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A Pseudo-measurement Modelling Strategy for 

Active Distribution Networks Considering  

Uncertainty of DGs 

Dongliang Xu, Junjun Xu, Cheng Qian, Zaijun Wu, and Qinran Hu 

Abstract—Active distribution networks utilize ad-

vanced sensors, communication, and control technologies 

to achieve flexible and intelligent power distribution 

management. Reliable state estimation (SE) is crucial for 

distribution management systems to monitor these net-

works. Historically, the scarcity of measurement re-

sources has hindered the application of SE technology in 

distribution networks. Establishing a dependable pseu-

do-measurement model for active distribution networks 

can significantly enhance the feasibility of SE. This paper 

proposes a pseudo-measurement model that aligns with 

the actual operating status of the distribution network, 

considering the uncertainty in output from distributed 

generations (DGs) such as wind turbines and photovolta-

ics. Firstly, it analyzes and models the uncertainty of 

high-penetration DG output, establishing a reliable out-

put model that incorporates the physical characteristics of 

wind and photovoltaic output. Secondly, it proposes a 

pseudo-measurement modeling method based on support 

vector machine (SVM), where the kernel function of the 

SVM is weighted according to the information entropy of 

fluctuations in historical operating data. This weighting 

ensures that the established pseudo-measurement model 

better reflects the actual operating status of the active 

distribution network. Finally, a mathematical model for 

optimizing pseudo-measurement selection is developed, 

with the minimum state estimation error as the objective 

function and the observability of the active distribution 

network system as the constraint. Case studies demon-

strate the accuracy and effectiveness of this approach. 

Index Terms—Distribution network, pseudo-measure- 

ment, uncertainty of DGs, state estimation, entropy 

weighting method-support vector machine (EWM-SVM). 
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Ⅰ.   INTRODUCTION 

or distribution networks with incomplete infor-
mation, enhancing the quantity and quality of 

measurement equipment, improving communication 
conditions, and bolstering data storage and processing 

capabilities can significantly amplify the monitoring 
effectiveness of the distribution management system 
over the distribution network [1]. Concurrently, tech-

niques like data interpolation and model prediction can 
address data gaps, maximizing data availability and 
accuracy. Pseudo-measurement modeling technology 

leverages system models and existing partial meas-
urement data to extrapolate missing measurements, 

effectively enhancing the completeness of distribution 
network data [2], [3]. This, in turn, fortifies system 
monitoring and control capabilities while refining the 

verification and optimization processes of system 
models. 

Distribution network state estimation necessitates a 

certain redundancy in measurement data [4], [5]. Given 
the aforementioned analysis, establishing a pseu-
do-measurement model that accurately reflects the true 

operating status of an active distribution network with 
incomplete information holds paramount importance. 

This endeavor not only enhances the accuracy of active 
distribution network state estimation but also ensures 
the reliable monitoring and control of the active distri-

bution network [6]. 
When power measurement equipment is not config-

ured at the load buses, obtaining historical load data 

becomes challenging. Pseudo-measurement models are 
typically constructed based on typical load curves and 

real-time measurement data [7], [8]. However, these 
typical load curves, established through methods such 
as fault simulation, overall measurement, and statistical 

synthesis, often involve a significant number of empir-
ical values in the data input process [9], [10]. Conse-
quently, the pseudo-measurement model frequently 

deviates significantly from the actual operating state of 
the system. 

When historical load data is available, pseu-
do-measurement modeling schemes based on probabil-
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ity analysis and prediction methods are widely utilized. 

The use of Gaussian process regression (GPR) to es-
tablish a pseudo-measurement model is proposed in 

[11], enhancing the prediction accuracy of pseu-
do-measurement confidence intervals. In [12], the 
Gaussian mixture model (GMM) is employed to ana-

lyze the probability density of loads and establish 
pseudo-measurement information with the maximum 
expected solution. Reference [13] presents a statistically 

based pseudo-measurement generation method that 
effectively enhances estimation performance by up-

dating historical measurement data through a Kalman 
filter. However, methods such as GPR and GMM have 
high computational costs when dealing with complex 

nonlinear relationships and are sensitive to the selection 
of model parameters, which may affect the generaliza-
tion ability of the pseudo-measurement model. 

In recent years, with the continuous advancement of 
artificial intelligence technology, the robust predictive 

capabilities of neural networks have provided valuable 
insights for pseudo-measurement modeling in distribu-
tion networks. In [14], researchers devised a pseu-

do-measurement generation scheme based on artificial 
neural networks (ANNs). This approach combines 
typical load distributions to decompose errors associ-

ated with the generated pseudo-measurements into 
several components, making it suitable for weighted 
least squares (WLS) state estimation. Recurrent neural 

networks (RNNs) have also been employed in pseu-
do-measurement modeling, as demonstrated in [5], 

where RNNs are enhanced through an attention mech-
anism that analyzes power sequences in both the time 
and frequency domains at the source and load ends. This 

analysis leads to the establishment of a period-dependent 
extrapolation model for characterizing power sequences 
in these domains. The complex mapping functions in 

the model are automatically represented by A-RNNs to 
obtain a period-dependent pseudo-measurement gener-

ation model based on A-RNNs. Although such neural 
network-based pseudo-measurement models perform 
well in prediction ability, their training process relies on 

a large amount of annotated data and is prone to over-
fitting problems. In addition, most of these methods 
have a certain demand for the computing power of dis-

tribution network management systems, and there may 
be difficulties in popularizing their application in actual 

distribution management systems. 
Additionally, in [15], user-level measurement data is 

utilized to train gradient boosting tree models for gen-

erating pseudo-measurements. Subsequently, the trap-
ezoidal iterative state estimator is applied to these 
pseudo-measurements to solve the system state, show-

ing potential for enhancing the robustness of distribu-
tion network system state estimation. Furthermore, a 
pseudo-measurement generation method based on dis-

tributed generators’ characteristics and static voltage 

control mode is proposed in [16]. Its iterative approach 

improves the estimation of distributed generators’ state 
and output, thereby enhancing the accuracy of fault 

current calculation. Although scholars have made many 
explorations in this field, most existing pseudo-measurement 
modeling methods lack quantitative analysis of many 

uncertainties in distribution networks, resulting in un-
stable performance of the models in practical applica-
tions. Moreover, although some studies combine mul-

tiple algorithms, the method of integrating multiple 
algorithms has high complexity and poor real-time 

performance, which is not conducive to the promotion 
and application in actual distribution networks. 

In light of the above analysis, this paper proposes an 

advanced pseudo-measurement modeling strategy for 
active distribution networks. The following are the main 
contributions of this paper: 

1) The pseudo-measurement modeling strategy in this 
paper considers the output characteristics of wind power 

and PV systems separately. It establishes output pre-
diction models that account for their uncertainties, re-
liably providing estimated pseudo-measurement in-

formation for distributed generation (DG) buses in ac-
tive distribution networks. 

2) The strategy proposed in this paper innovatively 

introduces an improved pseudo-measurement genera-
tion scheme for conventional load buses based on an 
entropy-weighted support vector machine (SVM) method. 

3) An optimization model for selecting pseu-
do-measurement sets is also presented, effectively en-

hancing estimation accuracy. 
In the case studies conducted on the testing system, 

the proposed pseudo-measurement modeling strategy 

can reliably establish pseudo-measurements that align 
with the actual operational state of the distribution 
network. This capability effectively enhances the per-

formance of state estimation in active distribution net-
works. 

The remainder of this paper is organized as follows. 
Section Ⅱ presents a pseudo-measurement modeling 
method considering the uncertainty of DG access buses, 
while Section Ⅲ discusses the pseudo-measurement 
modeling strategy based on EWM-SVM for conven-
tional load buses. Section Ⅳ demonstrates the analysis 
of pseudo measurement errors and the selection of op-
timization models to enhance the effectiveness of state 
estimation. In Section Ⅴ, the effectiveness and reliabil-
ity of the proposed method were verified through sim-
ulation experiments based on modified IEEE-33 bus 
and IEEE-123 bus system, and Section Ⅵ summarizes 
and prospects the research of the whole paper. 

Ⅱ.   PSEUDO-MEASUREMENT MODELLING OF DGS 

BUSES OUTPUT UNCERTAINTY 

In the realm of active distribution networks, the in-

termittent generation of high-penetration DGs and po-
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tential measurement errors from numerous real-time 

measurement devices can introduce additional uncer-

tainties that must be factored into the state estimation 

process of these networks [17], [18]. Current theories 

concerning state estimation in active distribution net-

works, including those rooted in probabilistic statistical 

distributions and fuzzy theory, necessitate a substantial 

number of probability density functions or membership 

functions for the injected power pseudo-measurements 

originating from DGs and load buses. Recognizing the 

uncertainty inherent in DGs’ output is vital to ensuring 

that the established pseudo-measurement models accu-

rately reflect the actual operational state of the distri-

bution network, a factor of significant practical im-

portance [19]. 

A. Wind Power Output Uncertainty Modelling Analysis 

The variability in wind power generation output 

primarily hinges on wind speed and direction. Lever-

aging the intrinsic characteristics of wind power gener-

ation, along with an extensive dataset encompassing 

numerical weather forecasts and historical records such 

as measured wind power output, provides dependable 

data for pseudo-measurement models aimed at fore-

casting wind power in the ultra-short/short term. 

The kernel-based extreme learning machine (KELM) 

offers the advantages of fast learning speed, strong 

generalization ability, and robustness under limited data. 

Specifically, KELM achieves rapid training speeds by 

solving a simple linear system rather than relying on 

iterative optimization. Meanwhile, KELM excels in 

generalization, effectively managing nonlinearities by 

mapping input data into a higher-dimensional feature 

space. Additionally, KELM performs well even with 

small datasets, making it suitable for scenarios where 

extensive historical data is unavailable. This study in-

troduces a method for predicting wind turbine output 

uncertainty based on a double-layer KELM approach 

[20]. The first layer of the KELM model is adjusted to 

accommodate variations in wind speed, while the bidi-

rectional output of the second layer delineates the un-

certain range of wind turbine output. The schematic of 

the double-layer KELM structure is depicted in Fig. 1. 

The nv  in Fig. 1 represents forecasting wind speed 

data provided by the meteorological bureau; 1tv  rep-

resents the wind speed data measured at the moment 

before the prediction point; sinv  and cosv  are the sine 

and cosine values of the wind direction, respectively; L 

and U are the lower and upper bounds of the output 

interval; cov  represents the corrected wind speed by the 

first layer KELM; and   is the local air density. 

 

Fig. 1.  The structure of the proposed double-layer KELM. 

The specific implementation process is as follows. 

Step 1: Data processing. Collect and process the 
measured wind turbine output power and tower wind 
speed obtained from the data collection and monitoring 

system, along with meteorological data such as wind 
speed, direction, temperature, humidity, and pressure 
provided by the local meteorological department. 

Normalize these data to the range of [0,1]. Thus, the 
dual input vector I of the double-layer KELM is: 

1 sin

T

cos[ , , , ],n t  v v v vI                         (1) 

3

b

3

c

1276( 3.78 10 )
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

 
                     (2) 

where c  and bP  are celsius temperature at the location 

where the wind turbine is arranged and the saturated 
vapor pressure value at that temperature, respectively; P 
and h are the atmospheric pressure and relative air hu-

midity, respectively. 
Step 2: First layer KELM wind speed correction. A 

small change in wind speed during the transition from 

below rated wind speed to rated wind speed can cause 
significant changes in the output power of wind turbines, 

necessitating a certain degree of correction to the wind 
speed forecast data. This paper utilizes the first layer of 
the KELM network to simulate and correct the 

non-linear relationship between predicted wind speed 
and measured wind speed. 

Step 3: Prediction of uncertainty intervals for wind 

turbine output. The wind speed value corrected by the 
first layer KELM, along with the sine and cosine of the 
wind direction and air density, is used as the input for 

the second layer KELM to predict the lower and upper 
bounds of the current wind turbine output as the output 

for the second city KELM. KELM essentially belongs 
to a single hidden layer feedforward neural network, 

and the given raw sample {xi, Ti} ( 1,2, , )i N , the 

ELM with a number of nodes with N input layers, L 

hidden layers can be represented as: 

1( ) L

i i i  f x H H T                      (3) 
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where H  is the hidden layer matrix; K represents the 

number of  the hidden layer neurons; ( )g   is the acti-

vation function; b is the bias of hidden layer neurons; 

  is the connection weights between hidden layer 

neurons and output layer neurons and w  is the con-

nection weights between the input layer neurons and 

hidden layer neurons; †
H  is the generalized inverse. 

Introducing kernel functions into ELM and replacing 
random mappings in ELM with kernel mappings, the 

kernel matrix is: 
T

KELM ( , )i jx x HH K                    (7) 

The output of the KELM can be represented as: 

 
1

T

KELM 1 1 KELM( ) ( , ), , ( , )x x x x
C



 
  

 

I
f x K K T  

(8) 
In this paper, the kernel functions of the double-layer 

KELM are all selected as RBF kernels. 

B. PV Output Uncertainty Modelling Analysis 

The double-output feedforward neural network 

(DFNN) offers advantages such as handling multiple 

outputs, complex pattern recognition, flexibility, and 

scalability. Specifically, DFNNs are particularly suita-

ble for scenarios requiring simultaneous predictions of 

multiple variables, such as PV outputs, providing a 

comprehensive modeling approach. Additionally, 

DFNNs can model complex, nonlinear relationships 

between inputs and outputs due to their deep structure, 

capturing intricate dependencies in the data. DFNNs are 

also flexible and can scale with the complexity of the 

dataset, enabling the model to adapt to various types of 

input data and patterns found in renewable energy sys-

tems. 

In this study, we address the uncertainty associated 

with PV output and devise a DFNN to delineate the 

upper and lower bounds of the PV generation system’s 

output [21]. Leveraging the distribution of PV output 

interval values, we propose interval evaluation metrics, 

which are further enhanced through integration with the 

particle swarm optimization (PSO) algorithm [22]. This 

comprehensive optimization approach fine-tunes the 

indicators, leading to the determination of optimal 

output weights for the neural network model. As a result, 

we achieve precise interval prediction for the PV gen-

eration system’s output. 

As shown in Fig. 2, 1 2( , , , )nx x xX  is the input 

variable, n represents the number of input layer neurons; 

1 2( , , , )mu u uU  and 1 2( , , , )mh h h   H  are the input 

and output of the hidden layer, respectively, m repre-

sents the number of hidden layer neurons; 1 2( , )l lL  

and 1 2( , )y yY  are the input and output of the output 

layer, respectively, 1 2,y y  are the upper and lower 

bounds of PV output. The weight matrix connecting the 
input layer W and the hidden layer and the weight ma-
trix connecting the hidden layer and the hidden layer V 
can be represented as follows: 

11 1

1

m

n nm

 

 

  
 


 
    

W                              (9) 

11 12

1 2m m

v v

v v

 
 


 
  

V                                (10) 

The outputs of the hidden layer and the output layer 
can be calculated by the following formulas, respec-
tively. 

1
( ) ( ), [1, ]

n

j j i ij ji
u x a j m


   h f f     (11) 

1
( ) ( ), 1,2

m

j j i jk kj
u h v b k


   y g g          (12) 

where ( )f  and ( )g  are the activation function of the 

proposed DFNN, respectively; 
ja  and kb  are the bias 

of the hidden layer neuron j and output layer neuron k, 
respectively. 

 

Fig. 2.  The structure of the DFNN-based interval prediction for 

PV generation system output. 

To refine the predicted output range from the afore-
mentioned DFNN model, it is crucial to establish cor-
responding interval evaluation metrics to derive the 
optimal interval value. Predictive interval coverage 
probability (PICP) and predictive interval normalized 
average width (PINAW) serve as crucial indicators for 
assessing interval prediction performance. In this paper,  



XU et al.: A PSEUDO-MEASUREMENT MODELLING STRATEGY FOR ACTIVE DISTRIBUTION… 5 

PICP  is used to represent the numerical value of PICP, 

which measures the percentage of the target output 
encompassed within the prediction interval, reflecting 
the prediction accuracy [23]. Here is the formal defini-

tion of PICP : 

PICP 1

1 N

iiN



                             (13) 

where N  is the scale of data; if the output data yi be-

longs to the prediction interval [li, ui], 1i  , otherwise 

0i  . 

PINAW  is used to represent the numerical value of 

PINAW, which measures measures the average width of 
the prediction interval, characterizing the uncertainty of 
the prediction, defined as: 

1PINAW

1
= ( )

N

i ii
u l

NR



                     (14) 

where R is the target width of the prediction interval. 
From a practical application perspective, the ideal 

prediction interval aims to maximize PICP  while min-

imizing the PINAW .  Achieving these goals concurrently 

is challenging, primarily because of the inherent 

trade-off between them. Increasing PICP  typically leads 

to a broader PINAW ,  and conversely, reducing PINAW  

often results in a decrease in PICP . This paper introduces 

an interval prediction model, coverage width criterion 
(CWC), which considers a comprehensive evaluation of 

both PICP and PINAW indicators, shown as CWC : 

PICP

PINAW

( )

CWC = (1+ e )
                 (15) 

where CWC  can assign a larger weight to PICP , and 

continue to optimize PINAW  when it meets the confi-

dence level; as PINAW  approaches the expected value, 

the comprehensive metric also converges to the target 
width of the prediction interval; η and μ are a pair of 
hyperparameters that determine the punishment given to 
the lower prediction interval of PICP; μ is a confidence 
level; η is an amplification factor that amplifies the 
differences between the actual interval coverage PICP 
from the expected interval coverage μ; when PICP ≥ , 

0  , and when PICP ＜ , 1 . 

This method simplifies the optimization of interval 
prediction model indicators by consolidating multiple 
objectives into one, using the PSO algorithm to itera-
tively solve the objective function. This iterative pro-
cess identifies the optimal output weight for the dy-
namic feedforward neural network (DFNN), enhancing 
the accuracy of interval predictions for PV output. The 
key steps for the PV output range prediction process are 
as follows. 

Step 1: The historical PV dataset is partitioned into 
training and testing sets at a predetermined ratio. Fac-
tors such as solar irradiance, PV array size, and ambient 
temperature affect PV output. Historical data on PV 
output and related meteorological conditions are gath-
ered at consistent intervals and then normalized for use 

as DFNN training data. 
Step 2: The training data are segmented into training 

and validation subsets. Initial weights for input vectors 
and biases for hidden layer neurons are set randomly. 
The PV output values in the training set are slightly 
adjusted to create initial prediction bounds, which are 
used to determine the initial output weight vector. 

Step 3: Set the scale and inertia parameters for the 
PSO algorithm. Use the initial PV output interval from 
Step 2 as the starting population for the PSO, with the 
evaluation function from (15) serving as the fitness 
criterion. Execute several algorithm iterations to find 
the global optimum-the optimal output weight vector. 

Ⅲ.   PSEUDO-MEASUREMENT MODELLING OF LOAD 

BUSES BASED ON EWM-SVM 

SVM regression leverages the power of kernel func-
tions and insensitivity to outliers, demonstrating high 
tolerance for noisy data and requiring relatively low 
computational resources. As a result, it excels in non-
linear regression tasks [24].  

The core concept of SVM is to map data into a 
high-dimensional feature space via kernel functions, 
which increases the likelihood of linear separability. 
This capability is especially beneficial for creating 
pseudo-measurements of load buses when actual 
measurement equipment is not available [25]. This 
paper presents an information entropy weighting 
method (EWM) designed to optimize the SVM kernel 
function. The objective is to construct a pseu-
do-measurement model that accurately represents the 
true state of load buses. 

According to the analysis presented in [24], the SVM 
algorithm employs the Lagrangian method to transform 
the aforementioned optimization problem into a dual 
form: 

1 1 1

1

1
obj: min ( , )

2

s.t. 0, 0

n n n

i j i j i j ii j i

n

i i ii

y y K x x

y c

  

 

  







 

  

 ≤ ＜

(16) 

where ( , )i jK x x  is the kernel function used in the SVM 

algorithm;   is the Lagrangian penalty term and c is 
the penalty factor. 

In this paper, based on the radial basis function (RBF) 
kernel function and utilizing its advantages of mul-
ti-scale kernels, a high-dimensional multi-scale kernel 
function is designed. 

For the RBF kernel function 

2

2

|| ||
exp

2

i jx x



 
 
 
 

, 

choosing different   can be applied to multi-scale sce-

narios, and the multi-scale RBF kernel function set Sexp can 
be represented as follows: 

2 2

exp 2 2

1

|| || || ||
exp , ,exp

2 2

i j i j

n

x x x x

 

     
         

   
     

S (17) 

where 1 2 .n  ＜ ＜ ＜   When the distribution expe-

riences significant fluctuations, employing a smaller 
value of   for multi-scale RBF can yield superior 
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output outcomes. Conversely, when the distribution 
fluctuation is minimal, utilizing a larger   for mul-
ti-scale RBF can lead to better output results. 

Weighted synthesis is applied to kernel functions of 
varying scales, resulting in an enhanced kernel function 
with adaptive weights. The optimization problem, 
which has been transformed into a dual form using the 
Lagrangian algorithm, can be expressed as: 

2

21 1 1

1

1

|| ||1
min exp

2 2

      

s.t. 0, 0

n n n i j

i j i j ki j k
k

n

ii

n

i i ii

x x
y y W

y c

 




 
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



  
   
   









  



 ≤ ＜

 

(18) 
Information entropy, a concept from information 

theory, quantifies the uncertainty of a random variable 
or the magnitude of information [26]. In information 
theory, information entropy is used to measure the level 
of uncertainty regarding the occurrence of an event. 
Higher information entropy indicates greater uncer-
tainty of a random variable, while lower information 
entropy suggests reduced uncertainty. 

Given a specific support vector, the information en-
tropy linked to the scale of the kernel function can be 
expressed as follows: 

1

1
ln( ) ln

m

k kj kjj
I m p p


                  (19) 

1

( )

( )

kj

kj m

kjj

x
p

x









                        (20) 

where 
kjp  is mapped from support vectors by kernel 

functions, when =0,kjp it is defined that 
1

ln 0
m

kj kjj
p p


 ; 

m is the number of samples; ( )kjx  represents the meas-

urement value of the kth indicator in the jth sample. 
According to the calculated information entropy, the 

adaptive weight Wk is: 

1

1
, 1,2, ,k

k n

kk

I
W k n

n I



    


          (21) 

Generally, in distribution network state estimation 
(SE), short-term or ultra-short-term load forecasting 
data from the distribution network serves as pseu-
do-measurement information. This data is typically 
derived by analyzing historical operational data of bus 
loads and external factors such as climate data through 
regression techniques. To ensure that the pseu-
do-measurement model aligns closely with the actual 
operational state of the distribution network, the model 
proposed in this section not only considers historical 
bus load data and climate information but also incor-
porates real-time measurement data of branch power 
from the SCADA system. 

Based on this analysis, the input variables of the 
pseudo-measurement model using EWM-SVM in this 
section include real-time power data from SCADA, 

historical load operation data, date information, and 
climate data. The output variable aims to provide power 
prediction information for pseudo-measurement buses 
and branches. 

During the training phase of EWM-SVM, it is crucial 
to choose the penalty factor corresponding to the kernel 
function under different adaptive weights. This penalty 
factor c determines the model’s generalization ability 
and complexity. In this context, a multi-scale RBF 
kernel function set Sexp with various   values was se-
lected, along with the corresponding adaptive weight set 
W based on EWM. The penalty factor should align with 
the multi-scale penalty factor set c. The selection of 
penalty factor set c for the optimization problem of 
EWM-SVM should correspond to the Cartesian product 
of the adaptive weight set W and the multi-scale RBF 
kernel function set Sexp. To simplify notation, 

expW S is represented by the set κ . It is evident that 

the predictive efficacy of EWM-SVM hinges on the 
selection of two parameters: c and κ . 

In this study, the grid search method is employed to 
select two parameters, supplemented by cross-validation 
techniques to prevent overfitting or underfitting of the 
model. The minimum root mean square error serves as 
the criterion for identifying the optimal selection of c 
and κ  parameters. 

Based on the aforementioned analysis, the steps of 
the pseudo-measurement modelling method based on 
EWM-SVM are outlined as follows. 

Step 1: Input data, integrate real-time power data, 
historical load operation data, date information, and 
climate information measured by SCADA into specified 
training input Ti, prediction input Fi. Simultaneously 
setting the output vectors for model training and pre-
diction, training output To, and prediction output Fo: 

T

M,TI M,TI B,TI B,TI L,TI L,TI Ti I TI TI        P Q P Q P Q D C H   T  

(22) 

B,TO B,TO

T

L,TO L,TOo    P Q P Q   T             (23) 

T

M,FI M,FI B,FI B,FI L,FI L,FI Fi I FI FI        P Q P Q P Q D C H   F  

(24) 
T

B,FO B,FO L,FO L,FOo    P Q P Q   F             (25) 

where 
M,TI M,TIP Q,  are real time measurement of active 

and reactive power for training inputs, respectively; 

B,TI B,TIP Q,  are active and reactive power of the training 

input branch historical data, respectively; L,TI L,TIP Q,  

are training input bus load historical data active and 

reactive power, respectively; TI TI TID C H, ,  are training 

input date information, temperature information, and 

humidity information, respectively; B,TO B,TOP Q,  are 

training output of branch active and reactive power, 

respectively; L,TO L,TOP Q,  are training output bus load 

active and reactive power, respectively; M,FI M,FIP Q,  are 

forecasting input real time measurement of active and 

reactive power, respectively; B,FI B,FIP Q,  are forecasting 
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input active and reactive power of the branch historical 

data, respectively; 
L,FI L,FIP Q,  are forecasting input bus 

load historical data active and reactive power, respec-

tively; FI FI FID C H, ,  are forecasting input date infor-

mation, temperature information, and humidity infor-

mation, respectively; 
B,FO B,FOP Q,  are forecasting output 

of branch active and reactive power, respectively; 

L,FO L,FOP Q,  are forecasting output bus load active and 

reactive power, respectively.  
Ti and Fi are derived from the processing of historical 

data, effectively partitioned into specific datasets for 
their respective purposes.  

Ti is utilized to train the proposed EWM-SVM 
pseudo-measurement model, leveraging historical data 
encompassing measurements and observations over a 
specific period. This dataset aids the model in learning 
underlying patterns and relationships within the data. Fi, 
on the other hand, is employed for predicting future 
states and conditions. It includes anticipated scenarios 
based on historical data, facilitating the model's ability 
to forecast future measurements. 

Step 2: Normalize the data to ensure consistency in 
feature scales, avoid the complexity introduced during 
the optimization process due to inconsistent feature 
scales, ensure that the features of different data maintain 
effective weights in the algorithm, and improve the 
solving speed and generalization ability of the 
EWM-SVM algorithm. 

Step 3: Calculate the information entropy based on 
the fluctuation of historical operational data, and use it 
to compute the corresponding adaptive weights for 
different parameters of the multi-scale kernel function. 

Step 4: The grid search method is used to initiate the 
selection of c and κ parameters, followed by model 
training based on the optimal parameters. To prevent 
overfitting or underfitting of the model, a five-fold 
cross-validation method is employed for parameter 
optimization. The dataset is randomly divided into five 
parts, with one part designated as the validation set and 
the remaining four parts as the training set. After train-
ing and validating the model, the objective is to mini-
mize the root mean square error on the training set to 
optimize and determine the optimal c and κ  values. 
This process establishes the optimal penalty factor set c 
adaptive weight set W and corresponding multi-scale 
RBF kernel function set Sexp. 

Step 5: Input prediction data and output prediction 
results. Provide power prediction information for 
pseudo-measurement buses and branches that need to be 
provided. 

Ⅳ.   PSEUDO-MEASUREMENT ERROR ANALYSIS AND 

SELECTION OPTIMIZATION MODEL 

The pseudo-measurement model based on the 
EWM-SVM algorithm mentioned above generally in-
cludes prediction errors, termed pseudo-measurement 
errors, when providing pseudo-measurements of node 
load power and branch power compared to their actual 
values in active distribution network operation. In tra-
ditional distribution network state estimation processes, 

the weights assigned to these pseudo-measurement data 
are typically determined based on the reciprocal of the 
variance of the pseudo-measurement errors. A smaller 
variance in pseudo-measurement errors generally indi-
cates higher reliability of the pseudo-measurement 
values, resulting in larger weights. Conversely, a larger 
variance in pseudo-measurement errors indicates lower 
reliability of the pseudo-measurement values, leading to 
smaller weights. This variance-based weight allocation 
method allows for a more reasoned consideration of 
pseudo-measurement values in the state estimation 
process, thereby enhancing the computational accuracy 
of state estimation. By assigning higher weights to 
pseudo-measurement values with smaller variances, the 
system can rely more on these values for state estima-
tion, while pseudo-measurement values with larger 
variances have reduced impact on state estimation to 
minimize error propagation. 

Given the complex operational dynamics of active 
distribution networks and the increased uncertainty due 
to the significant integration of distributed power 
sources in recent years, the probability density distri-
bution of pseudo-measurement errors exhibits a diverse 
range that cannot be adequately represented by a 
standard Gaussian distribution. This article employs a 
Gaussian mixture model (GMM) to create multiple 
Gaussian components that conform to normal distribu-
tions and assigns varying weights to the pseu-
do-measurement model derived from EWM-SVM. 
Essentially, GMM represents the weighted combination 
of several Gaussian components, expressed mathemat-
ically as follows: 

2

1

( | ) ( | , )
N

i i i

i

f e f e   


                 (26) 

where i  is the weight of the ith Gaussian component; 
2,i i   are the mean and variance of the ith Gaussian 

component, respectively;   is the parameters selected 

for GMM, which is obtained by the maximum expected 
value method. 

The above N Gaussian components can be used to fit 
the probability density distribution of the time stamped 
pseudo-measurement error en output by EWM-SVM. 
The correlation coefficient between the pseudo-measurement 
error en and the ith Gaussian component can be repre-
sented by the edge density function: 

2

2

1

( | , )
( | )

( | , )

n i i

n i N

i n i i

i

f e
c e

f e

  


  





             (27) 

The Gaussian component corresponding to the 
maximum value of the correlation coefficient c obtained 
by the edge density function is the pseudo-measurement 

variance obtained, and the reciprocal of the pseu-
do-measurement variance can be used as the weight of 
the pseudo-measurement data at different times. 

The selection of pseudo-measurement data significantly 
impacts the accuracy of subsequent state estimation 

calculations, thereby influencing the observability of the 
system. Choosing an appropriate set of pseudo-measurements 
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is crucial for the practical implementation of state 

estimation. 
In Section II, this paper explores distributed power 

loads, which can induce significant variations in voltage 
amplitude and phase angle. Unlike conventional loads 
that cause minor changes, these distributed loads require 
special attention. Therefore, our focus is on optimizing 
the accuracy of power estimation data output by thestate 
estimator. This optimization aims to minimize power 
estimation errors while ensuring system observability. 
Ensuring observability involves utilizing the full rank of 
the Jacobian matrix as a constraint condition in our 
optimization model. This transformation effectively 
turns the task of pseudo-measurement set selection into 
an optimization problem, outlined as follows: 

B L

2 2

, , , ,

1 1

n

1 ˆˆobj:min ( ) ( )

s.t. rank ( ) 2 1

N NT

j t j t j t j t

t j

P P Q Q
T

N



 


     


 

 

H

(28) 

where ,
ˆ

j tP  and ,
ˆ

j tQ  are the estimated values of the jth 

active power and reactive power in the tth state estima-

tion, respectively; 
,j tP  and 

,j tQ  are the true values of 

the power flow for the jth active power and reactive 

power in the tth state estimation, respectively; T , BN  

and LN  are the total number of state estimates, the 

number of system branches, and the number of load 

buses, respectively; nN  is the number of buses in the 

system; H is the Jacobian matrix, and rank (H) repre-
sents the rank of the Jacobian matrix. 

The optimization model described above exhibits 
strong nonlinear characteristics, posing computational 
challenges for traditional mathematical methods in 
solving planning problems. To address these challenges, 
enhance solution efficiency, and improve the accuracy 
of optimization results, the football team training algo-
rithm (FTTA) proposed in [27] is employed. FTTA is a 
metaheuristic algorithm that incorporates global opti-
mization, constraint handling, and local optimization 
techniques. 

Based on the analysis presented, the overall flowchart 
of the pseudo-measurement modeling strategy, which 
considers DG uncertainty, is depicted in Fig. 3. 

 
Fig. 3.  Overall flowchart of the pseudo-measurement modeling strategy. 
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Ⅴ.   CASE STUDY 

In order to verify the effectiveness of the proposed 
pseudo-measurement modelling strategy, a modified 

IEEE 33-bus distribution network system was employed 
in this paper. The system topology, measurement layout, 
and DGs access are shown in Fig. 4 and Table Ⅰ.  

 

Fig. 4. IEEE 33-bus test system. 

TABLE Ⅰ 

MEASUREMENT ARRANGEMENT OF TESTING SYSTEM 

Equipment type Arrangement buses 

μPMU 0 

SCADA 
118, 222, 2324, 2021, 525, 56, 

2728, 2930, 89, 1415, 1617 

All algorithms are implemented on a Ryzen R7-5800 H 

3.2 GHz CPU and 32 G RAM laptop based on Matlab 

R2019b. 

A. Analysis of DGs Buses Pseudo Measurement Model 

In this case, the temperature, direct radiation, scat-

tered radiation, and total radiation of the surrounding 
environment of the photovoltaic power generation sys-
tem, along with measured data of wind speed, temper-

ature, pressure, etc., around the wind turbine power 
generation system, serve as the parameter sources for 
predicting the uncertainty in the output of both the 

photovoltaic power generation system and the wind 
turbine power generation system in a certain area of 

East China during the summer of May (with a sampling 
interval of 15 min) [31]. Additionally, it incorporates 
measured data such as wind speed, temperature, pres-

sure, and other relevant factors around the wind turbine 
power generation system. These parameters form the 
basis for developing an interval prediction algorithm for 

both PV and wind turbine power generation outputs, 
with a sampling interval of 15 min. 

1) Wind Power Output Uncertainty 
The wind turbine power generation system, with an 

installed capacity of 1000 kW, utilizes historical meas-
ured data spanning the past 29 days. This includes 
power output values collected from the wind turbine 
system and meteorological data such as wind speed and 
other variables around the system during the same pe-
riod. Additionally, forecasted data for the next day, 
normalized across different meteorological variables, 

serves as initial training samples for the first layer of the 
KELM network. The first layer of the KELM network is 
designed to simulate the corrected wind speed at the 
forecast point. 

Moreover, the second layer of the KELM network 
incorporates wind direction cosine and sine values from 

the past 29 days, along with air density values, as input 
parameters. For the KELM network, initial input 
weights are randomly assigned, and the hidden layer 

consists of 100 neuron nodes using the Sigmoid activa-
tion function and employing the RBF kernel. 

The interval prediction method for the wind turbine 

power generation system generates output curves at 
various time intervals within the next day, as depicted in 

Fig. 5. The figure illustrates that the upper and lower 
bounds of the wind power output prediction effectively 
cover the dispersed range of true values, demonstrating 

high prediction accuracy. 
In this study, the offline training of the KELM model 

typically requires 2030 min. Subsequently, we con-

ducted 50 efficiency tests, finding that the average time 
consumption for online prediction on the experimental 

platform is 4.71 s. 

 
Fig. 5. Predictive curve of typical daily wind turbine power 

generation system output range. 

2) PV Output Uncertainty 
The installed capacity of the PV power generation 

system is 500 kW. Historical measured data from the 
past 29 days includes power output values from the PV 
system, environmental temperature values, and solar 
radiation values around the system. These data, along 
with the forecasted data for the next day, are used as 
training data for the DFNN model. 

To ensure accuracy and avoid interference caused by 
differences in the scale of temperature and radiation 
values, all input variables are standardized to range 
between 1 and 1. The input weights and hidden layer 
biases of the DFNN model are randomly assigned, with 
the hyperbolic tangent Sigmoid function chosen as the 
activation function. 

In the PSO process, a population size of 100 is se-
lected with a maximum iteration limit of 1000. The 
learning factors are set to 2, and the weight is set to 0.5. 

The interval prediction method for the PV power 
generation system roughly generates curves of the sys-
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tem’s output at different time intervals within the next 
day, as shown in Fig. 6. It can be observed that the upper 
and lower bounds for predicting PV output also en-
compass the scattered distribution area of true values, 
indicating high prediction accuracy. 

The DFNN model training proposed in this paper, 
like wind power prediction, is also conducted offline, 
usually taking about 30 min. After completing offline 
training, we also conducted 50 efficiency tests. The 
average time consumption for online prediction on the 
experimental platform in this article is 6.14 s. 

 
Fig. 6. Predictive curve of typical daily PV generation system 

output range. 

B. Efficiency Analysis of the Load Buses Pseudo 
Measurement Model 

To verify the effectiveness of the proposed EWM-SVM 
method in pseudo-measurement modeling of load nodes, 
this paper utilized a power load dataset representing 1000 
residential units over the course of one year to simulate 
distribution system operations [28], [29]. Specifically, 
within the IEEE-33 bus distribution network, there are 32 
sets of load information, each containing approximately 31 
(1000/32) residential electricity loads. 

The pseudo-measurement information for the load 
buses is generated at the start of state estimation and 
updated 96 times per day, in accordance with the 
standard state estimation frequency (every 15 min). 

To assess the effectiveness of the proposed 
EWM-SVM method against existing methods, three 
models were trained using the residential load infor-
mation described earlier, obtained through power flow 
calculations: the EWM-SVM method proposed in this 
paper, the SVM method, and the ANN method from the 
literature [14]. Using load bus 26 in the system without 
measurement devices as a case study, Fig. 7 presents a 
comparison between the active power provided by the 
pseudo-measurement model and the actual values. 

As depicted in Fig. 7, it is evident that the outputs 
generated by the pseudo-measurement methods based 
on ANN and SVM exhibit considerable deviations from 
the actual power flow values. Upon closer examination 
in the enlarged view, the EWM-SVM method proposed 
in this paper, utilizing a dynamic kernel function ac-
counting for information entropy in historical data, 
demonstrates outputs closer to the actual values com-
pared to conventional SVM methods. In order to 
demonstrate the overall performance of the three trained 
models, in this paper, 500 times tests have been con-

ducted and root mean square error (RMSE) is selected 
as a comparison parameter, which is: 

2

RMSE 1

1
( )

n

i ii
r x x

n 
                    (29) 

 

Fig. 7. The effectiveness comparison of different pseu-

do-measurement models at the load buses. 

The RMSE and efficiency comparison of the three 
models’ pseudo-measurements are shown in Table Ⅱ. 
Efficiency comparison only considers the time con-
sumption of the online prediction part, as model training 
is conducted offline. Therefore, this paper temporarily 
excludes consideration of offline training efficiency. 
Despite potential performance degradation of the pro-
posed method during sudden load changes, it still offers 
significant advantages over the other two models. In 
terms of prediction efficiency, the ANN method exhib-
its the lowest efficiency among the three comparison 
methods. The average time consumption of the basic 
SVM method is lower than that of the method proposed 
in this paper because the proposed method requires an 
additional process of calculating information entropy to 
adjust the weights of the multi-scale RBF kernel func-
tion. Although this slightly reduces prediction effi-
ciency, it effectively enhances prediction accuracy. 

TABLE Ⅱ 

ACCURACY AND EFFICIENCY COMPARISON OF 

PSEUDO-MEASUREMENT FROM DIFFERENT MODELS 

Method 

Max 

RMSE 

(×104) 

Min 

RMSE 

(×104) 

Average 

RMSE  

(×104) 

Average 

time con-

sumption 

(s) 

ANN 77.19 24.87 55.18 11.56 

Basic 

SVM 
89.43 2.57 61.38 4.59 

Proposed 

method 
26.15 0.83 5.29 5.72 

The histogram depicting the error probability density 

distribution of the pseudo-measurement load model 

using the EWM-SVM method proposed in this paper is 

shown in Fig. 8. Based on the histogram distribution, a 

5th-order GMM model was selected for fitting. Table Ⅲ 

provides the parameters of the fitted GMM model. The 

pseudo-measurement variance of each load bus can be 
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determined through Gaussian component analysis of the 

established 5th-order GMM model, facilitating the de-

termination of appropriate pseudo-measurement weights. 

TABLE Ⅲ 

THE PARAMETERS OF EACH GAUSSIAN COMPONENT IN GMM 

Parameter GMM 1 GMM 2 GMM 3 GMM 4 GMM 5 

Mean 0.0894 0.0641 0.0283 0.0084 0.0573 

Covariance 

(×105) 
1.3431 1.9422 12.161 21.441 6.7362 

Weight 0.0299 0.0543 0.3843 0.4234 0.1081 

 

Fig. 8. Schematic diagram of GMM fitting pseudo-measurement 

error. 

C. Analysis of the Selection Optimization and Estima-

tion Results 

To verify the effectiveness of the proposed optimi-

zation model, all generated pseudo-measurement data 

will be input into the optimization model. This paper 

focuses on pseudo-measurement modeling, employing 

basic WLS for static state estimation of distribution 

networks in its experiments. Detailed discussions on 

interval state estimation, distributed estimation, and 

forecasting-aided state estimation are deferred for future 

consideration. Therefore, considering the uncertainty in 

the output intervals of DGs, the mean of the upper and 

lower bounds of wind or PV output at the same pseu-

do-measurement time serves as the pseu-

do-measurement information for DG buses. 

For comparative experiments, we trained three mod-

els: the FTTA optimization proposed before, a greedy 

algorithm without local optimization from [30], and the 

PSO method without selection optimization. 

Figure 9 illustrates the optimization process and it-

eration status. All three optimization models converge 

after iterations, significantly enhancing the effective-

ness of state estimation compared to the unoptimized 

approach. The PSO and greedy algorithms, lacking 

constraint correction and local optima considerations, 

fail to converge to ideal states. Though requiring more 

iterations for convergence, the method proposed here 

reliably improves state estimation results. 

 

Fig. 9. Optimization process of pseudo-measurement selection 

for different models. 

To comprehensively assess the effectiveness of the 

pseudo-measurement modeling strategy proposed in 

this article, four scenarios were designed for compara-

tive experiments: 

Scenario 1: EWM-SVM modeling with pseu-
do-measurement selection optimization. 

Scenario 2: Basic SVM modeling with pseu-

do-measurement selection optimization. 
Scenario 3: EWM-SVM modeling without pseu-

do-measurement selection optimization. 

Scenario 4: Basic SVM modeling without pseu-
do-measurement selection optimization. 

Figure 10 and Fig. 11 provide a comparison of esti-
mation results, focusing on the RMSE of voltage am-
plitude and phase angle across 500 tests for four distinct 

scenarios. These figures illustrate that Scenario 1, uti-
lizing the pseudo-measurement generation scheme and 

the selected optimization model proposed in this article, 
achieves significantly superior estimation performance 
compared to the other scenarios. 

 
Fig. 10. Voltage amplitude RMSE comparison of four scenarios. 
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Fig. 11. Phase angle RMSE comparison of four scenarios. 

Specifically, in Fig. 10, the RMSE of voltage ampli-
tude across scenarios highlights that Scenario 1 exhibits 
markedly lower errors than Scenarios 2, 3, and 4. This 
superiority underscores the effectiveness of incorpo-
rating information entropy from historical operational 
data into the pseudo-measurement generation process. 
By aligning pseudo-measurement data more closely 
with actual operational states, Scenario 1 enhances state 
estimation accuracy for voltage amplitude. 

Figure 11 compares the RMSE of phase angle across 

the same scenarios. Once again, Scenario 1 outperforms 

the others, demonstrating lower RMSE values. The 
comparison between Scenario 1 and Scenario 2 indi-

cates that the consideration of information entropy 
contributes significantly to improving the alignment 
between pseudo-measurement outputs and actual sys-

tem states, thereby reducing phase angle estimation 
errors. Furthermore, the comparison with Scenario 3 
underscores the role of the selected optimization model 

in enhancing state estimation accuracy. This model 
effectively minimizes the objective function encom-

passing errors in active and reactive power while opti-
mizing the selection of pseudo-measurement datasets. 

Overall, Fig. 10 and Fig. 11 affirm that Scenario 1, 

combining the EWM-SVM modeling approach with 

optimized pseudo-measurement selection, offers the 

most effective strategy for improving voltage amplitude 

and phase angle estimation in distribution network state 

estimation tasks. 

D. Scalability in Large Distribution Network 

In practical distribution systems, the number of buses 

typically ranges around 100 or more. To thoroughly 
assess the scalability of the proposed method on 

large-scale systems, we employed a modified IEEE-123 
bus test system [32], depicted in Fig. 12, which includes 
detailed topology and distribution of DGs. 

 

Fig. 12.  The topology structure of the modified IEEE123-bus testing system. 
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For scalability testing, we designed four scenari-
os—labeled as a, b, c, and d—to evaluate the applica-
bility of the pseudo-measurement modeling strategy 
proposed in this paper on larger systems. 

Scenario a: Adopts the proposed pseudo-measurement 
modeling method and pseudo-measurement selection 

optimization. 
Scenario b: Uses a pseudo-measurement generation 

scheme with conventional mean plus Gaussian noise 

(20% Gaussian noise) and the pseudo-measurement 
selection optimization proposed in this paper. 

Scenario c: Adopts the proposed pseudo-measurement 

modeling method without pseudo-measurement selection 
optimization. 

Scenario d: Utilizes a pseudo-measurement generation 

scheme with conventional mean and Gaussian noise (20% 

Gaussian noise) without pseudo-measurement selection 

optimization. 

Table Ⅳ demonstrates that even in larger testing 

systems, the proposed pseudo-measurement modeling 

method and pseudo-measurement selection optimization 

can achieve accurate estimation results. Scenarios a and c 

notably exhibit higher accuracy compared to scenarios b 

and d. This finding suggests that the approach of 

separately modeling load buses and DG-connected buses 

with the proposed method enhances the effectiveness of 

state estimation, even without selection optimization. 

TABLE Ⅳ 

ACCURACY AND EFFICIENCY COMPARISON OF PSEUDO-MEASUREMENT FROM DIFFERENT MODELS 

Estimation object 
Error of Scenario a 

(×104) 

Error of Scenario b 

(×104) 

Error of Scenario c 

(×104) 

Error of Scenario d 

(×104) 

Voltage amplitude error 

(p.u.) 

Max 62 Max 129 Max 103 Max 157 

Min 21 Min 84 Min 64 Min 101 

Average 32 Average 101 Average 86 Average 138 

Voltage phase angle 

error (rad) 

Max 59 Max 117 Max 99 Max 174 

Min 14 Min 78 Min 57 Min 98 

Average 21 Average 89 Average 71 Average 143 

Ⅵ.   CONCLUSION 

This study introduces an advanced pseudo-measurement 

modeling strategy for active distribution network state 

estimation, specifically targeting the uncertainty asso-

ciated with wind power and PV systems. It employs 

double-layer KELM and DFNN models to predict and 

analyze the output uncertainty of wind turbines and PV 

buses, respectively. Additionally, the study integrates a 

historical data entropy-weighted kernel function to 

enhance pseudo-measurement generation for conven-

tional load buses using SVM models. Moreover, opti-

mizing the selection of pseudo-measurement datasets, 

guided by state estimation performance as the objective 

function, significantly enhances the effectiveness of the 

proposed strategy in providing pseudo-measurements 

for the estimator. The simulation example validates the 

efficacy of this strategy using modified IEEE-33 and 

IEEE-123 bus distribution network systems. The results 

demonstrate a notable improvement in the accuracy of 

active distribution network state estimation, offering 

innovative solutions to longstanding challenges in dis-

tribution network monitoring due to inaccurate pseu-

do-measurements. 

Looking ahead, our objective is to expand the appli-

cation of reliable pseudo-measurement modeling tech-

nology to forecasting-aided state estimation and mul-

ti-area distributed computing. This will further enhance 

the practical utility of our research in large-scale dis-

tribution network monitoring. Our forthcoming research 

will delve deeper into these areas, showcasing our on-

going exploration and contributions to the field. 
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