
IEICE Communications Express, Vol.13, No.8, 319–322

LETTER

Proposal of temporal feature layers for network traffic dataset generation
using C-GAN
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Abstract As machine learning research in the networking field has be-
come more active in recent years, the demand for network traffic datasets
has increased. On the other hand, the amount and types of publicly available
network traffic datasets are scarce as training datasets for machine learn-
ing. Therefore, we focus on the generative adversarial network (GAN) as a
data generation model, aiming to use generated rather than publicly avail-
able training datasets. However, existing GANs have difficulty generating
sufficiently diverse network traffic to improve generalization ability while
representing variations across weekdays, weekends, and date. This study
proposes a new layers inserted into the conditional GAN model with the
functions of expanding dimensionality of time-series traffic data and em-
bedding temporal position information. Experimental results show that the
model with the proposed layers inserted generated diverse network traffic
data that represents temporal features.
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1. Introduction

In recent years, machine learning (ML) has been studied in
the networking field, such as for network traffic prediction,
packet classification, and traffic imputation [1, 2]. Network
traffic shows multiple patterns of periodicity and peculiar
variations from day to day and week to week. Thus, the
number of data in a network traffic representative dataset
needs to be increased. However, the amount and types of
publicly available network traffic training datasets are scarce,
and creating new dataset is highly cost-intensive and time-
consuming [3]. Therefore, there is a high demand for traffic
generation that captures periodicity and fluctuation patterns.

Generative Adversarial Networks (GAN) [4] have at-
tracted attention as network traffic data generation models.
GANs consist of a generator and a discriminator. The gen-
erator generates data similar to the original traffic from the
noise data, and the discriminator determines whether the
data is the original traffic or the data generated by the gener-
ator. On the basis of the discriminator’s decision results, the
generator and the discriminator update their internal parame-
ters. Since GANs cannot indicate the condition of generated
data, conditional GAN (C-GAN), which generates data in
accordance with a set of conditions, was proposed. C-GAN,
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traditionally used in computer vision, have recently been
applied to network traffic prediction and anomaly detec-
tion [5]. C-GAN trains specific conditions of the target data
and generate data corresponding to those conditions, mak-
ing it useful for predictions and anomaly detection tailored
to the target environment.

C-GAN finds it difficult to generate a diverse training
dataset while capturing the variations due to weekdays,
weekends, date and months such as network traffic. As a
premise in ML, the training dataset needs to be of sufficient
size and diversity to enhance generalization performance and
expressiveness. Here, diversity means that the data in the
dataset has a wide range of different features and patterns. In
context of C-GANs, diversity means the ability to genereate
different data. However, due to the parallel in process of
generator and discriminator. Training traditional C-GANs
are GAN is prone to a problem called mode collapse, where
the same data may be generated depending. When using
the generated data as training data, learning from the same
data can lead to overfitting, rendering it meaningless [6].
Therefore, it is necessary to generate data that avoids mode
collapse. However to the best of our knowledge, there is no
C-GAN model for network traffic yet.

This paper proposes a method for generating data that
maintains diversity while considering temporal features by
transforming time-series data through the proposed method.
The propose method involves inserting new layers C-GAN
conditionated on the day of the week and date. By chang-
ing the condition input part of the C-GAN and inserting
the new layers with position encoding and token embedding
before the discriminator, the time-series data is temporally
extended, learning a distribution similar to that of the origi-
nal traffic and preventing mode collapse.

Experimental results shows that the data generated by the
C-GAN with the proposed inserted layers captured the fea-
tures of the day of the week and the time of the day and
has sufficient diversity to be used as training data. The
proposed layers were implemented in regressional and con-
ditional GAN (RCGAN) [7], and training and data genera-
tion was performed using GEANT, a public network traffic
dataset. Numerous generated data are analyzed by two eval-
uations, comparing the GEANT dataset as the ground truth.

2. Proposed method

This chapter describes the proposed method with an
overview.
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Fig. 1 Overview

2.1 Overview
This paper presents a method for adding a new layers to the
middle of the standard C-GAN model between the generator
and the discriminator, as illustrated in Fig. 1. The new layers
increase the number of dimensions (token embedding) and
temporal features (temporal embedding) of the time-series
data and adds positional information (positional encoding) to
the data with dimensional and temporal features. The details
of each process step are described in Sec. 2.3. The data
input for the proposed layer is an arbitrarily generated length
t. The new layers perform spatiotemporal processing on the
data input for the detection unit to generate time-series data.
For each extended dimension, the data is given information
that considers the respective time axis. This can convert
data into specific temporal features, emphasizing temporal
features and preventing mode collapse while allowing for
training.

2.2 Impact of proposed method
In the standard C-GAN model, Generator G takes random
noise z ∈ Rr as input and attempts to generate synthetic
data similar to the training data distribution. Discriminator
D aims to accurately determine whether the input data is
original or generated, while Generator G aims to maximize
the false-positive rate of Discriminator. Both models are
trained on the basis of the value function V(G,D).

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x |y)]

+ Ez∼pz (z)[log(1 − D(G(z |y)))], (1)

where x is the original time-series data, z is the data gener-
ated by Generator, and y is the condition. If the loss function
of each model is defined as LD, Lg, the loss function of the
GAN is expressed as follows:

LD = −1
2
Ex∼pdata(x)[log D(x)] − 1

2
Ez∼pz (z)[log(1 − D(G(z))), (2)

LG = −1
2
Ez∼pz (z)[log D(G(z))]. (3)

2.3 Proposed layers
The process of the proposed layers is shown in Fig. 2. The
proposed layers first perform token embedding on the in-
put data to increase the dimensionality of the data. Next,
temporal embedding is performed to add the respective tem-
poral features, and location encoding is performed on them.

Fig. 2 Detail of proposed method

Each step of this process is explained below. Token em-
bedding is initially performed on the input data to increase
the dimensions using an embedding layer. In this process,
a one-dimensional convolutional layer is used to transform
each token of the input data into a high-dimensional feature
space. The mathematical expression for the convolution
layer is described as follows:

xconv = Conv1d(x), (4)

where x is the input data, and Conv1d is the convolution
layer, and this convolution operation maps the original data
x into a higher dimensional feature space with dimension
number d, yielding d-dimensional data xconv.

Next, temporal features (e.g., hour, day of the week, [day],
and month) of the time-series data are embedded to give tem-
poral significance to the data. This works by using different
embedding layers for each time unit, mapping each time
element to a specific dimensional space. On the basis of
a specific time unit, an embedding operation, Embed, is
performed on the input data. The following equation can
express the value xembedd after embedding each time unit.

xembedd = xconv + Emhour(xhour) + Emweek(xweek)
+ Emday(xday) + Emmonth(xmonth) (5)

where Emhour,Emweek,Emday,Emmonth represent the embed-
ding functions for the hour, day, [day], and month, respec-
tively. xhour, xweek, xday, xmonth denotes the corresponding
time unit of the input data. Finally, the positional encoding
PE incorporates the relative position information of each el-
ement in xembedd. The model can incorporate the relative
position information of each input data element, enabling it
to generate xencoded that embeds the order and pattern of the
time-series data. The following equation represents posi-
tional encoding PE:

xencoded = PE(xembedd), (6)

PE(pos,2i) = sin
(

pos
100002i/dmodel

)
, (7)

PE(pos,2i + 1) = cos
(

pos
100002i/dmodel

)
. (8)

Where pos is the position, i is the index of the dimension and
dmodel is the number of dimensions in the model. This al-
lows the model to capture the relative positional information
of each element of the input data and to better emphasise the
order and patterns of the time-series data.

3. Experiment

This chapter describes the experiment.
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Fig. 3 Experimental results

3.1 Experimental setup
The experiment used GEANT, a representative network
dataset that exhibits the features of network traffic. The
dataset shows a daily cycle and different amplitude peak
differences between weekdays and weekends. The data ac-
quisition period was from April 2022 to August 2023, with
hourly intervals. Each dataset was separated by 96 generated
length. The starting position of each dataset was shifted by
one to generate the dataset [8].

The proposed layers were implemented in RCGAN, and
two types of evaluations were conducted to analyze the data
generated. (i) First, we evaluated the generated network
traffic to determine whether it captured the features of each
hour of the day. This was done to check whether the data
was generated in such a way that the daily cycle, which is
the features of dataset, and the peaks on weekdays were
high and the peaks on weekends were low. At this time,
we also determined whether the data can enable multiple
patterns of days of the week to be generated. (ii) Next,
two statistical methods were used to evaluate the traffic data
generated in evaluation (i) and determine whether the traffic
data generated in experiment (ii) could be generated in a way
that maintained diversity. The Kolmogorov-Smirnov (KS)
test and principal component analysis (PCA) were used as
evaluation methods. The KS test is used to compare the
generated traffic with the original traffic to determine if the
generator can learn similar features. PCA plots the data
generated in the experiment and checks for sparsity in the
distribution plots to ensure that data with different features
has been generated.

The experiment details are described below. The RCGAN
model without the proposed layers were used for the con-
ventional method. The proposed method (i.e., the RCGAN
model with the proposed layers inserted) used generated
length 96 and training epoch 10000. The model parame-
ters d = 20 were employed. We used the temporal of year,
month, date, and day of week.

3.2 Experiment result
First, the results of evaluation (i) are shown in Fig. 3. Fig-
ure 3 illustrates one of the 300 datasets generated by the pro-
posed method (w/ Proposed) and the conventional method
(w/o Proposed), together with the original traffic under the
same conditions, where the vertical axis is the amount of
normalized traffic, and the horizontal axis is steps. In Fig. 3,
three conditions with different start dates are chosen. Also,
each of the 24 steps indicates the time from 0 : 00 to 24 : 00

each day. Figure 3(a) shows an example of traffic variation
from Monday to Thursday, showing Steps 0 − 23 for Mon-
day, Steps 24−47 for Tuesday, Steps 48−71 for Wednesday,
and Steps 72 − 95 for Thursday. Peaks of the original traffic
on weekdays (e.g., Steps 11 − 15 on Monday) show roughly
the same amplitude. The falling part (Steps 17 − 22) also
shows a similar decrease to the original traffic. The proposed
method shows amplitudes similar to the original, while the
amplitude of the conventional method appears to be gradu-
ally decreasing. Figure 3(b) shows an example of Thursday
to Sunday traffic variation. The amplitude of the original
traffic is reduced when comparing the part of the original
traffic corresponding to Step 12 on Thursday and Step 60 on
Saturday. The proposed method shows similar amplitudes
to the original on weekdays and weekends. On the other
hand, the amplitude of the conventional method is smaller
than that of the proposed method on weekends. However, it
can be seen that the amplitude is gradually decreasing. Fig-
ure 3(c) shows an example of traffic variation from Friday
to Monday. The original traffic shows decreasing amplitude
when comparing Step 12 on Friday to Step 36 on Saturday
and increasing amplitude when comparing Step 60 on Sun-
day to Step 84 on Monday. The proposed method shows
similar amplitudes to the original traffic. However, the am-
plitude of the conventional method is smaller than that of
the proposed method at Step 84 on Monday, although the
amplitude gradually decreases from Friday to Saturday.

Figure 3 shows that the proposed method can reproduce
the features of variation over time. In the original data, the
peak values are higher on weekdays than on weekends. The
proposed method reproduces this variation, where as the
conventional RCGAN method cannot be said to reproduce
it because the peak values gradually decrease from Monday
to Sunday and do not increase significantly from Sunday to
Monday. This may be because the proposed method adds
temporal features by temporal embedding to the C-GAN.

Next, the results of the KS test and PCA analysis for the
traffic generated in evaluation (i) are described. First, we
explain the KS test results. The distance between the orig-
inal data and the data generated by the proposed method
is 0.156, and the p-value is 0.144. The KS test is used to
determine the statistical significance of the p-value, and the
distance indicates the maximum difference between the two
distributions. Suppose the p-value is more significant than
0.05. There is no statistically significant difference in that
case, and the null hypothesis that the two sample popula-
tions come from the same distribution cannot be rejected.
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Fig. 4 Experimental results of PCA

In other words, the original data and data generated by the
proposed method show no statistically significant difference
and are similar in distribution. On the other hand, the dis-
tance between the original data and the data generated by
the conventional method is 0.216, and the p-value is 0.0143,
indicating a statistically significant difference between the
original and generated data and that the data are distribu-
tionally different.

Figure 4 shows a point-by-point plot of the 300 traffic data
generated during inference using PCA. The original traf-
fic under the same conditions used during inference is also
plotted. Figure 4(a) shows that the plots are sparse within
a particular cluster for the proposed method, indicating that
the conditions generate the data diversity. Figure 4(b) shows
that the plots are concentrated in the case of the conventional
method, and the same data is highly likely to be generated
in different conditions.

The KS test results show that the probability distribution
is made close to the original traffic by using the proposed
method. Based on the KS test results, the null hypothesis
is not rejected. The proposed method will likely consist
of a sample with a distribution close to that of the original
traffic. The PCA results show that the generated data has
diversity. Different plots are illustrated for each generated
data, so data generation under different conditions is unlikely
to produce identical data. The present evaluation reduces the
96 generated growth data to two dimension of information
using PCA. Therefore, points plotted close together are
likely to have the same traffic data generated. This means
that the graph should be as sparse as possible, and the data of
the proposed method is sparser than that of the conventional
method.

The evaluation (ii) results suggest that token embedding
and temporal embedding enable learning with a distribution
close to that of the original traffic but with diversity. This
is likely because the proposed method expands the data on
the basis of temporal features and adds location information.
The convolutional layer spatially extends specific data and
increases the dimensionality. As the data is extended in
accordance with the parameters of the convolution layer, it
is likely to have features similar to the original traffic. By
adding the respective temporal information, the variance of
the pre-transformed data may be tolerated.

The results of evaluations (i) and (ii) show that by in-
cluding the proposed layers, traffic generation solves the
problems of conventional C-GANs. Specifically, the results
show that the RCGAN with the proposed layers can gener-
ate traffic that captures temporal features such as peaks and

the periodicity of weekdays and weekends that appear in
the datasets used in the experiments. The data analysis also
showed that the distribution of traffic is close to that of the
original traffic, yet the multiple generated data have different
features. In other words, the generation can capture a wide
range of features and patterns in the dataset.

4. Conclusion

This paper aims to generate a network traffic dataset while
maintaining diversity of temporal features because we sup-
pose that existing generative adversarial networks (GANs)
need help generating datasets that learn the essential tem-
poral features of network traffic and exhibit the diversity
necessary for effective machine learning (ML). Therefore,
we develope a new layers of GAN model designed to rep-
resent the temporal dynamics of network traffic accurately.
Our model enhances the conventional conditional GAN (C-
GAN) framework by inserting a novel layers tailor for ex-
panding the dimensionality of time-series data (through to-
ken embedding), embedding temporal features (via temporal
embedding), and incorporating temporal positional informa-
tion (with positional encoding). Experimental results show
that the data generated with our model can catch temporal
features of network traffic. The visual evaluation found that
the temporal features, such as peaks and the periodicity of
weekdays and weekends, appearing in the dataset are cap-
tured. The statistical evaluation showed that a diverse dataset
was generated for the given conditions by PCA analysis and
was distributionally close to the KS test. Our future work
will focus on conducting comparative studies with other
generative models and evaluating the performance of ML
models trained on datasets generated by our approach.
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