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Optimizing Harmonic Mitigation for Smooth In-

tegration of Renewable Energy: a Novel Approach 

Using Atomic Orbital Search and Feedback Arti-

ficial Tree Control 

B. Kiruthiga, R. Karthick, I. Manju, and Krishnaveni Kondreddi 

Abstract—This paper proposes an intelligent hybrid 

method for reducing harmonics to enhance power quality 

in a distribution system based on renewable energy 

sources. The proposed intelligent method, namely, the 

AOS-FAT technique, consolidates atomic orbital search 

(AOS) and a feedback artificial tree (FAT). The main 

objective of the proposed approach is to improve the 

quality of power by mitigating the harmonics. The AOS 

method is used to find the best values for basic and har-

monic loop settings, like the shunt active power filter’s 

direct current, voltage and the voltage at the terminals. 

Based on the change in load and PV parameters, a dataset 

variation is generated based on the objective function for 

minimum error. The optimal control signals are then 

generated using the FAT approach, which predicts the 

optimal parameters from the accomplished datasets. The 

proposed approach mitigates the overall harmonic dis-

tortion through the switching control pulses to enhance 

power quality. The control method concentrates on im-

proving the maximum PV power when there is harmonic 

distortion by inserting the exact compensation current via 

the hybrid shunt active power filter. The proposed ap-

proach is implemented in MATLAB, and its performance 

is examined by comparing to existing methods. From the 

simulation outcome, the maximum PV power is 12 kW, 

and the THD is 1.1%. 

Index Terms—Shunt active power filters (SAPF), nonlinear 

load, maximum PV power, power quality (PQ), harmonics. 
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Ⅰ.   INTRODUCTION 

armonic mitigation is important for renewable 

energy systems connected to distribution systems 

[1]. Some of the more important power quality (PQ) 

issues in the distribution systems include power 

blackout, flicker, harmonics, notching transients, sags, 

and swells [2], [3]. System voltage variation is primarily 

caused by over-loading [4], [5], while non-sinusoidal 

current is caused by non-linear loads that produce 

harmonics in the voltage and current [6], [7]. These 

harmonics can cause detrimental effects on gear types of 

distribution systems (DSs), malfunction of defensive 

devices, overheating of transformers and rotating ma-

chines, capacitor bank damage, non-linear loading of 

sandwiched bus bars, etc. [8]10]. Many techniques 

have been introduced to mitigate such issues caused by 

harmonics [11], [12], e.g., a harmonic filtration system 

is used in industrial power systems to minimize har-

monic distortion [13]. 

Examples of the harmonics produced in the load in-

clude those in static volt-ampere reactive compensators, 

switch-mode power supplies, inverters,  DC converters, 

lightning strikes, AC or DC motor drives, and capacitor 

switching, and electric arc furnaces [14]. These disrup-

tions lead to malfunction, reduced lifespan, and block-

ing of electrical components [15]. Various approaches 

have been used for harmonic reduction, e.g., differential 

evolution algorithms, recursive least squares, etc. [16]. 

The error value is analyzed by recursive least squares 

among the filter output and preferred signal in [17], 

though the recursive least squares has some drawbacks, 

such as its multifaceted and unstable nature[18]. Vari-

ous evaluations are used for continuous functional im-

provement but they involve a large processing time [19]. 

To mitigate harmonics there are various choices, e.g., 

line reactors, harmonic traps, rectifiers, and low pass 

filters as presented in [20][23]. 
The harmonic mitigation component ensures the 

suppression of harmonics without causing negative 
effect on the electrical system [24][26]. However, 

H 
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some other components’ performance is based on the 
system condition [27]. Hence, to solve these problems, 
advanced approaches are needed for reducing the har-
monics. The APF is frequently used to lower system 
harmonics [28]. This generates certain electrical com-
ponents using power electronics technologies to discard 
the harmonic current produced by non-linear loads [29]. 
The compensation voltage or current reference estima-
tor obtains the information on harmonic current and the 
variables of different systems. These are then used to 
operate the whole system controller [30]. Finally, a 
gating signal generator, controlled by the estimator, 
generates the gate signals to control power circuits [31]. 
The primary benefit of APF over a passive filter is the 
mitigation of current harmonics, while also suppressing 
the reactive current [32], [33]. The main contributions 
and novelty of this paper can be summarized as: 

1) This research addresses the issue of power quality 
degradation in renewable energy integrated distribution 
systems, primarily caused by harmonics. 

2) The paper introduces a hybrid approach aimed at 
improving the power quality in distribution systems that 
rely on renewable energy sources. This strategy’s main 
goal is to mitigate harmonics. 

3) The AOS method is employed to optimize datasets 

related to basic and harmonic loop parameters, includ-

ing parameters such as the direct current voltage of the 

shunt APF (SAPF) and terminal voltage. These datasets 

are optimized based on linear and non-linear load vari-

ations, and photovoltaic (PV) parameters, with the goal 

of minimizing error. 
4) The FAT approach is used to generate optimal 

control signals. This involves predicting the optimal 
parameters from the optimized datasets obtained 
through the AOS method. 

5) The generated control signals are then used to 
eliminate overall harmonic distortion through switching 
control pulses. 

6) A specific focus is given on improving the maxi-
mum power output from PV sources while addressing 
harmonic distortion. This is achieved by injecting a 
precise compensation current using a hybrid SAPF. 

7)  The proposed approach is implemented and tested 
using Matlab. Comparisons with existing approaches, 
such as enhanced particle swarm optimization (EPSO), 
fuzzy logic control (FLC), and sliding mode control 
(SMC), reveal significant improvements. 

8) The simulation results demonstrate the effective-
ness of the method, achieving a maximum PV power 
output of 12 kW while keeping the THD at a low level 
of 1.1%. These results indicate a significant improve-
ment in power quality and renewable energy utilization. 

The remainder of the manuscript paper is arranged as 
follows. Section Ⅱ reviews recent research work, while 
Section Ⅲ explains the structure of an SAPF connected 
PV system. Section Ⅳ explains the control structure of 
the half-bridge interleaved buck SAPF (HBIB-SAPF). 
Section Ⅴ describes the proposed approach for har-
monic reduction. Section Ⅵ gives the results and dis-
cussion, and Section Ⅶ concludes the paper. 

Ⅱ.   A BRIEF REVIEW OF RECENT RESEARCH 

There has been a lot of studies on the mitigation of 
harmonic resonance in distribution systems using var-
ious methods and aspects. Some of them are reviewed 
here. 

Reference [34] addresses the PQ problem for the 
standalone MG system by using SAPF. The continuous 
input current flow, constant DC-link capacitor voltage, 
and low switching loss are the main requirements of 
SAPF. As the conventional voltage source inverters 
(VSI) do not provide these, a split source inverter (SSI) 
is introduced. Using the same mechanism of VSI and 
modulation index, the SSI controls both the AC and DC 
sides. In [35], a damping approach is suggested for 
minimizing the loss of SAPF with an LCL filter. The 
suggested approach is dependent on the auxiliary con-
verter and is incorporated with the filter capacitor, 
whereas the voltage of the system is controlled by an 
auxiliary converter. In order to lower the system's 
harmonics, Reference [36] proposes an adaptive neu-
ro-fuzzy inference system that makes use of a radial 
basis function neural network (RBFNN). The modified 
7-level boost active-neutral-point-clamped inverter is 
operated like a SAPF, while an adaptive neuro-fuzzy 
inference system (ANFIIS) is used to tune the propor-
tional-integral controller to control the DC-link voltage 
and RBFNN is used to process the extraction of har-
monics and reference current. The presented method 
eliminates current harmonics while compensating for 
reactive power. Nevertheless, the RBFNN’s depend-
ence on the fuzzy K-means clustering algorithm for 
center localization during training may limit its effec-
tiveness, particularly with complex datasets. 

In [37], a single-frequency-decoupled (SFD) ap-
proach is suggested for reducing the harmonics while 
also enhancing the performance of the distributed sys-
tems. The approach is to enhance the traditional indirect 
extraction scheme, and the evenorder voltage harmonics 
are mitigated. A proportional-resonant (PR) controller 
is used. Reference [38] presents ANFIS, an Artificial 
Neural Network and Recurrent Neural Network, as 
methods for reducing harmonics and improving power 
factor in power distribution networks using SAPF. The 
main aim of the suggested technique is to improve the 
performance through minimizing the THD. In [39], the 
SAPF is used to satisfy the customer requirement of 
high quality supply through the reduction of harmonics. 
Reference [40] proposes a model reference adaptive 
system for eliminating the harmonics of the system. The 
hardware cost of the SAPF is minimized by using a DC 
voltage estimation method to reduce load and filter 
current sensors. 

Recent work highlights as an important factor the 
power quality issue of the distributed systems. Some 
loads produce very high harmonic current which leads 
to significant distortion in the distribution network. This 
results in higher power losses and a reduced power 
factor. At the site of intersection where various users are 
connected to the network, distortion often occurs be-
cause of variable speed drives and large industrial 
converters. Therefore, recent harmonic mitigation ap-
proaches are used to reduce these effects which are 
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caused by power electronics and non-linear loads. 
Various methods are available, e.g., using active and 
passive filters, though selecting the best method is not 
straightforward. Some technologically advanced solu-
tions offer definitive outcomes and with negligible 
negative effect in the isolated electrical system. Con-
versely, the performance of other simpler approaches is 
highly dependent on the condition of the system. These 
drawbacks have motivated this work. 

Ⅲ.   CONFIGURATION OF SAPF-CONNECTED PV SYSTEM 

Configuration of the SAPF-connected PV system is 

displayed in Fig. 1. Here, the half-bridge interleaved  

buck SAPF (HBIB-SAPF) is employed to reduce sys-

tem harmonics. The proposed system is incorporated 

into three parts, i.e., power grid, non-linear load and 

HBIB-SAPF-tied PV system. The grid is represented by 

a 3-phase sinusoidal supply voltage behind a 3-phase 

R-L impedance network. A 3-phase full-bridge rectifier 

is connected parallel to the grid [41][43] and is used as 

the non-linear load. SAPF is formed by a 3-phase 

HBIB-converter through a PV source. 

The HBIB-SAPF is incorporated with 3 single-phase 

dual buck power cells that are tied with a direct current 

capacitor. Two IGBTs, two diodes, and two coupling 

inductors are used for each cell. The filter current is 

smoothed by the interfacing inductors that connect the 

HBIB-SAPF to the grid at the point of convergence. 

Fig. 1.  Configuration of SAPF connected PV system.  
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A. Modelling of PV System 

In general, a photovoltaic system has a DC-DC con-

verter, a load, and a photovoltaic module [44]. The PV 

cells are placed in parallel or series to obtain a specific 

value of voltage and current from the PV module. The 

PV cell generates a PN junction that uses sunlight to 

generate photocurrent and operates as a diode. A circuit 

diagram of a single diode solar cell is portrayed in Fig. 2. 

As seen, the current source contains a resistor and a 

diode [45], [46]. The PV properties are mathematically 

expressed below. 

 

Fig. 2.  Circuit model of a single diode solar cell. 

The characteristic current of a PV cell is described 

by: 
S
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where i  denotes the PV cell’s output current; PHi  de-

notes the light generated current; Therv  refers to the 

thermal voltage; siR  is the product of the quality factor 

fq and the series resistance sR ; and Satui is a constant 

representing the diode saturation current. The current 

created by light is proportional to the intensity of the 

light, computed as: 
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where Theri  is the standard light intensity; PHoi  refers to 

the light current created in an open circuit; and oti is a 

constant. 
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where q indicates the elementary charge; opencV  indi-

cates the open circuit voltage of the PV cell; Oi  indicates 

the current saturation diode; and STR indicates the series 

resistance of the shunt diode in the PV cell. According 

to (3), the reverse saturation current is: 
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The saturation current is: 
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where sci indicates the current used in a short circuit; seR  

and shR indicate the shunt and series resistances, corre-

spondingly. n indicates the ideality factor; ocV  denotes 

the open circuit voltage and iv indicates the voltage at 

the knee of the diode characteristic curve. The maxi-

mum power point condition is applied and is calculated 

as: 
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where mppv  and mppI  are the current and voltage at the 

MPP while SER  is the shunt resistance at the MPP. 

B. Modelling of DC-link Voltage 

To guarantee appropriate current injection, the direct 

current-link voltage needs to be more than twice the 

peak grid voltage [47], i.e: 

PV,min GRIDv v≥2                            (7) 

where GRIDv  represents the peak grid voltage [48]. The 

required DC-link capacitance is calculated by: 

PV PV
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2
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c
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                         (8) 

where power transmitted through the PV panel in MPP 

is expressed as PVp ; the DC-link voltage is indicated 

as PVv ; the ripple amplitude of the PV voltage is indi-

cated as PVv ; and the grid angular frequency is indi-

cated as GRIDf . Considering that the voltage of the grid is 

sinusoidal, it can be described as: 
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The load current is described by: 

LOAD , GRID

1

( ) sin( ),( , , )J J H H

H
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
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where the Hth harmonic load current component is 

LOAD ( )Ji T ; the amplitude and phase are expressed as
,J Hi  

and H , respectively. 

Ⅳ.   CONTROL STRUCTURE OF THE PROPOSED 

HBIB-SAPF 

Current and voltage control using the proposed ap-

proach is displayed in Fig. 3. Here, inner and outer loops 

are considered [49], where the outer loop is employed to 

control the voltage within the system and the inner loop 

is used to control the system current. 
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Fig. 3.  Voltage and current control using proposed approach. 

A. Modelling of HBIB Switches 

The switches operate in accordance with current flow 

via the output filter FJi . If the filter current is positive 

then 1JS  and 1Jd  are in operation, and if it is negative, 

then 2 JS and 2 Jd are operational [50]. The HBIB con-

verter switching signals are described by: 
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The switching function is defined based on filter 

current polarity, as: 
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The switched model uses Kirchhoff’s laws, and is 

described by: 
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where the inductance currents are denoted as 

1JLi and 2Jli ; current and voltage generated through the 

PV source is denoted as PVi and PVv ; and the driving 

signal for the switches is denoted as (1,2) J . When the 

switches are identical, 1 2J Jl l l  . 

B. Modes of Operation of the HBIB-SAPF 

Each dual buck power cell for the photovolta-

ic-assisted HBIB-SAPF converter may be expressed in 

terms of 4 state equations, where every mode is associ-

ated with a particular converter topology, as shown in 
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Fig. 4 [51]. As seen, in mode 1, the switch 1As  and in-

ductor 1l  carry the current while the other components, 

e.g., 1A 2A 2A, ,d s d  are off. In mode 2, the diode 1Ad  and 

inductor 1l carry the current while 1As , 2As , 2Ad are off. 

 

Fig. 4.  Phase A operating mode of HBIB converter. 

C. Modelling of Current Control Loop 

The grid current must equal the reference signal to 

correct the ‘current harmonics’ and to obtain the power 

factor correction. Based on a specific grid voltage, this 

matching current processes the grid current in propor-

tion and in phase. Hence, it is achieved by ensuring the 

filter current matches the reference current, computed 

by: 
*

F GRID LOAD ,( , , )J J Ji v i J A B C               (16) 

where the appropriate conductance for the amplitude of 

grid current is denoted as  . 

D. Modelling of Voltage Control Loop 

It is used to guarantee the control of the DC-link 
voltage according to power balance between the PV 

panel and grid [52][54]. Based on the reference signal 
of the PV, its voltage is controlled and the control signal 
is generated. The proposed technique is used to regulate 
the system voltage. 

Ⅴ.   PROPOSED APPROACH FOR HARMONIC REDUCTION 

This paper proposes an intelligent AOS-FAT tech-

nique to mitigating the system harmonics. The proposed 

grid-connected PV system is incorporated with SAPF 

using HBIB. The key purpose of the proposed method is 

to reduce the harmonics and reactive power that are due 

to non-linear load, to extract maximum power of PV, 

and to regulate the DC voltage. Initially, the AOS 

method is used to optimize datasets related to key elec-

trical parameters, considering load variation and PV 

characteristics. Next, the FAT approach generates op-

timal control signals based on the optimized datasets. 

These control signals are then employed to eliminate 

harmonic distortion in the distribution system. Com-

ponents used include data sources, control hardware, 

SAPF, and PV systems, collectively enhancing power 

quality and efficient renewable energy utilization. 

AOS-FAT effectively reduces harmonic distortions and 

stabilizes voltage levels in distribution systems, ensur-

ing a more reliable and cleaner power supply. The 

technique optimizes control signals for PV systems, 

maximizing the utilization of renewable energy sources 

and promoting sustainable power generation. A limita-

tion of the AOS-FAT technique is its adaptability to 

emerging technologies and evolving energy grid archi-

tectures. The following subsections provide a detailed  

explanation of the proposed methodology. 

A. Proposed AOS Approach for Control Signal Gener-

ation 

AOS is a meta-heuristic optimization method de-

pending on the nucleus of an atom and guided by the 

attention rules of quantum physics [55]. The waves 

formed by the motion of electrons are combined in the 

unknown location as an alternative to orbiting in fixed 

pathways among the nucleus. The orbitals are definite in 

terms of electron placement probability, while the 

mathematical concept for defining the probability of 

any electron's particular location surrounding the atom 

nucleus is used. Based on the time, electrons instantly 

change positions and operate like a cloud of charge. In 

this paper, AOS is used to reduce the error of the system. 

The stepwise procedure of the proposed method is ex-

plained in the following steps. 

1) Initiation 

Start the input-parameters, such as PV voltage, DC 

current, iteration boundaries and voltage. 

2) Random Generation 

After initialization, the input-parameters are gener-

ated in matrix form at random, calculated as: 
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3) Evaluate the Fitness for Initial Solution 

The fitness is determined by the objective function, 

given as: 

 ( ) min ( )mF X E t                        (18) 

*

PV PV( ) ( ) ( )mE t v t v t                       (19) 

4) Compute the Binding State and Energy 

The energy and binding state are calculated using: 
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where K

sB is the binding state; K

eB  is the binding energy; 

and c implies candidates in the kth hypothetical layer. 

The optimal solution is determined by (20) and (21). 

5) Create Random Parameters 

Randomly create the random-parameters, e.g.,  , 

  , and   . 

6) Measure Photon Rate 

The photon rate, which is dependent on the emission 

and absorption of electrons, is used to compare various 

interactions. When the random-parameter   is greater 

than or equal to the photon rate, the electron mobility is 

dependent on the emission and absorption. Conversely, 

when   is smaller than that rate, the particle interaction 

determines the electron mobility. 

1 RandK K

j j jx x                         (22) 

where Rand j are uniformly distributed random num-

bers between [0, 1]. 

7) The Energy Level and Binding Energy Are Compared 

If the energy level is higher than the binding energy, 

the position is updated as follows: 

1

( )j j e j sK K

j j

l B
x x

K

  


   
           (23) 

If the energy level crosses the binding energy 

threshold, the position is modified as follows: 

1 ( )
s

K K K

j j j j e jx x l B                 (24) 

The binding energy and state are determined from (23) 

and (24), while the comparison results are used to up-

date the settings. 

8) Finding the Best Global Solution 

The goal is to find the optimal global solution that 

minimizes system errors and maximizes performance. 

This solution is determined based on the binding energy 

and state. 

9) Examine Termination Criterion 

If the termination criterion is satisfied, the process is 

terminated; if not, the process is repeated. 

B. FAT Based Prediction of Control Signal 

The FAT algorithm is an improvement on the artifi-

cial tree algorithm that takes inspiration from the way 

trees grow—that is, how organic matter is transported 

from the leaves to the roots and moisture is transferred 

from the roots to the leaves. The FAT approach [56] is 

established depending on the moisture transmission and 

organic matters. The forward process updating in this 

algorithm is based on branch territory, fitness value, 

maximal search number, and crowded tolerance. The 

backward updating is accomplished using the 

self-proportion, random, and dispersion propagation 

operators. The thinnest branch provides the best solu-

tion. The design of FAT is displayed in Fig. 5. In this 

study, FAT is used to determine the optimum job of the 

machine. The stepwise procedure of FAT is: 

1) Input and Training 

In step 1, ( )x t  is the input, and the output   is made 

into a FAT classification by using the training set, given 

as: 

1 2( , , , )b b b bdx x x x                     (25) 

where d is the dimension; and b is the branch.The goal is 

to classify and predict control signals based on this 

training data. 

2) Count Branches 
Count the number of branches in the branch popula-

tion after examining the first system population. 

3) Fitness Calculation 
Calculate fitness Fit for each branch using input data 

and target output: 

min( )Fit Error                          (26) 

4) Determine Crowd Distance 
Calculate the crowd distance by dividing the branch’s 

territory: 

branch 2 (1 ( ))FT l Fit x                        (27) 

1IJ Jd x x                                (28) 

This crowd distance establishes the gap between the 

branches. 

5) Apply Crossover Operator 

The crossover operator is applied to create a new 

population of branches. This operator combines char-

acteristics of existing branches to potentially improve 

performance, as: 

0 branch(( 1,1) ( / 2))J IJx x R T             (29) 

6) Select the Population of the Best Branch 

Choose the best branch population and update system 

parameters based on fitness: 

max, ( )I Il n Fit x n                        (30) 

Then, the optimal system parameter is updated. 

7) Select the First Branch’s Population for the Feed-
back Procedure 

The population of the first branch for the feedback 

process is chosen as: 

new

new selcted branch
 choose( , )X r X

X
      (31) 

where the population of the chosen branch and branch 

population are newX  and X , respectively. Then check 

the territory and crowded  distance. 

8) In the Feedback Process 

If the branch territory is greater than or equal to the 

crowded tolerance, then update the branch value by 
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using the self-propagating operator. Thus, the value of 

islanded mode is: 

(  (0,1)  (0,1) )N i bst iX X R X R X a         (32) 

where a is a constant related to the golden section theory 

for enhancing the system efficacy. 

9) Perform the Operator of Dispersive-propagation 

In the feedback method, if the branch territory is 

greater than or equal to the crowded tolerance, the value 

of branch i is updated using the dispersive propagation 

operator, as: 

( 1,1) ( / 2)oj ij iy y Rand V a            (33) 

(0,1)tj ij ojy y Rand y                  (34) 

where the updated branch element ( , )O tX X is ex-

pressed by ojy  and ijy , while 0,1,2 .j m  

 

Fig. 5.  Flow chart of the FAT-AOS approach. 

Then update the procedure, combine the old and new 

populations, and build a new population using this 

combination. Continue until the process reaches the 

maximum iteration. FAT is well trained to forecast the 

control signal of SAPF using the above steps. Figure 6 

depicts the flowchart of the FAT-AOS approach. In 
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summary, these steps describe how the proposed AOS 

and FAT algorithms work together to optimize a 

grid-connected PV system with SAPF. The proposed 

SOS-FAT focuses on reducing harmonics, improving 

power extraction from PV sources, and regulating the 

DC voltage. 

Ⅵ.   RESULTS AND DISCUSSION 

Here the outcomes of simulation are presented to 

demonstrate the performance of the proposed approach 

in enhancing the power quality and increasing the 

maximum power of the PV system. The whole system 

including the designed controllers is simulated and the 

performance is analyzed in the MATLAB platform. The 

proposed approach is examined for four cases: without 

PV module, standard climatic conditions, irradiation 

variation condition, and temperature variation condition. 

Then, the proposed approach’s performance is con-

strasted with various existing approaches. The 

non-linear load presented in the system produces har-

monics as described in Fig. 6. From the load current, it 

is clear that the harmonics of the system are high with a 

THD of 39%. 

 
Fig. 6.  Analysis of load current. 

1) Performance Analyses of the Proposed Approach  
without the PV Module 

Here, the performance of the proposed strategy in the 

PV disconnection condition is analyzed. Hence, only 

the SAPF is connected in the proposed method, the 

system is working properly and the total demand of load 

is satisfied by the grid only. 

Figure 7 shows the grid voltage and current. As seen, 

the grid current is sinusoidal and is in phase with the 

grid voltage, confirming that the compensation of 

harmonics and reactive power is well performed. 

Analyses of the grid power, PV power, and load are 

shown in Fig. 8 (a), while Fig. 8 (b) shows the DC-link 

voltage. As seen, the PV power is zero, and the load 

power is satisfied by the grid. The DC-link voltage in 

Fig. 8 (b) shows that it remains constant at 800 V, en-
suring system stability throughout the simulation period. 

Figure 9 shows the analysis of the control signal using 

the proposed method. This contributes to the smooth 

operation of the system in these conditions. 

In Case 1, the absence of a PV module does not 

hinder the system’s ability to meet load demand effec-

tively. The grid voltage and current remain synchro-

nized, eliminating undesired harmonics and reactive 

power. 

 

 
Fig. 7.  Analyses of grid. (a) Voltage. (b) Current. 

 

 
Fig. 8.  Evaluations of index. (a) Power of grid, PV power, and 

load. (b) DC link voltage. 
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Fig. 9.  Analyses of control signal using proposed method. 

2) Performance Analyses of the Proposed Approach in 
Standard Climate Conditions 

Standard climatic conditions are characterized by a 

constant temperature of 25 °C. The PV voltage and 

control signals are displayed in Figs. 10 (a) and (b), 

respectively. As seen, the PV voltage remains stable at 

approximately 815 V after an initial transient, with 

minimal fluctuation. The control signal in Fig. 10 (b) 

shows that the average of the signal reaches its 

steady-state value after a short transient.  

 

 

Fig. 10.  Investigation of grid. (a) PV voltage. (b) Control signal. 

Figure 11 (a) illustrates the power of PV, load and grid. 

It is evident that a portion of the power needed by the 

non-linear load is supplied by the PV, while the rest is met 

by the grid. The PV power starts at 9 kW and increases to 

12 kW at 0.1 s, and then is maintained at 12 kW thereafter. 

Figure 11 (b) illustrates the current of the filter. As seen, 

the filter effectively mitigates harmonic distortions, with a 

filter current magnitude of around 25 A. 

 

 

Fig . 11.  Investigation of grid. (a) Power of PV, load and grid. (b) 

Filter current. 

The three-phase grid current is displayed in Fig. 12. 

As seen, its magnitude is around 25 A between 0 to 0.1 s, 

and then reduces to 20 A between 0.1 s to 0.35 s. From 

the grid current, it can be seen that the undesired har-

monics are eliminated. The phase a grid voltage and 

current are displayed in Figs. 13 (a) and (b), respectively. 

As seen, the voltage magnitude is 300 V from 0 to 0.35 s, 

while the current magnitude is 180 A between 0 to 0.1 s 

and then decreases to 150 A between 0.1 s to 0.35 s. 

From Fig. 13, it is seen that the voltage and current 

harmonics are corrected. The power factor displayed in 

Fig. 14 shows that the correction of the power factor is 

performed effectively, while the near-unity power fac-

tor indicates an improvement in power quality. 

 

Fig. 12.  Analyses of the three-phases grid current (igrid, ABC). 
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Fig. 13.  Investigation of grid. (a) Voltage. (b) Current. 

 

Fig. 14.  Evaluations of power factor. 

In Case 2, in standard climatic conditions, the pro-

posed approach demonstrates robust performance. It 

effectively corrects voltage and current harmonics, and 

leads to a near-unity power factor. The system main-

tains stable operation, ensuring high-quality power 

transfer to the load. 

3) Performance Analyses of the Proposed Method in an 

Irradiance Variation Condition 

Here solar irradiance and power of grid, PV and load are 

displayed in Fig. 15. As seen from Fig. 15 (a), the solar 

irradiance changes from 1 kW/m2 to 0.8 kW/m2 at 0.35 s, 

and then ramps up between 0.65 s to 0.7 s to 0.9 kW/m2. 

Figure 15 (b) shows the power of PV, grid and load. As seen, 

the load power remains constant at 1.75 kW from 0.1 s to 

1.1 s, while the PV power starts at 1.25 kW between 0.1 s to 

0.35 s, reduces to 0.9 kW from 0.35 s to 0.65 s, and then 

remains constant at 1.2 kW from 0.7 s to 1.1 s. 

 

 
Fig. 15.  Analyses of grid. (a) Solar irradiance. (b) Power of PV, 

grid and load. 

Figures 16 (a) and (b) display the PV voltage and con-
trol signal respectively, based on the proposed approach. 
As seen, the PV voltage closely tracks its reference with 
the maximum voltage being 820 V, ensuring a stable DC 
voltage. From Fig. 16(b), it is seen that the control signal 
reaches the value of steady-state after every irradiation 
change. The currents of the filter and the three-phase grid 
are shown in Figs. 17 (a) and (b), respectively. As seen, the 
filter current accurately tracks its reference, effectively 
mitigating harmonic distortions. The grid current remains 
sinusoidal throughout the simulation, as displayed in Fig. 
17 (b), further demonstrating the effective elimination of 
undesired harmonics. The grid voltage and current are 
displayed in Fig. 18. As seen, despite the variation in solar 
irradiance, the current and voltage remain in phase, con-
firming effective harmonic and reactive compensation. 
The analysis of power factor depicted in Fig. 19 also 
shows near unit power factor. 
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Fig. 16.  Analyses of grid. (a) PV voltage. (b) Control signal 

based on proposed approach. 

 

 

Fig. 17.  Analyses the current . (a) Filter. (b) Three-phase grid. 

 

 
Fig. 18.  Analyses of grid. (a) Voltage.  (b) Current. 

 
Fig. 19.  Analyses of power factor. 

Case 3 reveals that the proposed methodology effec-
tively adapts to varying solar irradiance conditions, 
maintaining stable PV voltage and control signals. 
Power generation aligns with irradiance fluctuations, 
with clean grid current. The power factor remains near 
unity, contributing to improved power quality. 
4) Performance of the Proposed Method Under Tem-

perature Variation Condition 
The changing of temperature in this case is illustrated 

in Fig. 20 (a). As seen, at the beginning of the simula-
tion (0 to 0.3 s), the temperature is 25 °C. It increases to 
40 °C from 0.3 s to 0.65 s, and then gradually decreases 
to 20 °C from 0.75 s to 1 s. The power of the PV, grid 
and load are shown in Fig. 20 (b). As can be seen, the 
load power remains constant at 17 kW from 0.1 s to 1 s, 
while the PV power starts at 12 kW at 0.1 s and remains 
stable at this level during the simulation. This demon-
strates the system’s ability to maintain power generation 
as the temperature changes. 
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Fig. 20.  Analyses of grid. (a) Temperature. (b) Power of pho-

tovoltaic, grid and load. 

Figure 21 (a) shows that the PV voltage varies ac-

cording to the varying temperature condition of the PV. 

Fig. 21 (b) shows the control signal generated using the 

proposed approach. As seen, the control signal reaches a 

new steady-state value after each change in temperature 

condition, ensuring efficient operation in response to 

temperature variation. Figure 22 (a) illustrates the per-

formance of the filter current, which accurately tracks 

its reference, effectively mitigating harmonic distor-

tions. From Fig. 22 (b), the grid current remains sinus-

oidal throughout the simulation, demonstrating the ef-

fective elimination of undesired harmonics. 

 

 

Fig. 21.  Analyses of grid. (a) PV voltage. (b) Control signal 

based on proposed method. 

 

 
Fig. 22.  Analyses of the current. (a) Filter. (b) Three-phase grid. 

Figure 23 displays the grid voltage and current. As 

can be seen, despite the variation in temperature, the 

current and voltage remain in phase, confirming effec-

tive reactive current compensation. Figure 24 further 

shows that the correction of the power factor is per-

formed effectively. This demonstrates improvement in 

power quality, especially during temperature variations. 

 

 
Fig. 23.  Evaluations of grid. (a) Voltage. (b) Current. 
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Fig. 24.  Analyses of power factor. 

In Case 4, the results indicate that the system effec-

tively adapts to temperature changes, maintaining stable 

PV voltage, control signals, and power quality. 

Analysis of THD is displayed in Fig. 25. The THD 

before the SAPF connection is 40%. After SAPF con-

necting with an irradiance of 800 W/m2, the THD be-

comes 1.1 %, and for irradiance of 900 W/m2, the THD 

is 1.34 %. Hence, THD is reduced significantly using 

the SAPF with the proposed approach. Figure 26 illus-

trates the comparison of THD with the proposed and 

existing methods.  

 
Fig. 25.  Analysis of THD. 

 
Fig. 26.  THD in comparison to proposed and current approaches. 

As seen, the proposed method results in 1.1 % THD, 

compared to 2% for FLC, 2.2% for EPSO, and 2.87% 

for the SMC approach. 

The findings highlight the strength of the proposed 

method in various operational scenarios. Particularly, 

the SAPF shows its effectiveness in maintaining power 

quality by mitigating harmonic distortion and ensuring 

smooth grid interaction. The comparison with existing 

approaches, such as FLC, EPSO, and SMC, highlights 

the superiority of the proposed method, with signifi-

cantly lower THD. This highlights the practicality and 

effectiveness of the proposed methodology in improv-

ing PQ. 
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