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Uncertainty-Aware Face Embedding
With Contrastive Learning for

Open-Set Evaluation
Kyeongjin Ahn, Seungeon Lee , Sungwon Han, Cheng Yaw Low ,

and Meeyoung Cha

Abstract— While advances in deep learning have enabled
novel applications in various fields, face recognition in open-set
scenarios remains a complex task, owing to the challenges posed
by the extensive volume of low-quality face images. We intro-
duce a new approach for recognizing faces in unconstrained
open-set settings by leveraging uncertainty-aware embeddings
through contrastive learning. Our model, called UCFace, effec-
tively regulates the contribution of each face image based on
the face uncertainty derived from image quality as an inverse
proxy. Face embeddings are reinterpreted as a probabilistic
distribution within the embedding space, where the degree of
sharpness (i.e., distribution concentration) reflects the underlying
uncertainty and probability density is used as a similarity metric
to facilitate contrastive learning. Experiments on a wide range of
face datasets, including those with high, mixed, and real-world
low-resolution face images, demonstrate that UCFace enhances
open-set face recognition performance by integrating the aspect
of uncertainty.

Index Terms— Face recognition, low-resolution, uncertainty,
contrastive learning, von Mises–Fisher distribution.

I. INTRODUCTION

FACE recognition (FR) has achieved remarkable break-
throughs with the help of deep learning, extensive

labeled datasets, and scalable computing systems. Neverthe-
less, it remains a considerable challenge when compared
to generic object recognition tasks. This is due to the
complexity involved in distinguishing millions of unique
identities, the scarcity of training samples for each identity,
and the vast range of intra-class variations. Such varia-
tions include intractable poses and expressions, illumination
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Fig. 1. Illustrating the uncertainty-aware contrastive learning objective with
anchor probability distributions. When an anchor has high uncertainty (i.e.,
low-quality), its positive samples are weakly pulled towards the anchor and
negative samples are pushed against the anchor. In contrast, when an anchor
has low uncertainty (i.e., high-quality), its positive samples are strongly pulled
toward the anchor and negative samples are strongly pushed against the
anchor.

conditions, occlusions, and other external factors such as low-
resolution [1], [2], [3].

Recent face recognition work further delves into open-set
recognition problems, which, unlike closed-set scenarios,
include unknown identities within the test set to better simulate
real-world deployment conditions. This requires the capacity
to generalize knowledge learned from known identities to
unknown identities. Various models have been proposed to
refine the decision boundaries among unique identities in
the latent space. For example, SphereFace [4] modifies the
traditional softmax activation function with a margin term,
leading to the emergence of angular margin-based softmax
classifiers. These classifiers, which maximize the separation
between samples with distinct identities using the angular mar-
gin principle, have shown promising results on open-set face
recognition benchmark datasets, especially in high-resolution
face images like LFW [5], CFP-FP [6], among others.

Softmax classifiers often suffer from discrepancies between
training and inference settings. Specifically, these classifiers
train the central representation (i.e., prototypes) of each iden-
tity in the training dataset, while they utilize the similarity
between samples instead of prototypes during inference. This
discrepancy between the training and inference settings can
make classifiers vulnerable to misclassifying unknown testing
identities as known training identities [7]. We refer to this
scenario as the open-set discrepancy challenge.
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Supervised contrastive learning (SCL) is a metric learning
approach that addresses the challenge of open-set discrep-
ancies. During training, it learns the degree of similarity
among samples within the embedding space, which enhances
the model’s ability to generalize [8], [9]. SCL compares a
target sample of interest, known as an anchor, against other
samples to determine whether they share the same labels
or differ. This comparison enforces the embeddings of an
anchor and samples with the same label (i.e., positive samples)
closer, while pushing the embeddings of dissimilar samples
(i.e., negative samples) farther apart. This learning paradigm
addresses the open-set discrepancy challenge by establishing
a direct relationship between samples, focusing on learning
from hard samples close to the class boundaries.

In this context, we investigate the potential benefit of inte-
grating SCL into the open-set face recognition setting. We start
by categorizing hard samples—which significantly affect SCL
training—into two types, following the previous literature [10].
The first type is unlearned samples, which contain sufficient
identity characteristics but remain unseen to the model during
training. These samples enable the model to learn and improve
over time. The second type is low-quality samples, which
are typically noisy and lack essential identity information
necessary for person identification. We observe that using SCL
in face recognition can result in overfitting to noise, especially
when the training set is dominated by low-quality samples
with limited information for effective embedding learning [11].
This observation necessitates considering the uncertainty in
low-quality samples. Several studies [12], [13] have addressed
the uncertainty of noisy face images in face recognition by
learning the standard deviation as an uncertainty index, but
they do not provide explicit evidence of a correlation between
the trained uncertainty index and image quality. Furthermore,
because these methods are built upon softmax classifiers, they
also inherit the open-set discrepancy challenge.

We propose UCFace, a new variant of metric learning that
extends the existing SCL framework to address the open-set
challenge while reducing the impact of noisy training signals
from low-quality samples. Similar to [14] and [15], we lever-
age the feature norm as a reliable indicator of image quality
and associate it with the concept of sample uncertainty [16].
This quality measure helps us infer the amount of informa-
tion contained in each sample [17]. To handle the sample
uncertainty, we define each anchor as a probability distribution
in the representation space. By following the contrastive
objective, we optimize the probability density of positive and
negative samples relative to the anchor distribution. Fig. 1
visualizes our learning objective, which regulates the forces
of pull or push among samples according to their probability
densities within the anchor distribution. The proposed UCFace
operates as an add-on to existing angular margin-based soft-
max losses for improved embedding learning that emphasizes
more on meaningful samples. Our main contributions are
as follows:
• We introduce a new metric learning approach, referred

to as UCFace in this paper, to reduce the impact of
noisy signals from low-quality samples for open-set face
identification and verification tasks.

• UCFace encodes the concept of uncertainty into con-
trastive learning by interpreting an anchor as a probability
distribution in the representation space and optimizing the
probability density of positive and negative samples with
respect to the anchor distribution.

• We demonstrate the effectiveness of UCFace in open-set
deployment scenarios, achieving state-of-the-art perfor-
mance not only on low-resolution face datasets but also
on high- and mixed-resolution ones. Notably, in low-
resolution cases, we observe remarkable performance
improvement across most of our experiments.

We hope our findings are a step towards promising face
recognition applications in low-quality images, e.g., forensics
and security.

II. RELATED WORK

A. Angular Margin-Based Softmax Classifiers

Conventional CNN-based face models have achieved
remarkable performance thanks to angular margin-based soft-
max losses, an extension of the traditional softmax loss
function. The goal of these loss functions is to maximize the
separation of inter-class embeddings based on a penalty margin
for enhanced generalizability. Remarkable examples include
CosFace [18] and ArcFace [19]. CosFace applies an additive
cosine margin, while ArcFace employs an additive angular
margin, each enhancing geometric properties in their respec-
tive approaches. Building upon these losses, MagFace [15]
and AdaFace [14] replace the pre-determined margin with an
adaptive one. Specifically, the margin’s magnitude is adjusted
based on the recognizability of each sample in the embedding
space, emphasizing hard samples by assigning them a larger
margin. Despite their improvements in discriminative power
under open-set conditions, there is still room for further
enhancement in generalizing to large-scale unseen identities,
especially in practical face recognition scenarios.

B. Quality Estimation in Face Recognition

Apart from feature norms, there has been significant
progress in face image quality assessment (FIQA) using other
learning-based models. CR-FIQA [20] estimates face image
quality (FIQ) by learning a model to determine the rela-
tive classifiability of face embeddings, considering both their
prototype and their nearest negative prototype. On the other
hand, FaceQAN [21] measures FIQ by exploiting adversarial
noise from models trained using gradient descent. Similar to
MagFace and AdaFace, we interpret FIQ using feature norms,
which require no additional training and have been demon-
strated to closely approximate the actual image quality [22].

C. Uncertainty in Face Recognition

The integration of uncertainty to enhance face representation
learning has recently attracted considerable attention. PFE [12]
is a pioneering work that models the uncertainty of a face
image as a Gaussian distribution in the latent space. However,
PFE employs a fixed representation vector encoded by a
pre-learned model as the mean of the distribution µ, while
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interpreting uncertainty through the standard deviation of that
distribution σ . The drawback of PFE is that it does not allow
µ to be learned together with σ in the training process. On the
contrary, DUL [13] learns both µ and σ simultaneously within
the same network. This ensures the representation vector µ to
be readjusted according to the learning of uncertainty index
σ . Uncertainty modeling of existing face recognition models
depends on the model’s optimization process, without demon-
strating a clear correlation between uncertainty and image
quality. Therefore, these approaches cannot guarantee that
the predicted uncertainty aligns with image quality, thereby
failing to distinguish between two types of hard samples (i.e.,
unlearned samples and low-quality samples), especially in
the early stages of training. For example, they may overlook
important training signals from unseen samples or overfit low-
quality samples. In contrast, we adopt feature norms that have
been verified to correlate with image quality, which mitigates
these concerns and enhances the stability of training.

D. Contrastive Learning in Face Recognition

Metric learning is another methodology for learning dis-
criminative face representations by pulling samples with the
same label closer together while pushing those with differ-
ent labels further apart. FaceNet [23] proposes triplet loss
to optimize the distances between an anchor and its cor-
responding positive and negative samples in the Euclidean
space. Although earlier works, such as basic pairwise com-
parison, often compare a limited number of sample pairs,
more advanced techniques like triplet loss effectively scale to
handle larger and more complex datasets, particularly in face
recognition.

Supervised contrastive learning (SCL) leverages ground-
truth labels [8], alongside the InfoNCE loss objective [24] in
representation learning. By increasing the mutual information
of positive pairs through the InfoNCE loss, the SCL-based
model effectively identifies the common features for multiple
positive pairs based on the supervised signal. SCL shows
robust performance in open-set scenarios, improving its ability
to generalize to unknown identities [8], [9]. However, applying
SCL directly to resolve the face recognition problems may
result in overfitting when trained on very noisy images.

III. METHODOLOGY

A. Overview

We propose UCFace, a method using metric learning to
address the open-set discrepancy challenge and effectively
handle noisy data. Our model introduces the inverse proxy
of uncertainty to extend the SCL paradigm and utilizes the
feature norms of face representations as a reliable indicator of
face quality. We consider each anchor as a probability distri-
bution rather than a deterministic embedding vector, with the
feature norm determines the distribution’s sharpness. To mea-
sure similarity between the anchor and samples, we employ
the logarithmic probability density of each sample within
the anchor distribution. We optimize the InfoNCE-based con-
trastive objective based on this measure, which differs from

Algorithm 1 Uncertainty-Aware Contrastive Learning
Input: An embedding encoder f , a projection head g,
a mini batch B, an anchor sample i , a set of positive samples
P(i) ∈ B, a pre-determined temperature τ , an angular
margin-based softmax loss LC .
Output: Trained embedding encoder f
// Compute representation vector
zi ← g · f (i)
// Transform into vMF distribution
Vzi (x)← vMF(x; ẑi , ∥zi∥)
// Compute uncertainty-aware contrastive loss
LU ← 0
for p ∈ P(i) do

LU ← LU + sim(ẑp, zi )/τ
LU ← LU − log

∑
j∈{B\i} exp(sim(ẑ j , zi )/τ)

end
LU ←

−1
|P(i)|LU

// Combine contrastive loss as an add-on to
angular margin-based softmax loss

Ltotal ← LC + LU
Update weights of f via back-propagation

the conventional use of cosine similarity in contrastive learn-
ing. Fig. 2 and Algorithm 1 demonstrate the entire training
procedure for our model.

B. Preliminaries

We revisit the mathematical definitions of angular
margin-based softmax losses inspired by SphereFace [4],
namely CosFace [18], ArcFace [19], MagFace [15], and
AdaFace [14]. These losses differ in terms of margin function,
denoted by h(·), which describes how the margin penalizes the
typical softmax loss. For a given sample i , the generic loss
objective is expressed as follows:

Li = − log
exp(h(θ

(y)
i , m, s))∑K

j=1 exp(h(θ
( j)
i , m, s))

(1)

where K stands for the total number of identities in the training
set. θ

( j)
i indicates the angle between ri , i.e., the embedding

vector of sample i encoded by the backbone model, and the
identity prototype indexed by j . CosFace learns to maximize
the decision margin m in the cosine space [18]. On the
contrary, ArcFace optimizes the geodesic distance (the angular
margin) between the sample and its prototype directly [19].
Given the ground-truth label y, the margin term m, and the
scaling factor s, the margin functions for CosFace and ArcFace
are defined as follows:

h(θ
( j)
i , m, s)CosFace =

{
s(cos θ

( j)
i − m) j = y

s cos θ
( j)
i j ̸= y

(2)

h(θ
( j)
i , m, s)ArcFace =

{
s cos(θ ( j)

i + m) j = y
s cos θ

( j)
i j ̸= y

(3)

MagFace focuses on image quality, using feature norms for
optimization [15]. It employs the margin function of ArcFace,
where the margin m is formulated by the feature norm ||r||.
Then, it integrates an extra regularization term gmag regulated
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Fig. 2. Overall training pipeline for our model. Given a labeled face image and its augmented counterparts, we encode its representation vector z using
an embedding encoder f and a projection head g. We map its L2-normalized representation vector, denoted by ẑ, onto a von Mises-Fisher distribution,
designating it as the anchor distribution. During the training stage, we optimize the probability density of both positive and negative samples about the anchor
distribution based on the proposed uncertainty-aware contrastive loss LU . We obtain the final loss Ltotal by combining LU with the softmax loss LC .

by a scaling factor λg with the generic loss objective Li .

m =
um − lm
ua − la

(||ri || − la)+ lm (4)

gmag =
1
||ri ||

+
1

u2
a
||ri || (5)

Lmag = Li + λggmag (6)

where la , ua , lm , and um are hyperparameters that determine
the relationship between margin and feature norm, and Lmag
is the loss objective used in training of MagFace. While
MagFace considers highly recognizable samples, it does not
adequately emphasize hard training samples, which are helpful
for learning discriminative features [14]. AdaFace overcomes
this limitation by employing a sample-level adaptive process
to handle varying sample difficulties [14]. It introduces two
adaptive quality-based margin terms (i.e., angular margin
gangle and additive margin gadd). Its margin function is as
follows:

̂||ri || =

⌊
||ri || − µr

σ r/h

⌉1

−1
(7)

gangle = −m · ∥̂ri∥, gadd = m · ∥̂ri∥ + m (8)

h(θ
( j)
i , m, s)AdaFace =

{
s(cos(θ ( j)

i + gangle)− gadd) j = y
s cos θ

( j)
i j ̸= y

(9)

where ̂||ri || represents a feature norm normalized relative to
the batch-wise moving mean µr and standard deviation σ r,
along with the concentration hyperparameter h. Accordingly,
the loss function for the angular margin-based softmax classi-
fiers [14], [15], [18], and [19] within the batch is given by:

LC =
1
N

N∑
i=1

Li (10)

where N refers to the number of samples in each training
iteration.

We explore the characteristics exhibited by uncertainty-
based models [12], [13] in the realm of face recognition.
The uncertainty module from PFE [12] maximizes the Mutual
Likelihood Score (MLS) between two genuine Gaussian dis-
tributions to optimize the objective function. A more detailed

solution is provided below:

s(xi , x j ) = −
1
2

D∑
l=1

(
(µ

(l)
i − µ

(l)
j )2

σ
2(l)
i − σ

2(l)
j

+ log(σ
2(l)
i − σ

2(l)
j ))− H

(11)

LP F E =
1
|P|

∑
(i, j)∈P

−s(xi , x j ) (12)

where xi and x j represent samples from the same group. µ(l)

and σ (l) denote the feature embedding and the variance of the
l th dimension, respectively. H is a constant, P is the set of
all positive pairs, and D represents the size of the embedding
dimension.

DUL [13] defines the uncertainty-based embeddings by
sampling from a Gaussian distribution to simultaneously learn
the feature embedding (µ = ri ) and variance (σ ).

r∗i ∼ N (µi , σ i ) (13)

Then, it uses a reparameterization trick by adopting a noise ϵ

sampled from N (0, I).

r∗i = µi + ϵσ i , ϵ ∼ N (0, I) (14)

Here, DUL utilizes the uncertainty-based stochastic embed-
ding r∗i to obtain θ

( j)
i in Eq. 1 instead of the deterministic

embeddings ri . Then, it optimize the classifier loss (Eq. 10)
with KL divergence regularization.

LDU L = LC + λ ·KL
[
N (r∗i |µi , σ

2
i )||N (ϵ|0, I)

]
(15)

Another advantage of modeling the uncertainty with dis-
tributions is the ability to fuse samples [12]. PFE introduces
sample fusion by deriving the posterior probability distribution
of multiple samples based on the individual probability dis-
tribution of each sample. This original work demonstrates the
fusion process through a mathematical analysis of Gaussian
distributions. Likewise, we showcase the fusion capability of
UCFace by analyzing the von Mises-Fisher distribution in the
Supplementary Material.
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Fig. 3. The relationship between feature norm and face image quality. Using
a pre-trained ResNet-50 with VGGFace2, (a) the poorest-quality and (b) the
best-quality face images in QMUL-TinyFace are sorted by the feature norm
indexes of their representation vectors. We note that image quality improves
from top-left to bottom-right.

C. Uncertainty Modeling With Image Quality

Although the traditional SCL learns a discriminative embed-
ding space for downstream tasks, it is susceptible to overfitting
caused by noisy patterns, especially for low-quality hard sam-
ples. Inspired by MagFace [15] and AdaFace [14], we utilize
the feature norm, specifically L2-norm of the correspond-
ing face representation vector as an image quality indicator.
We use three low-resolution datasets for evaluation. Our results
in Fig. 3 demonstrate a strong correlation between feature
norm indexes and face recognizability as perceived by humans.

We interpret image quality of faces as an inverse proxy
of uncertainty. For example, a high-quality face image, typ-
ically a frontal mugshot with meaningful identity attributes,
reduces uncertainty and therefore contributes to better face
recognizability. While most existing face recognition models
encode each face image as a deterministic embedding vector,
we depart from this convention by interpreting an anchor
as a probabilistic distribution. Considering that SCL projects
each sample representation to the unit hypersphere to avoid
the divergence of training [25], we opt for a von Mises-
Fisher (vMF) probability distribution as an anchor since it is
a spherical analog of the normal distribution. Assuming x is
an arbitrary unit vector, we represent the probability density
function of the vMF distribution as follows:

vMF(x;µ, κ) = C(κ) · exp(κµ⊺x), (16)

where µ is the mean of the distribution with ∥µ∥ = 1, κ ≥

0 is a concentration parameter, and C(κ) is a normalization
constant.

The anchor sample i is encoded into the embedding vector
ri with dimension d f using a backbone function f (·) such
that ri = f (i) ∈ Rd f . This is followed by a projection head
g(·) to map ri into zi = g(ri ) ∈ Rdg . To transform zi into
the vMF probability distribution, we set the mean direction
vector µ to the unit representation vector of the anchor
sample through L2-normalization such that ẑi = zi/∥zi∥. The
concentration parameter κ , which controls the sharpness of
distribution, is set to ∥zi∥. When κ = 0, the distribution is
uniform on the hypersphere, while it converges to a single
point on the hypersphere for κ = ∞. Therefore, κ takes
the key role of modeling the uncertainty of the anchor in
the latent projection space [26]. For example, if a given
sample has low recognizability, its feature norm ∥zi∥ would be

relatively small. Hence, κ is set to be small, resulting in a less
concentrated probability distribution. Following this principle,
the vMF distribution for the anchor sample i is given by:

Vzi (x) = vMF(x; ẑi , ∥zi∥) (17)

This results in a probability distribution on the vMF unit
hypersphere that captures the uncertainty associated with the
anchor sample. We stop the gradient of ∥zi∥ to prevent the
training stage from manipulating the feature norm.

D. Uncertainty-Aware Contrastive Learning

We reformulate SCL to mitigate the impact of noisy training
signals from low-quality hard samples by utilizing probability
distributions. In contrastive learning, for every positive pair
in a given batch, each sample in the pair serves as both an
anchor and a positive sample for the other. This symmetric
property also holds for negative pairs, allowing us to focus on
modeling only the anchor’s uncertainty instead of considering
all interactions among samples. Therefore, we treat the anchor
as a probability distribution using deterministic embeddings
for positive and negative samples. This approach maintains
the capacity for modeling uncertainty but reduces computation
complexity, making training more stable [27].

Representing an anchor as a probability distribution differs
from the conventional SCL, which relies on the cosine sim-
ilarity metric. This prompts the question of how to measure
the similarity between a probability distribution (the anchor)
and a feature vector (either a positive or negative sample). We
leverage the key insight from probability theory and statis-
tics [28], [29], [30] that the logarithm of a probability density
function can be associated with a distance metric. Building
upon this concept, we compute the similarity between an
anchor distribution and a positive/negative sample as follows:

sim(z j , zi ) = log Vzi (z j ) (18)

where zi and z j are the representation vectors of two samples
for measuring similarity, while zi serves as an anchor. The
probability density of vMF monotonically decreases when
the angular distance between the distribution’s mean and the
samples increases, similar to the behavior of cosine similarity.
The logarithm of this value indicates the log-likelihood that
the unit vector z j is drawn from the probability distribution
defined by the feature embedding µ and the concentration
κ , where a higher value indicates a greater likelihood, and
vice versa. We assign the feature embedding µ as ẑi and the
concentration κ as ∥zi∥, effectively adjusting the influence
of every positive and negative pair based on the inverse
of uncertainty. Therefore, the positive and negative pairs
with lower uncertainty are estimated with higher confidence,
whereas pairs with higher uncertainty are estimated with lower
confidence. This emphasizes higher confidence pairs as more
pronounced signals in contrastive learning between samples.

We revise the training objective of SCL to maximize the
probability density for positive samples and minimize it for
negative samples, given the anchor distribution. To ensure
at least one positive sample for each anchor for a batch,
we randomly select 2 samples for each of the N identities,
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resulting in 2N samples. These samples are then augmented
to yield a complete batch of 4N samples. Thus, every anchor is
paired with 3 positive samples and 4(N−1) negative samples.
For a given anchor i in a batch B, we train our model using
the following loss objective:

LU =
−1
|P(i)|

∑
p∈P(i)

log
exp(sim(ẑp, zi )/τ)∑

j∈{B\i} exp(sim(ẑ j , zi )/τ)
(19)

where P(i) refers to a set of positive samples for the anchor
i in batch B, and |P(i)| indicates its cardinality, where
|P(i)| = 3 in our setting. The similarity between a positive
sample and the anchor is represented by sim(ẑp, zi ), while
sim(ẑ j , zi ) denotes the similarity between the anchor and one
of the samples within the batch B. τ is a scalar temperature
parameter.

The proposed uncertainty-aware contrastive learning
paradigm, UCFace, serves as an add-on to an angular
margin-based softmax classifier to enhance embedding
learning. Let LC be the angular margin-based softmax loss
(Eq. 10) and LU be the uncertainty-aware contrastive learning
loss, the overall training loss Ltotal is defined as follows:

Ltotal = LC + λLU (20)

where λ is a weighting factor that regulates the contribution
of LU to Ltotal .

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate UCFace and other relevant base-
line models on three low-resolution face benchmark datasets
for the open-set identification task: QMUL-TinyFace [1],
SCFace [31], and QMUL-SurvFace [32]. In line with the con-
ventional performance evaluation protocol, we also extend our
experiments to high-resolution face datasets for the open-set
verification task: LFW [5], CALFW [33], CPLFW [34],
CFP-FP [6], and AgeDB [35], as well as mixed-resolution
face datasets, IJB-B [36] and IJB-C [37]. Details of the
benchmark datasets are in the Supplementary Material.

2) Baseline Models: We employ four baseline models
learned with these classifiers in our analyses, including Cos-
Face, ArcFace, MagFace, and AdaFace. The hyperparameter
settings for each baseline model on low-resolution datasets
are provided as follows: For CosFace, we assign the margin
m as 0.3 and the scale s as 64.0, while for ArcFace, m
is set to 0.6 and s is set to 64.0. In regards to MagFace,
we set (la , ua , lm , um , λg) to (10.0, 110.0, 0.45, 0.8, 20.0).
Additionally, for AdaFace, we fix m to 0.4, s to 64.0, and
h to 0.333. Meanwhile, the hyperparameter settings for each
baseline model on high/mixed-resolution datasets are taken
from the original papers.

We also re-implement relevant uncertainty-based models,
including PFE and DUL, using MobileFaceNet as a backbone
model with the ArcFace classifier for more extensive analy-
ses and comparisons. The hyperparameter settings for these
models are as follows: For PFE, we set γ to 1e − 4 and
β to −7.0. For DUL, the hyperparameter λ, which balances
between classifier loss and KL-divergence loss, is set to 0.01.

For the baseline models, except for CosFace and ArcFace
on low-resolution datasets, we follow the default settings
reported in the original papers. For CosFace and ArcFace, the
hyperparameters are experimentally selected. We provide the
hyperparameter analysis for these two baseline models in the
Supplementary Material.

3) Implementation Details: Our experiments utilize Mobile-
FaceNet [38] and ResNet-50 [39] as a embedding encoder
f (·) ∈ Rd f , where d f = 1, 024. We interleave a projection
head g(·) ∈ Rdg with a single fully-connected layer, where
dg = 128. We provide additional experiments on Mobile-
FaceNet with d f = 512, ResNet-50 with d f = 1, 024, and
ResNet-100 [39] with d f = 1, 024 in our Supplementary
Material. Note that all main experiments are conducted with
backbone models with d f = 1, 024. Initially, we pre-train
these backbone models using high-resolution face images from
VGGFace2 [40] or MS1MV3 [41]. We then affix randomly
initialized angular margin-based softmax classifiers to these
backbone models to train the baseline models for performance
comparison. A batch size of 64 is used for training the
softmax classifiers (both baseline models and LC ) in our
training pipeline. For uncertainty-aware contrastive learning
(i.e., LU ), a batch size of 128 is used in each iteration,
with N = 32 identities randomly selected to compose the
batch. We adopt τ = 0.8 as the default temperature setting
in our experiments. The learning rate is set to 1e − 3 for
MobileFaceNet and 1e − 4 for ResNet-50 and ResNet-100
with a decay ratio of 0.1 at every 10th epoch. For training
the uncertainty module in PFE, we use a learning rate of 1e-
4. All experiments are trained for 40 epochs using the Adam
optimizer, and the internal dropout rate is 0.6.

4) Performance Evaluation: During the inference stage,
we encode an unknown face image t into its embedding
vector rt = f (t). As in self-supervised contrastive learn-
ing, the projection head g(·) is withdrawn once the training
is complete. For identification tasks presented by QMUL-
TinyFace, SCFace, and QMUL-SurvFace, rt is compared to
each template in the enrolled gallery set, and its identity is
inferred based on the highest cosine similarity score. Mean-
while, for verification tasks demonstrated by high-resolution
and mixed-resolution datasets, the decision of whether the face
images ti and t j belong to the same or different identities is
made using any pair of face embeddings rti and rt j based
on a predefined empirical threshold. We perform experiments
over five runs to demonstrate stability, each with randomly
initialized model weights, and report averaged results. Detailed
results and standard errors are described in the Supplementary
Material.

We report performance in terms of the rank-1 identification
rate (%) for QMUL-TinyFace and SCFace. Adhering to the
pre-determined evaluation protocol, the overall performance
for QMUL-SurvFace is computed based on the True Positive
Identification Rate (TPIR) and the False Positive Identification
Rate (FPIR) at FRIR={0.01, 0.05, 0.1, 0.2}, estimated for the
top-20 cosine similarity scores. For clarity, the best results are
highlighted in bold, and the second-best results are underlined.

5) Hardware: Our server is equipped with an Intel Xeon
Platinum 8268 CPU @ 2.90GHz, 376GB DRAM and 5
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TABLE I
PERFORMANCE SUMMARY IN TERMS OF THE AVERAGE RANK-1 IDENTIFICATION RATE (%) AND THE AVERAGE TPIR20(%)@FPIR OVER FIVE

EXPERIMENTAL RUNS FOR IDENTIFICATION TASKS ON LOW-RESOLUTION DATASETS. BASELINE MODELS USING MOBILEFACENET AS A
BACKBONE MODEL ARE COMPARED, BOTH WITH AND WITHOUT UCFACE. THE BEST RESULTS ARE IN BOLD, THE SECOND-BEST

RESULTS ARE UNDERLINED, AND ‘-’ DENOTES VALUES CLOSE TO ZERO. THIS CONVENTION ALSO APPLIES TO OTHER TABLES
IN THIS SECTION

TABLE II
PERFORMANCE SUMMARY IN TERMS OF THE AVERAGE RANK-1 IDENTIFICATION RATE (%) AND THE AVERAGE TPIR20(%)@FPIR OVER FIVE

EXPERIMENTAL RUNS FOR IDENTIFICATION TASKS ON LOW-RESOLUTION DATASETS. BASELINE MODELS USING RESNET-50 AS A BACKBONE
MODEL ARE COMPARED, BOTH WITH AND WITHOUT UCFACE

NVIDIA A100 GPUs. Only a single GPU was used for each
experiment.

B. Feature Norm Analysis

We analyze feature norm distributions in Fig. 4 for
QMUL-TinyFace, SCFace, and QMUL-SurvFace. The
QMUL-SurvFace, the most challenging of the three, appears
in the leftmost among the histogram distributions, indicating
the smallest feature norms. Conversely, the SCFace with the
high-quality image has relatively larger feature norms. The
QMUL-TinyFace exhibits various feature norms, comprising
samples of varying qualities. These observations underscore
the significance that real datasets present unique feature norm
distributions, indicating different difficulty levels in face
recognition.

C. Comparison With Baseline Models

We compare our model to baseline models using the
pre-trained MobileFaceNet and ResNet-50 as a backbone
model. Table I shows that our model improves the gen-
eralizability of baseline models in QMUL-TinyFace, even
in the presence of a large-scale distractor set comprising
approximately 100K unknown low-resolution facial images.
The models trained alongside UCFace prevail over baseline
models in SCFace test sets. Our model shows the most
substantial performance gain in the most challenging test set
d1 with all severely degraded face images. Furthermore, the
improved performance on QMUL-SurvFace, recognized as the

Fig. 4. Comparison of feature norm distributions for QMUL-TinyFace,
SCFace, and QMUL-SurvFace. Considering feature norm as a metric for face
image quality assessment, we observe that QMUL-SurvFace contains the most
challenging samples, followed by QMUL-TinyFace and SCFace.

most challenging among low-resolution datasets, unequivo-
cally demonstrates the effectiveness of our model. Table II
exhibits a similar trend to Table I, with an overall improvement
of approximately 2-3% on average. UCFace outperforms the
comparison models across all results.

We evaluate its effectiveness not only on low-resolution
datasets but also on datasets with varying resolutions. Table III
presents the results from high-resolution and mixed-resolution
datasets, demonstrating that our model performs on par with
other baseline models across various resolutions, with a slight
but noticeable improvement in most cases.

Table IV compares our model with other models that
leverage the concept of uncertainty. Our model is effec-
tive on low-quality samples, particularly those classified as
hard samples. This highlights the importance of estimating
uncertainty-driven relationships among sample pairs, enriching
the understanding of hard samples in embedding learning.
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TABLE III
PERFORMANCE SUMMARY IN TERMS OF THE ACCURACY (%) WITH A SINGLE RUN FOR VERIFICATION TASKS ON HIGH-RESOLUTION AND

MIXED-RESOLUTION DATASETS. BASELINE MODELS USING RESNET-50 AS A BACKBONE MODEL ARE

COMPARED, BOTH WITH AND WITHOUT UCFACE

TABLE IV
PERFORMANCE SUMMARY OVER FIVE EXPERIMENTAL RUNS FOR RELEVANT UNCERTAINTY-BASED BASELINE MODELS AND

UCFACE WITH MOBILEFACENET AS A BACKBONE MODEL

TABLE V
PERFORMANCE SUMMARY OVER FIVE EXPERIMENTAL RUNS FOR ABLATION ANALYSIS WITH MOBILEFACENET AS A BACKBONE MODEL

D. Component Analysis

Table V shows the ablation results and inspects the role of
each model component. It reports performance after removing
each component to reveal the effectiveness of each one.
Applying contrastive learning alone to the target problem
leads to substantial performance degradation in the d1 test
set, which confirms the vulnerability due to low-quality hard
samples. Incorporating contrastive learning leads to improve-
ment in low-quality performance, especially in the baseline
model with SCL. Each component of our model plays a
unique role in handling hard samples. This result validates
our choice of the add-on approach as a design of the loss
function.

We now report results on the sensitivity of hyperparameters.
MobileFaceNet with SCFace and QMUL-SurvFace is used
in the experiment. Table VI shows the effect of temperature
parameter τ , where τ = 0.8 resulted in the best performance.
Therefore, we have adopted τ = 0.8 as a default setting for
all experiments. Table VII presents the results with varying
batch sizes. 64 is the largest batch size that is available in our
GPU, serving the best performance overall. Table VIII displays
the results with varying parameter λ values. We observed
an average difference of approximately 0.1 for each column,
indicating the stability of the model regardless of the parameter
λ. For all experiments, we consistently used λ = 1.0.

TABLE VI
PERFORMANCE ANALYSIS FOR THE HYPERPARAMETER TEMPERATURE τ

WITH RESPECT TO τ = 0.1 TO τ = 10.0. NOTE THAT WE REPORT
THE RANK-1 IDENTIFICATION RATE (%) FOR A SINGLE RUN ON

SCFACE TEST SETS WITH MOBILEFACENET AS
A BACKBONE MODEL

E. Qualitative Analysis

We present 10 instances where the baseline model fails
in Fig. 5, i.e., the model’s predictions do not align with the
ground-truth labels. These cases are sampled from test sets of
SCFace, with the baseline model built on ResNet-50 backbone
model with ArcFace classifier. We demonstrate that by inte-
grating UCFace into the baseline model, these false predictions
are rectified. Our findings show that the uncertainty-aware
UCFace encodes invariant face representations, even when
dealing with challenging samples.
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Fig. 5. Failure cases (C1 to C10) from the baseline model that are subsequently rectified using UCFace. The unknown test set in the top row shows example
face images that the baseline model failed. The second row shows the gallery identity incorrectly predicted by the baseline model, while the third row shows
the gallery identity correctly predicted after adding UCFace.

TABLE VII
PERFORMANCE ANALYSIS WITH VARYING BATCH SIZE FROM 8 TO 64.

NOTE THAT WE REPORT THE RANK-1 IDENTIFICATION RATE (%) FOR
A SINGLE RUN ON SCFACE TEST SETS USING MOBILEFACENET

AS A BACKBONE MODEL

TABLE VIII
PERFORMANCE ANALYSIS FOR THE HYPERPARAMETER λ WITH RESPECT

TO λ = 0.1 TO τ = 10.0. NOTE THAT WE REPORT THE PERFORMANCE
IN TERMS OF THE TPIR20(%)@FPIR FOR A SINGLE RUN ON

QMUL-SURVFACE TEST SETS WITH MOBILEFACENET AS A
BACKBONE MODEL

V. DISCUSSION

We discuss three challenges related to our model, especially
when dealing with very noisy hard samples such as low-quality
face images. We investigate open-set evaluation scenarios
carried out on test sets of SCFace using the pre-trained
MobileFaceNet backbone model with Arcface classifier.

A. Addressing the Open-Set Domain Discrepancy Challenge

Domain discrepancies in open-set scenarios lead to the
misclassification of test samples as unknown identities and
affect generalizability. We propose two metrics—intra-class
compactness and prototype affinity—to assess the model’s
ability to generalize to unknown identities that are not present
in the training set. Intra-class compactness refers to the degree
to which test samples with the same identity cluster closely
together, where a high value is desired. Prototype affinity
represents the degree of closeness or similarity between test
samples and identity prototypes discovered during training.
A high affinity indicates that test samples closely resemble
identity prototypes from the training set, whereas a low
affinity represents a greater distinction between test samples
and prototypes, which is desirable for recognizing unknown
identities. We compute affinity using the cosine similarity
between prototypes learned from the training set and the
gallery templates in the test set.

Fig. 6. The histogram for (a) intra-class compactness and (b) prototype
affinity between the baseline model and our model on SCFace. Intra-class
compactness refers to how close test samples of the same identity cluster
together, while prototype affinity represents the relative affinity of test samples
to the identity prototype discovered in training. Our model shows higher
intra-class compactness and lower prototype affinity than the baseline model,
demonstrating its generalizability to unknown samples.

Fig. 6 depicts the histograms produced by the two similarity
sets. Our model consistently outperforms the baseline model
in terms of the intra-class compactness, as shown in Fig. 6a.
This suggests that our model effectively captures the correct
identity characteristics for unknown samples. Fig. 6b shows
that our model has lower prototype affinity than the baseline
model, implying that it is less likely to misclassify an unknown
test sample as a known identity from the training set. These
histograms validate the superior generalizability of our model
in open-set scenarios.

B. Examining Vulnerability to Type 2 Hard Samples in SCL

To address this question, we investigate the model’s con-
fidence across different types of hard samples. The model’s
confidence is generally proportional to the predicted classifica-
tion probability returned by the softmax classifiers. However,
this principle is not applicable to open-set deployment sce-
narios. Inspired by the concept of margin of confidence [42],
we define the model’s confidence as the difference between
the cosine similarity score of the matched gallery template
and the highest cosine similarity score among all unmatched
gallery templates. Intuitively, this refers to the first- and
second-highest cosine similarity scores for the entire gallery
set. The samples with the lowest confidence, as measured
by pre-trained MobileFaceNet from d3 and d1 test sets, are
selected as Type 1 and Type 2 hard samples, respectively.
We then observe how the model’s confidence changes during
training for these selected hard samples.

Fig. 7 shows the confidence distributions across training
epochs for SCL and our model on Type 1 and Type 2 hard
samples. In the case of SCL, the confidence score for Type 2
samples consistently remains low, whereas the confidence
for Type 1 samples gradually increases throughout the train-
ing process. This observation supports our conclusion that
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Fig. 7. Comparison of model’s confidence between supervised contrastive
learning (SCL) and our model for Type 1 and Type 2 hard samples. During
training, SCL maintains low confidence for Type 2 hard samples, whereas our
model’s confidence increases for both Type 1 and Type 2 hard samples.

Fig. 8. The heatmap of cosine similarity for test sets of SCFace. (a) Samples
from the d3 test set are relatively higher in quality and therefore low
uncertainty, resulting in a more condensed heatmap. (b) Samples from the
d1 test set are of relatively low quality and therefore high uncertainty, leading
to a noisy heatmap.

SCL is susceptible to low-quality hard samples. Meanwhile,
our model tackles this limitation by considering uncertainty,
thereby enhancing the model’s confidence for both Type 1 and
Type 2 hard samples.

C. The Influence of Image Quality on Uncertainty in
Representation Vectors

Samples with high uncertainty are likely to form more dis-
persed clusters even if they share the same identity. In contrast,
samples with low uncertainty are closer to one another. For
visualization, we randomly select six identities from each of
d1 and d3 test sets of SCFace, with five samples per identity.
Fig. 8 depicts the correlation heatmap of cosine similarity
scores for all 30 selected samples from both test sets. The
d3 test set, which is presumed to have low uncertainty, shows
a more condensed heatmap for samples with the same identity,
as shown in Fig. 8a. On the contrary, the d1 test set, which
is presumed to have high uncertainty, displays a noisy and
dispersed heatmap, as shown in Fig. 8b.

VI. CONCLUSION

In this paper, we introduced UCFace, an uncertainty-aware
metric learning approach that encodes image quality into
supervised contrastive learning for open-set face recognition.
UCFace considers image quality as an inverse proxy of
uncertainty and transforms each anchor’s embedding into a
probability distribution based on its estimated image quality.
Subsequently, it refines the probability density of selected
samples for the anchor distribution through the contrastive
objective. Experimental evaluations using benchmark datasets
of varying qualities demonstrate that UCFace improves base-
line models in both open-set face identification and verification
problems.

While our approach has shown improvements in practi-
cal open-set scenarios, there are numerous opportunities for
future research. One potential direction is to replace the
von Mises-Fisher distribution with alternatives such as the
spherical t-distribution to enhance robustness against outliers,
such as extremely noisy or incorrectly labeled facial images.
Another direction is to represent both anchors and samples
as probability distributions. This, however, involves assessing
the similarity between distributions via sampling, which might
impact the stability of the training process. Considering these
factors, we hope that future research can broaden the scope
of UCFace and enhance the capabilities of open-set face
recognition methods.
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