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LETTER

Genetic algorithm optimization of sensor placement for CO2 concentration
observation
Tomoaki Matsuda1, a) and Shusuke NariedaA1, b)

Abstract In our previous studies, we introduced a method for determining
the optimal sensor placement of wireless sensor networks for monitoring
indoor carbon dioxide (CO2) concentrations. This method, based on brute
force, has proven to be accurate and reliable. However, the computational
complexity increases exponentially with an increase in the number of sen-
sors. Therefore, this study proposes a novel approach for optimal sensor
node placement based on a genetic algorithm (GA) that offers a more effi-
cient alternative to the brute force method. By utilizing the GA, we achieved
optimal sensor placement with reduced computational complexity. To val-
idate the effectiveness of our GA based method, we conducted numerical
experiments using observed CO2 concentration. The results demonstrate
that our proposed approach not only achieves optimal sensor placement but
also maintains the accuracy of the observations.
Keywords: wireless sensor networks, optimal placement, CO2 concentra-
tion, genetic algorithm
Classification: Wireless communication technologies

1. Introduction

Indoor ventilation has become increasingly significant not
only for mitigating aerosol transmission of diseases such
as COVID-19 but also for preventing airborne infections,
such as tuberculosis, measles, and varicella. It is crucial for
maintaining indoor air quality and ensuring a healthy living
environment. Monitoring carbon dioxide (CO2) concentra-
tion serves as a key to determining the timing of ventilation.
This can be achieved through Internet of Things (IoT) sys-
tems, which are utilized for several applications, such as
environmental monitoring [1] and operational status man-
agement in factories [2]. The wireless sensor network [3] is
fundamental technology within IoT systems.

The wireless sensor networks comprise several gateways
and a lot of sensors with wireless communication capabil-
ities. While increasing the number of sensors can enhance
the accuracy of observations, it also increases costs. There-
fore, determining the optimal placement that reduces costs
by minimizing the number of sensors while maintaining ob-
servation accuracy is crucial. For indoor CO2 concentration
monitoring, an optimal sensor placement method based on
brute force has been proposed [4]. This approach involves
grouping a lot of sensors placed beforehand with similar ob-
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servations based on cross correlation coefficients and relative
errors. By identifying sensors with comparable readings, the
number of sensors can be reduced without compromising ob-
servation accuracy. However, although the brute force based
approach can determine the optimal placement, the compu-
tational complexity of the algorithm increases exponentially
as the number of sensors placed beforehand increases.

This study proposes a sensor placement method based on
genetic algorithm (GA) [5] to address the issue of an expo-
nential increase in computation time with an increase in the
computational complexity can be achieved. Furthermore,
the proposed algorithm not only decreases the computa-
tional complexity but also enhances solution accuracy by
grouping sensors based on similar observations from other
sensors. This method enables the efficient and accurate de-
termination of optimal sensor placements in wireless sensor
networks with numerous sensors.

The remainder of this letter is organized as follows: Sec-
tion 2 describes the proposed GA based optimal sensor
placement method. In Section 3, computer simulation re-
sults of the proposed method based on actual observations of
CO2 concentration. Finally, section 4 concludes this letter.

2. GA based optimal sensor placement

2.1 Conventional method
First, the conventional method of optimal sensor placement
is presented [4]. This method involves pre-placing a lot
of sensors to determine the optimal placement of sensors.
Conventionally, the optimal placement is determined based
on the observation xk(n) at the kth sensors. We let S denote
the set of all sensors, with M = |S |, where M is the total
number of sensors. Furthermore, we let Ck and Mk denote
the set of similarity sensors for the kth sensors and Mk =

|Ck |. Ck is given by:

Ck =
{
l1, · · · , lMk

|l1, · · · , lMk
∈ S,rk ,li ≤ λr ∨ ϵk ,li ≤ λϵ

}
k, l = 1, · · · ,M, i = 1, · · · ,Mk, (1)

where li , λr , and λϵ are the ith similarity sensor, threshold of
the cross correlation coefficient, and threshold of the relative
error, respectively. Furthermore, rk ,l and ϵk ,l are the cross
correlation coefficient and relative error between xk(n) and
xl(n), respectively, and are given by:

rk ,l =
∑N

n=1 {xk(n) − xk} {xl(n) − xl}√∑N
n=1 {xk(n) − xk}2

√∑N
n=1 {xl(n) − xl}2

,

k, l = 1, · · · ,M, (2)
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ϵk ,l =
1
N

N∑
n=1

���� xk(n) − xl(n)
xk(n)

���� , k, l = 1, · · · ,M, (3)

where N is the number of observations. In [4], the minimum
required number of sensors L is derived based on brute force
to satisfy the following equation:

S =
L∪
i=1

Cγi , (4)

where γi is the ith sensor in the set of L sensors. The
brute force based method allows for the identification of the
optimal combination among the representative solutions by
selecting the smallest average of ϵk,ls.

2.2 Proposed GA based optimal placement method
In this subsection, the proposed GA based optimal placement
method is presented. To describe the proposed method,
first, independent sensors and non-independent sensors are
defined. The independent sensors are that their observations
do not similar to those of other sensors, meaning Mk = 1.
We let We let SI denote the set of independent sensors, and
MI = |SI | is the total number of independent sensors. Then,
SI can be written as:

SI =
{
a1, · · · ,aMI |a1, · · · ,aMI ∈ S,Mak

= 0
}

k = 1, · · · ,MI, (5)

where ak is the kth independent sensor. We let SNI denote the
set of non-independent sensors, and MNI = |SNI | is the total
number of non-independent sensors, and M = MI + MNI.
SNI can be written as:

SNI =
{
b1, · · · , bMNI |b1, · · · , bMNI ∈ S,Mbk

≥ 1
}

k = 1, · · · ,MNI. (6)

Next, the proposed method is presented. As shown in
eq. (5), the independent sensors are that their observations
do not similar to those of other sensors, making it impossible
to complement their observations with others. Therefore, all
independent sensors must be included in the optimal place-
ment. This implies that determining the optimal placement
for S involves identifying the optimal placement for SNI after
distinguishing S into SI and SNI. We let LOPT and LNI-OPT
denote the number of optimal sensors for S and SNI, re-
spectively, with LOPT ≥ LNI-OPT, where equality holds when
MI = 0.

From these, it can be seen that the optimal sensors are
selected from

( MNI
LNI-OPT

)
combinations when making the dis-

tinction, whereas they are selected from
( M
LOPT

)
combinations

in the absence of the distinction. Therefore,(
M

LOPT

)
≥

(
MNI

LNI-OPT

)
, (7)

where equality also holds when MI = 0.
The proposed GA based optimal placement method is

shown in Fig. 1. In Fig. 1, according to which the cross
correlation coefficient rk ,l and relative error ϵk ,l are com-
puted from all observations, with sensors distinguished into
the independent SI and non-independent sensors SNI. In the

Fig. 1 Algorithm for proposed GA based optimal placement method.

algorithm, an individual of length G is defined as a com-
bination of sensors, with each sensor represented by gene,
The length G is incremented by one during the optimization
process. GA is employed to determine the optimal sensor
placement using individuals with length G. If the optimal
solution cannot be determined when the generation exceeds
TG, then G is incremented by one.

3. Experimental evaluation

3.1 Experimental setup
The experimental evaluation is executed in a laboratory at
Mie University, as shown in Fig. 2. A gateway is placed on
the bookshelf and 32 (M = 32) sensors are placed before-
hand in the experimental field. The details of their placement
beforehand are shown in Fig. 3. The configurations of the
sensor and gateway are shown in Fig. 4. The gateway is
configured in Raspberry Pi 3 B+, LoRa module, and RX
antenna, whereas the sensor is configured in Raspberry Pi
zero, CO2 sensor, LoRa module, mobile battery, and TX an-
tenna. Raspberry Pi zero manages the CO2 sensor and LoRa
module. In the network, we utilize long range (LoRa) com-
munications in the sub-GHz band [6] to send observations at
the sensor. LoRa is a low power wide area (LPWA) commu-
nication standard commonly used in wireless infrastructures
for IoT applications. Previous studies have demonstrated
the effectiveness of LoRa in both outdoor and indoor envi-
ronments [7, 8]. In addition, the sub-GHz band LPWA is
particularly suitable for our application owing to its lower
utilization compared with the 2.4 GHz band. Each sen-
sor observes CO2 concentration at half-hourly intervals and
transmits the sensor number, observation time, and CO2
concentration to the gateway. To prevent packet collisions
among sensors, each sensor transmits them with a time de-
lay equal to the sensor number multiplied by 10 s. The
gateway collects the sensor observations, and the optimal
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Fig. 2 Overview of experimental field

Fig. 3 Sensor placement beforehand in experimental field.

Fig. 4 Configurations of (a) Sensor and (b) Gateway for CO2 concentra-
tion measurement. The sensor measures CO2 levels and sends data to the
gateway, which collects and manages the data.

sensor placement is determined based on collected observa-
tions. Two experiments are conducted under the conditions
shown in previous 1) from Nov. 30, 2022 to Dec. 2, 2022
and 2) from Jun. 7, 2023 to Jun. 9, 2023.

For the proposed algorithm, the initial population size
is set at 50 individuals and a maximum generation limit
for each G is set at TG = 50, starting at G = 2. In GA,
the elitist preservation strategy is employed, allowing up
to 1 individuals to be carried over to the next generation.
Two-point crossover is employed and mutation is not imple-
mented. Furthermore, the optimization process is executed
on a computer with Intel Core i5-12600k CPU and 16GB
RAM.

Table I Evaluation results of proposed method

Parameters Observation (1) Observation (2)
Optimal placement 2, 13, 26, 31, 32 17, 20, 27, 31
(one case)
Independent sensors 26, 32 27, 31

Computation time
Proposed method 0.0114 s 0.17152 ms
Proposed w/o distinction 0.0436 s 0.02599 s
Brute force based method 0.1288 s 0.04284 s

Fig. 5 Accuracy of optimization result for observation (1).

Fig. 6 Accuracy of optimization result for observation (2).

3.2 Experimental results
First, the optimization results based on observed CO2 con-
centrations in the experiment are shown in Table I. These
results have been validated against the brute force based
method, confirming their accuracy. As shown in Table I, for
observation (1), a computation time of the proposed method
is 0.0114 s whereas that of the brute force based method is
0.12881 s, demonstrating a significant reduction in the com-
putation time. Furthermore, the proposed method without
the distinction between the independent sensors and non-
independent sensors is 0.0436 s, and it can be seen that the
proposed method is effective the reduction of the computa-
tion time. Furthermore, the optimization results for obser-
vation (2) are shown in Table I. As shown in the results for
the computation time, it is similar tendency of the results
for observation (2). In both figures, the number of required
sensors in the optimization results are shown.

Finally, the accuracy of the distinction between the inde-
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pendent and non-independent sensors is evaluated. Figures 5
and 6 show the accuracy of the optimization results for and
both observations (1) and (2), respectively. Note that the
minimum number of required sensors for both observations
(1) and (2) are 5 and 4, respectively. As shown in Fig. 5,
the proposed method with the distinction between the inde-
pendent sensors and non-independent sensors can obtain the
optimal combination with the minimum number of required
sensors, approximately 100 % of the time. However, the
proposed method without the distinction only achieves the
optimal combination with the minimum number of required
sensors, approximately 80 % of the time. Furthermore, as
shown in Fig. 6, further demonstrating the effectiveness of
the proposed GA based optimal sensor placement method.

4. Conclusion

This study investigated the GA based sensor placement opti-
mization method for the observation of CO2 concentration.
The proposed method can reduce the computational com-
plexity of the conventional brute force based method while
maintaining accuracy in optimization results. By distin-
guishing between independent and non-independent sensors
prior to optimization, the computational complexity of the
proposed method was further reduced. The effectiveness of
the proposed method was evaluated using actual CO2 con-
centration observations in an indoor environment, validating
its efficacy in sensor placement optimization.

Future works involve the verification for the scalability of
the proposed method. Although the proposed method can be
expected the reduction of the computational cost to obtain
the optimal sensor placement in large-scale sensor networks
not limited to observation fields and environmental param-
eters to be observed, the lack of empirical experiments to
support this claim limits the verification. This conducts to
require the large number of experiments in large-scale sensor
networks; however, it is difficult to obtain the experimental
results because the costs associated with carrying out a suf-
ficient number of the experiments for a robust evaluation are
significant. Therefore, the evaluation method of optimiza-
tion algorithms is required in such sensor networks, along
with the experiments in large-scale sensor networks.
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