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LETTER

On hyperparameter determination for GPR-based channel prediction in
IRS-assisted wireless communication systems

Norisato SugaA1, 2, a), b), Kazuto YanoA1, Yafei Hou1, 3, and Toshikazu Sakano1

Abstract Intelligent reflecting surface (IRS), which can reflect radio
waves controlling the phase of incident radio waves, is being investigated
for wireless communication in high-frequency bands. To control the reflec-
tion characteristic, it is necessary to separately estimate a large number of
channel coefficients between transmitting and receiving antennas through
each IRS element. This causes significant overhead for the channel estima-
tion. We have proposed a channel prediction method to reduce the overhead
using Gaussian process regression with spectral mixture kernel. In Gaus-
sian process regression, the determination of the hyperparameters used to
calculate the kernel matrix has a significant impact on prediction accuracy.
In this study, we propose validation-based hyperparameter determination
for GPR-based channel prediction and evaluate the performance difference
between the gradient method and validation.
Keywords: IRS, RIS, channel prediction, Gaussian process regression
Classification: Wireless communication technologies

1. Introduction

The expansion of communication coverage is being pursued
through the utilization of high-frequency band. Intelligent
reflecting surfaces (IRS) a.k.a reconfigurable intelligent sur-
face (RIS) is one of the promising approach to realize ex-
tremely high throughput in the 6G era [1]. In wireless com-
munication systems employing IRS, the optimization of the
reflection coefficients for all IRS elements requires the es-
timation of huge amount of propagation paths, comprising
combinations of transmitting antennas, individual reflection
elements, and receiving antennas [2, 3]. In general, channel
acquisition relies on known training signals, and the nu-
merous propagation paths formed by the IRS considerably
increase the overhead of channel estimation.

In order to mitigate the significant overhead of channel
estimation in IRS-assisted systems, one promising approach
is channel prediction which forecasts the channel from the
observed past channel values. Various methods exist for
channel prediction, including classical approaches assum-
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ing linear models [4] and deep learning-based methods [5].
In this study, we investigate a channel prediction method
based on Gaussian process regression (GPR), which offers
relatively low computational complexity and high predic-
tion accuracy [6]. In GPR-based prediction, the target time
series are regarded as a Gaussian process, allowing for inter-
polation and extrapolation based on observations at multiple
non-uniform time points. The selection of the kernel func-
tion in GPR significantly influences prediction accuracy, and
in this study, we consider adopting the spectral mixture (SM)
kernel, known for its suitability for extrapolation, for channel
prediction.

In GPR, the prediction accuracy highly depends on hy-
perparameters embedded in the kernel, and it is general
to optimize the hyperparameters through gradient descent.
However, gradient-based optimization, which aims to max-
imize the likelihood function, does not guarantee a con-
sistent improvement in prediction accuracy. Therefore, in
this study, we propose determining the hyperparameters that
yield the highest prediction accuracy through validation.
Furthermore, GPR-based predictions for the time series of
the channel corresponding to each reflective element entail
substantial computational costs due to individual predictions
for each element. To address this, we also propose the com-
monization of kernel matrices to reduce computational costs
and evaluate its effectiveness through simulation.

In this letter, the following notations are employed. Matri-
ces are represented in uppercase bold, vectors in lowercase
bold, C denotes the set of complex numbers, AM×N denotes
a complex matrix of size M × N , (·)T denotes the transpose
of a matrix, (·)−1 denotes the inverse matrix and ∠ (·) denotes
the phase of a complex number.

2. Preliminaries

2.1 System model
The channel from the transmit antenna, passing through
the (nh,nv)th element on the planar shaped-IRS, to the re-
ceived antenna at the time t is denoted as gnh ,nv (t). The
channel gnh ,nv (t) can be factorized into cascaded channel
hnh ,nv (t) and reflective coefficient θnh ,nv , i.e. gnh ,nv (t) =
hnh ,nv (t)θnh ,nv . At the receiver side, as paths through each
reflective element are synthesized, the observed signal can
be expressed as follows.

y(t) =
( ∑
nh ,nv

gnh ,nv (t)
)

x(t) + n(t)
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=

( ∑
nh ,nv

hnh ,nv (t)θnh ,nv

)
x(t) + n(t)

= h(t)Tθx(t) + n(t) (1)

where x(t) represents the transmitted symbol, and n(t) de-
notes complex white noise with zero mean and variance
σ2, h(t) = [h1,1(t), . . . , h1,Nv (t), h2,1(t), . . . , hNh ,Nv (t)]T ∈
CNhNv×1 and θ = [θ1,1, . . . , θ1,Nv, θ2,1, . . . , θNh ,Nv ]T ∈
CNhNv×1.

During channel estimation, known training signal x(t) is
transmitted. By dividing the observed signal by x(t), we
obtain

z(t) = y(t)
x(t) = h(t)Tθ + n̄(t) (2)

where n̄(t) = n(t)
x(t) . Since the symbol period Ts is generally

very short, we assume that the channel remains unchanged
during the transmission of NhNv symbols. If the reflection
coefficient θ changes symbol by symbol (with the interval
of Ts), the vector z(t) = [z(t), . . . , z(t + NhNv − 1)]T can be
expressed as follows

z(t) = [θ(1), · · · ,θ(NhNv)]T︸                     ︷︷                     ︸
Ω

h(t) + n̄(t)

= Ωh(t) + n̄(t) (3)

where n̄(t) = [n̄(t), . . . , n̄(t+NhNv−1)]T. If we transmit suf-
ficient number of training symbols and switch the reflective
coefficient appropriately, Ω is invertible. Then, the channel
estimation can be realized for IRS-assisted systems [2].

Based on the obtained channel estimate ĥ(t), we deter-
mine the optimal reflection coefficients for each reflective
element. In this study, we assume that each element can
only control the phase, and we determine the reflection phase
according to the strongest-CIR maximization (SCM) crite-
rion [2]. In SCM, for each element of the estimated cascade
channel ĥ(t), the inverse phase is adopted as the weight for
the reflection coefficient as

∠θ̂nh ,nv = −∠ĥnh ,nv (t). (4)

2.2 GPR-based channel prediction
In this study, we adopt two phases frame transmission:
(Training phase) the prediction model is trained from the
channel values obtained by channel estimation; (prediction
phase) the future channels are predicted based on the trained
model without transmitting training symbols (Fig. 1). In
the training and prediction phases, Nt and Np frames are
transmitted, respectively. The frame in the training phase
contains NhNv training symbols at the beginning, and chan-
nel estimation is performed. When Nt channel estimates are
obtained during the training phase, the prediction model is

Fig. 1 Frame format in training and prediction phases.

trained to predict the channel values during the prediction
phase. From the predicted channel values, the appropriate
reflection coefficient at each transmission timing are deter-
mined in the prediction phase according to (4).

Training and prediction are performed for each element
of the cascaded channel h(t) and for each real and imaginary
part. The real (or imaginary) part of an element hnh ,nv (t)
is denoted by h(t), omitting the subscripts. The set of time
indexes when channel estimation is performed in the train-
ing phase is denoted by T̂ =

{
t1, · · ·, tNt

}
, and the set of

predicted times is also denoted by T̃ = {t̃1, · · · , t̃L}, where
L is the number of time points to be predicted. In GPR, the
vector f = [ĥ(t1), · · ·, ĥ(tNt ), h̃(t̃1), · · ·, h̃(t̃L)]T is modeled as
a Gaussian distribution N(0,K), where K is a covariance
matrix called kernel matrix. The vector consisted of the
estimated channel is ĝ = [ĥ(t1), · · ·, ĥ(tNt )]T, and the vec-
tor gathering the future channel values is also defined as
g̃ = [h̃(t̃1), · · ·, h̃(t̃L)]T. If the vector f follows a Gaussian
process, the predicted channel is given as [8]

g̃ = KT
∗K

−1 ĝ (5)
where each element of the matrices K ∈ RNt×Nt and K∗ ∈
RNt×L are calculated as: κ(ti, tj) for i = 1, · · ·,Nt and j =
1, · · ·,Nt; κ(ti, t̃j) for i = 1, · · ·,Nt and j = 1, · · ·, L. The
function κ(·, ·) is called kernel function.

3. Validation-based hyperparameter determination

The kernel function κ(·, ·) determines the shape of the co-
variance matrix K of the Gaussian process N(0,K). By
selecting an appropriate kernel function, we can construct a
model that well represents the entire data vector f . Spectral
mixture (SM) kernel is known to be suitable for extrapolation
task [9], and we adopt this kernel function for the GPR-based
channel prediction adding the term ϵδ(i, j) representing the
channel estimation error.

κ(τ) =
Q∑
q=1
wqe−2π2τ2vq · cos

(
2πτµq

)
+ ϵδ(i, j) (6)

where τ = ti − tj , and wq , vq , µq are hyperparameters
that control the shape of the kernel function, δ(i, j) is the
Kronecker delta function, and ϵ is also hyperparameter rep-
resenting the strength of the channel estimation error.

When performing predictions with GPR, the determina-
tion of hyperparameters (in the case of the SM kernel, wq ,
vq , µq , ϵ) significantly affects the prediction accuracy. Here,
we define the vectorψ which includes all hyperparameters in
each element. In general, the hyperparameters of the Gaus-
sian process are determined by maximizing the probability
density function (marginal likelihood) p(ĝ |T̂ ) = N(0,Kψ)
conditioned on the training data T̂ with respect to ψ. How-
ever, since optimization problem on marginal likelihood
does not have a closed-form solution, it is common to deter-
mine the hyperparameters as local solutions through iterative
algorithms based on gradient methods. Figure 2 illustrates
the likelihood value on p(ĝ |T̂ ) with respect to the hyperpa-
rameters µq and ϵq when predicting the channel (for detailed
simulation conditions, please refer to the next section). As
seen in Fig. 2, p(ĝ |T̂ ) is a multimodal function with re-
spect to µ. When determining the hyperparameters using
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gradient-based algorithms, there is a possibility of falling
into local optima depending on the initial values. The func-
tion p(ĝ |T̂ ) also has vast flat regions, forcing a large num-
ber of iterations for gradient-based methods. Furthermore,
as gradient methods are primarily aimed at maximizing the
marginal likelihood, there is no guarantee that the prediction
accuracy will necessarily improve.

Therefore, in this letter, we consider determining the hy-
perparameters through validation by dividing the training
data. Among the training samples, the most recent Nq sam-
ples are used as validation samples, and the hyperparameters
are selected with the remaining Nt − Nq samples. The hy-
perparameter candidates are prepared in advance, and for
each candidate, training (calculation of kernel matrix) is
performed with Nt − Nq samples, and predictions are made
for the validation sample points using the obtained kernel
matrix. Subsequently, the prediction accuracy is calculated
based on the obtained prediction results and validation sam-
ples. After calculating the prediction accuracy for all can-
didates, the hyperparameters corresponding to the best pre-
diction accuracy are adopted. The kernel matrix is then
calculated again using all Nt training samples, and predic-
tions are made for the target time points T̃ .

Next, we discuss the reduction in computational cost
achieved through the commonization of the kernel matrix.
The conventional method [6] assumes the GPR-based pre-
diction is performed for the time series of cascade channels
corresponding to each element. However, GPR involves
inverse matrices calculation, leading to a significant com-
putational cost. To reduce computational complexity, we
commonize the kernel matrix in the prediction of cascade
channels for all elements. With this commonization, the
calculation of the kernel matrix for all cascade channels, in-
cluding both the real and imaginary parts, can be reduced
from 2NhNv times (including validation) to a single calcu-
lation. Since individual adjustments of hyperparameters for
each cascade channel are no longer possible, the prediction
accuracy may decrease. To mitigate the degradation of pre-
diction accuracy due to the commonization, validation is
performed across the validation samples corresponding to
the multiple reflective elements. In more detail, for each hy-
perparameter candidate, the kernel matrix is calculated from
T̂ and T̃ , and predictions are made for cascade channels cor-
responding to all reflective elements. The prediction errors
are calculated from the obtained predictions and validation

Fig. 2 Marginal likelihood on ϵ and µ.

samples for each cascade channel, and the total prediction
error is computed. By adopting the candidate with the small-
est total prediction error among all candidates, it is possible
to avoid selecting hyperparameters that overfit to a specific
reflective element.

4. Evaluation

4.1 Simulation settings
In this study, we assume the use of IRS in the high-frequency
band and evaluate the channel prediction accuracy in the 60
GHz band according to the channel model presented in [7].
Figure 3 illustrates the geometry among the transmitter, IRS,
and receiver assumed in this simulation. A metallic object
exists between the transmitter and receiver, and then there is
no direct path. We also assume that only the receiver is mov-
ing, with movement speeds of 0, 3, or 5 km/h. The transmit
and receive antennas are oriented towards the IRS direction,
ensuring a constant maximum antenna gain. The spacing
between each reflective element is set to 0.5 or 1.5 wave-
lengths, and we verify the difference in prediction accuracy
due to the element spacing. The symbol interval Ts is set to
50 ns, and each wireless frame contains 12,000 BPSK sym-
bols. The number of reflective elements is Nh = Nv = 10,
resulting in a total of 100 elements on the IRS. Therefore,
during the training phase, 100 training symbols are added
at the beginning of each frame for channel estimation. The
number of frames in training and prediction phase both are
set to 40.

For GPR-based prediction, we set Q = 1, w = 1, and
v = e−15.3. Since the hyperparameters µ and ϵ signifi-
cantly affect prediction accuracy, we determine these value
by gradient-based optimization (conventional) and valida-
tion (proposed). For the gradient-based optimization, we
use Adam [10] as an optimizer. The initial value of µ0 is
randomly determined as eα where α is uniformly random
variable from the range [−15,−10], and ϵ0 is uniformly ran-
domly selected from the ranges [0.1,1], respectively, for the
case denoted as “Random Init.”. In the case denoted as “Fix
Init.”, the initial values are fixed intentionally close to the
optimal values as µ0 = e−13 and ϵ0 = 0.1. For the validation-
based hyperparameter determination, we consider candidate
values for ln(µ0) in the range of−15.00,−14.99, . . . ,−10.00,
and for log10(ϵ0) in the range of −1,−0.9, . . . ,0. The evalua-
tion metrics are the normalized mean square error (NMSE)
calculated as NMSE(t) = |h(t)−h̃(t) |2

|h(t) |2 and bit error rate (BER)
at each time point during the prediction phase. We also
evaluate signal to noise ratio after IRS control defined as
SNR(t) = |h(t)Tθ̃ |2

σ2 , where θ̃ is reflection coefficient obtained
from channel prediction. We conduct 20 trials and show the
average values of the aforementioned performance metrics.

Fig. 3 Tx, IRS, and Rx positions (x-y coordinates [m]).

317



IEICE Communications Express, Vol.13, No.8, 315–318

Fig. 4 BER and NMSE performance at moving speeds of 3 km/h with
reflective element spacing 1.5λ.

Fig. 5 SNR performance.

4.2 Results
Figure 4 illustrates the BER and NMSE characteristics at
movement speed 3 km/h. The blue line shows the case with-
out channel prediction in which the channel estimate at the
last frame in the training phase is used instead of the predic-
tion. The performance of GPR with validation shown here
involves the commonization of the kernel matrices K and
K∗. The channel varies as the receiver moves, and bit errors
begin to occur in prediction phase. When optimization is
performed using gradient descent with a randomly chosen
initial value, a significant degradation in prediction accu-
racy and the bit errors can be observed. On the other hand,
both gradient descent with appropriate initial values and val-
idation do not result in bit errors. Since the initial values
must be carefully selected for gradient-based hyperparame-
ter optimization, validation provides a more robust approach
for determining hyperparameters, making it a more reliable
method.

Next, we evaluate the impact of commonization of kernel
matrices K and K∗. We compare the two cases where valida-
tion is performed for each cascade channel corresponding to
each reflecting element and the case where validation is per-
formed once due to the commonization of kernel matrices
(denoted as “K Reuse”). Figures 5(a) and 5(b) show the SNR
performance when the spacing between reflecting elements
is set to 0.5λ and 1.5λ, respectively. In case of without pre-
diction, the SNR deteriorates over time due to the outdated
reflection coefficient which is determined according to the
last channel estimation in the training phase. On the other
hand, by predicting the channel and determining appropriate
reflection coefficients at each time point, the degradation of
SNR can be suppressed. Furthermore, when comparing the
cases with and without commonization of kernel matrices,
no significant degradation is observed. Especially, focus-
ing on the SNR performance for a movement speed of 5
km/h in Fig. 5(b), a slight improvement is observed when

commonization is applied even reducing the computational
complexity. This is attributed to the increased number of
validation samples by performing validation for all cascade
channels of all reflecting elements during commonization,
leading to more robust determination of hyperparameters.

5. Conclusion

In this letter, we investigated GPR-based channel prediction
in the IRS-assisted wireless communication system. The hy-
perparameter determination is an issue in GPR-based chan-
nel prediction, and we addressed it through validation and
commonization of the kernel matrix. The simulation results
confirmed that the validation-based approach is more robust
on the hyperparameter determination. Additionally, com-
monization of the kernel matrix not only reduces computa-
tional costs, but also results an improvement in prediction
accuracy due to an increase of validation samples.
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