based VIC, IOVIC, and FOVIC VIC reach 
±0.179 Hz, ±0.152 Hz, and ±0.098 Hz, and the ISEs of 
the frequencies are 0.150, 0.064, and 0.046, respectively. 

The ROCOF is significantly reduced, and the frequency 
deviation is better alleviated under the effect of FOVIC. 

 

 

Fig. 13.  (a) Profiles of domestic load, solar-power generation, and 
their aggregation. (b) Frequency response of the studied power 
system under different optimized controllers. 

C. Controller-robustness Analysis 

The robustness of the controller is evaluated in the 
case of perturbations in the power-system parameters 
including M, D, and τ. The values of the objective 
function J under different parameter-perturbation cases 
are summarized in Table Ⅳ, and the corresponding 
system frequency responses are presented in Fig. 14. 
The results indicate that the FOVIC outperforms the 
droop VIC and IOVIC in terms of J values and fre-
quency-response performance in most cases. This 
highlights the superior robustness of the FOVIC in the 
frequency regulation of a low-inertia system with un-
certainty in the system parameters. Notably, the J values 
of the two VICs exceed that of the FOVIC when τ de-
creases by 50%. This may be attributed to the fact that 
component d in the objective function increases sharply 
as the stability region expands, and its centroid conse-
quently moves away from the set parameters. The results 
in Fig. 14 also indicate that the perturbations in the me-
chanical inertia of the system M and communication time 
delay τ have a significant impact on system dynamics. 
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TABLE Ⅳ 

ROBUSTNESS FOR PERTURBATION IN SYSTEM PARAMETERS 

System 

parameters 
Perturbation Controller 

J for 

increase 

in param-

eter 

J for 

decrease 

in param-

eter 

M ±30% 

Droop VIC 0.0078 0.0182 

IOVIC 0.0032 0.0044 

FOVIC 0.0026 0.0032 

D ±20% 

Droop VIC 0.0082 0.0087 

IOVIC 0.0056 0.0029 

FOVIC 0.0046 0.0026 

τ ±50% 

Droop VIC 0.0114 0.0072 

IOVIC 0.0082 0.0093 

FOVIC 0.0068 0.0097 

In addition, to further illustrate how the proposed 
tuning method enhances the robustness of FOVIC, we 
consider a scenario in which a 110 MW generator trips. 

The responses of the two parameter setpoints v v( , , )J D v  

of the FOVIC are compared, which are (20, 20, 0.5) and 
(22, 28, 0.5). Before a fault occurs, the frequen-
cy-regulation performance of the FOVIC under set-point 
B is better than that under set-point A as it has higher 
parameter values. Higher controller-parameter set-points 
are typically preferred to obtain a better frequen-
cy-regulation performance. However, in the proposed 
parameter-tuning method, as depicted in Fig. 15, the 
robustness is quantized as the distance from the centroid 
to the parameter setpoint. The closer the setpoint is to the 
centroid, the less unlikely it is to fall out of the stability 
region. The proposed method considers robustness and 
selects a relatively conservative parameter setpoint, 
reaching a tradeoff between frequency-regulation per-
formance and controller robustness. 

 

Fig. 14.  Frequency response of the power system subject to 

different parameter perturbations. 

After the generator fault, an active power deficit of 

0.11 p.u. immediately occurs (the generator is assumed 

to generate its maximum power). Moreover, the par-

ticipation factor of the thermal power plant thP  and 

system inertia M decrease to 0.44 and 4.3 s, respectively. 

Consequently, the stability region of FOVIC in Fig. 15 

shrinks, and set-point A, with higher parameter values, 

is likely to fall out of the stability region. By contrast, 

set-point B remains within the stability region, demon-

strating its robustness in the case of a large disturbance. 

The simulation results shown in Fig. 16 further verify 

this. After the generator trips, the frequency is unstable 

at set-point A but converges at set-point B. 

 

Fig. 15  Stability region before and after the generator fault. 

 

Fig. 16.  Frequency response after fault under different parameter 

setpoints. 

Ⅵ.   CONCLUSION 

This study proposes an FOVIC controller and a novel 

parameter-tuning method for a BESS to provide an FFR 

service for a lower-inertia power grid. The parame-

ter-tuning method identifies the stability region in the 

parameter space and optimizes the parameters of the 

FOVIC to better suppress frequency deviation and en-

hance system robustness. The time-domain simulation 

results confirm that the identified stability region is 
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correct and demonstrate the superiority of the FOVIC in 

the frequency-regulation performance. The robustness 

of the FOVIC tuned using the proposed method is veri-

fied through case studies of parametric perturbation and 

generator faults in the power system. 

However, this study has some limitations. In this 

study, the system frequency is deemed a global variable 

and remains uniform in all parts of the power system. In 

fact, a large disturbance can lead to multimodal oscil-

lations, and the frequencies and ROCOF of different 

buses may differ significantly. In addition, when the 

stability region expands with a change in the sys-

tem-operation status, the formerly selected parameter 

values become too conservative and weaken the con-

troller performance.  

Efforts must be made to improve the proposed 

method. For power systems with complicated networks, 

the system-response model must consider the effects of 

power flow. An online tuning method with a real-time 

stability region is desirable to achieve better frequen-

cy-regulation performance. Moreover, a novel FOVIC 

combining the advanced FOC techniques in [16] and 

[17] with the proposed parameter-tuning method should 

also be investigated. 
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