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Optimal Nonlinear Robust Sliding Mode Control 

of an Excitation System Based on Mixed 2 /   

Linear Matrix Inequalities 

Yidong Zou, Yunhe Wang, Jinbao Chen, Wenqing Hu, Yang Zheng, Wenhao Sun, and Zhihuai Xiao 

Abstract—In this paper, an optimal nonlinear robust 

sliding mode control (ONRSMC) based on mixed 2 /   

linear matrix inequalities (LMIs) is designed for the ex-

citation system in a “one machine-infinite bus system” 

(OMIBS) to enhance system stability. Initially, the direct 

feedback linearization method is used to establish a 

mathematical model of the OMIBS incorporating uncer-

tainties. ONRSMC is then designed for this model, employ-

ing the mixed 2 /   LMIs. The chaos mapping-based 

adaptive salp swarm algorithm (CASSA) is introduced to 

fully optimize the parameters of the sliding mode control, 

ensuring optimal performance under a specified condition. 

CASSA demonstrates rapid convergence and reduced like-

lihood of falling into local optima during optimization. Fi-

nally, ONRSMC is obtained through inverse transfor-

mation, exhibiting the advantages of simple structure, 

high reliability, and independence from the accuracy of 

system models. Four simulation scenarios are employed to 

validate the effectiveness and robustness of ONRSMC, in-

cluding mechanical power variation, generator three-phase 

short circuit, transmission line short circuit, and genera-

tor parameter uncertainty. The results indicate that 

ONRSMC achieves optimal dynamic performance in 

various operating conditions, facilitating the stable oper-

ation of power systems following faults. 

Index Terms—Excitation, sliding mode, linear matrix 

inequality, salp swarm algorithm. 

 

Ⅰ.   INTRODUCTION 

he excitation system of a generator is an essential 
component of the power system, and excitation 

control is one of the most economical and effective 
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techniques for enhancing power system stability [1], [2]. 
Generator excitation systems mainly affect the grid 
voltage levels and the distribution of reactive power 
among parallel operating units [3]. In certain fault con-
ditions, a decrease in generator terminal voltage will 
reduce power system stability [4]. Therefore, when a 
fault occurs, it is necessary to rapidly increase the gener-
ator’s excitation current to maintain the grid voltage level 
and stability [5]. Thus, automatic control of synchronous 
generator excitation plays a critical role in ensuring power 
quality, rational distribution of reactive power, and im-
proving the reliability of power system operation [6], [7]. 

Various methods have been proposed to improve the 
stability of power systems [8], and many improved con-
trol strategies for excitation systems have emerged. 
Currently, the widely used improved control strategy in 
excitation systems is the proportional-integral-derivative 
controller and power system stabilizer (PID+PSS) exci-
tation control method [9]. This method is based on con-
ventional PID control which incorporates auxiliary ex-
citation control to form a dual-input control structure of 
PID+PSS [10]. Specifically, active power, generator 
speed, and system frequency deviations are added to the 
feedback inputs. The advantage of PID+PSS control is 
that it can compensate for the phase lag caused by the 
excitation system under single PID control, making the 
dominant pole of the original system transfer function 
further away from the imaginary axis, thus increasing 
system damping, improving system anti-interference 
ability, and effectively suppressing low-frequency oscil-
lations in the system [11]. Also, PSS has a simple control 
structure, so it is widely used in practical power systems 
[12]. However, the PID+PSS control method also has 
some disadvantages. As the design of PSS is typically 
carried out in a selected network model and oscillation 
space, designing under specified operating conditions 
may exacerbate the harm of oscillation to the system 
when the actual frequency deviates from the set value. In 
addition, according to the working principle of PSS, it is 
an additional univariate excitation control method. Op-
timized parameter design may still result in the system 
not achieving the best control effect. 

In reality, power systems are multi-objective and 

strongly nonlinear systems, making it difficult for the 

classical control theory of PID+PSS to meet the real  
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needs of power systems [13]. In order to achieve control 
with certain objective constraints, linear optimal exci-
tation control (LOEC) is proposed in [14]. The method 
involves forming a control quantity by superimposing 
multiple output deviations of the generator according to 
a preset ratio, and the system state equation and quad-
ratic performance index are then linearized at a specific 
generator operating point to obtain feedback coeffi-
cients [15]. This control method can also design control 
laws specifically for different control objects, offering 
better dynamic performance than PSS, with improved 
robustness, damping characteristics, adaptability, and 
higher static stability limit for the system [16]. However, 
the design of the LOEC is carried out at a certain oper-
ating equilibrium point of the system. Therefore, alt-
hough the excitation system performs well in steady-state 
or small disturbances, it will result in static errors if a 
large disturbance causes the system to deviate from the 
initial operating point or system topology change. 

When a system exhibits low sensitivity to uncertain 

disturbances in key indicators such as stability, dis-

turbance rejection, and optimal performance, it can be 

said to possess robustness [17]. Robust control involves 

the application of specific control methods to enable a 

system to obtain control strategies with robust proper-

ties [18], [19]. In the study of control strategies for 

excitation systems, there has been extensive research on 

the application of robust control [20]. In [21], a robust 

sliding mode controller (RSMC) based on a disturbance 

observer is proposed for the control of excitation sys-

tems. It also improves the stability of the power system. 

In [22], an optimized robust excitation system controller 

is designed to cope with the uncertainty of power sys-

tem model parameters, whereas [23] develops a syn-

chronous generator excitation controller, based on an 

innovative feed forward control strategy, to enhance the 

system’s dynamic response speed and robust performance. 

Robust excitation control design methods also include 

 [24], [25], 2 [26], linear quadratic optimal regulator 

(LQR) gain [27], μ-analysis [28], [29], and mixed 

2 /   controls [30][32]. The control strategy de-

signed by the   method can effectively reduce the 

impact of disturbance on system output and handle un-

certain system models. The combined method simpli-

fies the calculation process of time-domain simulation 

to ensure computational accuracy, thus reducing the 

conservatism of the general   analysis method. 2  

control is a disturbance attenuation robust control theory 

with the core idea of reducing the sensitivity of the output 

to disturbance signals through control. However, select-

ing weighting functions in these robust controller designs 

is highly dependent on the designer’s experience. 

Artificial intelligence technology is rapidly advanc-

ing [33] resulting from combining artificial intelligence 

and control theory [34]. Intelligent control can process 

nonlinear, adaptive, and self-learning characteristics 

without relying on specific system models [35]. As a 

result, it is particularly well suited for excitation control 

of power systems with strong nonlinearity and 

time-varying characteristics. Therefore, a multitude of 

intelligent control methods, including fuzzy [36][38], 

intelligent optimization algorithm [39][42], and neural 

network control, have been employed for excitation 

control of generators [43], [44]. However, intelligent 

control methods have some limitations. For instance, 

fuzzy control is sensitive to the scale of control rules. If 

the control rules are too simple, it can significantly 

reduce the system’s control accuracy and produce less 

than ideal dynamic processes [45]. Conversely, overly 

complex control rules can increase the search space, 

reduce decision-making speed, and prevent the system 

from responding in real-time, potentially hindering the 

ability to achieve effective control [46]. Neural network 

control methods lack a clear physical interpretation, and 

selecting the network structure, number of hidden layers, 

and neurons per layer lacks comprehensive theoretical 

support. Conducting stability analysis for neural net-

work control systems is relatively challenging, and 

convergence cannot always be guaranteed. Additionally, 

neural network algorithms are prone to getting trapped in 

local optima, necessitating their combination with other 

control methods [47]. Despite these limitations, the ad-

vance of computer processing power and advanced algo-

rithms has greatly expanded the potentials for further de-

velopment and application of intelligent excitation control. 

Traditional linear excitation control methods are 

simple and straightforward to implement. However, 

their inherent limitations hinder them from achieving 

satisfactory control effects in complex operating condi-

tions and high-efficiency requirements [48]. In contrast, 

nonlinear excitation control, through in-depth investi-

gation of generator’s internal nonlinear characteristics, 

can better adapt to diverse operating environments and 

attain higher performance benchmarks [49]. Conse-

quently, nonlinear excitation control holds significant 

potential for enhancing generator stability and efficient 

operation. In recent years, the field of nonlinear excita-

tion control has seen considerable advances, including 

model predictive control-based nonlinear excitation 

[50], [51], feedback linearization-based nonlinear ex-

citation [52], adaptive backstepping robust nonlinear 

excitation [53], [54], and fuzzy logic-based nonlinear 

excitation control techniques [55]. These innovative 

control methods not only improve generator dynamic 

performance but also substantially decrease system sen-

sitivity to disturbances, providing robust support for 

stable operation. Despite the remarkable achievements 

in both theoretical research and practical application of 

nonlinear excitation control technology, numerous 

challenges and problems remain to be addressed, in-

cluding the complexity of controller design, high com-

putational load, and stringent real-time requirements. 
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From reviewing the research on excitation control, 

some problems can be observed. The design of PID 

control and PSS is based on an approximately linearized 

model at a certain equilibrium state, and therefore there 

may not be acceptable damping in some cases. The 

LQR adopts a typical optimal control method with a 

linear quadratic performance index. However, optimal 

control theory relies on a precise mathematical model of 

the controlled object, without considering the effect of 

model errors. However, in actual control systems, the 

existence of model errors is unavoidable, and this limits 

the application of optimal control theory. LOEC and 

nonlinear excitation control (NEC) based on modern 

control theory use fixed structures and parameters in 

their modeling, without considering the uncertainty of 

the model, so the designed controllers also struggle to 

achieve the expected performance. 

In order to overcome the shortcomings of the ex-

isting excitation controllers, this paper considers the 

influence of uncertainty on the system in the process of 

system modeling and controller design, and a con-

troller is designed to take into account the uncertain 

factors based on incomplete information about uncer-

tainty, so that the actual system can meet the expected 

performance index. Specifically, this paper proposes 

an optimal nonlinear robust sliding mode control 

(ONRSMC) based on mixed 2 /   linear matrix 

inequalities (LMIs) for excitation control of a one 

machine-infinite bus system (OMIBS). The chaos 

mapping-based adaptive salp swarm algorithm 

(CASSA) algorithm is used to optimize the parameters 

of ONRSMC, thereby introducing an intelligent 

ONRSMC. Simulation results show that the proposed 

method is effective in damping voltage oscillations 

under severe disturbances and uncertainties. The main 

innovations of this paper can be summarized as: 

1) An ONRSMC for excitation control is designed, 

which integrates mixed 2 /   LMIs in the control 

design and sliding surface to ensure mixed robustness. 

2) By applying the CASSA algorithm to optimize and 

adjust parameters, an intelligent ONRSMC for excita-

tion control is introduced.  

3) Voltage oscillations caused by disturbances and 

uncertainties in the OMIBS are suppressed, while the 

system’s robustness with different controllers and pa-

rameter perturbations are also investigated. 

The organization of the rest of the paper is as follows. 

Section Ⅱ introduces the nonlinear mathematical model 

of the OMIBS and its corresponding feedback lineari-

zation mathematical model. In Section Ⅲ, an ONRSMC 

is designed for the OMIBS, while Section Ⅳ proposes 

the CASSA algorithm and its application in optimizing 

ONRSMC. Section Ⅴ presents simulation studies to 

demonstrate the advantages of the new method. Section 

Ⅵ concludes the paper. 

Ⅱ.   SYSTEM MATHEMATICAL MODELS 

A. OMIBS Modeling 

The OMIBS is illustrated in Fig. 1. From [1], the 

system model depicted can be described by the rotor 

motion equation of the generator and the electromag-

netic dynamic equation of the rotor winding as: 
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where   is the rotor angle;  is the speed; 0  is the ini-

tial values of  ; D is the damping coefficient; H is the 

inertia constant; mP  is the mechanical power input; eP is 

the generator electromagnetic power; 
qE  is the quadrature 

q-axis transient voltage; sV is the infinite bus voltage; while 

T Ld dx x x x
     and Σ T Lq qx x x x   are the reac-

tance sum of the d-axis and q-axis, respectively; dx  is the 

d-axis synchronous reactance; dx is the d-axis transient 

reactance; qx  is the q-axis reactance; Tx is the reactance of 

the transformer; Lx  is the reactance of the transmission 

line; 0dT is the excitation winding time constant; dT  is the 

d-axis transient time constant; and fV  is the excitation con-

trol input. 

 

Fig. 1.  A one machine-infinite bus power system. 

B. Direct Feedback Linearization Modeling 

Before carrying out feedback linearization modeling, 

we make two assumptions: 1) The mechanical power of 

the synchronous generator remains constant, i.e., 

m m0 e0P P P  ; and 2) The voltage sV of the OMIBS re-

mains constant. Then, the first-order derivative of the 

electromagnetic power eP  of the generator is obtained as: 
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The rotor angle, speed, and the electromagnetic 
power deviations are defined as: 
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where 0  and e0P  denote the initial values of the re-

spective variables. 
Based on the derivative calculation result of (2) and 

using the direct feedback linearization method, a virtual 

control input is defined as 
0 e) .( /u H P  By combin-

ing with (1), a linear state-space differential equation 
can be derived as: 

 1
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In order to achieve sufficient accuracy in voltage 
regulation of the excitation system and eliminate the 
steady-state error of the generator terminal voltage, the 
integrated value of the terminal voltage deviation is 
introduced as a state variable, described as: 

int t t t0Δ d ( )dV V t V V t                     (6) 

where tV  is the generator terminal voltage and t 0V is the 

generator rated terminal voltage. 
Since the issue of voltage accuracy control can be 

discussed within a small-range near the operating point, 
a small range linearization can be applied. It can be 
derived that there is a relationship between the deviation 

of electromagnetic power eΔP , rotor angle deviation 

Δδ , and terminal voltage deviation tΔV , as: 
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The impedance sx mentioned above is defined as (10), 

and the open-circuit voltage on the q-axis of the gener-
ator is as (11): 

s Ltx x x                             (10) 
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Using the relationship described in (6) and (7), the 

derivative of intV  can be expressed mathematically as: 

v
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Finally, by combining (4) and (12), the feedback 
linearization model for the OMIBS is obtained as: 

1 x Ax B u                           (13) 
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However, in actual power systems, parameters such as 

system damping coefficient D , inertia time constant H ,  
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and line reactance Lx are often difficult to measure or 

estimate accurately. On the other hand, there are often 
external disturbances, such as changes in operating con-
ditions and various faults in the system. Therefore, it is 
necessary to establish a mathematical model that includes 
the above uncertain factors based on the system de-
scribed in (13). In this paper, considering parameter de-

viations of v vΔ , Δ , Δ , ΔD H S R , and external disturb-

ances of 1w , 2w , and 3w , the OMIBS can be described 

as follows: 

1 1 2( Δ ) ( Δ )x    x A A B B u B w          (15) 

where w is the disturbance vector and fδ≤w ; 1B , 

1B , 2B andA  can be expressed as follows: 
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From robust control theory, for controlled object 

systems with uncertain factors, the perturbation matrices  

ΔA  and 1ΔB  in (15) should satisfy the relevant matching 

conditions. The parameter uncertainties ΔA  and 1ΔB  are 

in the following form: 

1 c a b[Δ Δ ] [ ]A B H F E E                 (17) 

where 4 4

c

H , 4 4

a

E and 4 1

b

E  are known 

constant matrices of appropriate dimensions; 4 4F  
is an unknown real matrix containing the uncertainty, 

which satisfies T ≤F F I , and I   is an identity matrix. 

Ⅲ.   DESIGN OF CONTROLLER 

A. Sliding Mode Control Based on the Equivalent 

Principle 

The sliding surface for the system given in (15) can 

be considered as: 
T

1 c b( ) S B H E Px                     (18) 

where P is a positive definite matrix to be determined. 

Based on (18), the mathematical expression of the 

designed sliding mode control (SMC) is described as: 

eq n u u u                             (19) 

The controller (19) consists of two parts: 1) equiva-

lent control term equ , which ensures that the system 

satisfies the sliding mode reaching condition from any 

state; and 2) robust control term nu , which ensures that 

the uncertain sliding mode control system maintains 
good performance with internal parameter perturbations 
and external disturbances. 

From the principle of equivalent control and defining 

0w , we can obtain from the system with uncertainty 

described by (15) and 0S , that: 
T T
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Combining with the analysis of the uncertainty ma-

trix described in (17), the expression for the equivalent 

control term equ  can be obtained: 
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To ensure 0＜SS , the robust control term nu  in the 

SMC in this paper is defined as: 
T 1

n 1 c b 1 c b

T

1 c b 2 0

[( ) ( )]

( ( ) )sgn( )fδ ε

    

 

u B H E P B H E

B H E PB S
   (22) 

where 0ε  is a small normal number. 

The Lyapunov function used for stability proof is 

defined as: 

T1

2
V  S S                             (23) 

Clearly, for all ( , ) 0t S x , the Lyapunov function V 

is positive definite. Differentiating (23) with respect to 
(15) yields: 




T T T

1 c b

T T

1 c b 1 1

T T

2 1 c b 1 c b n

T

1 c b 2

T T

1 c b 2 0

T T

1 c b 2

T

1 c b 2

T T

1 c b 2 0

[( Δ ) ( Δ )

] ( )

( )

( ) sgn( )

( )

( ) s

( )

( )

[( )

]

[ ]

( )

( ) gn

f

f

f

V

w

δ ε s

δ

δ ε

   

    

   

 

   



 

 

≤

S S S B H E Px

S B H E P A A x B B u

B w S B H E P B H E u

B H E PB

S B H E PB

S B H E PB w

S B H E PB

S B H E PB

0

( )

ε

≤

≤0

S

S

(24) 

Based on the above derivation, the following result 
can be obtained: 

0V ≤                               (25) 

Equation (25) shows that the system from any initial 
state satisfies the sliding mode arrival condition. 

The next step is to design a sliding surface that satis-
fies mixed robustness performance, allowing the sliding 
mode control system to maintain robust performance in 
various disturbance conditions. 

B. SMC Analysis and Matrix Design 

In this section, the method of auxiliary feedback is  
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used to introduce the mixed 2 /   LMIs to design 

the positive definite matrix P  in the sliding mode sur-

face and to ensure good robustness of the SMC with 

internal parameter perturbations and external disturb-

ances. First, the mathematical description of the con-

troller described by (19) is rewritten in the form of vir-

tual state feedback, expressed mathematically as: 

 u Kx v                             (26) 

where eq n   v Kx u u  and K  is the state feedback 

matrix. 

Based on the feedback form described by (26), the 

entire closed-loop system can be represented as: 

1 1 Σ Σ[( Δ ) ( Δ ) ]    x A A B B K x B w      (27) 

where Σ 1 1 2[ Δ ] B B B B , and 
T

Σ [ ]w v w . 

Then, combining the closed-loop system described by 

(27) with its mixed 2 /   control performance output 

vectors z and 2z , the augmented mathematical model 

is obtained: 

1 1 Σ Σ

1 2 Σ

2 212

[( Δ ) ( Δ ) ]

( )

( )

  

    

  





  

x A A B B K x B w

C D K x D w

C D K x

z

z

     (28) 

where
5

 z and
5

2 z are performance matrices. The 

matrices in (28) are defined as: 
T

T

1

2

T

2 2

T

21 2

[ 0]

[0 ]

0

[ 0]

[0 ]

 

 



















 

C Q

D R

D

C Q

D R

                       (29) 

where 
1 1

2

R , 
4 4

2

Q and 
1 1

 R , 
4 4

 Q  

are real constant matrices to be determined. The structures 

of the matrices 2R , 2Q , R , and Q  are defined as: 

 

11 12 13 14

2 21 22 23 24

1

2

diag ( , , , )

diag ( , , , )

q q q q

q q q q

r

r





















Q

Q

R

R

 (30) 

where , 0 ( 1,2; 1,2,3,4)ij iq r i j ＞ are weighting factors. 

Corresponding to the two output vectors z  and 2z , the 

transfer function matrices are given respectively by: 

 
Σ 1

1

1 1 2 2

( ) ( )

( [( Δ ) )( Δ ) ]

z w s

s

  





  

    

G C D K

I A A B B K B D
 (31) 

 2 Σ 2 21

1

1 1 2

( ) ( )

( [( Δ ) ( Δ ) ])

z w s

s 

  

   

G C D K

I A A B B K B
 (32) 

Thus, the  performance and 2 performance re-

quirements are respectively given as: 

 
Σ
( )z w s γ

  ＜G  (33) 

 
2 Σ 2 2( )z w s γ＜G   (34) 

where 0γ ＞  and 2 0γ ＞ . 

The design objective of mixed 2 /  control is to 

design a state feedback control law for the linear system 

expressed in (28) such that it satisfies   performance 

(33) and 2  performance (34). 

1)  Control Performance 

 control performance (33) is met if and only if 

there exist a scalar , a matrix W , and 0 ＞X , such 

that: 

1 2

T

2

2 2

3

,

0
,

,

( )

( )

( ) 0 0

Ψ

Ψ D

Ψ







  



    

  

  
 

  
 
  
 

 

＜

X W B

B I

X W I

X W I

   (35) 

where the symbol “*” denotes matrix blocks obtained 

from the symmetry of the matrix and there are: 
T

1 1 1

T

c c

2 1

3 b

, ( ) ( )( )

( )

( )

,

, a

Ψ

Ψ

Ψ



      

      

    

     




 
  

X W AX BW AX BW

H H

X W C X D W

X W E X E W

 

(36) 

When the LMI condition of (35) is met, the feedback 

gain can be taken as 1

      K K W P W X . There-

fore, from the results here, it is known that only if the 

sliding mode of the designed SMC system has   per-

formance, can the parameters in the sliding surface (18) be 
1

  P P X . 

2) 2  Control Performance 

2  control performance (34) is met if and only if 

there exist a scalar  , a matrix 2W  , and two symmetric 

matrices Z  and 2X , such that: 

21 2 2

22 2 2

32 2 2

2

2

2

( )

( )

(

,
0

,

0
,

trace( )

)

Φ

Φ

Φ





  
 

 


  
   



＜

＜

＜

X W

X W I

Z

X W X

Z

               (37) 

where 
T

21 2 2 2 1 2 2 1 2

T T

2 2 c c

22 2 2 a 2 b 2

T

32 2 2 2 2 21 2

, ( )( )

( )

( , ()

( )

,

)

Φ

Φ

Φ










    









X W AX BW AX BW

B B H H

X W E X E W

X W C X D W=

(38) 
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When the condition of (37) is met, the feedback gain 

can be taken as 1

2 2 2 2 2


K K W P W X= = = . Similarly, 

only if the sliding mode of the designed SMC system 

has 2  performance, can the sliding surface (18) pa-

rameters be 1

2 2


P X= . 

3) 2 /   Performance 

In order for the feedback controller to possess both 

2 and  control performances, two sets are defined 

based on the conditions of the two LMIs (35) and (37): 
4 5

1 4

2 2 2 2 2

4

{( , ) 0, ,

0, s.t. (35) holds},

{( , ) 0, ,

0, s.t. (37) hol s}, d

α

β Z



    



  




 

 

Π

Π

＞

＞

＞

∣

∣

＞

X W X W

X W X W
      (39) 

Additionally, here 2Π  is used to represent the inter-

section of Π  and 2Π , i.e.: 

0 2Π Π Π                          (40) 

Given that the problem is to find a single feedback 

gain K that satisfies both requirements in (35) and (37) 

simultaneously, considering the two expressions for the 

gain matrix K , it is evident that there is a clear con-

nection between the two in (35) and (37), i.e.: 
1 1

2 2

 

  W X W X                         (41) 

2 /   performance has a solution if and only if the 

following parameter set (42) is not null. 

2 2 22 2

1 1

2 2

( , ) Π

( , ) Π( , , , )

  

 

 

 

 
 

  
 

 

X W

X WX W X W

W X W X

    (42) 

And in this case, a feedback gain is given by 
1 1

2 2

 

  K W X W X . 

It can be seen from (42) that finding 

2 2( , , , )  X W X W  is not an LMI problem, as (42) 

involves the definition of the parameter set  we set 

2 W W W . Then, the parameter set  reduces to: 

 0 0( , , , ) ( , ) Π ∣X W X W X W           (43) 

Therefore, to avoid the difficulties, we may find a 

0( , ) ΠX W  instead of a 2 2( , , , )  X W X W , and 

the feedback gain matrix is computed by: 
1 K WP WX                        (44) 

where matrix P is the same as in the sliding mode sur-
face in (18), and W is a coefficient matrix. In addition, 
through the definition of matrix K and sliding mode 
surface S, it can be found that: 1) from the matrix 
structure, both have the same structural form; 2) from 
the feedback function, both matrix P play the role of 
feedback information fusion; and 3) both corresponding 

control functions need the computational solution of 

matrix P. Therefore, equations (35) and (37) are used to 

complete the mixed 2 /  controller performance de-

sign and obtain the required matrix P in the sliding mode 

surface. The mixed 2 /  controller performance has a 

solution if there exist scalars a, , two symmetric matri-

ces 1P X , Z, and a matrix W, satisfying the following 

optimization problem: 

 

T

,

( , )

( , )

( , )

( , )

( , )

( , )

trac

min

s.t.

e( )

c γ c γ

Ψ

γ

Ψ γ

Ψ α

Φ

Φ β

Φ

γ

 



 



   
 

   
  
 

 



 

 
 

 

 




















 
 

2 2

1

2

2 2

3

1

2

3

2

0

0 0

0

0

＜

＜

＜

＜

X W

B I

X W D I

X W I

X W

X W I

Z

X W X

Z

   (45) 

where trace(Z) is the trace of matrix Z and there are: 
T T

1 1 1 c c

2 1

3 a b

T T

1 1 1 c c

2 a b

T

3 2 21

( , ) ( ) ( )

( , )

( , )

( , ) ( ) ( )

( , )

( , ) ( )

Ψ α

Ψ

Ψ

Φ β

Φ

Φ

 

    

 

 

    

 










  

X W AX BW AX BW H H

X W C X D W

X W E X E W

X W AX BW AX BW H H

X W E X E W

X W C X D W

 

(46) 

In summary, the solution for the key matrix P in the 

sliding mode surface S can be obtained by (45). It 

should be noted that under the action of sliding mode 

control, the entire closed-loop system is mixed 2 /   

robustly stable. According to (21) and (22), the intro-

duction of the control term v is for the design of the 

matrix P, and thus the state feedback shown in (26) is 

entirely virtual, serving to construct the mixed 2 /   

robustly stable sliding mode surface matrix P. At the 

same time, since no non-singular state transformation is 

required in the entire design, the design of the SMC is 

simplified. 

C. Nonlinear Robust Sliding Mode Control of Excita-

tion System  

Combining the design of the SMC in Section Ⅲ.A, 

the matrix P designed based on the mixed 2 /   

robust LMI in Section Ⅲ.B, and the virtual control input 
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0 e( / )( )ω H Pu , the state feedback ONRSMC for the 

OMIBS that satisfies mixed 2 /  robust perfor-

mance can be obtained as: 

eq n

0 0
Σ 0

2s

s

Σ Σ

0 0

s

Σ

sin
Δ cos 2

cos
Δ cos

sin

d d

f

d q

d q

d q d qd

q

d d

H H

ω ωx T
V

x xV δ
V ω δ

x x

T E δ x xT
ω E V δ

δ T x

 
  

  
  

   
    

  
 

 

u u

(47) 

In addition, the saturation function sat(∙) is used in the 

robust control term nu instead of the sign function sgn(∙) 

to reduce or eliminate chattering in the SMC. The sat-

uration function is designed as: 

c

c c c

c

1,

sat( , ) / , | |

1,




 
 

＞

≤

＜

S

S S S

S

                 (48) 

where c is the saturation function coefficient. 

The structure of the ONRSMC for the system based 

on feedback linearization is shown in Fig. 2. 

 

Fig. 2.  Overall ONRSMC structure for excitation system. 

Ⅳ.  ADAPATIVE SALP SWARM ALGORITHM BASED ON 

CHAOTIC MAP AND ITS APPLICATION 

A. Salp Swarm Algorithm 

As shown in Fig. 3(a), the salps possess a transparent 

barrel-shaped body. They rely on contraction for 

movement and use their gelatinous body to pump water 

to complete the feeding process. One of their most in-

triguing behaviors is their tendency to live in groups. In 

deep-sea environments, salps often form tightly-knit 

aggregations called a salp chain, which is as illustrated 

in Figs. 3(b) and 3(c). A salp chain maintains close 

contact during swimming and foraging, with each indi-

vidual continuously growing. However, the primary 

driving factors behind this unique behavior still need to 

be determined. Inspired by their observations of indi-

vidual and group behaviors of salps in the ocean, Mir-

jalili developed a group intelligence-based optimization 

algorithm called the salp swarm algorithm (SSA) [57]. 

 

Fig. 3.  Shape and structure of salp swarm in deep ocean.  

(a) Single salp. (b) Single salp chain. (c) Double salp chains. 

The salp swarm is divided into two subpopulations: 

leaders and followers, with the leaders located at the 

front of the salp chain and the rest of the individuals as 

followers. The specific mathematical description of the 

salp swarm algorithm is as follows. 

In the SSA, the salps predation space is assumed to be 

×N D  dimensions. Then, the mathematical description 

of the population initialization is shown below: 

rand( , ) ( )N DX N D ub lb lb               (49) 

where N is the population size; D is the dimension of 

space; “ub” and “lb” represent the upper and lower 
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limits of the predation space, respectively, and the 

population initialization process is completely random. 

Finding the optimal food source in the predation 

space is the goal of the population. In the population 

exploration phase, the location of the food source, 

which is the global optimal solution, influences the 

leader’s position movement, and the leader’s position is 

updated as follows: 

1 2 3

1 2 3

[ ]

[

( ) 0.5

( lb ) 0 5] .

j j j ji

j

j j j j

F c ub lb c lb c
x

F c ub c lb c

  
 

  

≥

＜
     (50) 

where i

jx represents the position of leader i in dimension j; 

jF  represents the position of the food source in dimen-

sion j; 2c , 3c are random numbers on [0,1]; and the 

mathematical description of parameter 1c is shown below. 

max

4

1 2e

m
t

T
c

 
  
                             (51) 

where t and maxT  represent the current iteration number 

and maximum iteration number, respectively; m is the 

power exponent of the constant. From (51), we can see 

that 1c  decreases nonlinearly with the increase of itera-

tions. When the value of 1c  is larger, it is favorable to the 

exploration ability of the population, and vice versa, it is 

favorable to the local exploitation ability of the popula-

tion, and the coefficient 1c  makes the exploitation and 

exploration ability of the population in a better balance. 

In the SSA, the followers follow the leader and move 

in a way that satisfies Newton’s second law. Thus, as 

shown in (52). 
2

0

t 0

1

t

/ 2 Δ

( ) /Δ

( ) /Δ

i i

j j

i i

j j

x at v t x

a v v t

v x x t

   


 
  

                  (52) 

where i

jx  represents the position of follower i in the jth 

dimension; 
1i

jx 
 represents the position of follower 

( 1)i   in the jth dimension; a represents the accelera-

tion; 0v  represents the initial velocity; and Δt is the 

difference of the number of iterations. Since the dif-

ference of the number of iterations Δ 1t   and the initial 

velocity 0 0v  , (52) can be expressed as: 

 
1 /) 2(i i i

j j jx x x =   (53) 

To further improve the solution accuracy and con-

vergence speed of the SSA, while ensuring the algorithm 

achieves a balance between exploration and exploitation 

capabilities, this paper improves the algorithm perfor-

mance in three key aspects, including: 1) population 

initialization; 2) leader position update; and 3) follower 

position update, while keeping the population individu-

als unchanged. These improvements are targeted at im-

proving the convergence speed, enhancing the global 

search capability, and optimizing the local search per-

formance, respectively. The schematic diagram of the 

improved framework is shown in Fig. 4, and the specific 

improvement process is described below. 

Fig. 4.  Schematic diagram of the SSA improvement framework. 

B. Three Improvements to SSA 

As a key part of the population intelligence algorithm, 

the initialization position of population initialization 

directly affects the convergence speed and solution 

quality of the algorithm [58]. Compared with random 

distribution, uniform distribution has more comprehen-

sive coverage in the solution space and is more likely to 

obtain good initial solutions. However, the basic SSA 

uses a random population initialization strategy, which 

cannot adequately cover the entire solution space. In  

contrast, chaotic sequences possess the characteristics 

of ergodicity, randomness, and regularity within a spe-

cific range [59]. Compared with random search, chaotic 

sequences can thoroughly probe the search space with 

higher probability, helping the algorithm to jump out of 

the local optimum and maintain the diversity of the 

population [60]. Table Ⅰ shows the standard chaotic 

sequence functions, while their function value change 

curves are shown in Fig. 5 [17]. The symbolic values of 

chaotic functions in Table Ⅱ are sourced from [18]. 
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TABLE Ⅰ 

THE CHAOTIC MAPS FUNCTION 

Chaotic-map Function Range 

Gauss/mouse 1

1, 0

1
, otherwise

mod( ,1)

k

k

k

y

x

x






 



 [-1,1] 

Circle 1 g emod( sin(2π ) /,1)k k kx x C C x     [0,1] 

Chebyshev 
1

1 cos( cos ( ))k kx k x

   [0,1] 

Iterative 1 Isin( π / )k kx C x   [0,1] 

Logistic 1 L 1( )k k kx C x x    [0,1] 

Piecewise 

1

P P

P P

1

P P

1

P P

[0, )

10( ) , [ ,0.5)

10(1 ) , [0.5,1 )

1 [1 ,

,

( ) 1, )

k

k

k

k

k

C x C
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TABLE Ⅱ 

SYMBOLIC VALUES OF CHAOTIC FUNCTIONS 

Symbol Value Symbol Value 

gC  0.2 S1C  7.86 

eC  0.2/2π S2C  -23.31 

IC  0.7 S3C  28.75 

LC  4 S4C  -13.30 

PC  4 S5C  2.3 

  TC  0.5 

 

 

 

 

 

Fig. 5.  Chaotic mapping image curve. 

Therefore, in order to obtain a good initial solution 

position with a higher chance, the convergence speed of 

the population is accelerated. As can be seen in Fig. 5, 

the tent chaos mapping method has better traversal 

uniformity and faster iteration, so it is adopted in this 

paper to improve the coverage space of the initial solu-

tion. In the improved SSA, the tent chaos mapping is 

used to calculate the position of the initial solution in the 

algorithm, and its computational mathematical expres-

sion is: 

 
1

2 0.5

2(1 ) , e e

,

ls

i i

i k k

k i

k

x x
y

x



 



＜
  (54) 

The inverse mapping yields the initial position of the 

population calculated as: 

 ( )i i

j kx y ub lb lb     (55) 

In summary, the chaotic mapping method described 

in (48) can substantially increase the coverage of the 

initial solution space, allowing the population to ap-

proach the optimal solution faster, and thus speed up the 

convergence of the algorithm. 

Observation of (50) shows that the leader’s position 

update in the population is mainly influenced by the 

food source and 1c . The larger the value of 1c , the better 

the exploration ability of the algorithm, whereas the 

smaller the value of 1c , the better the development 

ability of the algorithm. At the same time, the leader’s 
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position movement is also affected by the scaling factor 

2c , which is a uniformly distributed random number 

and makes the leader’s movement very blind, so the 

value of 2c  is mostly invalid. 

The strategy of adding adaptive weights at the locations 

of the food sources helps to improve the performance of 

the optimization algorithm [61]. In the initial stage of the 

algorithm, the weights are large in order to provide the 

algorithm with sufficient exploration capability to help 

search the entire solution space. As the number of 

iterations increases, the weights gradually decrease, which 

helps enhance the ability of the algorithm to exploit the 

local range and allow the algorithm to better explore the 

local optimal solutions. However, in the middle and later 

stages of the algorithm, the weights start to gradually 

increase to give the leader the ability to jump out of the 

local optimal solution and avoid getting stuck in the local 

optimum. With this strategy, the algorithm is able to find 

the optimal solution more efficiently in the global context. 

The specific mathematical description of the improvement 

of (42) is shown as follows: 

 
1 1

1 1
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  (57) 

where jF  is the food source position and 1c  is the de-

creasing and then increasing weight. 

In the basic SSA algorithm, the movement of the 

followers can be described as (53). From (53), it can be 

seen that the position movement of the ith individual is 

only influenced by the ( 1)thi   individual without 

considering the adaptation of the previous individual. 

Therefore, the position movement of the follower is 

somewhat blind, i.e., the position movement of each 

follower i is only related to individual ( 1)i   and lacks 

the ability to exchange information with other individ-

uals. This kind of movement may lead the algorithm 

into a local optimum. To overcome the drawbacks, an 

improved follower movement approach is proposed, 

which is mathematically described as: 

   
a( ) / 2 , ( ) ( )

sin( ) , ( ) ( )

i i

j j j ji

j i i i

j j j j

x F x f x f x
x

x x f x f x

 



 
 



≤

＞
        (58) 

where aF is a decreasing weight factor with the number 

of iterations and  represents the individual randomly 

selected from the leader. 

If the adaptation of the current individual i is greater 

than the adaptation of the leader η, the weight factor is 

added to the position of the individual with greater ad-

aptation to reduce the influence of the individual in the 

worse position and improve the weight of the better 

individual. Otherwise, the individual i only fluctuates 

around itself. This method of movement can greatly 

reduce the blind following and enhance the information 

exchange between populations, while preserving the 

information of followers themselves and ensuring the 

diversity of populations. 

By adding chaotic mapping and adaptive weights and 

changing the position update of leaders and followers at 

the same time, an adaptive salp swarm algorithm based 

on chaotic mapping (CASSA) is obtained. CASSA 

balances the exploration and exploitation abilities of 

leaders, reduces follower blindness, and better preserves 

individual information while ensuring the diversity of 

the population. The specific algorithm flow of CASSA 

is shown in Fig. 6. 

 

Fig. 6.  The specific algorithm flow of CASSA. 

C. Applying CASSA Algorithm to ONRSMC of the OMIBS 

In the definition of the hybrid robust performance 

output vector weights described in the previous section, 

it is noted that the selection of the parameters 

, 0 ( 1,2; 1,2,3,4)ij iq r i j ＞  in the weight matrices 

Q , 2Q , R and 2R  in the performance output vector is 

crucial, as they determine whether the system can 

achieve the expected performance metrics. Also, the 

choice of 0  and c   in ONRSMC impacts the control 

performance output. In previous studies, the selection of 

these controller parameters usually relies on the de-

signer’s experience, which often fails to exploit fully the 

optimal performance of the controller. 
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To solve this problem, a two-stage optimization of 

ONRSMC is proposed here. The specific optimization 

framework is schematically shown in Fig. 7. As shown, 

the optimization for the parameters in ONRSMC is 

divided into two stages. In stage Ⅰ, the number of pa-

rameters is appropriately adjusted to 10 by the CASSA 

algorithm to fully optimize the weight parameters 

ijq and (where 1,2; 1,2,3,4)ir i j  , so that the robust 

performance of ONRSMC can be optimized. In stage Ⅱ, 

the switching gain 0  of the sliding mode control part 

of ONRSMC and the coefficient c  of the saturation 

function sat ( )  are adjusted by the CASSA algorithm to 

make the sliding mode performance of ONRSMC opti-

mized. In both optimization processes, the system faults 

considered are generator outlet short-circuit faults. The 

system optimization objective function is defined as: 

 
2 2

bj (Δ Δ )dtO V t    (59) 

where bjO  denotes the value of the objective function 

throughout the optimization process; Δ tV  denotes the 

deviation of the generator outlet voltage; and Δ  in-

dicates the generator speed deviation. 

Fig. 7.  Schematic diagram of the proposed two-stage optimization framework. 

Ⅴ.   NUMERICAL STUDY 

Control process simulations are conducted in a sin-

gle-machine infinite-bus system to verify the effec-

tiveness of the proposed controller applied to the exci-

tation system. As shown in Fig. 8, there are three sim-

ulation cases. By comparing the proposed excitation 

control method with the conventional methods com-

monly used in engineering applications, the superior  

control performance of the proposed method is demon-

strated. Specifically, to validate the effectiveness of the 

proposed controller in the excitation system, this section 

compares the performance of this controller with tradi-

tional PID control, PID+PSS, and a nonlinear robust 

controller (NRC) on the power system shown in Fig. 1. 

The transfer function of the PID controller is given as: 

 p

d
Δ Δ d Δ

d
f t i t tV K V K V t V

t
     (60) 

Fig. 8.  Three simulation cases. 

The mathematical model of the PSS is shown in Fig. 9 

[62]. The design of the NRC is based on the method 

proposed in [63], and its mathematical expression is 

described as: 
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(61) 

 

Fig. 9.  Block diagram of the PSS excitation regulator. 

A. Simulation Parameters 

The structure of the OMIBS used in the study is 
shown in Fig. 1. In the infinite 230 kV system, the pa-
rameters of the power system components are: 

12.9 s, 0.075, 1.65 0.209, 1.0738,2, qd dH D x x x    

0 6.55 s,dT  0.0584,Tx  and 0.0532.Lx   The initial 

steady-state operating conditions of the system are: 
ο

e0 0 0 00.706, 42.6 , 314.16 rad/s, 0.936,qP E     

and t0 1.05V  .  

The parameters for the PID controller are: p 100K  , 

50,iK  and 10.dK  The parameters used for the PSS 

are shown in Table Ⅲ, while the feedback matrix of the 
NRC is also designed based on the optimal mixed LMIs, 
with the specific expression of the feedback matrix 

being 1 139,f  2 64,f  3 266,f    and 4 634.f    To 

ensure the stable operation of the generator, the excita-
tion voltage satisfies the constraint condition of 

10 p.u.fV ≤  

TABLE Ⅲ 

PSS EXCITATION REGULATOR PARAMETERS 

Parameters Value Parameters Value (s) 

PSSK  15 1T  0.3 

AK  40 2T  0.5 

AT  0.005 s 3T  0.3 

WT  5 s 4T  0.5 

For the proposed controller in this paper, D  is 

defined as 0.1 ,D 0.1 ,H H  V V0.1 ,R R  and 

V V0.1S S  in (15). Therefore, the calculated results 

of the coefficient matrices of the mathematical model 
containing uncertainties are as follows: 
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In (17), the matrices cH , aE , and bE  are taken as: 

c

a

T

b

0.2 0 0 0

0 0.2 0 0
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0 0 0 0.2
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(63)

 

The weighting coefficients ijq and ir in (30) are op-

timized using the aforementioned CASSA. The opti-

mization framework is shown in the stage I of Fig. 7, 

while the iteration curve of the optimization process is 

shown in Fig. 10. It can be seen from Fig. 10 that 

CASSA can avoid local optima and requires a smaller 

number of iterations in the optimization process. After 

completing the optimization in the first stage, the 

switching coefficient 0 and the saturation function 

coefficient c in the proposed controller are optimized. 

The iteration curve of the second stage optimization 

process is shown in Fig. 11, and the optimization results 

are shown in Table Ⅳ. 

 
Fig. 10.  Iteration curve for stage I of the optimization process. 
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Fig. 11.  Iteration curve for stage Ⅱ of the optimization process. 

TABLE Ⅳ 
OPTIMIZATION RESULTS OF THE PROPOSED METHOD 

Proposed 

method 

Optimization 

results 

Proposed 

method 

Optimization 

results 

11q  31.4485 13q  0 

12q  3.6000 14q  7.5597 

13q  0 1r  0.0118 

14q  7.3632 2r  0.0079 

21q  3.1299 0  1 

12q  1.6322 c
 0.0202 

From Figs. 10 and 11, significant improvements 
brought by the two-stage optimization process can be 
clearly observed. With the proposed controller, the fit-
ness value of the excitation system has been successfully 
reduced from the initial 0.517 to 0.33, demonstrating the 
achievement of the optimization process. In addition, by 
comparing Figs. 10 and 11, an important finding is that, 
for the controller proposed in this study, optimizing only 
the weights in the performance output vector is not suf-
ficient to fully unleash its potential performance. 
Therefore, combining the optimization processes in the 
two stages will be more helpful in achieving the optimal 
performance of the controller. The achievements made 
in this study provide a reference for subsequent relevant 
SMC optimization designs. 

B. Case I 

In this study, we conduct a simulation analysis of the 
proposed controller to verify its dynamic response 

characteristics. In this case, the mechanical power mP  

undergoes a step increase of 0.2 p.u. at 30 s, and then 
swiftly returns to its rated value at 30.2 s. The dynamic 
response characteristics of various controllers are de-
picted in Fig. 12. It is evident from Fig. 12 that the 
proposed controller can suppress oscillations induced 
by the step increase in the shortest time, demonstrating 
its superior dynamic response. Concurrently, under the 
influence of the proposed controller, the oscillations 
caused by faults are significantly suppressed, validating 
the high efficiency of the controller in handling system 
faults. Also, by adopting a saturation function, the 

chattering phenomenon present in the sliding mode 
control is successfully mitigated, resulting in a smoother 
control input. This not only contributes to enhancing the 
stability of the system but also helps reduce equipment 
wear and prolong its lifespan. 

It is worth noting that although the terminal voltage 

tV of the proposed controller exhibits a smaller oscilla-

tion amplitude than other controllers, it possesses a faster 
convergence speed. This suggests that the controller has a 
higher response rate in dealing with voltage fluctuations, 
ensuring system stability when facing transient events. 
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Fig. 12.  System responses obtained in Case Ⅰ. (a) Rotor angle. (b) 

Speed. (c) Terminal voltage. (d) Excitation voltage. 

C. Case Ⅱ 

Figure 13(a) illustrates the variations of the system 

rotor angle during a three-phase fault at the generator’s 

output. It is evident from Fig. 13(a) that among all the 

controllers, the proposed controller exhibits the fastest 

control speed with the smallest overshoot. Figure 13(b) 

shows the variations of the system’s speed. As can be 

seen, PID, PSS, and NRC all produce a certain degree of 

oscillations. Also, the excitation system exhibits sig-

nificant oscillations with PID and PSS. However, the 

proposed controller has the smallest overshoot.  

Figures 13(c) and (d) illustrate the variations of the 

system’s terminal and excitation voltages, respectively, 

during a three-phase fault at the generator’s output. It 

can be seen that PID, PSS, NRC, and the proposed 

controller can all effectively control the terminal volt-

age. As for the excitation voltage variations shown in 

Fig. 13(d), the proposed controller exhibits the smallest 

overshoot of all controllers, indicating that it can 

achieve system stability at a lower control cost. In con-

trast, the excitation voltage with the other three con-

trollers exhibits significant oscillations. 

 

 

 

 

Fig. 13.  System responses obtained under Case Ⅱ. (a) Rotor 

angle. (b) Speed. (c) Terminal voltage. (d) Excitation voltage. 

D. Case Ⅲ 

When a short-circuit fault occurs in the power system, 

the current in the power grid will suddenly become very 

large, which may cause oscillations in the power system 

and affect its stability and reliability. Thus, an effective 

controller is usually needed to control the operation of 
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the power system to ensure that normal operation can be 

restored as quickly as possible in the event of a fault. 

To verify the effectiveness of the proposed controller 

in system fault conditions, a system fault is applied in Case 

III as follows: a three-phase short circuit occurs in the 

transmission line, the line trips at 30 s,t  and the auto-

matic reclosing device starts at 30.1s.t  The simulation 

results are shown in Fig. 14. It shows that the proposed 

controller can effectively damp power system oscillations 

caused by the fault in the shortest possible time. Shortly 

after the occurrence of the short-circuit fault, the automatic 

reclosing device starts, and the proposed controller can 

quickly and effectively adjust the power system to ensure 

that it can return to normal operation. 

In summary, the proposed controller has good ro-

bustness and adaptability, can adapt to different types 

of power system faults, and can ensure the stability and 

reliability of the power system in a variety of condi-

tions. These results indicate that the proposed control-

ler has good performance and application prospects, 

and can improve the stability and reliability of the 

power system. 

 

 

 

 

Fig. 14.  System responses obtained in Case Ⅲ. (a) Rotor angle. 

(b) Speed. (c) Terminal voltage. (d) Excitation voltage. 

E. Robustness Against System Parameters’ Change 

In this subsection, a comprehensive analysis of the 

robustness of controllers is conducted with the uncer-

tainty of generator parameters. To evaluate the perfor-

mance, studies are carried out when the d-axis imped-

ance ( )dx  and d-axis transient time constant 0( )dT  

experience a 50% measurement error around their 

nominal values. Such parameter variations may lead to 

significant shift in the system operating state, thus af-

fecting the performance of the controllers. 

Figure 15 illustrates the system response curves 

during a short-circuit fault, as presented in Case Ⅲ, 

when both parameters are subjected to a 50% meas-

urement error. It is evident that the performance of PID 

and PSS controllers notably lags behind the other two 

robust controllers as the operating point shifts. This is 

mainly attributed to the fact that PID and PSS con-

trollers have higher demand for the accuracy of system 

parameters, and thus their control performance is sig-

nificantly impacted when parameter uncertainties 

arise. 
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In addition, although the NRC controller exhibits 
outstanding performance under accurate system models, 
its control performance is inevitably affected in the 
event of measurement errors. This is because of the 
NRC controller’s reliance on precise system models, 
and so once errors occur in the model, its control per-
formance is compromised. In comparison to other con-
trollers, the proposed controller possesses enhanced 
robustness. This can be primarily credited to its ap-
proach to handling parameter uncertainties, which al-
lows it to maintain consistent control performance even 
when confronted with such uncertainties. 

 

 

 

 

Fig. 15.  System responses obtained with a short-circuit fault with 

parameter uncertainties. (a) Rotor angle. (b) Speed. (c) Terminal 

voltage. (d) Excitation voltage. 

Further studies on the controller performance are 

conducted when 0dT  and dx  experience ±50% meas-

urement errors around their nominal values. By 

comparing the system responses in Figs. 16(a) and (b), 

it is found that the proposed controller can achieve 

minimal system speed variation with these two pa-

rameter uncertainties, thus proving the robustness of 

the controller. 

To further verify the controller’s performance under 

parameter uncertainty, cases where the unit’s rota-

tional inertia H and the time constant of the excitation 

winding 0dT  experience ±50% perturbations within 

the nominal value range are investigated. In these 

conditions, the responses of the system’s maximum 

speed are shown in Figs. 16(c) and 16(d). As seen, it is 

evident that the red lines remain flat, indicating that 

the maximum speed responses do not differ signifi-

cantly with different parameter values with the pro-

posed controller. This finding further confirms the 

proposed controller’s ability to maintain good per-

formance when there are parameter perturbations. 

In summary, this study validates the proposed con-

troller’s robustness and control capabilities through 

uncertainty analysis of key parameters such as 

0dT and dx , unit rotational inertia, and the time con-

stant of excitation windings. This implies that in 

practical applications, even in the presence of pa-

rameter measurement errors or system parameter 

perturbations, the proposed controller can still achieve 

stable and efficient generator control. The results 

provide strong support for improving the stability and 

reliability of power systems, while also offering a 

reference control scheme for subsequent research. 
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Fig. 16.  System robustness with parameter uncertainties. 

F. Comprehensive Performance Comparison 

Performance comparison refers to the evaluation of 

the overall performance of different controllers by 

comparing their performance from multiple aspects. In 

this paper, the integral of absolute error (IAE) index is 

used to evaluate the tracking performance and robust-

ness of the controllers. The IAE index of each controller 

in different scenarios is shown in Table Ⅴ, and it is 

defined as: 

 
b

a

d
t

x
t

IAE x x t    (64) 

where x* is the reference value of variable x; and the 

integration time from b 30 st   to a 50 st   represents a 

simulation dynamic process time of 20 s. 

TABLE Ⅴ 
IAE INDICES OF DIFFERENT CONTROL SCHEMES CALCULATED IN 

DIFFERENT CASES 

Simulation 

cases 

Controllers 

PID PID+PSS NRC The proposed 

Ⅰ 

IAE
 0.3072 0.1628 0.1758 0.1065 

IAE
 1.9971 1.2679 0.6451 0.1946 

t
IAEV

 0.0115 0.0329 0.0377 0.0327 

IAE
 0.7960 0.4755 0.3286 0.3594 

Ⅱ 

IAE  5.0444 3.3839 1.3123 0.6333 

t
IAEV

 0.1288 0.1626 0.1584 0.1804 

IAE
 0.2460 0.1329 0.0976 0.0432 

Ⅲ 
IAE

 1.5188 0.9105 0.3544 0.0311 

t
IAEV

 0.0182 0.0307 0.0263 0.0266 

As shown in Table V, by comparing the IAE indices 

of different controllers in different scenarios, it can be 

concluded that the proposed controller has the lowest 

IAE index in the majority of scenarios. Specifically, in 

Case I, the IAE  of the proposed controller is only 

90.26% of PID control, 84.65% of PSS control, and 

69.83% of NRC. This indicates that the proposed con-

troller has better performance and robustness in tracking 

the reference signal, and has a smaller error level than 

other controllers. 

Finally, the study investigates the control cost re-

quired by each controller in the three scenarios. In this 

paper, control cost is defined as: 

 
b

a
cost d

t

f
t

J V t    (65) 

The total control cost is obtained by integrating the 

excitation voltage fV , which reflects the overall control 

output of each controller in each scenario. If the total 

control cost is low, it means that the required total con-

trol voltage is also low, indicating better controller 

performance. 
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Table Ⅵ shows the total control cost required by the 

four controllers in the three cases. It can be seen that the 

proposed controller requires a lower total control cost 

than the nonlinear NRC in all scenarios, indicating 

better performance of the proposed controller. However, 

in Case I with mechanical power step change and Case 

Ⅱ with three-phase short circuit fault, the total control 

cost of the proposed controller is higher than those of 

PID. This is because the proposed controller uses higher 

control gain to recover the disturbed system more 

quickly, resulting in an increase in the total control cost. 

TABLE Ⅵ 
OVERALL CONTROL COSTS OF DIFFERENT CONTROLLERS REQUIRED IN 

DIFFERENT CASES 

Cases 
Controllers 

PID PID+PSS NRC The proposed 

I 0.6118 4.2023 3.2455 1.9351 

Ⅱ 2.7745 11.9598 9.2953 5.7500 

Ⅲ 0.9541 3.0997 2.0585 0.8761 

Ⅵ.   CONCLUSION 

This paper presents an optimal nonlinear robust 

sliding mode control strategy for excitation systems 

based on mixed 2 /  LMIs. The developed method 

effectively addresses the challenges of parametric un-

certainties, external disturbances, and nonlinearities in 

the excitation system, resulting in improved stability 

and performance of the overall power system. The 

proposed control scheme combines the strengths of 

SMC, 2 , and  optimization techniques, and offers 

a robust and versatile solution that can be applied to a 

wide range of excitation systems. The incorporation of 

LMIs facilitates a systematic approach to controller 

synthesis, ensuring a tractable and computationally 

efficient design process. Additionally, CASSA is used 

for tuning the parameters of the proposed controller, 

ensuring that optimal performance is fully realized. 

To validate the effectiveness of the proposed control 

strategy, numerical simulations are carried out, demon-

strating significant improvements in transient response, 

system stability, and robustness against uncertainties 

and disturbances when compared to conventional con-

trol methods such as PID and PSS. The performance of 

the designed controller is found to be superior to exist-

ing nonlinear robust control techniques. In summary, 

the presented ONRSMC of the excitation system based 

on mixed 2 /  LMIs provides a valuable reference 

for the development of advanced control techniques, 

which can ensure a stable, reliable, and efficient power 

system. 
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