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Abstract—To enhance multi-energy complementarity 

and foster a low carbon economy of energy resources, this 

paper proposes an innovative low-carbon operation opti-

mization method for electric-thermal-gas regional inte-

grated energy systems. To bolster the low-carbon operation 

capabilities of such systems, a coordinated operation 

framework is presented that integrates carbon capture 

devices, power to gas equipment, combined heat and power 

units, and a multi-energy storage system. To address the 

challenge of high-dimensional constraint imbalance in the 

optimization process, a novel low-carbon operation opti-

mization method is then proposed. The new method is 

based on an adaptive single-objective continuous optimiza-

tion spiking neural P system, specifically designed for this 

purpose. Furthermore, simulation models of four typical 

schemes are established and employed to test and analyze 

the economy and carbon environmental pollution degree of 

the proposed system model, as well as the performance of 

the operation optimization method. Finally, simulation 

results show that the proposed method not only considers 

the economic viability of the target integrated energy sys-

tem, but also significantly improves the wind power utili-

zation and carbon reduction capabilities. 

Index Terms—Spiking neural P system, power-to-gas, 

membrane computing, regional integrated energy system, 

low-carbon operation optimization. 
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Ⅰ.   INTRODUCTION 

ith the rapid development of the social economy, 

energy consumption is increasing sharply. 
Coal-fired thermal power continues to dominate in the 

energy structure in China, generating about 40% of total 
carbon dioxide (CO2) emissions in the country [1]. The 

immense consumption of fossil fuels and the resultant 
environmental pollution in the power industry have 

exacerbated issues such as energy depletion and 
greenhouse effect. Economic indicators alone cannot be 

adapted to the current situation [2]. As a result, China 

has been vigorously pursuing the development of clean 
energy sources and actively exploring novel ener-

gy-utilization strategies to facilitate the transition to a 
low-carbon economy. 

Regional integrated energy systems (RIESs) are ca-
pable of integrating a diverse array of resources, such as 

oil, natural gas and renewable energy sources. RIESs 
effectively realize the coordinated and complementary 

low-carbon operation of these multiple energy sources, 

making them a focal point of interest. Among the re-
newable energy sources, wind energy stands out as the 

most emblematic due to its clean and renewable nature 
[3]. Large-scale use of wind energy can effectively 

reduce the fossil energy consumption and the emission 
of CO2 and other greenhouse gases [4]. However, the 

volatility and anti-peak regulation characteristics of 

wind power pose challenges to its development. This is 
particularly evident in northern China, where abundant 

wind and thermal energy resources coincide, leading to 
a pronounced issue of high wind power generation 

amidst low power consumption.  
To address the issues, reference [5] investigates the 

impact of power to gas (P2G) technology in the inte-
grated energy system. The study confirms that P2G 

technology can significantly promote wind power 

consumption as well as reduce fuel costs and CO2 
emissions. However, in this system, only the thermal 

generated by the combined heat and power (CHP) 
equipment supplies thermal energy to the thermal load, 

resulting in inadequate system flexibility. Reference [6] 
proposes an economic power dispatch model consider-

ing environmental costs. The model effectively mini-
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mizes the emission of CO2, SO2 and other pollutant 

gases. However, it still regards CO2 as an emission 
rather than a recyclable resources. While these systems 

have reduced CO2 emissions, the coal-fired thermal 
power remains an active and flexible source in the in-

tegrated energy systems, emitting substantial amounts 

of CO2 and other greenhouse gases. Consequently, how 
to manage this part of CO2 remains an important issue 

of such research works. 

As a result, researchers have proposed additional ef-

fective methods, such as carbon capture, utilization, and 

storage [7], [8]. Reference [9] combines the carbon 

capture and P2G technology to repurpose the CO2 

generated by cogeneration units in the synthesis of 

natural gas, and analyzes its impact on the economy and 

carbon emissions of the system. However, the system 

overlooks the energy consumption of carbon capture 

devices, which ultimately influences the emission 

analysis. To further reduce such CO2 emissions and 

improve the utilization rate of wind power generation, 

reference [10] analyzes flexible operation modes for 

carbon capture and P2G equipment. However, the sys-

tem neglects the utilization of energy storage devices, 

thereby limiting the flexibility of energy scheduling.  

The main drawbacks of aforementioned works are 

summarized as follows. Either the energy consumption 

of equipment in the system is not fully considered, 

which can affect the overall assessment of the system 

economic viability, or the effective application of mul-

ti-energy storage is ignored. Actually, multi-energy 

storage can be used as a hub for the integration of dif-

ferent energy systems, thus improving the rigid con-

nection between networks and realizing the decoupling 

of energy systems in time and space. 

To mitigate carbon emissions from RIESs, improve 

the flexibility of energy dispatch and increase the uti-

lization rate of wind power, this paper introduces a 

framework for an electric-thermal-gas regional inte-

grated energy system that incorporates carbon capture 

devices. The corresponding mathematical model is 

described in detail, while multi-energy conversion 

technology and multi-energy storage system are con-

sidered to further enhance the flexibility of energy dis-

patch, fostering better coordination and complementa-

rity within the system.  

However, due to the increasing numbers of variables 

and high dimension of the proposed RIES, concerns 

about the computational efficiency and practical feasi-

bility of the optimization process are raised, which pose 

a significant challenge. Various optimization algorithms 

have been commonly employed, such as particle swarm 

optimization algorithms (PSO) [11], genetic algorithms 

(GA) [12], grey wolf optimization (GWO) [13], or 

spiking neural P system (SNPS) [14], [15]. Among 

them, the SNPS is built based on the framework of 

membrane computing. In [14], a P system called opti-

mization spiking neural P system (OSNPS) without 

evolutionary operators is constructed. The experimental 

results of OSNPS have advantages when compared with 

six other optimization algorithms by solving the same 

knapsack problem. In [15], a distributed adaptive spik-

ing neural P system for solving combinatorial optimi-

zation problems is proposed. Experimental results 

demonstrate its effectiveness while experimental data 

analysis shows that the introduction of an adaptive 

learning rate and a distributed population structure sig-

nificantly contributes to enhancing convergence and 

promoting population diversity. As evidenced by [14] 

and [15], SNPSs have proven to be both feasible and 

effective in solving such optimization  problems.  

Thus, in order to effectively solve the 

high-dimensional constraint imbalance problem in the 

optimization process of the RIES, we propose a novel 

low-carbon operation optimization method based on 

SNPSs. This proposed method is capable of adaptively 

adjusting mutation operators, so that it can be applied to 

large-scale practical optimization problems. The con-

tributions of this paper are summarized as follows. 

1) An optimal dispatch model of the elec-

tric-thermal-gas regional integrated energy system 

(ETG-RIES) is proposed. In the ETG-RIES, the CO2 

generated from different sources are utilized to the 

greatest extent possible, including carbon dioxide cap-

tured by carbon capture equipment and carbon dioxide 

supplied by manufacturers. Besides, the ETG-RIES 

combines a multi-element energy storage system 

(MESS) to shift energy temporally, to consume as much 

clean energy (e.g., wind energy) as possible, to reduce 

energy from coal-fired power plants, and to further 

reduce carbon dioxide emissions.  

2) The proposed ETG-RIES is a high-dimensional 
model, and algorithms tend to get trapped in local optima 

when trying to find the optimal solution. Consequently, 

an adaptive single-objective continuous optimization 

spiking neural P system (ASCOSNPS) is designed, 

based on which the low-carbon operation optimization 

method of RIESs is proposed. Two special operators are 

designed in the proposed method, i.e., the cumulative 

mutation operator and the adaptive mutation operator. 

Consequently, the operation optimization method based 

on ASCOSNPS, in addition to its ability to escape from 

local optima, can also balance the contribution of the 

penalty function and avoid constraint imbalance. 

3) The concept of carbon environment is introduced 

to assess the carbon reduction capability (CRC) of the 

ETG-RIES. The stronger the CRC of the ETG-RIES, 
the lower the degree of carbon environmental pollution. 

The remainder of this paper is organized as follows. 

Section Ⅱ presents the ETG-RIES framework and the 

models involving the most relevant equipment and de-

vices. The optimal dispatch model and low-carbon op-

eration optimization method of the ETG-RIES are 
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proposed in Section Ⅲ and Ⅳ, respectively. The anal-

ysis of different case studies is provided in Section Ⅴ, 

and a comparative analysis of the three algorithms pro-

vided is given in Section Ⅵ. Finally, conclusions are 

drawn in Section Ⅶ. 

Ⅱ.   REGIONAL INTEGRATED ENERGY SYSTEM 

The proposed ETG-RIES is shown in Fig. 1, where 

CC denotes carbon capture, GT denotes gas turbine, EB 

denotes electric boiler, ESS denotes energy storage 

system, and TSS denotes thermal storage system. In the 

ETG-RIES, multi-element energy storage systems fa-

cilitate energy time-shift. Besides, the P2G, CHP and 

EB technologies enable multi-directional conversion of 

electric, thermal and gas energy. The CO2 emissions 

from the power grid are recycled through the coupling 

of carbon capture devices and P2G equipment. Fur-

thermore, CO2 manufacturers are incentivized to supply 

additional CO2 to the P2G equipment. 

It is assumed that the power output from the grid is 

sourced primarily from coal-fired power plants. More-

over, for the purposes of clarity and calculation, all 

energy units have been standardized to power (kW). 

The system in Fig. 1 presents the key components that 

will be represented into the proposed mathematical 

models.

 

Fig. 1.  Framework of electric-thermal-gas regional integrated energy system considering carbon capture devices. 

A. P2G Model 

There exist two kinds of P2G technologies, which are 

the power-to-hydrogen and power-to-gas. Given that 

the natural gas has a higher energy density per unit than 

hydrogen and can be seamlessly injected into existing 

natural gas networks for large-scale storage and 

long-distance transmissions [16], this paper primarily 

focuses on the power-to-gas process, which involves 

chemical reactions as illustrated in Fig. 2. In the first 

stage, oxygen and hydrogen molecules are produced in 

an electrolyzer. Subsequently, in the second stage, 

synthetic natural gas is generated in a Sabatier reactor, 

where hydrogen molecules react with CO2 ones. 

 

Fig. 2.  Chemical reaction process of P2G. 

The coupling relationships among electrical energy, 

natural gas and CO2 are as follows:  

g e

p2g p2g p2g( ) ( )P t P t                       (1) 

g

c c p2g( ) ( )G t P t                         (2) 

where g

p2g ( )P t  represents the natural gas power of P2G 

at time t; while e

p2g ( )P t and
c ( )G t represent the con-

sumptions of electrical energy and CO2 involved in the 

P2G process at time t, respectively; 
p2g  represents the 

P2G efficiency; and 
c represents the CO2 consumption 

coefficient of synthetic natural gas. 
To ensure the stable operation of the P2G equipment, 

the aforementioned parameters should meet the fol-

lowing constraints: 
min g max

p2g p2g p2g( )P P t P≤ ≤                      (3) 

where 
min

p2gP  and 
max

p2gP  represent the minimum and maxi-

mum output power of the P2G equipment, respectively. 

B. CHP Model 

The CHP technology employs gas turbines to convert 

natural gas into electrical energy. Additionally, it utilizes 

waste heat recovery devices to harness the thermal en-

ergy produced alongside the electrical energy. Notably, 

this technology has comprehensive benefits, including 

energy savings, environment improvement, enhanced 

heating quality, and increased power supply [17].  
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Under the operation of the CHP system, the coupling 

relationships among the natural gas, electrical energy 

and thermal energy are as follows: 
e e g

chp chp chp( ) ( )P t P t                         (4) 
h h g

chp chp chp( ) ( )P t P t                         (5) 

where e

chp ( )P t  and h

chp ( )P t
 
represent the electrical and 

heating power of the CHP equipment at time t, respec-

tively; g

chp ( )P t represents the natural gas consumption in 

the CHP process at time t; while e

chp  and h

chp
 
represent 

the electrical and thermal efficiencies of the CHP 
equipment, respectively. 

To ensure the stable operation of the CHP equipment, 

the aforementioned parameters must adhere the fol-

lowing constraints: 
out e h

chp chp chp( ) ( ) ( )P t P t P t                      (6) 

min out max

chp chp chp( )P P t P≤ ≤                       (7) 

where out

chp ( )P t  represents the total output power of the 

CHP equipment at time t; while min

chpP and max

chpP  repre-

sent the minimum and maximum output power of the 
CHP equipment, respectively. 

C. EB Model 

The EB technology converts electrical energy into 

thermal energy for application to regional thermal loads. 

It not only promotes the consumption of wind power, 

but also breaks the traditional “ordering power based on 

thermal energy” model of cogeneration equipment.  

The coupling relationship between electrical and 

thermal energy, facilitated by the EB technology, is as 

follows: 
h e

eb eb eb( ) ( )P t P t                           (8) 

where 
h

eb ( )P t  and 
e

eb ( )P t
 
represent the heating power 

and power consumption of the EB at time t, respectively; 

whereas 
eb

 
represents the EB efficiency. 

To ensure the stable operation of the EB, the following 

constraint must be met for the involved parameters: 
min h max

eb eb eb( )P P t P≤ ≤                        (9) 

where 
min

ebP and 
max

ebP represent the minimum and 

maximum output power of EB, respectively. 

D. Carbon Capture Model 

The carbon capture technology is designed to capture 

the CO2 emitted by power grids. The energy consump-

tion of the carbon capture process is as follows: 

oc c1 c( ) ( )P t W t                         (10) 

where oc ( )P t  represents the energy consumption of the 

carbon capture device at time t; c1 represents the en-

ergy consumption coefficient of the carbon capture 

device; and c ( )W t represents the amount of CO2 cap-

tured by the carbon capture device at time t, given as: 

c c2 f p r( ) ( )W t P t                       (11) 

where 
c2  represents the carbon capture efficiency; f  

represents CO2 generation coefficient of power grids; 

and 
p r ( )P t  

represents the power output from the 

power grid to the ETG-RIES at time t. 

E. General Model of Energy Storage Systems 

Energy storage systems address discrepancies in en-

ergy supply and demand across both time and space. In 

the time dimension, energy storage systems transfer 

energy in different time periods. In the spatial dimen-

sion, energy storage systems can reduce energy output 

peaks and fill the trough of energy output. The integra-

tion of energy storage systems into RIESs significantly 

enhances the flexibility of the system. 

The multi-element energy storage system discussed 

in this paper includes two primary components: ESS 

and TSS. Its generalized representation for charging and 

discharging processes is as follows: 

ss ss,out ss,in( ) ( ) (1 ) ( )P t P t P t               (12) 

where 
ss ( )P t , ss,out ( )P t and ss,in ( )P t represent the trans-

mission energy, discharge power and charging power of 
the MESS at time t, respectively;   represents the 

charging and discharging states of the MESS, whereas 
    means the MESS is in a charging state and 1   

indicates a discharge state. 

The energy stored by the MESS at time t is: 

ss ss ss( ) ( 1) ( )Q t Q t P t                    (13) 

where 
ss ( 1)Q t 

 
represents energy stored by the MESS 

at time ( 1)t  . 

To ensure the stable operation of the MESS, the pa-

rameters involved should meet the following con-

straints: 
ss

ss,in c_max0 ( )P t P≤ ≤                     (14) 

ss

ss,out s_max0 ( )P t P≤ ≤                    (15) 

s_min ss s_max( )Q Q t Q≤ ≤                 (16) 

where 
ss

c_maxP  and 
ss

s_maxP  represent the maximum input 

and maximum output of the MESS, respectively; while 

s_minQ and 
s_maxQ represent the minimum and maximum 

storage capacities of the MESS, respectively.  

Ⅲ.   OPTIMAL DISPATCH MODEL OF ETG-RIES 

A. Objective Function 

Considering the elements including the electrical 

energy interaction cost 
p _ cC  between the ETG-RIES 

and the power grid, the natural gas purchase cost 
g _ cC , 

the environmental cost 
e _ cC  and the CO2 purchase cost 

buy _ cC , the objective function is established as:  

min p _ c g _ c e _ c buy _ cf C C C C                 (17) 
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where 
minf  represents the minimum economic cost of 

the energy dispatch of the ETG-RIES. 

The electrical energy interaction cost between the 

ETG-RIES and power grid is as follows:

 
 p _ c p p r up r p

1

( ) ( ) ( ) ( )
T

t

C t P t t P t  



         (18) 

where 
p ( )t  and 

up ( )t
 
represent the electricity pur-

chase and sale prices at time t, respectively; 
r p ( )P t  

represents the remaining power that is provided to the 

power grid; and T
 
represents the operation cycle time of 

the ETG-RIES. 

The natural gas purchase cost is: 

g _ c g g r

1

( )
T

t

C P t 



                      (19) 

where 
g  represents natural gas price; 

g r ( )P t
 repre-

sents the amount of natural gas purchased by the RIES 

from the natural gas network at time t. 

In this paper, the capture, storage and utilization 

technologies of CO2 are employed to ensure that the 

park rarely emits CO2 into the environment. Thus, the 

cost of CO2 emission is ignored when calculating the 

total costs. To show simplicity and convenience, the 

capture and storage charges of CO2 are called envi-

ronmental cost in this paper, which is calculated by: 

e _ c p oc c c c

1

( ) ( ), ( ) 0
T

t

C P t Q t Q t 


  ＜        (20) 

c c c( ) ( ) ( )Q t G t W t                    (21) 

where 
c  represents the sequestration cost coefficient 

of CO2; c ( )Q t  represents the flow amount of CO2. If 

c ( ) 0Q t ＜ , then the ETG-RIES needs to store the ex-

cess of CO2; otherwise, it needs to purchase 
cQ  kilo-

gram of CO2 from the CO2 manufacturers. 

The CO2 purchase cost is: 

buy _ c c c c( ), ( ) 0C Q t Q t ≥              (22) 

where 
c represents the cost coefficient of the 

ETG-RIES purchasing CO2 from CO2 manufacturers. 

B. Power Balance Constraints 

The expressions for the power balance constraints, 

which correspond to various power sources including 

electric, thermal and natural gas, are presented here. 

1) Electric power balance constraint is as follows: 
e

p r wind chp ess

e e e

load eb p2g r p

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

P t P t P t P t

P t P t P t P t





   

  
           (23) 

where wind ( )P t  represents the output power of the wind 

power at time t; while ess ( )P t  and 
e

load ( )P t  represent the 

power transmission of the ESS and regional electrical 

load at time t, respectively. 

2) Thermal power balance constraint is as follows: 

h h h

chp eb tss load( ) ( ) ( ) ( )P t P t P t P t               (24) 

where 
tss ( )P t  and h

load ( )P t represent the thermal trans-

mission of the TSS and regional thermal load at time t, 
respectively. 

3) Natural gas power balance constraint is as follows: 
g g

g r p2g load chp( ) ( ) ( ) ( )gP t P t P t P t             (25) 

where g

load ( )P t  represents the regional gas load at time t. 

Ⅳ.   LOW-CARBON OPERATION OPTIMIZATION  

METHOD OF ETG-RIES 

In this section, it first proposes the ASCOSNPS, and 

an ASCOSNPS-based operation optimization method for 

ETG-RIESs is then introduced. Following that, the algo-

rithmic description of the proposed method is presented. 

A. Adaptive Single-objective Continuous Optimization 
Spiking Neural P System 

The OSNPS is first proposed in [14] in 2014. After a 

decade of development, several variants of OSNPS have 

been proposed [15]. However, these variants have pri-

marily been used to solve discrete problems. Since the 

optimization problem we aim to solve is continuous, in 

this paper, we first refine the conventional OSNPS to 

adapt to the objective function at hand. As a result, the 

ASCOSNPS is presented. 

Definition 1: An adaptive single-objective continu-

ous optimization spiking neural P system (ASCOSNPS) 

of degree 1m＞ is a tuple, i.e.: 
1( , , , )mS S G   

where: 

1)
1 2 out( , , , , , ),1 ,l nS B syn I l m   ≤ ≤  represents 

the ith subsystem, where: 

ⅰ) { }B b represents a singleton alphabet, b
 
repre-

sents a spike, and B  represents a set of spikes; 

ⅱ)
p sQ Q Q represents a neuron set, while 

 1, ,p nQ   and  1 2,s n nQ    represent the 

sets of pulse-generating and pulse-supplying neurons, 

respectively. Each pulse-generating neuron 
i  is of the 

form ( , , ),1i i iR P i n ≤ ≤ , where: 

a) 
i represents the potential value of spikes con-

tained in 
i ; 

b)  iR a a    represents the firing rule of 
i , 

where its execution will consume a spike a
and gen-

erate a new pulse at the same time, denoted as a
; 

c) iP  represents the rule excitation operator in i ; 

ⅲ) Both 1n  and 2n  work as the step-by-step sup-

plier of spikes to 1, , n  ; 

ⅳ) {( , ) | ((1 1) ( 2))syn i j i n j n      ≤ ≤  

(( 2) ( 1))}i n j n    
 
represents the directional 

synaptic connection between neurons; 
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ⅴ)  out 1, , nI    represents a finite set of output 

neurons, i.e., the output is a spike train formed by con-

catenating the outputs of 
1, , n  ; 

2) G
 
represents an adaptive director, which is used 

to adaptively adjust the size of rule excitation operators 

in neuron 
i . 

B. ASCOSNPS-based Low-carbon Operation Optimiza-
tion Method of ETG-RIES 

In this section, the proposed ASCOSNPS is em-

ployed in the low-carbon operation optimization pro-

cess of the ETG-RIES. The flow chart is shown in Fig. 3, 

where both 
maxN and 

maxT represent the maximum 

numbers of iterations, and rand represents a random 

number between 0 and 1. 

 

Fig. 3.  Flow chart of low-carbon operation optimization method 
of ETG-RIES based on ASCOSNPS. 

The steps of the proposed optimization method of 

ETG-RIES based on ASCOSNPS are described as  

follows. 
Step 1: Input parameters. Input important parameters 

including electricity-heat-gas load, wind power output, 
energy prices and energy conversion efficiency of RIES, 

pulse sequence 
sT , learning probability a

jp , learning 

step   and mutation operator 
1 2 3, ,v v v ; 

Step 2: Set the initial step N  as 1; 

Step 3: Generate the solution matrix B randomly; 

Step 4: Excitation by rule matrix P. Excite the solu-

tion matrix B by using the rule excitation matrix P; 

Step 5: Set the initialization step T  of sub-loop as 1; 

Step 6: Calculate energy dispatch. Based on the so-

lution matrix B and the existing data and constraints in 

current area, calculate the energy dispatch situation for 

each energy unit; 

Step 7: Check whether the output of each energy unit 

exceeds the limit. If the output does not exceed the limit, 

then go to Step 10; otherwise, proceed to Step 8; 

Step 8: Perform local mutation. Generate cumulative 

gradient mutation operator to perform local mutation on 

contemporary solutions; 

Step 9: Update energy dispatch. Update the energy 

dispatch situation for each energy unit and calculate the 

objective function value; 

Step 10: Calculate the objective function value; 

Step 11: if maxT T＞ , then proceed to Step 12; oth-

erwise, 1T T   and go to Step 6; 

Step 12: Obtain the global optimal individual and 

global optimal fitness; 

Step 13: Choose the learning method according to 

the learning probability; 

Step 14: Update P again. Generate the mutation op-

erators 1v  and 2v  to perform mutation operations on the 

rule excitation matrix P, so as to update P again; 
Step 15: Check whether the termination condition 

maxN N＞  is met. If so, then proceed to the Step 16; 

otherwise, 1N N   and go to Step 3 to continue the 

iteration; 
Step 16: Output results and end computation. Output 

the lowest cost energy dispatch, including the optimal 

energy dispatch of each energy unit and the carbon 

emissions of the ETG-RIES. The algorithm execution is 

complete, and the computation ends. 

The proposed method introduces three modules as 

shown in Figs. 46, namely, the cumulative gradient 

mutation module, learning module and adaptive muta-

tion module. The goal of the approach is to improve the 

ability to solve high-dimensional optimization problems, 

increase the generalization ability and enhance the 

global optimization-seeking ability.  

Specifically, the cumulative gradient mutation mod-

ule performs probability accumulation for selective 

mutation based on the magnitude of the data, facilitating 
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compliance with the constraints of the operation opti-

mization method. The learning module can randomly 

learn to update matrix P, whereas the adaptive mutation 

module dynamically adjusts the mutation probability 

according to the iterative stage, thereby enhancing the 

global optimization-seeking. 

The algorithmic elaboration of the proposed opera-

tion optimization method is as follows. This is the code 

for the main module, which is capable of calling module 

1 and module 2. 

Algorithm: ASCOSNPS-based operation optimization method 

Input: electricity-thermal-gas load, wind power output, energy prices 
and energy conversion efficiency of the ETG-RIES, pulse sequence 

sT , learning probability 
a

jp , learning step   and mutation operator 

1 2 3, ,v v v  

1: Initialize individual optimal fitness and global optimal fitness, 

initialize mutation flag bit 1u  , initialize mutation operator 
1 0v  , 

rearrange 
sT  into a regular excitation matrix, and initialize the solu-

tion matrix ( )ij H mp P  

2: 1gen   

3: while ( Maxgen gen＜ ) 

4: Generate solution matrix ( )ij H mb B  

5: ( ) /18  B B P B  

6: Calculate the energy dispatch situation of each energy unit 

7: Call module 1, update individuals  

8: Update the energy dispatch situation of each energy unit 

9: Calculate the objective function 

10: Obtain the global optimal individual bg  and global optimal 

fitness fg  

11: 1i                                     

12: while ( 1:i H ) do 

13:  while ( 1:j m ) do 

14:  Call module 2, update the rule excitation matrix P  

15:  Call module 3, update the rule excitation matrix P again 

16:  end while 

17: end while 

18: end while 

Output: the lowest cost of output energy dispatch, the optimal energy 

dispatch of each energy unit and carbon emissions of the ETG-RIES 

The cumulative gradient mutation operator 
3v  in 

module 1 can balance the contribution of the penalty 

function and avoid the constraint imbalance problem. 

The flow chart of module 1 is shown in Fig. 4.  

 

Fig. 4.  Flow chart of cumulative gradient mutation module. 

Module 1: Cumulative gradient mutation module 

1: if 3

2

v
rand＞  then 

2:   while (  1:t ceil m rand  ) do 

3:       b

tt gs  

4:   end while 

5: end if 

The individual mutation
ts occurs when the mutation 

condition is satisfied. The mutation module is shown as 

below, where 
ts represents the tth (1 )t m≤ ≤  row 

vector in each generation of matrix ( )ij H mb B .  

Let us note that the initial state of the mutation oper-

ator is
3 0v  . Thus, when the constraint variable crosses 

the limit, the computational process is as follows: 

3 3 _ _g i vv v v                            (26) 

where 
_ _g i vv  represents the vth step value of the ith 

constraint variable in the gth generation, where 

1 Max ,1 3,1g gen v i m＜ ≤ ≤ ≤ ≤ ≤ . 

After the previous steps are performed, the learning 

module start operating as follows. 

Module 2: Learning module 

1: if (
a

jrand p＜ ) then 

2:   
1 2 1 2, ( ),k k ceil rand H k k i     

3:   
1 1 2 2 1 2
( ( ) ( )) ( ( ) ( ))j k k k k k kx x f x f x x f x f x ＜ ＞  

4:   ( )( ) ( )( )ij ij ij j ij ij jp p b x p b x        

5: else 

6:   if (
b

jijb g ) then 

7: 
b b

j j( )( 0.5) ( )( 0.5)ij ij ijp p g p g    ＜ ＞  

8:   end if  

9:   Over-limit processing for rule excitation operator ijp  

10: end if 

The flow chart of module 2 is shown in Fig. 5. 

 

Fig. 5.  Flow chart of learning module. 

Since this single module alone cannot adequately 
handle the high dimensional problems, an adaptive 
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mutation operator 
1 2( )v v, is added after module 2, 

which can dynamically scale the mutational range. 

Under the control of 
1 2( )v v, , the rule excitation matrix 

P has a high mutation probability in the early stages of 
the iteration. At the later stages, the mutation probabil-
ity will become smaller and smaller, so as to avoid 
missing the global optimum. 

The early stages of the adaptive mutation are shown 

in module 3-(1), while its later stages are shown in 

module 3-(2). 

Module 3-(1): Early stages of the adaptive mutation 

1: 1u   

2: if (
8 Max

10

gen
gen


＜ ) then 

3:   if (
1 0.25v ＞ ) then 

4:     
1 0.75v   

5:   end if 

6:   if (
1 2andrand v rand v＜ ＞ ) then 

7:     if ( 0.56rand＜ ) then 

8:       while ( 1:i H ) do 

9:            while ( 1:j m ) do 

10:                  if ( i x ) then 

11:                    ijp rand  

12:                  end if 

13:             end while 

14:       end while 

15:     end if 

16:   0u   

17:   end if 

18: end if  

 

Module 3-(2): Later stages of the adaptive mutation 

1: if (
8 Max

10

gen
gen


≥ ) then 

2:  if (
1 2rand v and rand v＜ ＞ ) then 

3:    if ( 0.035rand＜ ) then 

4:      while ( 1:i H ) do 

5:           while ( 1:j m ) do 

6:                if ( i x ) then 

7:                  ijp rand  

8:                else 

9:                continue 

10:                end if 

11:           end while 

12:     end while 

13:    end if 

14:    0u   

15:  end if 

16: end if 

The generation process of 1v
 
and

 2v
 
in the proposed 

adaptive mutation operator 1 2( )v v,
 
is as follows: 

1 1

2
v v u

gen
                              (27) 

where 1v
 
represents the iterative mutation accumulation 

value and u represents the mutation flag bit. If the muta-

tion occurs, then 0u   and 1 0v  ; otherwise, 1u   and 

this state will remain until the next mutation happens.  

2

0

1

1 log( )
1 exp 2

2 log( )

gen
v

D

D


  
     

  

       (28) 

where 
2v  represents the difference variance ratio map-

ping value, which can be used to maintain the popula-

tion diversity. genD  represents the individual mean 
maximum difference in the contemporary population 

and is calculated by (29), while 0D  represents the in-
dividual mean maximum difference in the initial popu-

lation and is calculated in a similar manner as genD . 

  1

1

1
max (:, )

m
gen gen

i

D D i
m 

          (29) 

1 , [1, 1], [2, ]gen gen gen

im jmD p p i H j H        (30) 

where the 
1

genD  represents the individual difference in 

the contemporary population. 
The flow chart of module 3 is shown in Fig. 6. 

 

Fig. 6.  Flow chart of adaptive mutation module. 

Ⅴ.   CASE ANALYSIS 

In this section, the proposed ASCOSNPS-based op-
eration optimization method is employed to solve the 
models in Sections Ⅱ and Ⅲ. The problem to be solved 

has high-dimensional nature. Initially, the fundamental 
parameters are introduced, and the four cases are then 
compared to clarify the features included in each model. 
Finally, the effectiveness and superiority of the 

ASCOSNPS-based method in optimizing the operation 
of the proposed RIES are tested and verified. 

A. Basic Parameters 

We have selected a northern region as an illustrative 
example. The purchase and sale prices of electricity, as 
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well as the natural gas price are presented in Table Ⅰ. 

Additionally, the ETG-RIES parameters are detailed in 

Table Ⅱ [16], [18][26], while the load-side energy 
consumption and wind power data are depicted in Fig. 7. 

In Table Ⅱ, 
essQ and 

tssQ  represent the storage capaci-

ties of the ESS and TSS, respectively. 

TABLE Ⅰ 
ELECTRICITY AND NATURAL GAS PRICES 

Time periods 
Electricity 

purchase price 

(¥/kWh) 

Electricity 

sale price 

(¥/kWh) 

Natural gas 
price (¥/kWh) 

Peak periods 0.84 0.65 0.258 

Normal periods 0.62 0.47 0.258 

Valley periods 0.42 0.33 0.258 

Note: 10:0015:00, 18:0021:00 (peak periods); 07:0010:00, 

15:0018:00, 21:0023:00 (normal periods); 00:007:00, 23:0024:00 
(trough periods) 

 

Fig. 7.  Load-side energy consumption data and wind power data. 

TABLE Ⅱ 
PARAMETERS OF THE ETG-RIES 

Parameters Value Parameters Value 

c (¥/kg) 0.5 g (kg/ kWh) 0.22 

c (¥ /kg) 0.03 
min

p2gP (kW) 0 

f (kg/ kWh) 0.98 
max

p2gP (kW) 30 

c (kg/ kWh) 0.2 
min

chpP (kW) 15 

eb (%) 95 
max

chpP (kW) 115 

p2g (%) 60 min

ebP (kW) 0 

e

chp (%) 40 max

ebP (kW) 30 

h

chp (%) 45 essQ (kWh) 120 

c2 (%) 90 tssQ  (kWh) 80 

c1  (kWh /kg) 0.269   

B. Cases Setting 

To verify the effectiveness of the proposed model 

(Case 1), three other RIES frameworks (i.e., Cases 24 

shown in Table Ⅲ) are set up for simulation and analy-

sis. The four cases are designed from the perspective of 
carbon reduction and improvement of wind energy 

utilization. The simulation results are analyzed from the 
aspects of the economy and carbon environmental pol-

lution degree of the RIESs. 

The energy dispatch results for Cases 14 are shown in 

Figs. 811, where the parts above and below the 0-scale 
line indicate the energy output and consumption of the 

equipment, respectively. The subgraphs (a)(c) in Figs. 

811 indicate the dispatching results corresponding to 

electrical energy, thermal energy and natural gas, re-

spectively, for Cases 14. The wind power consumption 

rate by the RIESs under different cases are shown in 
Table Ⅳ, and the costs resulting from the daily energy 

consumption (calculated in kW) are shown in Table Ⅴ. In 

addition, we employ the commercial solver CPLEX to 
solve the proposed model. Experiments results show that 

the cost by using CPLEX is 2043.2651 yuan per day, 
which is higher than the result (i.e., 1912.08 yuan per day) 

by using our proposed optimization method. Conse-
quently, in comparison, ASCOSNPS demonstrates a 

higher cost-effectiveness in finding optimal solutions 
than CPLEX. 

TABLE Ⅲ  

CONFIGURATION OF CASES 14 

Cases 
Carbon 

capture 

Wind 

power 
P2G CHP EB ESS TSS 

1 √ √ √ √ √ √ √ 

2 √ √ √ √ √ × × 

3 × √ √ √ √ √ √ 

4 √ √ × √ √ √ √ 

Note: “×” indicates that there are no corresponding equipment. 

C. Economic Comparison 

In this section, the optimization outcomes of the four 
cases shown in Table Ⅲ are presented. These results 

contain the energy dispatch details of each sub-equipment, 

the associated costs, and the wind power utilization rate. 

TABLE Ⅳ 
WIND POWER CONSUMPTION RATE BY RIESS UNDER EACH CASE 

Cases 1 2 3 4 

Wind power con-
sumption rate (%) 

100 98.03 98.00 92.45 

TABLE Ⅴ 

COST RESULTS OF CASES 14 
(¥/day) 

Cases Total cost  Electrical energy interaction cost  Natural gas purchase cost Environmental cost CO2 purchase cost  

1 1912.08 739.16 968.79 203.21 0.92 

2 1952.06 754.46 989.57 207.91 0.12 

3 1736.59 767.55 952.79 0 16.25 

4 1720.08 572.62 1008.86 138.60 0 
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Fig. 8.  Energy dispatch results in Case 1. (a) Electrical energy. (b) 
Thermal energy. (c) Natural gas. 

 

 

 

Fig. 9.  Energy dispatch results in Case 2. (a) Electrical energy. (b) 
Thermal energy. (c) Natural gas. 
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Fig. 10.  Energy dispatch results in Case 3. (a) Electrical energy. 
(b) Thermal energy. (c) Natural gas. 

 

 

 

Fig. 11.  Energy dispatch results in Case 4. (a) Electrical energy. 
(b) Thermal energy. (c) Natural gas. 

To analyze the optimization results, this paper con-

ducts a comparative analysis of Cases 24 against Case 

1 (i.e., Figs. 811, and Tables Ⅳ and Ⅴ), which serves 

as the baseline for evaluation. 

1) Comparison Analysis of Optimization Results Be-

tween Case 2 and Case 1 

In contrast to Case 1, Case 2 experiences heightened 

energy dispatch costs, diminished energy dispatch effi-

ciency, and reduced capability for assimilating for wind 

power consumption, due to the absence of mul-

ti-element energy storage systems. The specific aspects 

of such performance are described as follows. 

Figure 9(a) shows that, without the time-shifting ca-

pability of electrical energy provided by the ESS, the 

power output of the grid intensifies, and the grid sup-

plies additional power for the RIES, even during peak 

electricity consumption hours (i.e., 10:0013:00, and 

14:0015:00). At the same time, since the output of 

power grid positively correlates with the carbon capture 

energy consumption, there is a consequential surge in 

carbon capture energy consumption. This, in turn, 

triggers an increase in both the electrical energy inter-

action cost and environmental cost. 

Figure 9(b) demonstrates that, in the absence of the 

time-shifting capability of thermal energy facilitated by 

the TSS, the output energy fluctuation of the EB is 

higher compared to Case 1. Besides, to compensate for 

the thermal load, the output of the CHP is increased, 

highlighting the challenges in maintaining a stable 

thermal supply. 

Figure 9(c) underscores the significance of mul-

ti-element energy storage systems in enabling flexible 

energy utilization. In the absence of such systems, the 

inability to store and dispatch energy as needed results 

in a heightened demand for external natural gas, which 

subsequently drives up purchase costs. This highlights 

the importance of energy storage in optimizing resource 

allocation and reducing operational expenses. 

2) Comparison Analysis of Optimization Results Be-

tween Case 3 and Case 1 

In the absence of carbon capture device, Case 3 exhib-

its a lower energy dispatch cost than Case 1, albeit with a 

limited capability to consume wind power. The specific 

aspects of such performance are described as follows. 

Figure 10(a) illustrates that for Case 3, the electrical 

energy consumption of the carbon capture device is 0, 

resulting in a complete elimination of environmental 

cost. However, the high dependence of the RIES on the 

power grid increases the cost of electrical energy in-

teraction. 

Figure 10(b) depicts that the EB assumes a greater 

role in thermal energy supply, thereby reducing the 

thermal energy output requirements of the CHP. 
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Figure 10(c) shows a notable decrease in the natural 

gas consumption of the CHP, together with an increase 

in natural gas production via the P2G technology. This 

reduces the dependence on external natural gas, leading 

to a reduction in the cost of purchasing natural gas from 

outside suppliers. However, the absence of carbon 

capture devices, which would typically provide free 

CO2 for the P2G, results in an increase in the CO2 pur-

chase cost. 

3) Comparison Analysis of Optimization Results Be-

tween Case 4 and Case 1 

Compared to Case 1, Case 4 exhibits a lower energy 

dispatch cost in the absence of P2G. However, the en-

ergy output of Case 4 experiences significant fluctua-

tions, and its capability to absorb wind power remains 

limited. The specific aspects of such performance are 

described as follows. 

Figure 11(a) indicates that the power grid reduces its 

energy output to the RIES, leading to a corresponding 

decrease in the energy consumption of carbon capture 

devices. However, this adjustment results in more pro-

nounced fluctuations in the output energy of the power 

grid. 

Figure 11(b) reveals that both the CHP and EB ex-

hibit significant fluctuations in their thermal energy 

outputs. 

Figure 11(c) shows that to meet the gas load, the 

RIES increases its natural gas purchases. Additionally, 

due to the fluctuation of the output energy of the CHP, 

the natural gas network also produces large fluctuations 

when transmitting natural gas to the RIES. 

In summary, although Case 4 has the lowest total cost, 

its wind power consumption capability is the worst 

which is only 92.45%. Case 2 has a high wind power 

consumption capability of 98.03%, but its total cost is 

the highest. Case 3 has a low total cost, and at the same 

time, its wind power consumption capability is 98%, 

showing good overall performance. Case 1, despite in-

creasing certain economic costs, has the strongest wind 

power consumption capability of 100%, demonstrating 

excellent comprehensive performance. Evidently, alt-

hough the proposed model (i.e., Case 1) sacrifices 

economy to some extent, it can fully utilize renewable 

energy, enhance the carbon reduction capability of the 

integrated energy system, and reduce carbon environ-

mental pollution. Meanwhile, experimental results also 

prove that combining carbon capture devices with P2G 

equipment is an effective way to reuse CO2 as a re-

source. 

D. Comparison of Environmental Pollution Degree for 

RIESs 

The excessive emission of CO2 poses detrimental 

impacts on our planet, such as accelerating of global 

warming, which in turn leads to increased temperatures, 

rising sea-levels, and disruption of ecological balance. 

Consequently, in this section, a comparative analysis of 

the carbon environment pollution degree of the RIESs 

in Cases 14 is conducted. Here, the carbon environ-

ment pollution level of the RIESs is indicated by the 

CRC of the system, where a stronger CRC signifies a 

lower degree of carbon environmental pollution, while a 

weaker CRC indicates a higher level of pollution. 

The CRC of RIESs is given as follows: 

f oc p c

crc c

1 1 g g c

( ( ) ( ))
( ( )) / 100%

( )

T T

t t

P t P t
C W t

P t







  

    
       
   

(31) 

where crcC  represents the CRC of RIESs, and g  

represents CO2 generated coefficient for consuming 
natural gas. 

To compare and analyze the carbon environmental 

pollution degree of the RIESs, the total generation, 

and the capture and emissions of CO2 from the RIESs 

for Cases 14, are described. The results are shown in 

Fig. 12, while the re-utilization rate of captured CO2 

and the carbon reduction capability of the RIESs are 

shown in Table Ⅵ. 

 

Fig. 12.  Total generation, capture and emission of CO2 from the 

RIESs in Cases 14. 

TABLE Ⅵ 
REUTILIZATION RATE OF CAPTURED CO2 AND CARBON REDUCTION 

CAPABILITY OF THE RIES IN EACH CASE 

Cases 1 2 3 4 

Re-utilization rate of 

captured CO2  (%) 
4.50 3.52 0 0 

Carbon reduction capa-
bility of RIESs (%) 

50.95 50.81 0 46.64 

Similarly, the carbon environmental pollution degree 

of the RIES in Case 1 serves as the benchmark for 

comparison, against which the carbon environmental 

pollution degree of the RIESs in Cases 24 are analyzed. 
Case 2 vs. Case 1. The dependence of Case 2 on ex-

ternal energy leads to higher total CO2 emission, result-
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ing in lower utilization and carbon reduction capabilities 

for captured CO2 in Case 2 compared to Case 1. 

Case 3 vs. Case 1. Although the total generation 

amount of CO2 in Case 3 is low, the absence of carbon 

capture devices leads to high CO2 emission and low 

carbon reduction capability. Meanwhile, because P2G 

cannot recycle this part of CO2, there is a conflict be-

tween high CO2 emission and zero CO2 utilization rate. 

Case 4 vs. Case 1. The total generation, capture and 

emissions of CO2 in Case 4 decrease. However, the high 

dependence on natural gas in Case 4 results in a reduced 

carbon reduction capability. Meanwhile, there is no P2G 

environment to resourcefully reuse the captured CO2, 

resulting in its zero re-utilization rate. 

In summary, the model proposed in this paper can 

improve the carbon reduction capacities of RIESs and 

mitigate carbon environment pollution by optimizing 

energy utilization. Moreover, the combination of carbon 

capture devices and P2G equipment offers an efficient 

way for the secondary utilization of CO2. 

Ⅵ.   COMPARATIVE ANALYSIS OF ALGORITHMS 

To verify the soundness of the proposed 

ASCOSNPS-based method, it is compared with the GA 

and QPSO alternatives, under the same situation. Like-

wise, Case 1 is employed as the experimental subject, 

while the accuracy, number of iterations, and optimiza-

tion results achieved by these algorithms are compared.  

A. Comparative Analysis of the Accuracy of the Algo-

rithms 

The comparison results on accuracy are shown in 

Table Ⅶ, where the accuracy rate is expressed as fol-

lows: 

r
r

sum

Q

Q
                                (32) 

where r  represents the accuracy rate, sumQ  represents 

the number of experiments (taken as 10000 in the paper), 

and rQ  represents the number of experimental results 

satisfying the given constraints. 

TABLE Ⅶ 
ACCURACY OF ASCOSNPS, GA AND QPSO 

Algorithms ASCOSNPS GA QPSO 

Accuracy rate 

(%) 
99.92 99.91 98.97 

It can be seen from Table Ⅶ that, despite the good 

results of the three algorithms, the accuracy of 

ASCOSNPS is slightly higher than those of GA and 

QPSO. This shows that the ASCOSNPS-based method 

can effectively deal with high-dimensional problems 

and avoid the constrained imbalance problem slightly 

better than other approaches.  

B. Comparative Study of the Number of Iterations 

In this section, the results on the convergence of the 

different methods along the iterations are analyzed and 

compared in Fig. 13. It illustrates that the 

ASCOSNPS-based method has a lower objective func-

tion value (i.e., a lower minimum economic cost of 

energy dispatch) with respect to GA, which has the 

highest (i.e., the worst) objective function value and is 

very easy to fall into local optimal solutions in the iter-

ations. While QPSO has the lowest objective function 

value, it requires the highest number of iterations (i.e., 

420 iterations), whereas ASCOSNPS completes the 

optimization process within 312 iterations. 

 

Fig. 13.  Iteration of ASCOSNPS, GA and QPSO. 

C. Comparative Analysis of the Optimization Results 

In order to verify the competitiveness of the 

ASCOSNPS-based method in optimizing the proposed 

model (i.e., ETG-RIES), the comparative results of the 

aforementioned three algorithms are shown in Table Ⅷ. 

Specifically, we observe that GA enables the 

ETG-RIES to reduce the dependence on natural gas, but 

it increases CO2 emissions by 25.79%. Moreover, alt-

hough the amount of CO2 captured under GA is the 

highest, its re-utilization rate is lower than the one under 

the ASCOSNPS-based method. Furthermore, the car-

bon reduction capability of the ETG-RIES under GA is 

also low. 

The ETG-RIES operating under QPSO exhibits sig-

nificantly lower carbon reduction capability and wind 

power consumption rates compared to the 

ASCOSNPS-based method. This is due to the large 

amount of natural gas purchased from the external 

market, which is converted into electrical and thermal 

energy by the CHP. This kind of energy conflicts with 

the wind power consumption, resulting in the wind 

power not being fully absorbed. Besides, despite QPSO 

achieving the lowest CO2 emissions, the re-utilization 

rate of the captured CO2 remains at a mere 0.05%, 

failing to harness the full potential of integrating carbon 

capture devices with the P2G equipment. 
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TABLE Ⅷ  
OPTIMIZATION RESULTS OF ASCOSNPS, GA AND QPSO 

Algorithms 
Natural gas 
purchased 

(kWh) 

CO2 captured 

(kg) 

CO2 emissions 

(kg) 

Re-utilization rate of 

CO2 captured (%) 

Carbon reduction capa-

bility of ETG-RIES (%) 

Consumption 
rate of wind 

power (%) 

ASCOSNPS 3754.98 969.80 933.75 4.50 50.95 100 

GA 3242.21 1205.13 1174.56 2.99 50.64 100 

QPSO 4129.76 548.95 810.77 0.05 40.37 87.76 

In summary, the ASCOSNPS-based method sur-

passes both GA and QPSO in terms of the overall and 

comprehensive performance. While achieving 100% 

wind power consumption, the ASCOSNPS-based 

method not only improves the carbon reduction capa-

bility of the ETG-RIES but also mitigates its carbon 

environmental pollution to a greater extent. 

Ⅶ.   CONCLUSIONS 

Within the context of RIES and low-carbon energy 

scheduling, a mathematical framework-based model for 

the ETG-RIES is proposed, abstracting its core com-

ponents. The model adopts various energy conversion 

equipment and a multi-element energy storage system 

to enhance the flexibility of energy scheduling. Besides, 

the connection of carbon capture devices and P2G 

equipment provides a viable path to reuse CO2 and 

realize the reduction of carbon emission. 

Meanwhile, to effectively optimize the proposed 

ETG-RIES model, a novel ASCOSNPS-based method 

is proposed, which introduces the cumulative mutation 

operator and the adaptive mutation operator. It shows 

that the ASCOSNPS-based method can not only escape 

local optima in the search for an optimal solution in a 

high-dimensional problem, but also balance the con-

tribution of the penalty function and avoid the constraint 

imbalance. Furthermore, the results of this study show 

the followings: 

1) The proposed ETG-RIES adopts the MESS that 

takes into account the immediate response speed of 

charging and discharging. This technology can flexibly 

utilize energy through the feature of energy 

time-shifting, realizing 100% consumption of wind 

power with uncertain factors. Furthermore, the MESS 

can store energy when energy prices are low and use 

energy when prices are high, which allows for saving in 

energy consumption costs and maximizing the func-

tional and economic value of the energy storage system.  

2) Although the carbon capture devices increase the 

energy scheduling cost of the ETG-RIES, they signifi-

cantly reduce CO2 emission. The experimental results 

show that the ETG-RIES can reduce the CO2 emission 

by around 45% compared to the RIES without carbon 

capture devices. 

3) P2G can not only effectively consume wind power,  

but also reuse the CO2 captured by the carbon capture 

device as the raw material for synthetic natural gas for 

secondary utilization. 

4) Compared with GA and QPSO, the proposed 

ASCOSNPS-based method shows its superiority in the 

accuracy rate, the re-utilization rate of CO2 captured, the 

carbon reduction capability of the ETG-RIES, and the 

consumption rate of wind power. 

In summary, both the ETG-RIES and ASCOSNPS- 

based method have good performances in the carbon 

reduction capability. The ETG-RIES can satisfy with 

the diversified energy use demand, and soften the rigid 

connection between the energy and the loads. At the 

same time, the proposed operation optimization method 

achieves the optimal purpose of the ETG-RIES, based 

on which the reduction of CO2 emission and deep 

consumption of wind power are achieved.  

This study focuses on the theoretical model building 

and simulation verification. Future work will explore 

opportunities to apply the proposed theoretical frame-

work in real-world environments, directly demonstrat-

ing the effectiveness and potential issues of the method 

and providing valuable feedback and directions for 

improvement. 
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