Com€EX

IEICE Communications Express, Vol.13, No.8, 347-350

|LETTER

Implementation and evaluation of lightweight in-vehicle security switch

with hierarchical hash table

Yuji Yano!* ¥, Hisashi Iwamoto?, Tsutomu Sasao’, and Shingo Ata*

Abstract As a result of the growth of autonomous driving technology,
vehicle networks increasingly require not only broadband capabilities and
real-time communication, but also enhanced security features. In this pa-
per, we propose a lightweight security switch using hierarchical hash table
to achieve security functionality at the central gateway within the vehicle
network. Our proposed switch combines header information from Layer-2
to Layer-4 to determine whether incoming packets are attack packets or not.
It also achieves fast packet forwarding using low-latency hierarchical hash
table. We evaluated the system performance with the FPGA board imple-
menting the proposed security switch, and achieved low-latency transfers
of 500 nanoseconds or less.

Keywords: Intrusion detection system, security, hash table, FPGA
Classification: Network system

1. Introduction

In recent years, connected cars have been attracting remark-
able attention that connect to IP network. Connected cars
will not only be able to receive various network services
inside the car, but also be possible to collect dynamically
changing vehicle driving information on the cloud and pro-
vide feedback for predicting traffic jams and autonomous
driving. On the other hand, cyberattacks against vehicles
have appeared and improving vehicle security has become
anurgent issue. In addition to traditional intrusion attacks on
vehicle networks via vehicle debug ports, it is predicted that
cyberattacks against vehicle networks via public wireless
and Wi-Fi networks will increase.

In conventional IP networks, countermeasures against cy-
berattacks have been taken using firewalls, intrusion detec-
tion systems, virus software, etc. However, as the processing
performance of PCs or servers improves, cyberattacks have
been larger and more sophisticated, and security devices
are currently requiring more CPU and memory resources to
protect their own system. Furthermore, when considering
the cyber security of vehicle networks, it is desirable that

! Graduate School of Engineering, Osaka City University,
Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan

2 Development Dept., poco-apoco Networks Co., Ltd., Chuo-ku,
Kobe-shi, Hyogo 650-0023, Japan

3 Dept. of Computer Science, Meiji University, Tama-ku,
Kawasaki-shi, Kanagawa 214-8571, Japan

4 Graduate School of Informatics, Osaka Metropolitan Univer-
sity, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan

) d15tb551 @st.osaka-cu.ac.jp

DOI: 10.23919/comex.2024XBL0093
Received May 8, 2024

Accepted May 29, 2024

Publicized June 11, 2024
Copyedited August 1, 2024

security devices are battery-powered, low-power consump-
tion, small and lightweight. Therefore, we investigated the
feasibility of applying lightweight, low-power consumption
security technologies used in conventional IP network into
in-vehicle networks.

2. Lightweight in-vehicle intrusion detection system

In vehicles, basic modules such as brakes and accelerators
have traditionally been interconnected with a vehicle net-
work protocol called CAN (Control Area Network). CAN
is an old communication standard designed specifically for
controlling vehicles. Therefore, it features low latency and
narrow bandwidth but is unsuitable for large-capacity data
communication.

In addition, with the recent development of navigation sys-
tems and advanced automated driving systems (ADAS), new
communication standards such as LIN/FlexRay/CAN-FD/
EthernetAVB (EthernetTSN) have appeared as in-vehicle
networks. With the advent of new communication stan-
dards, the configurations of in-vehicle networks are required
to change from the past. Two typical examples are shown
below.

(1) Integrating all vehicle networks, including traditional
CAN, with Ethernet-based networks.

(2) Operating a hybrid of CAN and Ethernet-based net-
works [1].

In the second method, a central gateway (CGW) has been
proposed and put into practical use to interconnect multiple
networks within a vehicle efficiently and reliably.

If we need to implement advanced security functions into
the central gateway, short packet performance is important
because a large number of sensor devices are connected to
an in-vehicle network, or a huge amount of sensor informa-
tion frequently flows over the network. Furthermore, since
vehicles are mobile entities, it’s crucial to minimize latency.

Figure 1 shows an example of a vehicle network system
that interconnects an Ethernet or IP network and CAN with
a central gateway. Here, the IP network domain includes
advanced autonomous driving systems (ADAS), navigation
systems, communication systems, and in-vehicle cameras.
And the CAN domain includes engines, brakes, powertrains,
body sensors, etc. All packets in the IP network domain are
transmitted and received through the security switch in the
central gateway, and the security switch inspects the packets
to discover attack packets or abnormal packets.

In this paper, we implement the packet filtering engine into
a security switch. The engine has a whitelist table that com-

@0l
AP\ This work is licensed under a Creative Commons Attribution Non Commercial, No Derivatives 4.0 License.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

DLC

f Central Gateway
“ i CAN network
TCU Security GW CAN GW
7 Seuriy
M Switch
i
o

ooo

Host °
Controller
Tcu: ics control unit

ADAS: Advanced driver-assistance system
DLC: Data link connector

Fig.1 Example of central gateway.

Security Engine

Output
Input T Output Port
MAC Arbiter | oooooo o Queue MAC
ot]| packetButter | Decision

CAM 1
(Leaning CAM) il
Packet Security Filter
Parser
—_000

Hier HT

Table Maintenance Engine Logic

+
MCU/CPU

Fig. 2 Proposed lightweight security switch.

bines header information from L2 to L4 as a countermeasure
against attacks on vehicles in the IP network domain.

2.1 In-vehicle security switch

Figure 2 shows an overview of the proposed lightweight in-
vehicle security switch system equipped with a hierarchical
hash table. A security switch consists of an input arbiter
circuit that arbitrates input packets, a packet buffer, a packet
parser, CAM (Content Addressable Memory), a security fil-
tering engine, an output port determination section, and an
output buffer. After the header information is extracted in
the packet parser, a FIB (Forwarding information base) ta-
ble lookup is performed in the CAM, and a whitelist table
search is performed in the security filtering engine simul-
taneously. The security filtering engine checks the header
information from L2 to L4 in the packet against a preset
whitelist table and decides whether to forward or discard
the packet. By implementing this whitelist table in a hier-
archical hash table, we can achieve low power consumption
and low latency table searches. Additionally, this security
switch is equipped with a digital serial interface for table
maintenance and debugging/monitoring.

2.2 Hierarchical hash table

In this section, we consider the applicability of CAM, tree
search, and hash search as search engines for the security fil-
ters. CAM is an SRAM-based search memory, and features
high-speed search by fully parallel comparison processing
in the memory array. However, while CAM can achieve high
search performance, it consumes high power during search
operation [2].

Tree search circuit consists of a memory such as SRAM/
DRAM, and a comparator. Itachieves table search by repeat-
ing data reading and pattern match processing. Tree search
achieves a smaller footprint and lower power consumption
compared to CAM, but it requires many memory reads for
one search, resulting in a low search performance and com-
plicated table maintenance. Hash search requires SRAM or
DRAM, a hash creation circuit, and a comparison circuit.

IEICE Communications Express, Vol.13, No.8, 347-350

No collision

Collision occurred

Probability
8

1 2 3
of keys sharing the

same hash value (N)

Hash
function Hashes

Fig. 3 Hash collision occurrence.

Table I Search engine comparison

Engine CAM Tree-based Hash-based Search :

Search Hash Table |Count. Bloom Filter
Area Large Middle Large Small
Latency Low High Low Low
Power High Low Low Low
Maintenance Easy Hard Middle Middle
False positive - - - Exist

Because the search can be executed with one memory read,
it can perform high-speed searches, and features easier table
maintenance than the tree search. However, hash searches
have a hash collision problem. Since there is a trade-off
relationship between the hash collision rate and memory
capacity, the hash collision rate can be reduced by using
a memory capacity larger than the amount of data actually
stored. Therefore, hash search requires a larger memory
capacity than tree search, but it is considered the most desir-
able for in-vehicle security applications because it allows for
a search engine with low latency and low power dissipation.

The hierarchical hash table that we propose is a type of
hash table that decomposes a lookup table into multiple
sub-tables and performs a hash calculation with a different
hash function for each table [3]. In our examination of hash
collisions, we observed that the vast majority of keys with
identical hash values are limited to two or fewer. Further-
more, the probability of three or more keys sharing the same
hash value is notably low, as shown in Fig. 3. So the hash
collision rate can be reduced by decomposing one large hash
table into multiple smaller hash tables. Counting Bloom Fil-
ter (CBF) [4] is the most lightweight implementation method
to compress memory capacity by storing only count values
in memory instead of data when registering data patterns
in a hash table. However, CBF has a false positive feature:
there is a possibility that a normal packet is treated as an
invalid packet and discarded although the probability is low
(Table D).

An example of the structure of a hierarchical hash table is
shown on the right side of Fig. 4(a). In this figure, four hash
tables are connected in parallel, and each table is assigned a
unique hash function. When registering a rule in memory,
the system calculates four memory addresses in advance,
then the rule is written in a vacant entry on a memory block
without hash collisions. During a search, four tables are
read in parallel, and the four read data are compared with

348

Proposal
Hier HT

1256

(a) Hash table implementation

CRC32-based hash function SHA256-based hash function
70 70

60

10 136 10 o 132
. Hier HT .—= Hier HT

e o o o o g e-e-o-o o
0 200 400 600 800 1000 [200 400 600 800 1000

The number of patterns The number of patterns

Hash collision rate [%]
Hash collision rate [%]

(b) Simulated hash collision rate

Fig. 4 Hierarchical hash table as a search engine.

the search key to determine the final match/mismatch.

The hash collision rate in the system of Fig. 4(a) with
CRC32 and SHA-256 hash functions was investigated. The
results are shown in Fig. 4(b). Both CRC32 and SHA-256
are constructed using repeated shift operations and bitwise
exclusive OR (XOR) calculation, so that they are easy to
implement in hardware. The outputs of the original CRC32
and SHA-256 hash functions are 32 and 256 bits wide, re-
spectively, so that additional XOR operations are required to
reduce them to 10 or 8 bits to match the hash table size. In
Fig. 4(b), regardless of the number of registration patterns
in the hash table, the hierarchical hash table achieves lower
collision rates. Eventually, we implemented a custom bit-
wise XOR-based lightweight hash function into the system
in Fig. 2, because the packet header information has a limited
length of a few hundred bits. Furthermore, since in-vehicle
networks require few rule updates, a collision-free hash table
update may be achieved by dynamically changing the hash
functions.

3. Implementation and performance evaluation

We implemented the proposed security switch on the com-
mercial FPGA [5] and evaluated its packet forwarding per-
formance when attacking packets were applied. Figures 5(a)
and (b) are a photograph of the evaluation environment for
testing the proposed switch, and a diagram of the assumed
vehicle environment, respectively. Port-1 of the security
switch is the external DLC (Data Link Connector), and port-
4 is the internal DCM (Data Communication Module), and a
computer board for packet observation is connected to each
port. In this evaluation environment, by changing the con-
nection method between the attack packet generator and the
security switch, it is possible to perform system evaluations
assuming attack tests not only from outside the vehicle but

IEICE Communications Express, Vol.13, No.8, 347-350

Moriitor-é

(Raspberry Pi)
- =

N ‘

Monitor-4 /

(Raspberry Pi)© ©
1

Monitor-1 ‘

(Jetson Nano) ‘ 3 8885,
Aggressor
(Custom board) f.

(a) Fuzzing test environment

DLC: Data Link Connector
DCM: Data Communication Module
SGW: Security Gateway

DLC UART DCM
Aggressor |::> 1] Security (4] |::> @
Monitor-1 Switch 3.
[2] " Mirror Port
SGW@ (for Debugging)
Secure m
controller

(b) Attacks from out-vehicle network

Fig. 5 Fuzzing test environment.

also from inside the vehicle.

We generated a whitelist table within the security switch
and performed an evaluation test on the filtering function.
Here, packets designed for evaluating the filter function on
the switch were sent from the attack packet generator. There
were two types of test packet patterns: normal frames and
abnormal frames. The fuzzing test packet patterns were
transmitted 100 times from the generator, and the transmis-
sion cycle was 500 microseconds. All test packets passed
the validation test, confirming the normal operation of the
whitelist table.

Next, Table II shows the evaluation results of the process-
ing latency of the security switch. We measured the average
delay time of four types of communication routes: from the
outside DLC to the inside DCM, from the outside DLC to
the SGW, from the inside DCM to the outside DLC, and
from the inside DCM to the SGW. In Table II, the measured
average delay time is the processing latency calculated from
the packet capture log acquired inside the security switch,
and represents the processing delay time from the input ar-
biter circuit to the output buffer section in Fig. 2. Then,
we estimated the average MAC to MAC delay time as the
overall delay time of the security switch. First, we estimated
the number of processing cycles from the MAC to the input
arbiter circuit and the number of processing cycles from the
output buffer section to the MAC when there is no packet
congestion through circuit simulation, and added them to the
measurement results to determine the overall delay time. As
a result, we found that it was possible to provide a security
filter function with a processing delay time of approximately
500 nanoseconds or less for various types of attack packets.

349

Table I Measured/Estimated latency in fuzzing test

Frame Frame |Frame |Transmission |Measured Estimated
Type Size Count |Interval Latency Latency
(Core only) (MAC to MAC)
Syn flood 66 B 100 500 ps 384.2 ns 484.2 ns
DHCP snooping 342B 100 500 ps 386.6 ns 486.6 ns
Sequential ARP 60 B 100 500 ps 383.6 ns 483.6 ns
DIA attack 42 B 100 500 ps 383.8 ns 483.8 ns
ICMP attack 70 B 100 500 ps 386.8 ns 486.8 ns
108

g ~200us

>, 10°

o

c

2

© 104

-

<

S

s 10 486.8ns

n

102
CPU FPGA

Fig. 6 Search latency.

It indicates that the proposed security switch achieves
a speedup of more than 400 times compared to software
processing on a CPU (Fig. 6).

4. Conclusion

We proposed a lightweight security switch with a hierarchi-
cal hash table to implement security functions at the central
gateway in future vehicle networks. The security switch
combines header information from L2 to L4 to determine
whether it is an attack packet or not, and is capable of for-
warding the packet with low latency. We implemented a
security switch on the FPGA board and evaluated its per-
formance, confirming low latency transfer of less than 500
nanoseconds.

References

[1]1 P. Hank, S. Miiller, O. Vermesan, and J. Van Den Keybus, “Automo-
tive Ethernet: In-vehicle networking and smart mobility,” 2013 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1735-1739, 2013.

[2] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J.
Solid-State Circuits, vol. 41, no. 3, pp. 712-727, 2006. DOI: 10.1109/
j88¢.2005.864128

[3] T. Sasao, Index Generation Functions, Springer Nature, pp.1-165,
2019.

[4] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281-293, 2000. DOI: 10.1109/90.851975

[5] “Home NetFPGA 1G CML,” https://github.com/NetFPGA/NetFPGA-
public/wiki/Home-NetFPGA-1G-CML, 2020.

IEICE Communications Express, Vol.13, No.8, 347-350

350

