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Comparison of learning models for wideband interference mitigation in
automotive chirp sequence radar systems

Yudai Suzuki1, Xiaoyan Wang1, a), and Masahiro Umehira2

Abstract CS (Chirp Sequence) radar plays a crucial role in the safety
of autonomous driving. However, its widespread adoption increases the
probability of wideband inter-radar interference, leading to miss-detection
of targets. To address this problem, we utilize RNN (Recurrent Neural
Network) and self-attention models to mitigate wideband interference in
automotive radar systems and compare 12 different learning models in
terms of SNR (Signal-to-Noise Ratio) and processing time.
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1. Introduction

To address traffic accidents and congestions, the demand for
autonomous driving is increasing. To accurately perceive the
surrounding environment, autonomous vehicles convention-
ally are equipped with three types of sensors: cameras, Li-
DAR (Light Detection And Ranging), and millimeter-wave
radar. Among these, millimeter-wave CS (Chirp Sequence)
radar [1] is particularly advantageous due to its robustness
against nighttime and adverse weather conditions, as well as
its cost-effectiveness.

With the widespread use of radar, inter-radar interference
has become a significant issue. Inter radar interference [2]
can be categorized into two types: wideband interference,
which leads to missed detections due to increased noise
levels; and narrowband interference, which causes false de-
tections due to ghost targets. In this study, we focus on
wideband interference, which has a higher probability of
occurrence.

Various threshold-based interference mitigation algo-
rithms [3] have been proposed, however, they struggle to
adapt to the diverse scenarios of wideband interference, es-
pecially when the number of interfering radars is large, and
the interference duration is long. To this end, threshold-free
learning-based interference mitigation methods, which can
adapt to diverse environments and exhibit high performance,
have gained significant attention in recent years [4, 5]. In
this paper, we utilize RNN (Recurrent Neural Network) [6]
and self-attention models to mitigate wideband inter-radar
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interference and evaluate the performance and processing
time of 12 different learning models through simulations.

2. Interference in CS radar

2.1 Principle of CS radar
The block diagram of the CS radar is shown in Fig. 1. The
CS radar transmits a signal that is frequency-modulated in a
sawtooth pattern and receives the reflected signal from the
targets. The transmitted signal is given by Eq. (1).

f (t) = fc +
∆ f
∆T

t, (1)

where f0 is carrier frequency, ∆ f is sweep bandwidth, and
∆T is sweep period. The transmitted signal and the reflected
signal from the target are mixed at the mixer and passed
through a Low Pass Filter (LPF) to obtain the beat signal.
The beat signal could be represented by Eq. (2).

fB =
2R∆ f
c∆T

+
2v f0

c
, (2)

where R is target’s relative range, v is target’s relative ve-
locity, and c is the speed of light. Subsequently, the beat
signal undergoes a range-FFT (Fast Fourier Transform) to
derive the target’s range information, and then a Doppler-
FFT to extract the target’s velocity information.

2.2 Wideband interference
When radar signals from other vehicles are received, inter-
radar interference can occur. Figure 2 illustrates wideband
interference, which arises when the chirp rate of the inter-
ference signal differs from that of the victim radar’s signal.
When the beat signal of the interference radar falls below
the LPF bandwidth, a pulse-like signal appears in the time
domain. Whereas in the frequency domain, it leads to an
elevation in the noise level across the entire spectrum. This
heightened noise level can result in the failure to detect tar-
gets.

Fig. 1 Block diagram of CS radar
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Fig. 2 Wideband interference of CS radar

3. Interference mitigation method

In this work, we utilize RNN and self-attention models to
mitigate inter-radar interference. The input xt of the model
is the beat signal with interference, and the label ŷt is the
beat signal without interference. The loss function L is
defined as the (MSE) Mean Squared Error between label ŷt
and output yt as Eq. (3).

L =
1
N

N∑
1
(ŷt − yt )2 (3)

where N is the number of samples.
Figure 3 illustrates the architecture of the RNN-based in-

terference mitigation methods. Specifically, RNN processes
the data sequentially thus considering the data’s order. On
the other hand, self-attention processes the entire input se-
quence simultaneously, accounting for the significance of
each sample. For the model without attention block, 3 lay-
ers of RNNs are stacked. When the attention block with
skip connections is employed, it is inserted between the
RNN layers, resulting in a total of 5 layers. The output
of the final RNN layer undergoes average pooling to gen-
erate the model’s output which has the same size of the
input. In this work, we employ 3 widely used RNN models,
i.e., VanillaRNN, GRU (Gated Recurrent Units), and LSTM
(Long-Short Term Memory), and their respective bidirec-
tional versions, i.e., BiRNN, BiGRU, and BiLSTM.

3.1 VanillaRNN
VanillaRNN is the most basic RNN model. The forward
propagation of VanillaRNN is given by following equation.

yt = ht = tanh (W xt +Uht−1 + b) , (4)

where xt represents input at time step t, yt represents output
at time step t, ht−1 and ht represent hidden state at time step
t − 1 and t respectively, W,U and b represent weight matrix
and bias vector. By incorporating the hidden state ht−1 in the
calculation of the output yt , the model conducts inference
that accounts for the time series nature of the data.

3.2 GRU
To regulate the hidden state ht−1 and the input xt , GRU
uses stochastic gates throughout its processing. The forward

Fig. 3 The architecture of RNN and self-attention based wideband inter-
ference mitigation methods

propagation of GRU is given by following equations.

rt = σ (Wr xt +Ur ht−1 + br ) (5)

zt = σ (Wz x +Uzht−1 + bz) (6)
ĥt = tanh (Whx +Uh(rt ⊙ ht−1) + bh) (7)
yt = ht = (1 − zt ) ⊙ ĥt + zt ⊙ xt (8)

where rt and zt are reset gate and update gate respectively, ĥt
is the candidate activation, and the symbol ⊙ is Hadamard
product.

3.3 LSTM
LSTM employs three stochastic gates to capture long-range
dependencies in sequential data. The forward propagation
of LSTM is given by following equations.

ft = σ
(
W f xt +Uf ht−1 + b f

)
(9)

it = σ (Wi xt +Uiht−1 + bi) (10)
ot = σ (Woxt +Uoht−1 + bo) (11)

c̃t = tanh (Wc xt +Ucht−1 + bc) (12)
ct = ft ⊙ ct−1 + it ⊙ c̃t (13)
ht = yt = ot ⊙ tanh(ct ) (14)

where ft , it , ot are respectively known as forget gate, input
gate, and output gate, c̃t and ct respectively represent the
candidate cell state and update cell state.

3.4 Self-attention
To further capture the relationships between different sam-
ples of a sequence, we insert self-attention block into RNN
models. Figure 4 illustrates the architecture of self-attention
block. In the self-attention, the input x, which is the out-
put of the previous RNN layer, is first linearly transformed
to query Q, key K , and value V based on the following
equations.

Q = xWQ + bQ (15)
K = xWK + bK (16)
V = xWV + bV (17)

Subsequently, they are used in the calculation of Scaled Dot-
Product Attention. Specifically, the dot product of Q and K
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Fig. 6 Frequency spectrum of RNN models

Fig. 4 The architecture of self-attention block

is computed to determine the similarity between the query
and each key. This result is then scaled, by which an atten-
tion score is obtained. By applying the Softmax function to
the attention score, an attention weight is computed, trans-
forming the scores into a probability distribution. The at-
tention weight indicates the importance of information from
each time step for a given input at a particular time step.
The calculation of Scaled Dot-Product Attention is given by
Eq. (18).

Attention (Q,K,V ) = so f tmax
(
QKT

√
dk

)
V (18)

where dk is the dimension of Q and K . The output of
self-attention is obtained by concatenating the outputs of all
heads and passing them through a linear layer to transform
them into a matrix with the same shape as the input.

Fig. 5 A frequency spectrum example of test data

4. Simulations and evaluation results

We train the models using randomly generated simulation
data and evaluate their performance. Table I shows the radar
parameters in the simulations. The training dataset consists
of 50 scenarios, each comprising 75 chirps. Among them,
3375 instances are used for learning and 375 instances are
for validation. The Adam optimizer was adopted with a
learning rate of 0.001 and a batch size of 128 inputs. The
training process is ended after 100 epochs. All models are
trained using the Nvidia RTX A5500 Laptop GPU.

Firstly, Figs. 5, 6, and 7 depict frequency spectrum exam-
ples of test data (without and with interference), the miti-
gation results of RNN models, and the mitigation results of
Attention RNN models, respectively. From Fig. 6, we ob-
serve that bidirectional RNNs generally exhibit higher SNR
than un-directional RNNs, with LSTM and biLSTM out-
performing other models. From Fig. 8, it is evident that the
performance could be greatly enhanced by Attention LSTM,
Attention biGRU, and Attention biLSTM, but degraded in
the Attention RNN and Attention biRNN, by which the peaks
cannot be detected at all.

472



IEICE Communications Express, Vol.13, No.12, 470–474

Fig. 7 Frequency spectrum of attention RNN of models

Table I Parameters of radar simulations

Subsequently, we evaluated the mitigation performance
of these models in terms of average SNR and processing
time. The processing time was measured on both intel
core-i9 12900H CPU and Nvidia RTX A5500 Laptop GPU.
Tables II and III present the SNR and processing time re-
sults averaged across 10 testing scenarios. Among the RNN
models, bidirectional architectures typically offer an SNR
increase of approximately 2 dB, with biLSTM exhibits the
best performance. Incorporating the attention block, yields
a significant enhancement in SNR for both biGRU and biL-
STM models. Particularly, the attention biGRU achieves the
highest SNR performance at 29.1 dB, closely approaching
the SNR of clean data, which is 29.5 dB.

Finally, we examine the processing time on both CPU
and GPU. On the CPU, the processing time increases in
the order of VanillaRNN, LSTM, and GRU. Additionally,
bidirectional models generally have much longer processing
time than un-directional ones. For all models, the processing
time on GPU is significantly faster than on the CPU. No-
tably, the attention biGRU demonstrates the best SNR per-
formance, but also has the longest processing time among

Table II Result of RNN models

Table III Result of attention RNN models

all architectures.

5. Conclusion

In this work, we employ RNN and self-attention models for
wideband interference mitigation and evaluate the effective-
ness and processing time of 12 different models by extensive
simulations.

Acknowledgments

This research and development work was supported by the
MIC/SCOPE ## JP225003006.

473



IEICE Communications Express, Vol.13, No.12, 470–474

References

[1] C. Waldschmidt, J. Hasch, and W. Menzel, “Automotive radar — From
first efforts to future systems,” IEEE J. Microw., vol. 1, no. 1, pp. 135–
148, Jan. 2021. DOI: 10.1109/jmw.2020.3033616

[2] M. Umehira, Y. Watanabe, X. Wang, S. Takeda, and H. Kuroda,
“Inter radar interference in automotive FMCW radars and its miti-
gation challenges,” 2020 IEEE International Symposium on Radio-
Frequency Integration Technology (RFIT), pp. 220–222, 2020. DOI:
10.1109/rfit49453.2020.9226222

[3] M. Umehira, T. Okuda, X. Wang, S. Takeda, and H. Kuroda, “An
adaptive interference detection and suppression scheme using iterative
processing for automotive FMCW radars,” Proc. IEEE Radar Confer-
ence, pp.1–5, 21-25 Sept. 2020. DOI: 10.1109/radarconf2043947.
2020.9266712

[4] J. Mun, S. Ha, and J. Lee, “Automotive radar signal interference miti-
gation using RNN with self attention,” Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), pp. 3802–3806, May 2020. DOI:
10.1109/icassp40776.2020.9053013

[5] R. Koizumi, X. Wang, M. Umehira, R. Sun, and S. Takeda, “Exper-
imental evaluations on learning-based inter-radar wideband interfer-
ence mitigation method,” IEICE Trans. Fundamentals, vol.E107-A,
no.8, pp.1255–1264, 2024. DOI: 10.1587/transfun.2023eap1122

[6] Goodfellow, I., Bengio, Y., Courville, A., Deep learning (Vol. 1),
Cambridge: MIT Press. 2016. 367-415.

474


