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Wind Turbine Gearbox Fault Diagnosis Based on 

Multi-sensor Signals Fusion 
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Abstract—This paper proposes a novel fault diagnosis 

method by fusing the information from multi-sensor sig-

nals to improve the reliability of the conventional vibra-

tion-based wind turbine drivetrain gearbox fault diagno-

sis methods. The method fully extracts fault features for 

variable speed, insufficient samples, and strong noise 

scenarios that may occur in the actual operation of a wind 

turbine planetary gearbox. First, multiple sensor signals 

are added to the diagnostic model, and multiple stacked 

denoising auto-encoders are designed and improved to 

extract the fault information. Then, a cycle reservoir with 

regular jumps is introduced to fuse multidimensional 

fault information and output diagnostic results in re-

sponse to the insufficient ability to process fused infor-

mation by the conventional Softmax classifier. In addition, 

the competitive swarm optimizer algorithm is introduced 

to address the challenge of obtaining the optimal combi-

nation of parameters in the network. Finally, the valida-

tion results show that the proposed method can increase 

fault diagnostic accuracy and improve robustness. 

Index Terms—Wind turbine gearbox, fault diagnosis, 

multiple scenarios, deep learning, stacked denoising au-

to-encoder, cycle reservoir with regular jumps, feature 

fusion network. 

 

Ⅰ.   INTRODUCTION 

ind energy has become an important resource 

worldwide, and wind turbines have been widely 

researched and applied [1], [2]. Planetary gears are 

important components in the drive train of wind tur-

bines, and have the advantages of compact structure, 

high power density, and high transmission efficiency [3]. 

However, they are prone to failure under dynamic load 
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and frequently changing operating conditions, resulting 

in high maintenance costs. Accurate diagnosis of 

gearbox faults is essential to improve the safety, relia-

bility, and economy of wind turbines. 

Conventional fault diagnosis methods usually analyze 

the collected vibration signal via signal analysis methods 

to identify gearbox fault types. Feature analysis of vibra-

tion and current signals is conducted and an SVM-based 

feature fusion network for effective diagnosis of gearbox 

fault is constructed in [4]. However, gearbox fault signals 

are strongly nonstationary, which leads to poor distin-

guishability. Therefore, high-level expertise and sig-

nal-processing techniques are required for the above 

methods, while the poor generalizability can lead to 

missing information when applied in practice [5]. 

With the development of artificial intelligence tech-

nologies, intelligent diagnosis of planetary gears has 

been widely researched [6]. Deep learning has the ad-

vantages of high intelligence, high efficiency, and 

strong generalizability. Thus, it can meet the require-

ments of fault diagnosis for feature adaptive extraction 

and reduce the reliance on expert experience. It can also 

fully reveal the fault feature information of the original 

data. An improved method based on convolutional 

neural network (CNN) is proposed in [7] and the ex-

perimental results show that the improved network is 

more robust to external disturbances. In [8], a multiscale 

convolutional neural network (MSCNN) is proposed for 

the multi-scale features of a gearbox vibration signal, 

and the fault information at different scales is success-

fully extracted. A lifelong learning method for gearbox 

diagnosis is proposed in [9]. This has satisfactory ro-

bustness with incremental fault types. An improved 

CNN model structure is proposed in [10], where a new 

convolutional layer is added in front of the fully con-

nected layer to mine the deeper features of the signal, 

and this improves the generalizability of the model. To 

overcome the shortcomings of traditional methods and 

improve fault diagnosis capability, a fault detection 

method based on the combination of multiple fractal 

spectra and a support vector machine is proposed in [11] 

where the classification and identification is made of 

normal signals and four kinds of sun wheel fault signals 

at different rotational speeds. Diagnostic results from 

W 
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different classifiers are fused to secure robustness in the 

presence of noise in [12].  

The above research shows that deep learning methods 

have achieved remarkable success in intelligent fault 

diagnosis of planetary gears. However, the signal from a 

single sensor is used as input in most existing deep 

learning methods. As the planetary gear is in contact 

with the sun gear and the gear ring simultaneously, the 

vibration signal characteristics of the planetary gear are 

complex. In addition, planetary gears usually operate at 

low speed and high load. This increases noise interfer-

ence in the vibration signal. Consequently, diagnostic 

accuracy and robustness may be compromised. Sensor 

failure may also directly lead to incorrect diagnostic 

results [13]. In recent years, many studies have been 

conducted on the introduction of other signals. An 

analysis method based on time domain signal charac-

teristics is proposed in [14]. This is supported by a fast 

dynamic time regularization algorithm and a correlated 

kurtosis algorithm. The fusion of stator and rotor current 

signals of doubly-fed generators is used for the effective 

identification of gear faults in [15], whereas deep con-

volutional neural networks based on the fused data of 

vibration and current sensors are developed to achieve 

the detection of planetary gearbox faults in [16]. The 

above studies introduce the current signal as the input to 

the diagnostic model. However, the essence of fault 

information in a current signal is the feedback of tor-

sional vibrations to the stator current, and these fault 

features are not prominent in the current signal with a 

fault in the gearing system [17].  

Other signals have been used to diagnose faults in 

various types of rotating equipment over the last few 

years [18][20]. At present, multi-sensor signal fusion 

methods have been applied in several fields. A diagnosis 

method using multi-sensor fusion and CNN is proposed 

for mechanical fault diagnosis in [21]. This is suitable 

for diagnosis problems with multi-source signals and 

has advantages in the improvement of classification 

accuracy. Vibration signals and current signals are fused 

in most of the above research, while the fault infor-

mation contained in the current signal is limited. 

Therefore, new sensor signals have to be introduced as 

input to the diagnostic model.  

The autoencoder is improved and used as the fault ex-

traction module to extract fault features in [22]. Generally, 

the feature extraction module can extract features better 

with sufficient training data. However, wind turbines 

often operate in strong noise conditions and the fault data 

is usually insufficient in real cases. So the feature ex-

traction module needs to be improved to enhance the 

feature extraction capability in the case of strong noise 

and small samples. Also, very large computing resources 

are required for conventional feature extraction methods 

for multiple sensor signals. A CNN which is trained well 

by the denoising-classification neural network (DCNN) 

is proposed to develop a protection scheme [23]. In [24], 

bearing fault features from four sensors are extracted. 

However, the training time is longer than the feature 

extraction network with a single input signal. So it is 

necessary to improve the network to speed up the training 

process. A generative adversarial network is used to 

generate data for fault diagnosis with insufficient data 

and Softmax is used as a classifier to output the diagnosis 

results in [24], though the experiments conducted in the 

paper indicate that Softmax performs poorly in fusing the 

features extracted from the used signals. Therefore, a 

new classifier needs to be introduced to fuse the multi-

dimensional features. 

This paper proposes a wind turbine drivetrain gearbox 

fault diagnosis method based on a multi-sensor signals 

feature fusion network (MSFFN) for variable speed 

conditions, insufficient samples and strong noise sce-

narios. To fully extract the fault feature information and 

to minimize the missing information, signals from mul-

tiple sensors are used as input to the proposed diagnostic 

model. Then, a multi-sensor signals stacked denoising 

auto-encoder (MS-SDAE) is constructed and improved 

to extract the fault information from each sensor signal. 

Since the conventional classifier has insufficient ability 

to process fused information, a cycle reservoir with 

regular jumps (CRJ) is introduced to fuse the multisen-

sory signal fault information and output diagnostic re-

sults. In addition, a CRJ based on competitive swarm 

optimizer (CSO) optimization is designed to address the 

difficulty for CRJs to obtain the optimal combination of 

parameters. The MSFFN model formulation for a wind 

turbine gearbox is proposed, and the proposed method is 

validated using data collected from multiple sensors in 

comparison with other diagnostic methods using single 

signal or multi-signal diagnostic methods. 

The main contributions of this paper are: 

1) Signals from various sensors are discussed and 

used as input to the diagnostic model. It is verified that 

the extra input signals can improve diagnostic accuracy. 

2) SDAEs, as an efficient fault feature extraction 

model is developed in this paper. The activation func-

tion in the model is changed and the network structure is 

improved. These modifications can speed up the train-

ing process with more input signals. 

3) CSO-CRJ is introduced into the diagnostic model 

as a classifier to replace the conventional Softmax 

classifier, and it is proven that the proposed classifier 

performs better than the conventional classifier at fusing 

fault features in multiple signals. 

The remainder of this paper is organized as follows. 

Section Ⅱ presents the theoretical background of the 

proposed multi-sensor signals feature fusion fault di-

agnosis method. In Section Ⅲ, the MSFFN model 

formulation for a wind turbine gearbox is proposed 

based on the selected signals and deep learning methods. 

Section Ⅳ validates the effectiveness and superiority of 
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the proposed method in comparison with those using 

single signal or other multi-signals via experimental test 

results carried out on a gearbox test rig. Section Ⅴ pro-

vides the conclusions. 

Ⅱ.   THEORETICAL BACKGROUND 

A. Input Signal of the Diagnostic Model 

Mechanical systems are dynamic systems, and the 

overall changes in the system cannot be accurately 

collected by a single sensor. Thus, here, more and dif-

ferent sensors are placed to fully collect the fault in-

formation of wind turbines.  

Vibration signal is widely used in the field of gearbox 

fault diagnosis. A planetary gearbox dynamic model is 

developed to analyze the causes of gear vibration. The 

vibrations generated by internal and external excitations 

are considered and the differential equations for the 

dynamics can be established as: 
  Mx Cx Kx T                          (1) 

where M, C, and K are the mass, damping, and stiffness 

matrices of the system, respectively; x and T are the 

vibration displacement vectors and external torque 

vectors at each point, respectively. 
Based on (1), the dynamics of the single-stage plan-

etary gear system is modeled as shown in Fig. 1. In Fig. 
1, s represents the sun gear, r represents the gear ring, c 

represents the planetary frame, and np  represents the 

nth planetary gear. The x-axis passes through the center 
of the circle of the first planetary gear, and the coordi-
nate system rotates at the speed of the planet frame. The 
support stiffness and damping of each component are 
represented by a virtual spring-damper unit with cen-

tralized parameters, i.e., ijk  denotes the stiffness, ijc  

denotes the damping, i denotes the component 

( , , , )ni s r c p , and j denotes the degrees of freedom 

( , , )j x y u . spnk  and spnc  are the time-varying stiffness 

and damping constant of the sun-planetary gear meshing 

pair, respectively, whereas rpnk  and rpnc  are the 

time-varying stiffness and damping constant of the 

ring-gear meshing pair, respectively. ( )spne t  and ( )rpne t  

are the transmission errors of the nth sun-planetary gear 
meshing pair and inner ring-gear meshing pair, respec-

tively. spnx  and rpnx  are the relative displacements along 

the active line of the sun sun-planetary gear and the inner 
ring gear, respectively, and can be expressed as: 

sin cos ( )

( )

spn s sn s sn s pn spn

rpn r pn rpn

x x y u u e t

x u u e t

      


  

   (2) 

where sn n s    ; rn n r    ; s  and r  are the 

meshing angles of the sun-planetary gear and the inner 

ring gear, respectively; 2π( 1)/n n N    represents the 

circumferential angle of the nth planetary gear around 
the sun gear; and n is the number of planetary gears.  

Specifically, mesh stiffness is a function of angular 

displacement and can be approximated as a square wave 

when the gear is free of faults. However, when the gear 

fails, the meshing of faulty teeth causes a reduction of the 

meshing stiffness function, and the reduction in meshing 

stiffness results in abnormal vibration of the gears. 

 
Fig. 1.  Planetary gearbox dynamic model. 

Variable speed operation of a wind turbine is con-

sidered in this paper. Two types of vibration signals, 

acceleration, and displacement, are selected as inputs. 

The acceleration signal is sensitive to high rotational 

speed and the displacement signal is sensitive to low 

rotational speed. 

The vibration signal is the main input signal for the 

developed diagnostic model. However, because of the 

complex structure of the gearbox and continuous opera-

tion under variable speed and load conditions, the vi-

bration of the gearbox is subjected to multiple excitation 

sources and complex transmission paths. The vibration 

signal is characterized by strong noise and multi-source 

coupled modulation. Therefore, non-vibration signals 

must be introduced as inputs to the diagnostic model. 
Torque ripples caused by gear mesh can be observed at 

multiples of the mesh frequency, which is defined as the 

product of the number of teeth and the speed. These torque 

ripples can be expressed as friction torque, given as: 

out out, out ,cos( + )f n f n

n

T B B n                (3) 

where fT  and B are the friction torque and friction 

coefficient, respectively; out  is the averaged rotating 

speed of the output shaft; 
out,n  and ,f n  are the am-

plitude for the nth rotating speed of the output shaft and 
phase offset for the nth friction torque, respectively. The 
torque signal is used as the input to the diagnostic model 
because faults in the gearbox will cause torque ripples 
and thus affect the torque. 
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Torque variation and speed variation are closely re-
lated. Rotating machines are driven by output torque, 
which is electromagnetic torque amplified by the 
gearbox. When a local failure occurs in the planetary 

gearbox, a periodic shock torque SBT  is generated. For a 

wind turbine with a local gear failure, the motor speed is 

affected by the shock torque SBT  as follows: 

SB

0

1

1
sin(2π )

2π c

n

T
nf t

J n
 





                   (4) 

where   is the speed; J is the inertia; and 
cf  is the fault 

characteristic frequency. The speed signal is also used 
as an input signal to the model because gearbox faults 
also affect the motor speed. 

In summary, in this paper, the acceleration, dis-
placement, torque and speed signals are used as inputs of 
the diagnostic model, where the acceleration and dis-
placement signals are contained in the vibration signal.  

B. Denoising Auto Encoder 

An autoencoder (AE) is a feature representation 
network based on a neural network, composed of input, 
hidden, and output layers, and is one of the typical 
models of deep learning. It reconstructs the input data 
through encoding and decoding operations to minimize 
the reconstruction error. In this way, the hidden layer 
representation of input data is obtained to achieve fea-
ture extraction.  

The encoding stage of the AE is the process from 
input layer x to hidden layer h, which is specifically 
expressed as: 

( ) ( )h f x x b   w                      (5) 

where   is a nonlinear active function, -( ) 1/1 e xx   , 

parameter set  ,b  w ; w is the weight matrix be-

tween the input and hidden layers; and b denotes the 
bias of the hidden layer. The decoding stage is the pro-
cess of reconstructing the output layer z from the hidden 
layer h in a similar way, as: 

( + )z g w h b 
                         (6) 

where    is a nonlinear sigmoid active function; 

and  ,w b    is the parameter set. The internal pa-

rameters of the network are adjusted gradually by 
minimizing the reconstruction error function 

2
( , )L x z x z  . The optimization method is the ran-

dom gradient descent method, and the optimal param-
eter is expressed as: 

,
, argmin ( , ( ( ))L x g f x 

 
  


                  (7) 

A denoising auto-encoder (DAE) is a variant of AE, 
one which trains input data through noise pollution to 
increase the robustness of the network and prevent 
over-fitting [23]. As shown in Fig. 2, the input x is sto-
chastically corrupted to x . The AE then maps it to h via 

the encoder f  and attempts to reconstruct x via the 

decoder g , producing reconstruction output z. Recon-

struction error is measured by the loss L (x, z), given as: 

1

( , ) [ log (1 ) log(1 )]
d

k k k k

k

L x z x z x x


           (8) 

 
Fig. 2.  Denoising auto-encoder architecture. 

C. Cycle Reservoir with Regular Jumps Network 

Reference [26] proposes a deterministic cycle reser-
voir with regular jumps (CRJ) network. This avoids the 
uncertainty caused by the randomly generated weight 
matrices in the reserve pool through the deterministic 
sparse connections of the CRJ network reserve pool 
neurons. The CRJ structure is shown in Fig. 3. The CRJ 
network consists of an input layer, a storage pool and an 
output layer. The hidden layer has two fixed positive 

values cr  and jr , where the weights in the hidden layer 

are connected in a cycle cr  with two-way jumps jr  as 

given in Fig. 3. All the ring weights have the same value 

0cr ＞  and all jump weights also share the same value 

0jr ＞ . 

 
Fig. 3.  CRJ architecture. 

In the method proposed here, the memory pool of 

CRJ is used as the information processing medium to 

map the input feature vector from the low- to the 

high-dimensional state space and to train the connection 

weight of the network in the high-dimensional state 

space to achieve feature fusion. The network is repre-

sented as: 

( 1) ( ( 1) ( ))x t f Vs t Wx t                    (9) 

( 1) ( 1)y t Ux t                         (10) 

where t is the sample index; and f is the activation func-

tion of the hidden layer; V is the connection weights that 

link the input units with the hidden units; W is the con-

nection weights between the hidden units; and U is the 

weights that connect hidden units to output units. The 

output weights U are computed using linear regression as: 
T 2 1 T( )U x x x y   I                     (11) 

where I is the identity matrix; and 0＞ is a regulari-

zation factor. 
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The loss function for evaluating the best readout 

weights for CRJ and ESN is the normalized mean 

square error (NMSE), measured as:  
2

MSE 2

ˆ( ) ( )

( ) ( )

y t y t
N

y t y t





               (12) 

where  denotes the empirical mean; and  denotes the 

Euclidean.
 

D. Competitive Swarm Optimizer 

A heuristic parameter optimization method is used in 
the training process of the above CRJ network. Since 
the setting of parameters has a large impact on network 
performance, a competitive particle swarm optimiza-
tion algorithm is introduced to obtain the optimal 
combination of parameters and reduce the influence of 
human factors on the feature fusion network. The 
competitive particle swarm algorithm is a new particle 
swarm optimization algorithm proposed in recent years. 
It is simple to implement and fast to converge, and is 
widely used to solve single-objective optimization 
problems [27]. Each particle represents a candidate 
solution for the optimization problem, and the particles 
iterate until they find the optimal solution [28]. Each 
particle has its individual position and velocity, denoted 

as  1 2, , , D

p p p pX x x x  and  1 2, , , D

p p p pV v v v , 

respectively, while D is the number of decision varia-
bles of the optimization problem. 

The powerful particle update mechanism is the ad-
vantage of the competitive particle swarm algorithm 
over traditional particle swarm algorithms. First, the 
particle swarm state of the kth iteration is denoted 

as  1 2( ) ( ), ( ), , ( ) .NP k X k X k X k  After calculating 

the fitness of all particles in P(k), the group is randomly 
divided into two equal groups. Then the two groups of 
particles will compete with each other. The particle with 
better fitness will be the winner, directly entering 
P(k+1), and the other particle will be the loser and will 
be updated based on the winner and transferred to P(k). 
For the convenience of expression, the positions and 
speeds of the winner and loser are respectively denoted 

as , ( )p wX k , , ( )p wV k , 
, ( )p lX k , and 

, ( )p lV k . Then the 

update process of the loser is: 

, 1 , 2 ,

, 3 ,

( 1) ( , ) ( ) ( , )( ( )

( ) ( , )( ( ) ( ))

p l p l p w

p l p l

V k r p k V k r p k X k

X k r p k X k X k

   

 
 (13) 

, , , ,( 1) ( 1) ( ) ( 1)p l p l p l p lX k X k X k V k         (14) 

where 1r ( , )p k , 2r ( , )p k , and 3r ( , )p k  are random coef-

ficients obeying a uniform distribution [0,1]; ( )pX k  is 

the global average position of the particle population; 

and   is the parameter controlling ( )pX k . 

Ⅲ.   PROPOSED FAULT DIAGNOSTIC METHOD BASED ON 

MULTI-SENSOR INFORMATION FUSION 

In the fault diagnosis of planetary gearboxes, the 
signals collected by different sensors have different 

numerical information and fault features [16][18]. The 
existing deep learning models are mainly based on 
unidimensional feature extraction, which is prone to 
missing information, and the Softmax classifier, which 
has excellent classification performance and is widely 
used, performs poorly in the processing of fused in-
formation. Therefore, to make full use of the fault fea-
ture information, this paper proposes a multi-sensor 
signals feature fusion network, as shown in Fig. 4.  

 
Fig. 4.  Framework of MSFFN. 
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A multi-sensor signals stacked denoising auto-encoder 

(MS-SDAE) constructed by multiple SDAEs is used in 

the network to extract feature information from each 

sensor signal simultaneously. CSO-CRJ is then used to 

fuse information and output diagnostic results. 

A. Improved Stacked Denoising Auto-encoders 

Several DAEs are stacked to form an SDAE, as 

shown in Fig. 5. Each DAE uses the hidden layer output 

of the previous DAE as its original input data. After the 

noise has been added, the contaminated data is used for 

training. Feature learning is implemented by the stacked 

DAEs in the SDAE model. The activation function of 

traditional SE often uses a sigmoid function or rectified 

linear unit (ReLU). The sigmoid function is prone to 

gradient disappearance and consumes a lot of compu-

tational resource, whereas the sparse features extracted 

by ReLU negatively affect the decoder to generate 

samples and make the fit insufficient.  

 

Fig. 5.  Stacked denoising auto-encoder architecture. 

The parametric rectified linear unit (PReLU) is: 

( 0)
PReLU( )

( 0)

i i

i

i i i

x x
x

a x x


 


＞

＜
             (15) 

PReLU allows negative outputs, and has a very small 

number of additional parameters compared to ReLU. The 

risk of overfitting the network is not significant, while 

poor fit due to excessive feature sparsity can be avoided 

so that model generalization performance is not affected. 

Therefore, PReLU is used as the activation function. 

Batch normalization (BN) is used to solve the prob-

lems of gradient explosion and gradient disappearance 
that tend to occur during the training process of SDAE. 

BN is performed by preprocessing the input with whit-

ening transformation: 

( )

var( )

x E x
x

x 





                       (16) 

where E(x) is the mean of one of the batches of inputs x; 

var(x) is the variance of that batch of data; and ε is a 

very small positive number. Whitening transformation 

tends to weaken the performance of the model. To im-

prove the expressiveness of the model, a “scale and 

translate” operation is introduced as: 

,BN ( )y x x                      (17) 

After “scale and translate”, the network has strong 

nonlinear expressiveness. It avoids getting trapped at 

both ends of the nonlinear interval, which could make 

the network converge slowly. 

A BN layer is added between each fully connected 

layer to speed up the SDAE network training to avoid 

overfitting, while PReLU is used to avoid the negative 

impact of over-sparse features on the decoder. 

B. CSO-CRJ 

As described in Section 1.2, the training process of 

CRJ is a heuristic parameter optimization process, 

which makes it difficult to obtain the optimal combina-

tion of parameters. In addition, the generalization per-

formance of CRJ will be affected if the memory pool 

size, spectral radius, sparsity, and input variation factor 

are set manually. 

The CSO algorithm has the advantages of simple 

operation, fewer parameters required, and easy imple-

mentation. Therefore, to achieve the information fusion 

of different feature domains efficiently, CSO-CRJ is 

proposed here, and the specific optimization steps are: 

1) Initialization parameters, setting the maximum 

number of iterations, population size, and the key pa-

rameters of CRJ (storage pool size, spectral radius, spar-

sity, and input variation factor) as optimization variables. 

2) Chaotic initialization of the initial position and 

velocity of the particle swarm using logistic mapping. 

3) Calculating the root mean square error of the CRJ 

model corresponding to each particle in the training set 

according to (12) as the fitness value. 

4) Making two groups of particles compete two by two 

and marking them as winners and losers respectively 

according to the magnitude of their fitness values. 

5) Updating the velocity and position of the defeated 

particle according to (13) and (14), and calculating the 

fitness value, the global optimum, and the correspond-

ing optimal solution of the updated particle. 

6) If the maximum number of iterations or the fitness 

value is reached, the optimization ends and goes to step 7), 

otherwise it returns to step 4). 

7) The optimal particle, i.e., the optimal network pa-

rameter combination, is obtained. 

The feature vectors 1 2 3, , , , ix x x x  are obtained by 

feature extraction of SDAE. The feature vectors are 

completely concatenated to construct the input vector x 

for CRJ, while CSO is used to optimize the CRJ struc-

tural parameters. Finally, CSO-CRJ is trained and di-

agnostic results are generated. In summary, the fault 

diagnostic process based on MSFFN is shown in Fig. 6. 
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Fig. 6.  Flowchart of the proposed method. 

Ⅳ.   EXPERIMENTAL VALIDATION 

A. Experimental Set-up 

1) Data Preparing 

The wind turbine gearbox fault diagnosis test bench is 

shown in Fig. 7, including the sensor locations. Figure 8 

shows the planetary gear used in the experiments, in-

cluding four states of normal condition (NC), chipped 

tooth fault (CTF), surface wear fault (SWF), and missing 

tooth fault (MTF). To collect the fault data, a planetary 

gear in the planetary gearbox is selected and replaced 

with the faulty planetary gear. The electric motor drives 

the planetary gear through torque encoded sensor, and 

then the speed is reduced through the parallel gearbox. 

The torque signal and speed signal used in this paper are 

directly from a fixed-position torque-encoded sensor. A 

displacement sensor is installed on the drive shaft to 

better respond to low-frequency vibration caused by 

unbalance, misalignment, loose contacts, etc. due to gear 

fault. The acceleration sensor is installed on the planetary 

gearbox. In this case, the collected signal contains more 

information about the fault. 

 

Fig. 7.  Wind turbine fault diagnosis test bench and three types of sensors. 

 

Fig. 8.  Fault settings. 

a) Constant Speed Experiment 

The motor speed is set at 1500 rpm and the sensor 

sampling rate is set to 48 kHz. Four signals are collected 

from different health conditions of the planetary gear-

box in four operating conditions, as shown in Fig. 9(a). 
b) Variable Speed Experiment 
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Fig. 9.  Signal of planetary gearbox at normal and failure condi-

tions. (a) Constant speed. (b) Variable speed. 

Changing the load and adjusting the motor speed, the 

various signal waveforms in the variable speed condi-

tion are shown in Fig. 9(b), and the speed variation is 

shown in Fig. 10. 

 

Fig. 10.  Speed curve of planetary gearbox. 

The signals generated by rotating machinery are pe-

riodic. Thus, to ensure that each sample data contains at 

least one complete failure cycle, and to facilitate the 

training of the network, each sample in the sample set 

contains 2048 sampling points and 500 samples for each 

working condition and speed, resulting in a total of 4000 

samples. 

2) Parameter Set 

The number of nodes in the hidden layer of MS-SDAE 

for each sensor signal sample is shown in Table Ⅰ, where 

the number of nodes in the first layer is the input dimen-

sion of each sample. The training process uses the Adam 

optimization algorithm, the initial learning rate is set to 

0.01, and the number of training iterations is 200. 

TABLE Ⅰ 

STRUCTURAL PARAMETERS OF MS-SDAE 

Input Layer size Layers 

Displacement 2048/1024/512/128/32/4 5 

Acceleration 2048/1024/512/128/32/4 5 

Speed 1024/512/128/32/4 4 

Torque 2048/1024/512/128/32/4 5 

B. Experimental Results 

1) Fault Diagnosis in Case of Sufficient Samples 

The training and test sets with sufficient samples are 

randomly divided in the ratio of 3:1, i.e., 1500 samples 

for constant speed training and 500 samples for constant 

speed testing, and 1500 samples for variable speed 

training and 500 samples for variable speed testing. The

①CNN [8], ②MSCNN [12], ③SDAE, ④deep en-

hanced fusion network (DEFN) [29], ⑤ MS-SDAE, ⑥ 

MS-SDAE-CRJ and ⑦ MS-SDAE-PSO-CRJ are used 

for comparison. MSCNN takes the 3 scales after coarse 

granulation of samples as input, and the individual CNN 

structure is the same as ①. SDAE takes the same mul-

ti-sensor signals as input, and the number of hidden layer 

nodes is the same as in Section Ⅳ. A.2). SDAE uses the 

original activation function and does not integrate the BN 

layer. DEFN extracts error information using a 

four-dimensional sparse self-encoder after feature en-

hancement of the input. The MS-SDAE structure pa-

rameters are the same as SDAE. A Softmax classifier is 

used for fault classification after the features are fully 

connected. The MS-SDAE-CRJ parameters are artifi-

cially set with a storage pool size of 300, a spectral radius 

setting of 1, a sparsity of 10%, and an input variation 

factor of 0.1. 

Each experimental set is repeated 10 times to reduce 

the effect of randomness. The average classification ac-

curacy and training time for the test set are shown in 

Table Ⅱ, where accuracy is defined as the percentage 

ratio of samples that are correctly classified to the total 

number of samples in the test. As seen in Table Ⅱ, each 

method is capable of reaching a high classification ac-

curacy with sufficient training. The diagnostic results of 

the MSFFN model proposed in this paper are 

98.54±0.43% for the constant speed condition and 

98.23±0.49% for the variable-speed condition. Com-

pared to MSCNN and DEFN, the proposed method has 

higher accuracy and lower standard deviation.  

Compared to the conventional single-signal input deep 

learning network combined with the Softmax classifier, 

the multi-sensor signals feature extraction combined with 

the Softmax classifier is less effective in fault identifica-

tion. Thus, it is concluded that the Softmax classifier is 

less capable of fusing information from different sensor 

signals. Therefore, in this paper, CRJ is introduced to 

perform feature fusion and output diagnostic results. The 

diagnostic results of ⑥ and ⑦ show that the structural 
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parameters of the CRJ greatly affect its performance. 

Appropriate optimization algorithms must be introduced 

because the structural parameters set by artificial expe-

rience tend to lead to insufficient generalization. The 

comparison of ⑦ with MSFFN shows that the feature 

fusion and classification performance of CSO-CRJ is 

better than that of PSO-CRJ, and the iteration speed of 

CSO is also faster. 

TABLE Ⅱ  

COMPARISON OF FAULT DIAGNOSIS RESULTS 

Method 

Accuracy ± standard deviation 
(%) Average train-

ing/testing time 
(s) Constant 

speed 

Variable speed 

① 93.13±0.88 92.65±0.76 242.71/0.43 

② 95.90±0.63 95.28±0.92 312.61/0.47 

③ 93.03±1.78 92.83±1.17 179.36/0.27 

④ 95.78±0.43 95.30±0.56 256.74/0.44 

⑤ 95.03±0.47 94.83±0.49 227.22/0.27 

⑥ 95.60±0.51 95.26±0.74 304.81/0.49 

⑦ 96.03±0.47 95.83±0.49 481.93/0.68 

MSFFN 98.54±0.43 98.23±0.49 386.10/0.51 

Training MSFFN takes more time than the conven-

tional methods because more weights are used and the 

network is trained more often during optimization itera-

tions. However, because of the improvement of the 

SDAE activation function and the BN layer, the testing 

time required for the model increases by a small margin, 

whereas the trained diagnostic model does not require 

large computing resources. 

2) Fault Diagnosis with Insufficient Samples 

In the actual operation of a wind turbine, the frequency 

of planetary gearbox failure is low. The fault diagnosis in 

daily work often faces the problem of insufficient sam-

ples. To simulate the small sample case, the number of 

samples in the training set is defined to be 100% when 

the samples are sufficient. For example, the network is 

trained with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 

80%, and 90% of the total number of samples in the 

training set, while keeping the number of samples in the 

test set constant. Mean diagnostic results after 10 repeti-

tions in each set are shown in Table Ⅲ. In the case that 

the ratio is greater than 50%, the classification accuracy 

of each method tends to be stable, indicating that the 

training samples are sufficient at this rate. 

The classification capabilities of CNN, MSCNN and 

SSAE decrease significantly when the ratio of training 

samples is less than 50%. In contrast, the feature fusion 

networks DEFN, and MSFFN are robust to the reduction 

of samples. MSFFN performs better overall, with more 

than 90% classification accuracy even with only 10% 

training examples. 

TABLE Ⅲ 

COMPARISON OF DIAGNOSTIC RESULTS WITH DIFFERENT SAMPLE 

RATIOS 

Ratio 
(%) 

Accuracy (%) 

① ② ③ ④ MSFFN 

10 62.10 71.45 68.34 85.40 90.14 

20 75.24 75.28 77.58 91.17 93.69 

30 

40 

50 

60 

70 

80 

90 

100 

83.91 

86.70 

87.03 

88.60 

90.48 

91.54 

92.16 

92.65 

88.64 

89.26 

91.43 

92.56 

92.87 

94.43 

94.70 

95.28 

84.20 

85.97 

87.36 

88.24 

89.65 

91.12 

92.73 

92.83 

93.52 

94.07 

94.32 

94.78 

94.69 

95.11 

95.20 

95.30 

95.16 

95.04 

96.51 

97.71 

97.32 

97.91 

98.08 

98.23 

3) Fault Diagnosis with Different Input Signals 

In this paper, torque and speed signals are added to 

the input to the diagnostic model to address the short-

comings of the diagnostic methods that use a single 

sensor signal as input. Diagnostic models trained with a 

sample ratio of 80% and 20% are used for validation. 

Input signals include vibration, current (C), torque (T), 

and speed (S), while vibration includes acceleration (A) 

and displacement (D). The diagnostic accuracy of 

MSFFN with a single vibration signal as input can reach 

approximately 95% with sufficient samples, as shown in 

Fig. 11(a). The diagnostic accuracies are 89.51% and 

85.82% when the torque and speed signals are used as 

input, respectively. However, when the current signal is 

used as the input, the accuracy is only 67%. This indi-

cates that the speed and torque signals have greater fault 

information than the current signal. However, with in-

sufficient numbers of samples, the diagnostic accuracy 

of MSFFN with a single input signal shows varying 

degrees of degradation, as seen in Fig. 11(b). In com-

parison, Figs. 11 (c) and (d) show the results of fault 

diagnosis when multiple signals are used as inputs. As 

can be seen, the more the number of input signals, the 

higher the accuracy of the diagnosis. Despite the insuf-

ficient samples, the model with multiple signal inputs 

can still output more accurate diagnosis results.  
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Fig. 11.  Diagnostic accuracy of MSFFN when single signal and 

multiple signals are used as input. (a) Single signal and constant 

speed. (b) Single signal and variable speed. (c) Multiple signals 

and constant speed. (d) Multiple signals and variable speed. 

In summary, this paper has verified the feasibility of 

adding torque and speed signals to vibration signals as 

the inputs to the diagnostic model. 

4) Fault Diagnosis Under Strong Noise Scenario 
The vibration signals are easily affected by external 

noise during actual wind turbine operation. As a result, 

conventional fault diagnosis models in practical appli-

cations lack generalizability. The robustness of MSFFN 

against noise is examined here with a fault diagnosis 

model trained with 50% of training samples. Gaussian 

white noise is added to the original constant and varia-

ble speed test set to simulate the external environment. 

Given that the diagnostic model does not have access to 

real-time noise information during training, the pro-

posed training and testing scheme meets the actual op-

eration scenarios. The noise content of the test sample is 

expressed by the signal-to-noise ratio as: 

signal

SN

noise

10lg
p

R
p

 
  

 
                       (18) 

The diagnostic accuracy of MSFFN with different 

noise levels is tested by mixing different levels of noise 

into the test set. The mean values of the diagnostic re-

sults are shown in Fig. 12. As seen, for test sets with 

SNR greater than 8 dB, each method performs well in 

diagnostic accuracy. However, the MSFFN has a sig-

nificant advantage for test sets with signal-to-noise 

ratios below 8 dB. In addition, the reliability of tradi-

tional deep learning methods is greatly reduced in the 

strong noise scenario of -2 dB SNR of test samples, 

while MSFFN can still achieve more than 85% diag-

nostic accuracy. After adding strong noise to the test set, 

traditional deep learning methods perform poorly in the 

variable speed scenario, and the classification results are 

nearly randomly divided. The MSFFN diagnostic model, 

on the other hand, still can provide diagnostic accuracy 

of over 85% when there is strong noise.  

 

Fig. 12. Comparison of diagnostic accuracy at different sig-

nal-to-noise ratios. (a) Constant speed. (b) Variable speed. 
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In summary, the proposed method in this paper is 

more robust than conventional deep learning methods. 

Since noise does not affect the fault information in all 

signals, feature extraction from multi-sensor signals can 

thus significantly improve the feature extraction ability 

of deep learning methods when there is strong noise. 

Ⅴ.   CONCLUSION 

This paper has proposed a method for wind turbine 

gearbox fault diagnosis in variable speed conditions, 

insufficient samples, and strong noise scenarios by 

fusing the fault feature information from vibration, 

torque, and speed signals. The connection between 

signals and gearbox failure is analyzed. A multi-signal 

SDAE is developed and improved to output the proba-

bilities of different gearbox fault types by using the 

features extracted from different sensory signals. For 

the fusion of fault features extracted from multiple 

signals, a CRJ network is designed to replace the con-

ventional Softmax classifier. The key conclusions are: 

1) Experiments are conducted on a wind turbine test 

rig to validate the effectiveness of the proposed gearbox 

fault diagnosis method. The results in sufficient sample 

scenarios show that the proposed network can achieve 

good diagnostic accuracy  

2) For both constant and variable speed conditions, 

with sufficient samples, the average accuracy of 

MSFFN is 98.23%. Therefore, the proposed MSFFN in 

this paper can be applied to planetary gearbox fault 

diagnosis in variable speed conditions. 

3) Experimental results of fault diagnosis show that 

MSFFN is robust when there are insufficient samples. 

The proposed method maintains high diagnostic accu-

racy when multiple signals are used as inputs in the case 

of insufficient samples. Compared with conventional 

deep learning methods, MSFFN is less sensitive to ex-

ternal noise. The results show that the developed network 

can be effectively applied to the fault diagnosis of a 

planetary gearbox of wind turbines in severe conditions. 
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