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Adaptive PID Control for Hydraulic Turbine 

Regulation Systems Based on INGWO and BPNN 

Jinbao Chen, Gang He, Yunhe Wang, Yang Zheng, and Zhihuai Xiao 

Abstract—To ensure system stability, the fixed-PID 

(F-PID) controller with small parameters is usually 

adopted in hydropower stations. This involves a slow 

setting speed and it is difficult to realize optimal control 

for full working conditions. To address the problem, this 

paper designs a variable-PID (V-PID) controller for a 

hydraulic turbine regulation system (HTRS) based on the 

improved grey wolf optimizer (INGWO) and back prop-

agation neural networks (BPNN). These can achieve ex-

cellent regulation under full working conditions. First, the 

nonlinear HTRS model containing the nonlinear hy-

dro-turbine model is constructed and the stable domain is 

obtained using Hopf bifurcation theory to determine the 

available range of PID parameters. The optimal PID pa-

rameters in typical working conditions are then calculated 

by the INGWO, and the optimal PID parameters are 

generalized through training the V-PID neural networks 

which take the optimal PID parameters as sample data. 

The V-PID neural networks with different structures are 

compared to determine the optimal structure of the var-

iable-PID controller model. The V-PID controller-based 

nonlinear HTRS model shows that the PID parameters 

can be automatically adjusted online according to the 

working condition changes, realizing optimal control of 

hydropower units in full working conditions. 

Index Terms—Hydraulic turbine regulation system, 

back propagation neural networks, Hopf bifurcation, 

grey wolf optimizer, variable-PID controller. 

 

Ⅰ.   INTRODUCTION 

n the modern power system, hydropower units mainly 

undertake tasks such as black start, cold and hot 
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standby, peak shaving, and frequency modulation, so 

their stability and regulation play important roles in 

promoting the consumption of new energy [1], [2], as 

schematically shown in Fig. 1. However, the access of 

large-scale intermittent energy to the grid leads to fre-

quent switching of operating conditions of hydropower 

units, resulting in higher requirements for their stability 

and regulation performance. 

A proportional-integral-differential (PID) controller 

with a simplified structure is often used in the hydraulic 

turbine regulation system (HTRS) to ensure the stability 

of the hydropower units [3]5]. However, the HTRS 

contains the complex nonlinearity, and the requirements 

of system performance on PID parameters make it dif-

ficult to be consistent in different operating conditions 

[6], [7]. To ensure stability, the governors of most hy-

dropower stations often set one or several groups of 

smaller PID parameters in advance according to differ-

ent control modes, and keep the control parameters un-

changed during operation [8], [9]. Thus, the HTRS does 

not have good regulation in most working conditions. 

Considering the requirements of system regulation per-

formance in full operating conditions, the fixed-PID 

(F-PID) control obviously cannot meet the needs. 

To solve this problem, much work has been done on the 

optimization of the PID controller. This can be catego-

rized into F-PID optimization and variable-PID (V-PID) 

design. For the F-PID optimization, various algorithms 

have been adopted. Reference [10] uses the particle 

swarm optimization (PSO) to obtain optimal parameters 

to achieve good control of the decentralized digital model 

in the load frequency control model (LFC). The simula-

tion results reveal that the optimized controller satisfies 

the stability requirements of LFC and has superior dy-

namic response. Reference [11] applies the improved 

gravitational search algorithm to optimize the controller 

parameters of a pumped storage power station to make the 

regulation system faster in the unbalanced area, whereas 

[12] adopts an improved genetic algorithm to search op-

timal controller parameters in no-load and load turbulence 

conditions. In [13], the modified gravitational search 

algorithm is applied to optimize the fractional-order PID 

parameters for better-regulating quality in low water head 

conditions. Clearly, F-PID optimization still cannot 

achieve the required regulation performance under full 

I 
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working conditions. Moreover, these algorithms contain 

many artificially given parameters according to experi-

ence. If the values of these parameters are too large, the 

calculation time will undoubtedly increase. On the other 

hand, the optimal solution will be easily missed if these 

parameters are too small.  

 
Fig. 1.  Role of hydropower in the modern power system. 

For V-PID controller design, predictive control is 

widely used. This generally takes the deviation between 

the current value of the given signal, the feedback signal, 

and the historical value of the feedback signal as the 

input, to calculate the system output with complex 

control algorithms. Reference [14] designs the predic-

tive-fuzzy PID controller to avoid deep running into the 

‘S’ characteristic area of the pumped storage unit, while 

[15] proposes a PID predictive controller with delays 

based on the state space model. In [16], an online 

trained neural network-based PID predictive controller 

is designed to achieve global optimal control of HTRS, 

whereas [17] proposes a predicted fuzzy PID controller 

to obtain a stable control effect in low water head con-

ditions. However, although these control modes can 

give proper PID parameters for HTRS in different 

working conditions, the control effect is usually poor 

during online training, i.e., the optimal controller pa-

rameters cannot be obtained in real-time. This problem 

is also reflected in advanced control algorithms such as 

generalized predictive control. Therefore, in practice, 

predictive control is difficult to apply to HTRS. 

Therefore, it is necessary to design an intelligent con-

troller without requiring online training, one has a sim-

plified structure and the ability to adaptively adjust 

control parameters. 

Hopf bifurcation [6] is an important theory in the 

study of the stability of nonlinear systems. It can give the 
relationship that the controller parameters should meet 

for the system to remain stable, i.e., the constraint con-

ditions. Thus, based on these constraint conditions, it can 

be judged whether PID parameters can ensure the sta-

bility of the system. Consequently, if the controller 

constraints are considered when optimizing the PID 

parameters, the variation range of the PID parameters 

can be limited directly, and unnecessary calculation 

outside the range of the system stability domain can be 

avoided. The grey wolf optimizer (GWO), developed in 

recent years, shows excellent performance in dealing 

with nonlinear problems compared with conventional 

algorithms [18]. Therefore, an improved GWO algo-

rithm based on Hopf bifurcation theory is proposed in 

this paper to optimize the PID parameters in typical 

working conditions, and to improve calculation effi-

ciency and accuracy. Also, a V-PID controller for HTRS 

based on back propagation neural networks (BPNN) [6], 

[19] is proposed. This takes the optimal PID parameters 

as sample data to achieve excellent regulation in full 

working conditions while ensuring stability. The V-PID 

controller-based nonlinear HTRS model shows that the 

PID parameters can be automatically adjusted online 

according to the changes of the working conditions, 

realizing the optimal control of hydropower units. 

In summary, the main contributions of this study in-

clude: 

1) The advantage of GWO with the nonlinear itera-

tive coefficient is proved through comparative tests 

based on test functions. 

2) An improved GWO based on Hopf bifurcation 

theory is proposed to obtain the training data of the 
V-PID controller neural network. 

3) The V-PID controller model with optimal structure 

is determined through theoretical analysis and quanti-

tative calculation. 
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The rest of this paper is organized as follows. Section 

Ⅱ introduces the modeling method of nonlinear HTRS. 

In Section Ⅲ, the design method of the V-PID control-

ler is introduced in detail, while Section Ⅳ illustrates 

the advantages of the V-PID controller through simula-

tion verification. The conclusion is drawn in Section Ⅴ. 

Ⅱ.   MODELING OF NONLINEAR HTRS 

The nonlinear HTRS model includes the diversion sys-

tem, hydro-turbine, controller, and generator [20], [21]. 

A. Diversion System Model 

The diversion system model depends on the length of 

the diversion pipeline. In this paper, the length of the 

diversion pipeline is less than 600 m, so the rigid water 

hammer model is enough to meet the accuracy re-

quirements [22], expressed as: 

( )h wG s = T s                         (1) 

where wT  is the water inertia time constant. 

B. Hydro-turbine Model 

The BPNN has strong data fitting ability and can be 
used to build nonlinear models. This is described in 
detail in [23]. In the process of modeling, the mean 

square error ( SEM ) given by (2) is usually chosen as the 

fitness function, and the weight and threshold of the 
BPNN are continuously adjusted by the gradient de-
scent method to make the model output approximate the 
expected output [23].  

2

1

SE

ˆ( )
k

i i

i

D D

M
k








                        (2) 

where k represents the number of sample data; ˆ
iD  rep-

resents the prediction data; and iD  represents the sam-

ple data. 
To prevent the network from blindly pursuing preci-

sion requirements and over-fitting, the maximal genera-

tion is set to 1000, and the validation check time is set to 

6, i.e., the network reaches the termination condition and 

stops learning in time if the network passes 6 consecu-

tive validation checks or the generation reaches 1000. 

To reduce the modeling time of the V-PID controller 

and take into account modeling accuracy, the piecewise 

linearization hydro-turbine model based on the BPNN 

[24] is adopted to calculate the stable domain of the 

HTRS, and the nonlinear hydro-turbine model based on 

the BPNN is adopted to obtain the optimal parameters 

of the PID controller. In addition, it should be noted that 

the verification and test data are the same as the training 

data because the actual operation data will be used for 

verifying the hydro-turbine model after modeling. 

1) Nonlinear Hydro-turbine Model Based on BPNN 
To accurately describe the real characteristics of the 

hydro-turbine, the nonlinear hydro-turbine model is 

established based on the BPNN with the prototype tur-
bine test data. Figure 2 gives the modeling process [3] 
which can be divided into the following steps: 1) obtain 
and supplement the test data of the prototype hy-
dro-turbine, and obtain the training samples of dis-
charge and torque characteristics neural networks 
(DCNN and TCNN); 2) combine the actual operational 
data with the GWO to correct the guide vane opening Y 
of hydro-turbine test data; and 3) construct the nonlinear 
hydro-turbine model containing the DCNN and TCNN 
based on the BPNN. In Fig. 2, g  , where ρ is the 

density of water and g is the acceleration due to gravity. 

‘ 11 11,( )Y Y n M ’ and ‘ 11 11,( )n M  ’ are the Y and η 

characteristics neural networks respectively; 11n  is the 

unit speed which satisfies (3); 11Q  is the unit discharge; 

and 11M  is the unit torque.  

11

XD
n

H
                                    (3) 

where D is the diameter of the runner; H is the working 

head; and X is the rotational speed. 

2) Piecewise Linear Hydro-turbine Model Based on 

BPNN 
As the dynamic characteristics of the hydro-turbine 

can be approximately expressed by Q and tM  when it is 

in the steady state [6], a piecewise linear hydro-turbine 

model can be constructed by converting the outputs of 

the DCNN and TCNN into the discharge Q and torque 

tM  through (4) and (5), and then calculating the 

transfer coefficients of the hydro-turbine in different 

working conditions.  
2

11Q Q D H                           (4) 

3

11tM M D H                            (5) 

For the Francis turbine, the dynamic characteristics 

are all nonlinear functions of Y, X, and H [25], expressed 

as: 

( ,  ,  )

( ,  ,  )t t

Q Q Y X H

M M Y X H





                    (6) 

In the small fluctuation operational condition, the 

Taylor expansion is carried out for hydro-turbine dis-

charge and torque characteristics at the working point, and 

the higher-order trace above the second order is ignored to 

obtain the algebraic equation of constant coefficients of 

the piecewise linear hydro-turbine model [6], as: 

qy qx qh

t y x h

q e y +e x+e h

m e y +e x+e h






                  (7) 

where q, y, x, h, and tm  are the deviation relative values 

of Q, Y, X, H, and tM , respectively; qye , qxe , and qhe  

are the transfer coefficients of q to y, x, and h, respec-

tively; ye , xe , and he  are the transfer coefficients of tm  

to y, x, and h, respectively. 
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Fig. 2.  Modeling process of nonlinear hydro-turbine model. 

The transfer coefficients of the hydro-turbine can be 

calculated as:  
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      (8) 

where rM  is the rated tM ; rX  is the rated X; rQ  is the 

rated Q; rH  is the rated H; and maxY  is the maximum Y. 

It should be noted that the change of X is not con-
sidered in power control mode (PCM), i.e., equation (7) 
can be expressed as: 

qy qh

t y h

q e y + e h

m e y + e h






                            (9) 

C. Governor Model 

The governor of the hydropower station includes the 
controller and electro-hydraulic servo system [26]28]. 
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Therein, there are series and parallel controllers. This 
paper studies the parallel PID type under PCM, as 

shown in Fig. 3, where pe  is the adjustment rate; cp  is 

the reference value of the power; tp  is the feedback of 

power; cf  is the reference value of the frequency; and 

ef  is the feedback frequency; u is the output of the 

controller; e is the tracking error of the system variable, 

while PK , IK , and DK  are links of proportional, inte-

gral and differential gains, respectively; 1vT  is the time 

constant of the differential link, which is not considered 

in this paper; and yT  is the reaction time constant of the 

main servomotor. 

 

Fig. 3.  Parallel PID controller. 

The transfer functions of the controller ( )cG s  and the 

electro-hydraulic servo system ( )eG s  are given as: 

2

1 1

2

1

( ) ( )
( ) D v P P v I I

c

v
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e T s s
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s

T s
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
                     (11) 

D. Generator Model 

The classical second-order generator model [29] is 

adopted, expressed as: 

0 G

G G( ) /t e am m K T

  

 




  
                (12) 

where φ is the angle of the generator rotor; 0  is the 

synchronous angular velocity; G is the relative devia-

tion of the generator speed; K is the damping coefficient 

of the generator; and aT  is the inertia time constant of 

the unit. 
If the damping coefficient of the generator includes 

the influence of the unit speed change on the torque, the 

electromagnetic torque em  can be used to represent 

electromagnetic power eP  [30], i.e.,  

e em P                                (13) 

2 ( )
sin sin 2

2

q ds qss

e

ds ds qs

E Vs X XV
P φ φ

X X X


      (14) 

where qE  is the q-axis transient potential; sV  is the 

infinite bus voltage; while dsX  and qsX  are the d-axis 

and q-axis transient reactance, respectively. 

E. Nonlinear HTRS Model 

Figure 4 shows the nonlinear HTRS model under 

PCM, where 0cf  , 0cp  , 0DK  ; 0M  is the initial 

tM ; and 0Q  is the initial Q. 
 

 

Fig. 4.  Nonlinear HTRS model based on BPNN under PCM. 
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Ⅲ.   V-PID CONTROLLER BASED ON BPNN 

The neural network-based V-PID controller includes 

PK , IK , and DK  neural networks, and include the input, 

hidden, and output layers. The input layer is composed of 

H and Y, and the output layer is PK , IK , or DK . The 

design process of the V-PID controller is shown in Fig. 5, 

where minH  and maxH  are the minimum and maximum 

H, respectively; no-loadY  is the Y in no-load conditions, 

while DH  and DY  are the intervals used to divide H and 

Y, respectively; 1f , 2f , and 3f are the functions con-

structed based on the BP neural network with Y and H as 

the input and PK , IK , or DK  as the output. 
 

 
Fig. 5.  Design process of V-PID controller. 

A. Working Condition Categorization of HTRS 

The training of the controller neural network requires 
a large amount of sample data, so it is necessary to 
categorize the working conditions. Since the HTRS is 
sensitive to H and Y, the categorization should be car-
ried out according to H, Y, and the accuracy require-

ments of the controller neural network. Thus, DH  is 

used as the smallest unit to divide H, and DY  is used as 

the smallest unit to divide Y from the actual no-load 
opening to 100% opening with different H. It is worth 
noting that although the amount of no-load opening data 
of a hydropower station is generally limited, an intelli-
gent algorithm can be used to obtain the relationship 
between the no-load Y and H through parameter identi-
fication, so as to obtain the no-load Y with different H. 

B. Determination of Critical Values of Controller Pa-
rameters 

The critical values of the controller parameters are 
determined by the Hopf bifurcation theory. 
1) Stability Constraints 

For the n-order nonlinear system ( ,  )x f v x , where 
nRx  is the state vector and 1v R  is the unknown 

parameter [6], the characteristic equation of the Jaco-
bian matrix of the system at the equilibrium point 

0 0( , )x v  is given as [31]: 

0

( , ) ( ) 0
n

i

i
i

F v p v 


                    (15) 

where   is the root of the characteristic equation; ip  is 

the coefficient of the characteristic equation. It is related 
to the system parameters. 
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According to the Hopf bifurcation theory [32], for a 

nonlinear dynamic system, when the system is critically 

stable, the characteristic equation has two eigenvalues 

whose real part is 0 (i.e., a pure imaginary conjugate 

complex root), and (n-2) real roots whose parts are not 0. 

Therefore, the characteristic polynomial of the system 

satisfies: 
3

2 2 2

0

( ) ( )
n

n i

i

i

F w a   






 
   

 
           (16) 

where w is the pure imaginary conjugate complex root; 

and ia  is the coefficient of other polynomials composed 

of characteristic roots with non-zero real parts. 

Combining (15) and (16), all eigenvalues and un-

known parameters that satisfy the critical stability con-

ditions of the system can be determined. 

2) System Stability Domain and the Critical Controller 
Parameters 

The state space equation method is adopted to cal-

culate the stable domain of the HTRS. The derivation 

process under PCM follows the steps [33]: 

1) Obtain the differential equations of each subsys-

tem according to (6), (9), and Fig. 3, expressed as: 

1
( )

y

y u y
T

                           (17) 

1qy

qh qh w

e
h y h

e e T
                        (18) 

G G

1
( )t e

a

m m K
T

                     (19) 

2) Obtain the differential equation of the controller, 

expressed as: 

( / )

( / )

P c t p

I c t p

u K p m f e ix

ix K p m f e
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

    

             (20) 

3) Integrate (17)(20) to obtain the state space equa-

tion of the HTRS, expressed as: 

G G

0 G

1
( )

1
( / )

1

( / )

t e

a

P c t p

y

qy

qh qh w

I c t p

m m K
T

y K p m f e ix y
T

e
h y h

e e T

ix K p m f e

 
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
  


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

   



    
 

      (21) 

By analyzing the Jacobian matrix of (21), the rela-

tionship between characteristic root and PID control 

parameters is determined when the HTRS is critically 

stable, and then the constraint function of controller 

parameters ( )I PK f K  can be obtained, as shown in 

(22). The system stability domain and the boundary 

values of the controller parameters are also obtained. 

2

1 2 3

1 2

P P

I

P

a K a K a
K

b K b

 



                     (22) 

where 1 a , 2a , 3a , 1b  and 2b  are the coefficients of the 

constraint function of controller parameters. 

C. Acquisition of Optimal PID Parameters with Im-

proved GWO 

The wolves of the GWO are divided into four levels 

according to their fitness values, which satisfy: 

α ＞ β ＞ δ ＞ ω [34][36]. In the hunting process of 

wolves, α, β, and δ guide the hunting behavior, while ω 

follows the first three wolves to besiege the prey. The 

position of the prey is equivalent to the solution of the 

problem to be optimized [37], [38]. The predation be-

havior of gray wolves includes encircling, hunting, and 

attacking prey [39]. The attack of wolves refers to the 

process of obtaining the optimal solution by the GWO 

[40], [41]. When attacking prey, the convergence factor 

m plays the role of adjusting the local optimization and 

global search, expressed as:  

max

2
2

t
m

t
                              (23) 

where t is the current number of iterations; and maxt  is 

the maximum number of iterations.  

However, the complex search process of the GWO 

makes the strategy of linearly decreasing the conver-

gence factor m difficult to reflect the actual optimization 

process. Thus, to make m decrease nonlinearly in the 

specified interval, this paper adopts an iterative formula 

of m based on the exponential function [3], defined as: 

initial

max

1( )
t

m t m
t

  
  

   

                (24) 

where initialm  represents the initial value of m, which is 

taken as 2; while μ is the exponential adjustment factor, 

which is taken as 1.5. 

To prove the advantages of the GWO in parameter 

optimization and the rationality of improving the itera-

tion coefficient m, the particle swarm optimization (PSO) 

[10], biogeographical-based optimization (BBO) [42], 

and gravitation search (GSA) [13], and GWO with lin-

early adjusted m and GWO with nonlinearly adjusted m 

(NGWO) algorithms are compared and analyzed 

through four commonly used benchmark functions [43]. 

Table Ⅰ and Figure 6 show the mathematical descriptions 

and the three-dimensional surface diagrams of the four 

test functions, respectively. It can be seen that the Sphere 

is a unimodal function with only one global minimum. 

The Griewank is a multimodal function with multiple 

local optimal solutions, and it is difficult to find its 

global extremum because of the small difference of 

function values corresponding to the optimal solutions. 

The Resenbrock is a unimodal function, whose global 

extremum is also difficult to find because of the inter-
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action between the variables. The Rastrigin has multiple 

local optimal solutions, but the function values of these 

optimal solutions differ greatly. Therefore, for the pa-

rameter optimization problem with multiple local opti-

mal solutions which largely differ from the global op-

timal solution, the Rastrigin function can well test the 

optimization algorithms. Table Ⅱ shows the parameter 

settings of the optimization algorithms. 

TABLE Ⅰ 

MATHEMATICAL DESCRIPTIONS OF FOUR BENCHMARK FUNCTIONS 

Benchmark functions Function descriptions Definition domain 

Sphere 
2

1 1
( )

n

ii
F x x


  [ 20,  20]n  

Griewank 
2

2 1 1

1
( ) cos 1

4000

nn i
ii i

x
F x x

i 

 
   

 
   [ 300,  300]n  

Rosenbrock 
1 2 2 2

3 11
( ) (100( ) ( 1) )

n

i i ii
F x x x x




     [ 10,  10]n  

Rastrigin 2

4 1
( ) ( 10cos(2π ) 10)

n

i ii
F x x x


    [ 5.12,  5.12]n  

 

TABLE Ⅱ 

INITIALIZATION PARAMETERS OF OPTIMIZATION ALGORITHMS 

Optimization 
algorithm 

Population 
size 

Iterations 
Initial parameter 

setting 

PSO 30 2000 

Initial weight 

0.8w , learning 

rate 
1 2 1.5c c   

BBO 30 2000 

Probability of 
variation 

0.01mP  , reten-

tion ratio 0.2kR   

GSA 30 2000 

Gravitational con-

stant 
0 100G  , 

decay rate 
0 20   

GWO 30 2000 
Iteration coefficient 

initial 2m   

NGWO 30 2000 
Iteration coefficient 

initial 2m   

 

 

 

 

Fig. 6.  Three-dimensional surface diagrams of the four bench-

mark functions. (a) Sphere. (b) Griewank. (c) Rosenbrock. (d) 

Rastrigin. 

Figure 7 shows the change curves of the average fit-

ness of different algorithms in logarithmic form (100 

tests). As seen, the average fitness of GWO and NGWO 

decreases sharply and reaches a lower value, indicating 

their high accuracy compared to the other optimization 

algorithms. In addition, it can be seen from Fig. 7(d) that 

NGWO has a faster convergence rate than GWO. 

Therefore, NGWO is selected to deal with the parameter 

optimization problems with multiple local optimal solu-

tions differing significantly from the global optimal so-

lution. This is consistent with the parameter optimization 

problem with the specific target of the HTRS controller. 
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In addition, to improve the performance of the 

NGWO, this paper makes the following improvements.  

1) Prey location boundary conditions 

The position vector ( )pS t of the prey in the tth gen-

eration corresponds to the PK , IK , and DK  values of 

the controller studied in this paper. In order to reduce 
the simulation calculation time, the boundary values of 

PK , IK , and DK  included in ( )pS t  are adjusted in 

real-time according to the system stability domain in 
different working conditions. 

 

 

 

 
Fig. 7.  Change curves of the average fitness of different algo-

rithms. (a) Average fitness of Sphere. (b) Average fitness of 

Griewank. (c) Average fitness of Rosenbrock. (d) Average fitness 

of Rastrigin. 

2) Fitness function 
In the PID parameter optimization, the fitness func-

tion primary adopts the standard ITAE [44], [45] index 

ITAE( )J , i.e., the absolute value of the error multiplied 

by the time integral, expressed as: 

 

0

ITAE d

st

t e t tJ                            (25) 

where t is the current simulation time; st  is the total 

simulation time; and e(t) is the error integral of hy-
dro-turbine mechanical power. 

To avoid excessive overshoot 1 , reverse adjustment 

2  and long adjustment time rt , 1 , 2 , and rt  are 

used as part of the objective function to form a com-
prehensive ITAE index (JCOM-ITAE), expressed as: 

  1 2 0.002

1COM-IT 2 3

0

AE d e e

st

rt e t t tJ
   

      (26) 

where 1 , 2 , and 3  are the adjustment coefficients 

of 1 , 2 , and rt , respectively. To determine the 

suitable values of 1 , 2 , and 3 , 7 schemes are taken 

for comparison, whose parameters are shown in Table 
Ⅲ, and the comparison results are shown in Fig. 8. As 

can be seen from Fig. 8, 2  and rt  of the 7 schemes 

have minor differences, while 1  in Scheme 1 is 

smaller than that in other schemes. Therefore, 1 , 2 , 

and rt  are taken as 1, 1, and 0.2, respectively. 

TABLE Ⅲ 

ADJUSTMENT COEFFICIENTS OF EACH SCHEME 

Coeffi-

cients 

Scheme 

1 

Scheme 

2 

Scheme 

3 

Scheme 

4 

Scheme 

5 

Scheme 

6 

Scheme 

7 

1  1 10 100 1 1 1 1 

2  1 1 1 10 100 1 1 

3  0.2 0.2 0.2 0.2 0.2 2 20 
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For the improved NGWO (INGWO), the controller 

parameters are optimized for the HTRS in different 

working conditions, i.e., the sample data for the training 

of the controller neural network is obtained.  

 

 

 

 

 

 
Fig. 8.  Comparison results of adjustment coefficients. (a) ,rH H  

30%Y  . (b) 
min , 90%H H Y  . (c) , 30%rH H Y  . (d) H   

, 90%rH Y  . (e) 
max , 30%H H Y  . (f) 

max ,H H  90%Y  . 

Figure 9 shows the calculation procedure of the optimal controller parameters in the given conditions, where the 

initialization parameters of INGWO are: population size 30PN  , iterations 100IN  , initial 2m  , and μ1.5. 

 
Fig. 9.  Calculation procedure of optimal controller parameters under given conditions. 
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D. V-PID Controller Structure 

Both single and multiple neural networks are availa-
ble for the V-PID controller. For the single neural net-
work, the input is composed of Y and H, and the output 

is composed of PK , IK , and DK , whereas for the 

multiple neural networks, the input is composed of Y 

and H, and the output is PK , IK , or DK . In addition, 

the number of neurons in the hidden layer ( )hN  of the 

neural network is vital and is generally selected ac-
cording to (27) [46]. To determine the appropriate value 

of hN , the maximum hN  is determined by adopting 

(27), and then the sensitivity analysis of hN  is con-

ducted as shown in Fig. 10. As seen, for the multiple 

neural networks, SEM  of PK  is smaller when hN  is 8 

or 11, and SEM  of IK  is smaller when hN  is larger 

than 7. For the single neural network, SEM  of PK  and 

IK  is smaller when hN  is larger than 7. Considering 

that too many neurons in the hidden layer can easily 

make the network overfit, hN  is selected as 8 for both 

single and multiple neural networks. 

 

 

Fig. 10.  Sensitivity analysis results of 
hN . (a) Single neural 

network. (b) Multiple neural networks. 

h i oN N N Z                      (27) 

where iN  is the number of neurons in the input layer; 

oN  is the number of neurons in the output layer; and Z 

is a constant as [0,10]. 

To determine the reasonable structure of the V-PID 

neural network, an actual hydropower station is used as 

an example to conduct the test. The hydropower station 

under PCM adopts the PI-type control method. There-

fore, the neural network with 2 inputs and 2 outputs 

(scheme 1: 2-8-2 neural network structure) and neural 

networks with 2 inputs and 1 output (scheme 2: 2-8-1 

neural network structure) are trained and compared 

respectively. The error comparison is shown in Fig. 11. 

The determination coefficient ( 2R ) and the root mean 

square error ( MSER ) are used as the evaluation criteria 

for the two schemes [47], [48]. The larger the 2R  and 

the smaller the MSER , the better the network fitting ef-

fect. The formulas for calculating 2R  and MSER  are 

given as: 

 

 

Fig. 11.  Comparison of prediction errors of controllers in two 

structures. (a) Comparison of pK  errors. (b) Comparison of 
IK  

errors. 
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                (29) 

where id represents PK or IK sample data; iK  repre-

sents PK  or IK  prediction data; n represents the 

number of sample data; and d  represents the mean of 

PK  or IK  sample data. 

The calculation results for the error comparison are 

shown in Table Ⅳ. As shown, scheme 2 has a smaller 

error and higher reliability than scheme 1. Thus, the 

structure of the V-PID controller neural networks with 2 

inputs and 1 output is determined, as shown in Fig. 12, 

where PK , IK , and DK  automatically update based on 

H and Y in the “Save” module and satisfy (30)(32), 

while H and Y are in the “Save” update only when 

Δ εp p≥ . 0.005εp   is adopted. Since the regulation 

of the controller is controlled by the oil pressure, it is 

necessary to determine an appropriate value through 

real machine tests when used in actual production to 

balance the speed and accuracy of the controller. Ac-

cordingly, when Δ 0.005p≥  within a certain period of 

time, the controller neural networks act and output new 

PID parameters. From [6], it is feasible for the neural 

networks to implement in hardware form, so the de-

signed controller has great application value.  

 
1 ,  PK f Y H                       (30) 

 
2 ,  IK f Y H                       (31) 

 
3 ,  DK f Y H                       (32) 

TABLE Ⅳ  

COMPARISON OF PARAMETER PREDICTION RESULTS OF 

CONTROLLERS IN TWO STRUCTURES  

Structure type Data type MSER  2R  

2 inputs and 1 

output 

PK  4.46×105 1 

IK  1.23×105 1 

2 inputs and 2 

outputs 

PK  0.009 3 0.997 6 

IK  0.001 8 0.999 4 

 

Fig. 12.  Structure of V-PID controller under PCM based on neural networks. 

Ⅳ.   SIMULATION TEST VERIFICATION AND RESULT 

ANALYSIS 

To verify the effect of the V-PID controller, a simu-
lation test, which takes a Francis hydropower station in 
the southwest of China (XLD) as an example, is carried 
out. The system parameters of the hydropower station 
under PCM are shown in Table Ⅴ. The data used in the 
turbine modeling and the modeling effects are shown in 
Appendix A and B, respectively, while the detailed data 
of the diversion pipeline is shown in Appendix C. Based  

on the data of the XLD hydropower station, the non-
linear HTRS simulation platform is constructed, and 

then 2 mDH   and 10%DY   are used to categorize 

working conditions, while INGWO is used to obtain the 
optimal PID parameters in different working conditions. 

Considering 0DK   under PCM, the PID neural net-

work contains PK  and IK  neural networks. Therefore, 

PK  and IK  neural networks are trained respectively 

after obtaining the optimal PID parameters, and then the 
V-PID controller model based on BPNN is constructed.  
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Figure 13 shows the comparison between the training 

data and the prediction data of the V-PID neural net-

works, while Fig. 14 shows the fitting surfaces of the 

optimal controller parameter. As seen, the prediction 

error of the PID neural networks is small and the fitting 

accuracy is high, which can well represent the change of 

the optimal control parameters as the working condi-

tions change. The stability proof of the V-PID controller 

is shown in Appendix D. 

TABLE Ⅴ 

SYSTEM PARAMETERS OF HTRS 

Subsystems Parameters 

Controller 
0.04pe  , 0.01pb  , 0.28PK  , 0.2IK  , and 

0DK   

Servo system 0.459yT   

Diversion 
system 

0.873wT   

Generator and 

load 

12.239aT  , K 0, 
0 314,   125,rX   

0.176ge   

Hydro-turbine 
6.223 mD  , 197 mrH  , 

max 229.4 mH  , 

min 154.6 mH  , 3432.7 m /srQ   

 

 

Fig. 13.  Prediction effect of V-PID neural network. (a) Prediction 

effect of pK . (b) Prediction effect of 
IK . 

 

 

Fig. 14.  Neural network fitting effect of V-PID controller. (a) 

Neural network fitting effect of 
pK . (b) Neural network fitting 

effect of 
IK . 

Finally, Y 30% and 90% are selected as the simu-

lation operating points with minH , rH , and maxH  re-

spectively to verify the superiority of the proposed 
neural network-based V-PID controller over the tradi-
tional F-PID controller, the generalized predictive con-
troller (GPC) without noise input, the PID predictive 
controller based on BPNN online training (OTV-PID). 
Among these controllers, the linear hydro-turbine model 
is adopted only when GPC is used. Table Ⅵ shows the 
key parameters of the GPC and OTV-PID controllers. 
The selection mode of working conditions corresponds 
to a representative large span of H and Y. The test results 

of each working point are shown in Fig. 15, where refM  

is the reference value of tM . As seen, GPC generates 

large oscillation during online training despite the ideal 
condition of no noise interference, indicating its poor 

control effect. For OTV-PID, rt  is more than 65 s be-

cause of the continuous adjustment of the weight and 
threshold in a longer online training time. The differ-

ence of 2  between the F-PID and the V-PID controller 

models is small in different working conditions, while 
compared with the traditional F-PID, the setting and rise 
times of the V-PID controller are shorter. In addition, 
although the overshoot of the V-PID controller is rela-

tively large, tM  oscillates only once, meeting the re-

quirements of the engineering application. 
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TABLE Ⅵ  

PARAMETERS OF GPC AND OTV-PID CONTROLLERS 

Controller Parameters 

GPC 

Minimum output length 
1 1N  , predicted length 

60N  , input delay 1d  , control length 10uN  , 

output softening coefficient 0.99cS   

OTV-PID 

No. of the neurons in input-layer 
in  3N  , No. of the 

neurons in hidden-layer 5hN  , No. of the neurons in 

output-layer 
out 3N  , learning rate 0.2rL  , inertia 

coefficient 0.05cI   

 

 

 

 

 

 
Fig. 15.  Simulation comparison test results. (a) 

min ,H H Y   

30% . (b) 
min , 90%H H Y  . (c) , 30%rH H Y  . (d) H   

, 90%rH Y  . (e) 
max , 30%H H Y  . (f) 

max , 90%H H Y  . 

From the perspective of practical application, the 

V-PID controller brings multiple benefits to the power 

grid by reducing the adjustment time of the HTRS in 

full working conditions. First, shorter regulation time 

means that the power system can respond more quickly 

to load changes, thereby improving the stability and 

robustness of the power grid. Second, the faster re-
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sponse of HTRS can be more effective in maintaining 

the frequency and voltage levels of the power grid, 

ensuring normal operation of the power system. In ad-

dition, improving the performance of the HTRS can also 

help reduce the dependence of the power grid on backup 

power generation equipment, thereby improving the 

reliability and sustainability of the power grid. Shorter 

regulation time can also reduce unstable factors in the 

power system. This helps to reduce the operational risks 

of the system. Therefore, the V-PID controller can have 

a positive impact on the stability, reliability, and overall 

performance of the power grid. 

Ⅴ.   CONCLUSION 

Taking the prototype turbine test data and actual op-

erational data as the sample data, this paper uses the 

GWO to modify the prototype turbine test data and 

constructs a high-precision turbine model based on 

BPNN and a nonlinear HTRS simulation platform. Hopf 

bifurcation theory is adopted to calculate the stable 

domain of HTRS in typical working conditions to im-

prove the GWO and obtain the optimal PID parameters 

efficiently. In addition, taking the optimal PID param-

eters in typical working conditions as sample data, the 

neural networks of V-PID controllers with different 

structures are trained, and a V-PID controller with good 

structure, small error, and high reliability is obtained. 

The proposed offline training and online adapta-

tion-based V-PID controller only adds three modules of 

‘Judgment’, ‘Save’, and ‘PIDNN’ to the structure, 

which not only greatly reduces the rise and regulation 

times, but also realizes optimal control of the hydro-

power unit in full working conditions. The proposed 

controller provides an effective improved solution for 

the governing controller of hydropower units.  

However, the construction of the V-PID controller 

relies on an accurate HTRS model and is thus not suit-

able for hydropower stations where it is difficult to 

obtain enough modeling data. This paper theoretically 

studies the offline training and online adaptation-based 

V-PID controller considering the nonlinearity of the 

hydro-turbine while the nonlinearity of the diversion 

system is ignored. In the future, theoretical research and 

experimental verification will be conducted on the 

V-PID controller that considers the nonlinearities of 

both the diversion system and the hydro-turbine. 

APPENDIX A 

A. Experimental and Test Data for the Modeling of 
Hydro-turbine 

To ensure the accuracy of the hydro-turbine model, the 

test and operational data at multiple water heads of an 

actual hydropower plant are used. The test data is pro-

vided by the turbine manufacturer, as shown in Fig. A1. 

The operational data are obtained from the monitoring 

system shown in Fig. A2, with a sampling time of 0.01 s. 

 

 

 

 
Fig. A1.  Hydro-turbine test data. (a) Test data at operating con-

ditions. (b) Runaway data when 
max.H H  (c) Runaway data 

when .rH H  (d) Runaway data when 
min.H H  
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Fig. A2.  Hydro-turbine operational data. 

APPENDIX B 

B. Effect of Hydro-turbine Modeling 

The change of loss function during the iteration 

process is shown in Fig. B1, the actual modeling error is 

shown in Fig. B2, and the discharge and torque char-

acteristic surfaces are shown in Fig. B3. Taking TCNN 

as an example, the comparison with the actual opera-

tional data is shown in Fig. B4. 

 

 
Fig. B1.  Iteration process of hydro-turbine model. (a) The itera-

tion process of DCNN. (b) The iteration process of TCNN. 

 

 

Fig. B2.  Actual modeling error of hydro-turbine. (a) Modeling 

error of DCNN. (b) Modeling error of TCNN. 

 

 

Fig. B3.  Fitting surfaces of DCNN and TCNN. (a) Discharge 

characteristic fitting surface. (b) Torque characteristic fitting 

surface. 
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Fig. B4.  Verification result of hydro-turbine TCNN. (a) Fol-

lowing effect of TCNN. (b) Following error of TCNN. 

APPENDIX C 

C. Detailed Data of the Diversion Pipeline 

The planning diagram of the diversion pipeline [3] be-

tween the reservoir and the hydro-turbine volute is shown 

in Fig. C1. 

 

Fig. C1.  Planning diagram of the diversion pipeline. 

APPENDIX D 

D. Stability Proof of V-PID Controller 

Let 1x  , 2x y , 3x h , 4x ix , 5x  , the 

state equation of HTRS can be obtained, and is based on 

(21) and expressed as: 

 

 

 
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 (33) 

Equation (33) can be simplified as: 

( )x f x                              (34) 

where x is a 5-dimensional state vector; and f is a non-

linear vector function with the same dimension as x. 

Assuming that the origin 0e x  is in an equilibrium 

state and f(x) is differentiable for ix  ( 1 5i   ), the 

Jacobian matrix of HTRS can be expressed as (35). 
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(35) 

The sufficient condition for the asymptotic stability 

of HTRS at the origin is that (36) is positive definite as 

for a positive definite real symmetry P, and (37) is its 

Lyapunov function [49]. 
T( ) ( ) ( )    Q x J x P PJ x        (36) 

T T( ) ( ) ( ) V x x Px f x Pf x       (37) 

If there is ( )V x  when x , the HTRS is 

globally asymptotically stable at 0e x . 

Proof. Selecting the quadratic function shown in (38) 

as a Lyapunov function, then V(x) is positive definite.  
T T( ) ( ) ( ) V x x Px f x Pf x       (38) 

where P is a positive definite symmetric matrix. 

Considering that ( )f x  is an explicit function of x 

rather than time t, there is: 

d ( ) ( ) ( )
( ) ( ) ( )

d dt t

  
   

 

f x f x x f x
f x x J x f x

x x
 (39) 
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Taking the full derivative of V(x) over t along the 

state trajectory, ( )V x  can be obtained as: 

 
 

T T

TT

T T

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

  

 

  

V x f x Pf x f x Pf x

f x PJ x f x J x f x Pf x

f x J x P PJ x f x

(40) 

T( ) ( ) ( ) ( ) V x f x Q x f x                   (41) 

where 
T( ) ( ) ( )    Q x J x P PJ x . 

According to (41), to make the HTRS asymptotically 

stable,  V x  must be negative definite, i.e., Q(x) must 

be positive definite. 

If there is  V x  when x , the HTRS is 

globally asymptotically stable at 0e x . 

According to the Proof, taking P  I (I is the unit 

matrix), the sequential principal sub determinant 

 1 5i i    of Q(x) under typical working conditions 

is calculated, and the results are shown in Fig. D1. As 

shown, 0i  , indicating that Q(x) is positively defi-

nite for x≠0 [50]. 

In addition, when x , there is: 
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(42) 

Therefore, the HTRS is globally asymptotically sta-

ble at 0e x . 

 

 

 
Fig. D1.  

i  under typical working conditions. (a) 
1.  (b) 

2. (c) 

3. (d) 
4. (e) 

5.  

However, due to ignoring the nonlinearity of hy-
dro-turbine, it is necessary to further study the proof 
method of V-PID stability. Therefore, combined with 
the characteristics of Lyapunov’s second method [49], 

the stability judgment index ( vI ), which is based on the 

integral value of the controlled variable in a period under 
the stable state as shown in (43), is adopted to prove the 

V-PID stability. For the stable system, 0vI   in theory. 

To reduce the calculation time, this paper takes the 

maximum simulation time max 50 st  , and the integra-

tion calculation time lim 10 st  . vI  in typical working 

conditions is shown in Fig. D2. As seen, 0vI   in each 

typical working condition, indicating that the stability of 
the V-PID controller meets the requirements. 

max

max lim

t

v t
t t

I m


                          (43) 

 

 
Fig. D2.  

vI under typical working conditions. (a) 3D perspective. 

(b) Plane perspective. 
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