
1

Hardware-accelerated Kernel-Space Memory
Compression Using Intel® QAT

Qirong Xia†, Houxiang Ji†, Student Member, IEEE, Yang Zhou, and Nam Sung Kim, Fellow, IEEE

Abstract—Data compression has been widely used by dat-
acenters to decrease the consumption of not only the mem-
ory and storage capacity but also the interconnect bandwidth.
Nonetheless, the CPU cycles consumed for data compression
notably contribute to the overall datacenter taxes. To provide
a cost-efficient data compression capability for datacenters, Intel
has introduced QuickAssist Technology (QAT), a PCIe-attached
data-compression accelerator. In this work, we first compre-
hensively evaluate the compression/decompression performance
of the latest on-chip QAT accelerator and then compare it
with that of the previous-generation off-chip QAT accelerator.
Subsequently, as a compelling application for QAT, we take a
Linux memory optimization kernel feature: compressed cache for
swap pages (zswap), re-implement it to use QAT efficiently, and
then compare the performance of QAT-based zswap with that
of CPU-based zswap. Our evaluation shows that the deployment
of CPU-based zswap increases the tail latency of a co-running
latency-sensitive application, Redis by 3.2-12.1×, while that of
QAT-based zswap does not notably increase the tail latency
compared to no deployment of zswap.

Index Terms—Data Compression, Hardware Accelerator,
Operating System.

I. ON-CHIP QAT ACCELERATOR

INTEL QAT was initially introduced as an off-chip PCIe-
attached accelerator [1] and is now integrated into Intel

4th-generation Xeon Scalable Processors, codenamed Sapphire
Rapids (SPR) as an on-chip accelerator. The on-chip QAT re-
tains a similar hardware architecture to its off-chip predecessor
but features various new SoC-level features, enabling more
versatile deployment and easier usage in datacenters.
Hardware Architecture. SPR is the first datacenter CPU
architecture to integrate diverse on-chip accelerators directly
with the CPU through a cache-coherent interconnect. Fig. 1
compares the differences between the off-chip and on-chip
QAT connections to the CPU, as well as the hardware and
software stack for the on-chip QAT accelerator. The off-
chip QAT accelerator is exposed to the host CPU as a PCIe
Endpoint (EP) device, connecting through the PCIe Upstream
Port (USP) and Downstream Port (DSP). In contrast, the on-
chip QAT accelerator is exposed as a PCIe-compatible Root
Complex Integrated Endpoint (RCiEP) device, fully compat-
ible with the standard PCIe configuration mechanism; unless
specified otherwise, QAT refers to the on-chip accelerator in
this paper. The host CPU can submit work descriptors and
update configurations of QAT through the I/O fabric (between

Qirong Xia, Houxiang Ji, Yang Zhou, and Nam Sung Kim are with
the University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
(e-mail: qirongx2@illinois.edu; hj14@illinois.edu; yangz15@illinois.edu;
nskim@illinois.edu).

†Qirong Xia and Houxiang Ji contributed equally to this work.

Fig. 1: Overview of the off-chip and on-chip QAT accelerator
architectures and the software stack of the on-chip QAT
accelerator.

the cache-coherent interconnect and on-chip accelerators), and
QAT can access host memory through the same interface.
Ring pairs facilitate coordination between the host CPU and
QAT and each pair consists of a transmission (TX) ring where
the host submits work descriptors and a receiving (RX) ring
where QAT writes status updates and results back to the
host, respectively. The host CPU can configure each ring,
such as base address and number of entries, via Configuration
Status Registers (CSRs) accessed through Memory-Mapped
I/O (MMIO). The work descriptors from the TX ring are
arbitrated and dispatched to appropriate QAT engines based
on the tasks specified in the descriptors and the status of
the engines. Upon completing the tasks, the engines write
completions back to the RX ring, where they await processing
by the host CPU.
SoC Features. Compared to off-chip QAT, on-chip QAT
introduces new SoC-level features, including Shared Virtual
Memory (SVM) and Scalable I/O virtualization (SIOV), sup-
ported by the latest QAT driver in Linux kernel 6.2 and
above. SVM complies with the PCIe Address Translation
Service (ATS) protocol, enabling QAT to access address
translation information via IOMMU on the host side and
the Address Translation Cache (ATC) on the device side.
SVM enables QAT to directly access shared data via virtual
addresses coherently, simplifying the deployment and avoiding
the expensive memory pinning and data copying needed for
DMA-based data transfer in off-chip QAT. Single Root I/O
Virtualization (SR-IOV), introduced earlier, and SIOV both
support sharing a single physical QAT as multiple virtual

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2025.3534831

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

devices across multiple Virtual Machines (VMs) or containers.
Nonetheless, SIOV offers greater scalability and flexibility
than SR-IOV by moving the non-performance-critical parts of
the device virtualization stack to software running on CPU and
IOMMU whereas the virtualization stack of SR-IOV is limited
to hardware. As such, SIOV can scale a single physical device
to thousands of virtual devices instead of a fixed number of
virtual devices in SR-IOV.
Software Interface. Multiple user-space libraries and plugins,
e.g. QATzip [2], QATlib [3], are provided for seamless
utilization of QAT in applications. These user-space libraries
convert function calls to QAT from applications into descrip-
tors, which are passed to the kernel-space QAT driver [4],
parsed by the firmware, and finally submitted to QAT. The
QAT driver, implemented as a Linux kernel module, also
enables direct in-kernel usage of QAT with specific Linux
kernel APIs [5].
Related Work. Intel In-Memory Analytics Accelerator
(IAA) [6], another on-chip accelerator on SPR, offers compres-
sion functionality but only supports Deflate algorithm. The
IBM Power7+ processor [7] includes an on-chip compression
accelerator but relies on slower DMA for data transfer due to
the lack of the cache-coherent interconnect and SVM support.

II. QAT COMPRESSION CAPABILITY CHARACTERIZATION

Using two benchmarks, we first evaluate the latency and
throughput of QAT across different configurations to explore
the efficient use of QAT usage. Additionally, we compare
the latency and throughput of QAT with those of off-chip
QAT accelerators, and the CPU to highlight the performance
improvements across QAT generations and the compression
acceleration offered by QAT over the CPU.

A. Methodology

System and Devices. Table I summarizes the specifications
of our systems, as well as two QAT accelerators. The off-
chip QAT accelerator is installed on the Intel 3rd-generation
Scalable Processor, codenamed Ice Lake. While Ice Lake has
40 cores per CPU, we offline 8 of them to make a fair
comparison with SPR which has only 32 cores. Additionally,
we disable hyper-threading and lock the CPU frequency on
both systems for measurement stability.
Benchmarks. To characterize the compression capability of
QAT, we use HyperCompressBench [10], referred to as HCB

in this work, and SPEC CPU 2017 [11]. HCB is a suite of

TABLE I: System and devices.

SPR system Description
OS (kernel) Ubuntu 22.04.2 LTS (Linux kernel v6.2)

CPU Intel Xeon Gold 6438Y+ CPU [8]@2.0GHz, 32 cores
60MB LLC per CPU, Hyper-Threading disabled

Memory Socket 0: 8× DDR5-4800 channels
On-chip QAT PCIe 5.0, 32GT/s per lane

Ice Lake system Description
OS (kernel) Ubuntu 22.04.2 LTS (Linux kernel v6.2)

CPU Intel Xeon Platinum 8380 CPU [9]@2.0GHz, 40 cores
60MB LLC per CPU, Hyper-Threading disabled

Memory Socket 0: 8× DDR5-4800 channels
Off-chip QAT QAT C62x adapter, PCIe 4.0, 16GT/s per lane

synthetic compression workloads, created by integrating four
standard benchmarks, Silesia, Canterbury, Calgary, and Snap-
pyFiles, to reflect statistical characteristics of compression
workloads in the Google datacenter. We use ptrace to peri-
odically capture memory pages used by the SPEC benchmarks,
following the same methodology as prior work [12], and use
them as workloads, denoted as SPEC-Mem in this work.
Metrics. QAT conducts (de)compression in a streaming
way by dividing a given workload into N blocks and
(de)compressing each block independently without any history
of the previous (de)compressed blocks. We use the average
compression latency per block (i.e., the total compression
latency divided by N), and the average compression throughput
(i.e., the size divided by the total compression latency) as the
performance metrics. Note that a single CPU thread submits
blocks to QAT when measuring latency, while all 32 threads
are used to assess throughput.

B. Characterization

We leverage the Intel QAT driver [4] and configure QAT via
sysfs, specifying the compression algorithms, compression
levels, data block sizes, and operation modes. Each configu-
ration is tested 10 times with workloads consisting of more
than 100K blocks.
Compression algorithms and levels. We evaluate Deflate

(with static and dynamic Huffman coding) and LZ4 as repre-
sentative compression algorithms provided by QAT. A higher
compression level offers a higher degree or intensity of com-
pression (i.e., a higher compression ratio) but at the cost of a
longer compression time.
Deflate with dynamic Huffman coding presents the high-

est latency, while lightweight LZ4 achieves the lowest la-
tency when compressing/decompressing 4 KB blocks from
SPEC-Mem. For a given compression algorithm and block size,
as the compression level increases, the compression ratio (i.e.,

0

20

40

60

0

1

2

3

L1 L6 L9 L1 L6 L9 L1 L6 L9
Deflate (static) Deflate (dynamic ) LZ4

Latency (cmprs.) Latency (dcmprs.) Throughput (cmprs.) Throughput (dcmprs.)

La
te

nc
y 

(u
s)

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Varying compression algorithms and levels (SPEC-Mem)

0.9 1.0 1.0 1.0 1.4 2.6 5.1
0
10
20
30
40

0
20
40
60
80

64 256 512 1K 4K 8K 16K
Block size (B)

Latency (async.) Latency (sync.) Throughput (async.) Throughput (sync.)

La
te

nc
y 

(u
s)

Th
ro

ug
hp

ut
 (G

bp
s)

(b) Varying data block size and operation modes (HCB)

0

20

40

60

0
5

10
15
20

SPEC-Mem HCB SPEC-Mem HCB SPEC-Mem HCB
CPU Off-chip QAT On-chip QAT

Latency (cmprs.) Latency (dcmprs.) Throughput (cmprs.) Throughput (dcmprs.)

La
te

nc
y 

(u
s)

Th
ro

ug
hp

ut
 (G

bp
s)

(c) Comparison among CPU, off-chip and on-chip QAT

Fig. 2: Comparison of compression performance.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2025.3534831

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

compressed block size) decreases, but the latency increases,
resulting in a decrease in throughput, as shown in Fig. 2a and
Table II.
Insight 1: Lower compression level is preferred where
latency is critical without notably compromising the com-
pression ratio.

Block size and operation modes. As discussed in § II-A,
QAT divides a given workload into blocks, we choose block
sizes ranging from 64B to 16KB for characterization. QAT
supports two operation modes: synchronous and asynchronous.
In synchronous mode, the host CPU submits a compression
task and waits for its completion before starting to work on the
next block. In asynchronous mode, the host CPU submits all
tasks at once and context-switches to another process. When
QAT finishes the tasks, it sends an interrupt to notify the
compression process of the completion.

Fig. 2b shows the latency and throughput for various block
sizes in two operation modes running on HCB, using Deflate

with static Huffman coding at compression level 1. The
asynchronous mode achieves 7.7–38.6× lower latency than
the synchronous mode across these block sizes as it can
process multiple compression tasks in parallel. As the block
size increases, it takes higher latency for QAT to retrieve and
process data but the throughput can also increase as more
data are compressed and thus the data movement overhead is
amortized. The trends in latency and throughput are consistent
with those seen on SPEC-Mem.

Insight 2: Larger data blocks and asynchronous operations
significantly boost QAT’s compression performance across
various scenarios.

Comparison with off-chip QAT and CPU. We compare the
compression performance of CPU, off-chip QAT, and on-chip
QAT, all of which run Deflate with static Huffman coding,
compression level 6, and 4KB data block size (Fig. 2c).
The compression ratios obtained by QAT match those of
the software versions of the algorithms on CPU. CPU-based
Deflate presents 17.7× and 6.1× longer compression and
decompression latency than on-chip QAT, respectively. The
performance improvement of on-chip QAT over older off-
chip QAT is attributed to the on-chip integration minimizing
communication delay and leveraging the higher bandwidth of
PCIe 5.0 for faster data transfers.

Insight 3: On-chip QAT consistently delivers lower latency
and higher throughput than both the CPU and off-chip
QAT, showcasing its superior compression capability and
efficiency for demanding workloads.

TABLE II: Compression ratios of various compression algo-
rithms and levels

Benchmark Algorithm Level 1 Level 6 Level 9

HCB
Deflate (dynamic) 0.28 0.27 0.27

Deflate (static) 0.32 0.31 0.31
LZ4 0.38 0.36 0.36

SPEC-Mem
Deflate (static) 0.56 0.55 0.55

Deflate (dynamic) 0.50 0.49 0.49
LZ4 0.64 0.63 0.63

III. QAT-BASED KERNEL-SPACE MEMORY COMPRESSION
ACCELERATION

In this section, we reimplement a kernel feature, zswap, as
a case study to showcase how QAT’s compression capability
enhances system performance. By offloading computation-
intensive compression to QAT, QAT-zswap reduces disruption
to co-running applications notably compared to CPU-zswap.
While this section highlights zswap ’s potential with QAT,
its benefits can extend to a broader range of compression
workloads in datacenters.

A. QAT-based zswap

zswap [13] is a Linux kernel feature that compresses swap-
out pages and stores the compressed pages in a memory pool
(i.e., zpool) instead of writing them back to backing storage
directly, thereby reducing disk I/O and enabling faster page
fault handling when the page fault hits on the zpool. zswap
is triggered when the number of free memory pages drops
below a certain threshold. Lines with orange markers Fig. 3
depict a page compression in zswap running on the host
CPU (cpu-zswap). When zswap swaps out a page, the host
CPU 1 receives the page address and destination address
in zpool, 2 reads the page from memory, polluting the
LLC with data in the page, 3 compresses the page using
the CPU cores, consuming a notable number of CPU cycles,
4 stores the compressed page into zpool and 5 returns

compressed size, and informs zswap of the completion for
further processing. The side effects of 2 and 3 exacerbate
contention of CPU cycles and cache space between zswap

and co-running applications, hurting application performance
during zswaping [14].

To alleviate the aforementioned contention while preserving
the benefits of zswap, we offload the data- and compute-
intensive operations of compression/decompression to QAT
(qat-zswap) instead of running it on the host CPU. For both
cpu-zswap and qat-zswap, we choose Deflate that is most
commonly used although they support various compression
algorithms, including LZ4 and LZO. We first register the QAT-
accelerated Deflate function (qat_deflate) to the Linux
Crypto API and expose it to zswap in the kernel space.
When there is a page to compress, qat-zswap calls the
qat_deflate instead of the CPU-based Deflate function.
qat_deflate call is converted to a work descriptor by the

Fig. 3: zswap running on CPU (orange) and QAT (blue).

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2025.3534831

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

0
2
4
6
8

10

read update read update read read insert
a b c d Geomean

CPU-zswap QAT-zswap
P9

9 
la

te
nc

y 
no

rm
. n

o-
zs

w
ap

12.1

Fig. 4: 99th-percentile (p99) latency of Redis with YCSB

workloads running on cpu-zswap and qat-zswap, normal-
ized to no zswap running.

QAT driver and firmware, and then submits this descriptor to
QAT. After receiving the descriptor, qat-zswap follows the
same steps as cpu-zswap depicted by lines with blue markers
Fig. 3. As QAT is now responsible for all data movement and
compression, qat-zswap no longer causes cache pollution
and frees the CPU cores from compute-intensive compression.

B. Evaluation

Application. We use Redis [15] and YCSB [16] to evaluate the
impact of cpu-zswap and qat-zswap on co-running latency-
sensitive applications. Redis is a popular in-memory Key-
Value Store (KVS) database, and YCSB is used as workloads
for Redis. We use four YCSB workloads: (a) update heavy
(50% read and 50% write), (b) read heavy (95% read and 5%
write), (c) read-only (100% read), and (d) read latest (95%
read and 5% insert) with a zipfian distribution.
Methodology. We co-run Redis and a SPEC CPU 2017
benchmark on SPR (§I). More specifically, we co-run 16-
threaded 631.deepsjeng_s with a total memory limit of
10GB when launching the YCSB workload on Redis. The
SPEC benchmark serves as the memory stressor to trigger
zswap and we ensure only pages consumed by the benchmark
are swapped out by cgroup. We assign 14 Redis clients on
14 different CPU cores to submit the workloads to 1 Redis

server. zswap is assigned to the same CPU core as the Redis

server.
Tail latency. We use the 99th-percentile (p99) latency as
the performance metric for Redis. Fig. 4 plots the p99
latency of Redis running with cpu-zswap and qat-zswap,
normalized to those of Redis running alone (no-zswap).
cpu-zswap increases the p99 latency by 3.2–12.1× compared
to no-zswap. qat-zswap reduces the increase to 1.2–1.6×
as QAT executes the heavy compression replacing CPU.
CPU cycle consumption and cache miss ratio. Table III
shows a 9–15% CPU utilization decreases from cpu-zswap

to qat-zswap as the CPU is only used for submitting and
receiving the QAT requests if the (de)compression is offloaded
to the QAT, rather than performing the full (de)compression

TABLE III: CPU utilization and cache misses of cpu-zswap
and qat-zswap

Workload CPU-zswap QAT-zswap

CPU utilization

YCSB-a 19% 4%
YCSB-b 14% 5%
YCSB-c 15% 4%
YCSB-d 15% 4%

Cache miss rate

YCSB-a 30% 16%
YCSB-b 24% 20%
YCSB-c 27% 24%
YCSB-d 23% 19%

algorithms. The cache miss rate in qat-zswap is reduced
by 3%-13%, compared to cpu-zswap. The QAT accelerator’s
usage of DMA allows reading from and writing to the main
memory directly without touching the CPU’s cache hierarchy.

Insight 4: Offloading compression workloads to QAT can
significantly save CPU resource consumption and thus boost
overall system performance.

IV. CONCLUSION

This work explores the compression capabilities of the on-
chip QAT accelerator integrated into the Intel 4th generation
SPR CPU. We characterize the on-chip QAT accelerator
regarding latency and throughput under different compression
algorithms, compression levels, and operation modes. Based
on the characterization, we offload compression in zswap to
the QAT accelerator and achieve 2.2–7.9× tail latency reduc-
tion on co-running applications compared to zswap running
on CPU.

REFERENCES

[1] Intel Corporation, “Intel quickassist adapter family for servers,” https:
//www.intel.com/content/www/us/en/products/docs/network-io/ethernet/
10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html,
accessed in 2024.

[2] Intel Corporation, “Intel QuickAssist Technology (QAT) QATzip Li-
brary,” https://github.com/intel/QATzip, accessed in 2024.

[3] Intel Corporation, “Intel QuickAssist Technology Library (QATlib),”
https://github.com/intel/qatlib, accessed in 2024.

[4] Intel Corporation, “Intel QuickAssist Technology Driver for Linux –
HW Version 2.0,” https://www.intel.com/content/www/us/en/download/
765501/intel-quickassist-technology-driver-for-linux-hw-version-2-0.
html, accessed in 2024.

[5] Linux Kernel Documentation Team, “Linux kernel crypto api,” https:
//www.kernel.org/doc/html/v6.2/crypto/, accessed in 2024.

[6] Intel Corporation, “Intel® in-memory analytics accelerator (intel®
iaa),” https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/in-memory-analytics-accelerator.html, accessed
in 2024.

[7] B. Blaner, B. Abali, B. M. Bass, S. Chari, R. Kalla, S. Kunkel,
K. Lauricella, R. Leavens, J. J. Reilly, and P. A. Sandon, “Ibm power7+
processor on-chip accelerators for cryptography and active memory
expansion,” IBM Journal of Research and Development, 2013.

[8] Intel Corporation, “Intel® Xeon® Gold 6438Y+ Processor,”
https://ark.intel.com/content/www/us/en/ark/products/232382/
intel-xeon-gold-6438y-processor-60m-cache-2-00-ghz.html, accessed
in 2024.

[9] Intel Corporation, “Intel® Xeon® Platinum 8380 Processor,”
https://www.intel.com/content/www/us/en/products/sku/212287/
intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz/
specifications.html, accessed in 2024.

[10] Google, “Hypercompressbench,” https://github.com/google/
HyperCompressBench?tab=readme-ov-file, accessed in 2024.

[11] Standard Performance Evaluation Corporation, “SPEC CPU 2017
Benchmark,” https://www.spec.org/cpu2017/, accessed in 2024.

[12] S. Sardashti and D. A. Wood, “Could compression be of general use?
evaluating memory compression across domains,” ACM Transactions on
Architecture and Code Optimization (TACO), 2017.

[13] Linux Kernel Documentation Team, “Linux kernel documentation:
zswap,” https://www.kernel.org/doc/html/v6.0/admin-guide/mm/zswap.
html, accessed in 2024.

[14] H. Ji, M. Mansi, Y. Sun, Y. Yuan, J. Huang, R. Kuper, M. M. Swift, and
N. S. Kim, “STYX: Exploiting SmartNIC capability to reduce datacenter
memory tax,” in Proceedings of the 2023 USENIX Annual Technical
Conference (USENIX ATC’23), 2023.

[15] Redis Labs, “Redis: The Real-Time Data Platform,” https://redis.io,
accessed in 2024.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC’10), 2010.

This article has been accepted for publication in IEEE Computer Architecture Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCA.2025.3534831

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/10-25-40-gigabit-adapters/quickassist-adapter-for-servers.html
https://github.com/intel/QATzip
https://github.com/intel/qatlib
https://www.intel.com/content/www/us/en/download/765501/intel-quickassist-technology-driver-for-linux-hw-version-2-0.html
https://www.intel.com/content/www/us/en/download/765501/intel-quickassist-technology-driver-for-linux-hw-version-2-0.html
https://www.intel.com/content/www/us/en/download/765501/intel-quickassist-technology-driver-for-linux-hw-version-2-0.html
https://www.kernel.org/doc/html/v6.2/crypto/
https://www.kernel.org/doc/html/v6.2/crypto/
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/in-memory-analytics-accelerator.html
https://ark.intel.com/content/www/us/en/ark/products/232382/intel-xeon-gold-6438y-processor-60m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/232382/intel-xeon-gold-6438y-processor-60m-cache-2-00-ghz.html
https://www.intel.com/content/www/us/en/products/sku/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz/specifications.html
https://github.com/google/HyperCompressBench?tab=readme-ov-file 
https://github.com/google/HyperCompressBench?tab=readme-ov-file 
https://www.spec.org/cpu2017/
https://www.kernel.org/doc/html/v6.0/admin-guide/mm/zswap.html
https://www.kernel.org/doc/html/v6.0/admin-guide/mm/zswap.html
https://redis.io

	On-Chip QAT Accelerator
	QAT Compression Capability Characterization
	Methodology
	Characterization

	QAT-based Kernel-Space Memory Compression Acceleration
	QAT-based zswap
	Evaluation

	Conclusion
	References

