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Understanding Deep Face Representation
via Attribute Recovery
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Abstract— Deep neural networks have proven to be highly
effective in the face recognition task, as they can map raw
samples into a discriminative high-dimensional representation
space. However, understanding this complex space proves to
be challenging for human observers. In this paper, we pro-
pose a novel approach that interprets deep face recognition
models via facial attributes. To achieve this, we introduce a
two-stage framework that recovers attributes from the deep
face representations. This framework allows us to quantita-
tively measure the significance of facial attributes in relation
to the recognition model. Moreover, this framework enables us
to generate sample-specific explanations through counterfactual
methodology. These explanations are not only understandable
but also quantitative. Through the proposed approach, we are
able to acquire a deeper understanding of how the recognition
model conceptualizes the notion of “identity” and understand
the reasons behind the error decisions made by the deep models.
By utilizing attributes as an interpretable interface, the proposed
method marks a paradigm shift in our comprehension of deep
face recognition models. It allows a complex model, obtained
through gradient backpropagation, to effectively “communicate”
with humans. The source code is available here, or you can
visit this website: https://github.com/RenMin1991/Facial-Attribute-
Recovery.

Index Terms— Interpretability, face recognition, facial
attribute, counterfactual sample.

I. INTRODUCTION

IN THE last few years, the realm of deep learning has
witnessed remarkable advancements in bolstering the pre-

cision facet across a myriad of endeavors. When it comes to

Manuscript received 13 December 2023; revised 25 April 2024 and 20 June
2024; accepted 30 June 2024. Date of publication 5 July 2024; date of
current version 22 July 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2022YFC3310400; in part by China Postdoctoral Science Foundation under
Grant BX20230044 and Grant 2023M730290; in part by the National Natural
Science Foundation of China under Grant 62276025, Grant U23B2054,
and Grant 62276263; and in part by Shenzhen Technology Plan Program
under Grant KQTD20170331093217368. The associate editor coordinating
the review of this article and approving it for publication was Prof. Linke Guo.
(Min Ren and Yuhao Zhu contributed equally to this work.) (Corresponding
author: Yongzhen Huang.)

Min Ren and Yongzhen Huang are with the School of Artificial
Intelligence, Beijing Normal University, Beijing 100088, China (e-mail:
renmin@bnu.edu.cn; huangyongzhen@bnu.edu.cn).

Yuhao Zhu is with the Institute of Computing Technologies, China Academy
of Railway Sciences Corporation Ltd., Beijing 100081, China (e-mail:
zhuyuhao@rails.cn).

Yunlong Wang and Zhenan Sun are with the State Key Laboratory of Mul-
timodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chi-
nese Academy of Sciences, Beijing 100190, China (e-mail: yunlong.wang@
cripac.ia.ac.cn; znsun@nlpr.ia.ac.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIFS.2024.3424291, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2024.3424291

the field of facial recognition, the profundity of deep learning
models lies in their ability to map facial images into intricate
high-dimensional deep face representations, thereby facili-
tating similarity assessments [1], [2], [3]. Notwithstanding
their notable advancements, current deep learning-based face
recognition methods face serious bottlenecks and numerous
challenging issues. For instance, improving performance on
unseen samples is challenging without expanding the train-
ing set; deep learning models are susceptible to adversarial
attacks, where minor perturbations to input samples can
deceive the models; moreover, data imbalance persists, such as
racial bias. These issues necessitate diagnosing and addressing
the shortcomings of deep learning models. However, the
main obstacle lies in the high-dimensional representations
that are not interpretable for humans. Researchers struggle
to grasp the analytical relationship between facial images
and deep face representations, hindering the understanding
of decision-making processes and the crucial attributes of
facial images in these decisions. The boundaries of potential
errors for deep learning models are also difficult to anticipate.
Additionally, interpretability is crucial for ensuring a trust-
worthy system, particularly in security-sensitive scenarios. For
instance, if a face recognition system’s predictions are used to
identify someone as a criminal, it is imperative to understand
why the probe and gallery faces appear similar to prevent false
convictions or acquittals.

Therefore, interpreting deep learning-based face recognition
models effectively is a prerequisite and vital step in addressing
the current bottlenecks in facial recognition tasks. Moreover,
it holds promise as a key technology for constructing trust-
worthy face recognition systems, especially in security-critical
scenarios.

We believe that the desired interpreting method for deep
face recognition models should possess three key characteris-
tics: Firstly, its mode of interpreting should be comprehensible
to humans, as this is a fundamental aspect. Secondly, the
explanation should be quantitative for measurement. Finally,
the interpreting method should be capable of providing both
model and sample-specific explanations. The former allows us
to comprehend how the recognition model conceptualizes the
notion of “identity”, whereas the latter helps us understand
which underlying factors are influential during a specific
instance of recognition. Regarding sample-specific interpre-
tation, sufficiency and necessity are also requisite qualities
for the desired interpretation, indicating that the interpretation
sufficiently supports the results and contains no redundancy.
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Fig. 1. The proposed two-stage attribute recovery framework. The facial
image is recovered in the first stage. The attributes are estimated and the
significance of the attributes for the recognition result is quantified.

A multitude of endeavors have been undertaken to interpret
models based on deep learning for face recognition. The
majority of current approaches strive to interpret the deep
neural networks by ascribing the ultimate decisions to local
regions or sets of pixels within the input images [4], [5], [6],
[7], [8], [9], [10]. This methodology for attribution analysis is
quite superficial. For instance, they might assert that the region
of the nose holds the utmost significance for the recognition
outcome, yet how essential attributes like the shape, texture,
or positioning of the nose affects recognition results remains
unclear. Some researchers attempt to explain the results by
the facial attributes [11]. They create counterfactual sam-
ples by altering facial attributes to explore the correlation
between facial attributes and recognition outcomes. However,
this method is constrained to altering a limited set of facial
attributes, and struggles with analyzing crucial attributes such
as facial shape. Moreover, it can only offer sample-specific
explanations. Research on the interpretability of deep learning
models has received widespread attention in recent years. Most
studies attempt to attribute model outputs to local regions of
input images [12], [13], [14], [15], [16], [17], [18], [19], [20],
while some visualize the hidden representations of models to
understand their behavior patterns [21], [22]. Recently, some
researchers have tried to explore the key factors influencing
model outputs through counterfactual samples [11], [23],
[24], [25]. Existing methods still have some shortcomings,
such as a lack of ability to quantitatively analyze models
and difficulty in off-the-shelf applications to face recognition
models.

In order to provide a better solution, we propose a two-stage
framework to interpret the deep learning based face recogni-
tion models via facial attributes, as shown in Fig. 1. In the
initial stage, the aim is to recover all the attributes of the input
facial image from the deep face representation as authentic
as possible, i.e. to recover the input facial image itself.
In the second stage, the attributes are estimated according
to the recovered image and the significance of the attributes
for the recognition result is quantified. In the process of
feature extraction in facial recognition models, facial images
are mapped to deep face representations, which can be seen
as compressing and encoding information of facial images.
The facial attribute information relevant to recognition tasks
is encoded into deep face representations, while irrelevant
information is discarded. Therefore, the key to understanding
facial recognition models lies in discovering which facial
attribute information is encoded in deep face representations
and to what extent. Thus, performing attribute recovery based

on deep face representations can be viewed as a reverse
decoding process, where facial attributes encoded in deep face
representations are revealed and quantitatively measured to
understand deep face representations. This two-step framework
is highly scalable, enabling the estimation of any desired
facial attribute from the recovered images. Furthermore, this
framework maximizes the use of existing facial attribute
estimation techniques, thereby bypassing the arduous task of
independently obtaining a recovery model for each specific
facial attribute.

Within this framework, the facial attributes embedded in
the deep face representation are visually manifested in the
recovered image, for human-friendly comprehension. To quan-
titatively evaluate the significance of facial attributes for the
recognition model as a model-specific explanation, we intro-
duce a method based on mutual information to gauge the
informative content of the attributes within the deep face
representation.

To achieve sample-specific explanation, the methodology
of counterfactual explanation is employed. Existing meth-
ods for constructing counterfactual samples typically alter
the attributes of interest in the original sample to assess
their significance. However, such methods can only examine
a single attribute at a time and fail to explore the com-
bined effects of multiple attributes on the output. Therefore,
we employ adversarial examples as a means to generate adap-
tive counterfactual explanations. Adversarial examples entail
slight modifications to the facial image that alter the prediction
of the recognition model. This approach adaptively modifies
the original sample, effectively overcoming the limitations
of existing methods. The reason adversarial examples have
not been used as counterfactual samples in existing research
is that humans cannot comprehend the changes induced by
adversarial examples to the deep face representation. However,
by utilizing the proposed framework, the alterations in deep
face representation prompted by adversarial examples can be
visualized and quantitatively interpreted in terms of facial
attributes.

Therefore, the proposed approach possesses the three char-
acteristics that an ideal explanatory approach should have.

The main contributions of this paper can be summarized as
follows:
• This paper proposes the use of facial attributes to

understand deep face representations and introduces a
framework for quantitatively measuring the relationship
between facial attributes and deep face representations
using mutual information.

• The proposed framework allows a black-box deep learn-
ing model to “communicate” with humans through
perceptible attributes, thereby providing an interface that
is intelligible to human understanding. It may bring about
a paradigm shift in the comprehension of deep face
recognition models.

• The proposed framework facilitates a profound compre-
hension of how the recognition model “comprehends” the
concept of identity, thus granting us a deeper understand-
ing of its limitations and boundaries. This understanding
can guide improvements in recognition models.
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Fig. 2. Some methods attempt to establish the correlation between predictions
and local regions or pixels in images. (a): CAM [15]; (b):CoDA-Nets [20].

II. RELATED WORK

A. Efforts to Interpret Deep Learning Models

In the computer vision and machine learning communities,
extensive exploration of various methods is underway to
enhance the credibility and interpretability of deep learning
models [26]. The goal is to achieve a heightened understanding
of the fundamental processes involved in recognition.

One straightforward approach to comprehending the deep
learning model revolves around the visualization of the
features acquired and internalized by the model. This tech-
nique allows for a more instinctive comprehension of the
acquired representations. In the nascent stages, the adoption
of deconvolution networks [27] was prevalent in visualizing
the artificial neurons [21], [22]. Subsequently, a number of
researchers embarked on the endeavor of visualizing deep
features through optimization techniques [28], [29], [30].
These approach involved iteratively modifying the input
image to maximize the response of specific neurons or to
elicit desired features. Through this optimization process, the
hidden representations within the neural network could be
unveiled.

Establishing the correlation between predictions and local
regions or pixels in images has emerged as another prominent
avenue of research [12], [13], [14], [15], [16], [17], [18],
[19], [20], as shown in Fig. 2. This line of inquiry aims
to uncover the relationship between the model’s output and
specific regions of the input image. By analyzing the impact
of local regions or pixels on the final prediction, researchers
gain insights into the decision-making process of the model
and can provide more interpretable explanations for its
outputs.

Moreover, there has been a research focus on establishing
the correlation between predictions and the individual neurons
within deep models. This analysis allows for insights into the
neural activity patterns that drive the model’s predictions and
provides valuable insights into the features and representations
learned by the network. Shrikumar et al. [31] propose a
method to assign contribution scores to neurons. Brendel and
Bethge [32] propose a method that combines the strategy
of Bag of Feature (BoF) [33], which represents images as
histograms of visual words, with deep learning to improve the

interpretability. This fusion of methods allows for improved
interpretability by providing insights into the visual words that
contribute to the model’s predictions.

Recently, counterfactual explanations have been gaining
significant attention [11], [23], [24], [25]. Counterfactual
explanations aim to provide insights into the causal rela-
tionship between input variables and the model’s output by
considering alternative scenarios. They attempt to answer
questions such as “What changes to the input would have
resulted in a different output?”

Most existing methods for interpreting deep learning models
are only aimed at understandability. Such methods often lack
an in-depth analysis of deep learning models, and merely
encompass coarse observations of these models. Only a few
methods attempt quantitative analysis, and to our knowl-
edge, there are scarcely any methods that can provide both
model-specific and sample-specific quantitative explanations.

B. Interpretability of Face Recognition

The methodology of interpreting general classification mod-
els has been extended to the field of face recognition. Earlier
work devote their attention to attributing decisions to specific
local regions in face images [4], [5], [6], [7], [8], [9]. This kind
of approach aims to understand which specific local region
contribute the most to the model’s decision-making process.
Attributing decisions to local regions in face images provides
a convenient way to visualize the focuses of face recognition
models. Nevertheless, the explanations provided by these
methods are rather vague and incomplete. For example, they
may claim that the region of the nose is the key region that
leads to the prediction, but they cannot tell us whether the
shape of the nose, the skin color, or the position of the nose
is the decisive feature of the prediction.

Additionally, a handful of methodologies strive to examine
the effects of facial attributes. Dhar et al. [34] ana-
lyze four facial attributes in multi-layer neural networks.
Adudarham et al. [35] investigate the impacts of facial features
that are used by humans on the deep face recognition model.
These efforts to analyze the impacts of facial attributes in
face recognition systems are valuable and promising. How-
ever, these methods remain significantly flawed, possessing
a constrained ability to analyze facial attributes. For example,
they struggle with assessing critical attributes like facial shape,
and also exhibit a lack of expansibility.

More recently, uncertainty estimation has emerged as a
research area for interpreting and improving the performance
of the face recognition models [26], [36], [37]. These methods
represent the input image as a distribution rather than a
single point in the facial representation space. This distribution
provides a measure of uncertainty, where the variance of the
distribution reflects the uncertainty associated with the cor-
responding features. By incorporating uncertainty estimation,
researchers can gain insights into the reliability and confidence
of the model’s predictions. Nevertheless, this kind of approach
is mathematically sound, but remains incomprehensible to
human comprehension. They do not provide explanations of
deep face representations. Instead, their explanations are based
on the interpretability of deep face representations.
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III. METHOD

This section introduce the proposed framework to interpret
the deep learning based face recognition models in terms of
the attributes of facial images. This section first provide the
notation used, followed by an introduction of the attribute
recovery framework that translates deep face representation
into facial attributes. Then, the method that quantifies the
significance of attributes in determining recognition outcomes
is introduced.

A. Notation

In the realm of facial recognition, the symbol x is assigned
to represent a facial image. The deep face recognition model
maps x to a deep face representation:

z = F(x) (1)

where F(·) is the deep face recognition model, z is the deep
face representation. The attributes of a facial image x are
denoted by a set: {ai }, such as shape, expression, head pose,
etc. Each element of {ai } is an attribute of the facial image,
it can be estimated as follows:

a = E(x) (2)

where E(·) is the attribute estimator.
A facial image x , its deep face representation z, and one of

its attributes a can be modeled by a Bayesian network:

a←− x −→ z (3)

Their joint probability distribution can be calculated by
the product of the prior distribution of x and conditional
distributions:

p(a, x, z) = p(x)p(a|x)p(z|x) (4)

The conditional distribution p(z|x) is parameterized by
the deep learning model F(·), p(z|x) can be rewritten as
pF (z|x; θF ), where θF is the parameter of F(·).

B. Attributes Recovering

To estimate the relationship between the intricate deep face
representation and the facial attributes, we propose an attribute
recovery framework, as shown in Fig. 3. In order to recover
the facial attributes to their utmost authenticity from the deep
face representation, the proposed framework encompasses four
fundamental components: the deep face recognition model, the
latent space transformer, the facial image decoder, and the
attribute estimator. The deep face recognition model extracts
deep face representations from the input images. The facial
image decoder is utilized to recover facial images. Due to
the misalignment between the deep face representation space
of the recognition model and the encoding space of the
facial image decoder, it is not feasible to directly feed deep
face representations into the facial image decoder. Therefore,
the latent space transformer is employed to perform space
transformations from the deep face representation space to
the encoding space of the facial image decoder. Upon the
recovery of the facial image by the facial image decoder, the

Fig. 3. The facial attribute recovery framework encompasses four fun-
damental components: the deep face recognition model, the latent space
transformer, the facial image decoder, and the attribute estimator. The deep
face representation extracted by the deep face recognition model undergoes
a decoding process in order to faithfully recover the original facial image.
Subsequently, the facial attributes are estimated according to the recovered
facial image.

attribute estimator then estimate the facial attributes, thereby
culminating the process of attribute recovery.

During the training process of the proposed framework,
the facial image decoder and the latent space transformer are
trained separately. The facial image decoder is trained first,
aiming to obtain a model with strong facial image gener-
ation capabilities, thereby ensuring the framework’s ability
to recover facial attributes. Once the facial image decoder
is obtained, the latent space transformer is trained to enable
it to perform the transformation from the deep face repre-
sentation space to the encoding space of the facial image
decoder.

1) Facial Image Decoder: To accomplish attribute recovery,
it is essential for the facial image decoder to exhibit excep-
tional capabilities in generating facial images. Particularly in
the analysis of attributes characterized by finer details, the
facial image decoder must be adept at accurately representing
these attributes within the pixel space. Should the facial
image decoder demonstrate subpar performance in attribute
generation, it would significantly impede the overall efficacy
of the proposed framework.

Therefore, we employ a StyleGAN2 [38] based decoder as
the facial image decoder. StyleGAN2 is a generative model
known for their exceptional generation capabilities, enabling
them to effectively capture fine details of facial images while
exhibiting strong diversity in attributes [11]. It is particularly
suitable for the attribute recovery.

2) Latent Space Transformer: The latent space transformer,
which transfers the deep face representations to the encoding
space of facial image decoder, is a multilayer perceptron
(MLP). Specifically, it consists of 8 fully connected layers
to realize the transformation. Since the facial image code
of StyleGAN2 consists of multiple sub-codes, the last four
layers of the latent space transformer are divided into n
separated branches, where n is the number of sub-codes. Each
branch generates one sub-code. The structure of the latent
space transformer is illustrated in the Fig. 5. The latent space
transformer does not directly predict the latent code required
for the facial image decoder. Instead, it predicts the residual
between the latent code and the sampling average of latent
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Fig. 4. The training of the latent space transformer.

Fig. 5. The structure of the latent space transformer. Since the facial image
code of StyleGAN2 consists of multiple sub-codes, the last four layers of the
latent space transformer are divided into n separated branches, where n is the
number of sub-codes.

codes. The sampling average of latent codes refers to the mean
value of latent codes sampled from the encoding space of the
facial image decoder:

l = lres + lmean (5)

where lres is the output of the latent space transformer, lmean
is the sampling average of latent codes, l is the latent code fed
into the facial image decoder. By employing residual learning,
the latent space transformer can converge faster and achieve
greater stability during the training process.

The training objective of the latent space transformer
encompasses five components. The first component of the
training objective for the latent space transformer is the
pixel-wise reconstruction loss:

Lrec = ||x − xre||2 (6)

where x is the original facial image, xre is the recovered
image by the facial image decoder. This loss function directly
constrains the distance between the recovered facial images
and the original images in the pixel space.

Next, there are two loss functions that constrain the differ-
ences between them in the feature domain:

Lper = ||P(x)− P(xre)||2 (7)
Lid = 1− cosine(F(x), F(xre)) (8)

where Lper is Learned Perceptual Image Patch Similarity
(LPIPS) loss [39], P(·) denotes the perceptual feature extrac-
tor, F(·) denotes the deep face recognition model, cosine(·, ·)
denotes cosine similarity of two face representations. The
former emphasizes the preservation of the style of the original
image, while the latter enforces the identity of the recovered
image.

Moreover, it is beneficial to provide direct supervision on
the output of the latent space transformer in the encoding space
of the facial image decoder. To this end, an auxiliary encoder
is introduced to the training process. This auxiliary encoder
can be regarded as the reflection of the facial image decoder,
mapping from the pixel space of the face to the encoding space
of the facial image decoder. It takes the original facial images
as input and produces latent codes in the encoding space as
output, thus providing direct supervision for the latent code
transformer in the encoding space of the facial image decoder:

Lguide = ||lres + lmean − Eau(x)||2 (9)

where Eau(·) is the auxiliary encoder.
Besides, L2 norm of lres is adopted as a regularization term

to improve the generalization and the stability of training.

Lreg = ||lres ||2 (10)

The final objective function for the training of the latent space
transformer is:

L = β1Lrec + β2Lper + β3Lid + β4Lguide + β5Lreg (11)

where β1, β2, β3, β4, and β5 are the weights of losses.
3) Facial Attribute Estimation: Following the recovery of

the facial image, it becomes viable to estimate the facial
attributes based on the recovered image. It is important to note
that the spectrum of potential attributes is limitless, encom-
passing any discernible attribute from the recovered facial
image. One can examine common facial attributes such as
facial shape, expression, age, and so forth, as demonstrated in
Section IV-B, and also customize facial attributes, for instance,
the ratio of nose width to mouth width, as demonstrated in
Section IV-C. In the process of facial attribute estimation, it is
feasible to utilize the existing attribute estimation techniques,
and the proposed framework constitutes a highly scalable
framework.
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By following the aforementioned procedure, the recovering
process from deep face representation to facial attributes has
been accomplished. This recovering process establishes the
groundwork for interpreting the recognition outcomes of deep
face recognition models based on attributes.

C. Model-Specific Information Measurement

The model-specific interpretation focuses on providing
an explanation for the recognition model, specifically by
quantitatively assessing the significance of attributes for the
recognition model. Conversely, the sample-specific interpre-
tation places emphasis on individual samples, evaluating the
importance of the attributes of a specific sample in determining
its recognition outcome. This subsection will first introduce the
quantitative interpretation methods for model-specific interpre-
tation.

The mutual information between a certain attribute and the
deep face representation is used to quantitatively measure the
importance of the attribute for the deep recognition model:

I(a; z) (12)

The larger the mutual information between a specific attribute
and the deep face representation, the more importance this
attribute occupies in the deep face representation. However,
calculating I(a; z) is challenging due to the high-dimensional
and continuous nature of the deep face representation z, which
usually follows a complex distribution.

It can be proven that I(a; â) is a tight lower bound of
I(a; z):

I(a; z) ⩾ I(a; â) (13)

where â is the recovered attribute from z by the proposed
framework (see the proof in the appendix). Therefore, I(a; â)

is adopted to estimate I(a; z).
The gap between I(a; z) and I(a; â) is related to the

recovering capability of the proposed framework and specifi-
cally, to the generation capability of the facial image decoder.
The stronger the generation capability of the facial image
decoder, the stronger the recovering capability of the proposed
framework, resulting in a smaller gap (see the proof in the
appendix). This is also empirically supported by the experi-
ments conducted in this paper.

Generally, I(a; â) can be easily calculated or estimated. The
mutual information of a and â can be calculated as follows:

I(a; â) = H(a)+H(â)−H(a, â) (14)

where H(·) denotes the information entropy.

D. Sample-Specific Explanation

In this subsection, we introduce a sample-specific explana-
tion method that determines the importance of attributes in
the recognition result of a particular sample. A counterfactual
explanation approach that utilizes adversarial examples as
counterfactual samples is proposed. The concept of counterfac-
tual explanation involves manipulating facial images to create
counterfactual samples. If altering a certain attribute leads to

a change in the recognition result, it indicates the importance
of that attribute for the recognition result.

During face recognition, the similarity between a facial
image x and the reference image xre f is measured through
the deep recognition model:

S(F(x), F(xre f )) (15)

where xre f denotes the reference image, F(·) denotes the
deep recognition model, S(·, ·) denotes the similarity metric
function. The recognition result depends on whether this sim-
ilarity is larger than the pre-defined threshold. The adversarial
examples are adopted to adaptively generate counterfactual
samples:

xadv = A(x, xre f ; F) (16)

where A denotes the adversarial attack method, it aims
to change the recognition result with minimum modifica-
tions, xadv denotes the adversarial example. Therefore, xadv

serves as a counterfactual sample and modifies the deep
face representation of x . This modification in the deep face
representation is not only sufficient, as it leads to a changed
recognition result, and also almost necessary, as it is crafted
with minimal alterations. Utilizing adversarial examples offers
an adaptive approach to generate counterfactual samples that
are both sufficient and necessary.

The proposed framework allows us to comprehend the alter-
ations induced by adversarial examples in terms of attributes.
By comparing the attribute recovered from the deep face
representation of x with that recovered from the deep face
representation of xadv , we can quantitatively measure the
importance of the attribute for the recognition result:

sa =
||â − âadv||

||â − âre f ||
(17)

where â, âre f , and âadv are attributes recovered from the deep
face representation of x , xre f , and xadv respectively, sa is
the significance of the attribute to the recognition result. The
numerator measures the change caused by the counterfactual
sample. The denominator is a normalization factor of the
significance of the attribute.

If sa > 1, indicating that the alteration caused by the
counterfactual sample exceeds the disparity between x and
xre f , the attribute is considered significant. If sa < 1, however,
the attribute is regarded as non-significant. The quantitative
measurement allows us to assess the significance of each
attribute to the recognition outcome. In this way, a quantitative
sample-specific explanation is obtained.

IV. EXPERIMENTS

This section conducts experiments to validate the proposed
method in interpreting the deep facial recognition models.
Two aspects are primarily examined. The first aspect is
model-specific interpretation, which quantitatively measures
the importance of attributes for the recognition model. The
second aspect is sample-specific interpretation, which assesses
the importance of attributes for the recognition outcome of a
particular sample. Lastly, ablation studies are carried out on
the proposed method.
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Fig. 6. Examples of the original facial images and the corresponding recovered facial images. The first row displays the original facial images, while the
second row showcases the recovered facial images.

A. Implementation Details

The facial image decoder based on StyleGAN2 was
trained on the Flickr-Faces-HQ (FFHQ) dataset [40] for
550,000 iterations. We followed the configuration specified by
Tero et al. [38] during the training process, with the exception
of the generated image resolution. Instead of aiming for a
resolution of 1024× 1024, we opted for 128× 128. We made
this choice because a resolution of 1282 is deemed sufficient
to meet the requirements for face recognition tasks. ArcFace
(R50) [3] is employed as the face recognition model, and the
training dataset used is consistent with [3].

The latent space transformer is a Multi-Layer Perceptron
(MLP) consisting of 8 fully connected layers. It takes a
512-dimensional input, which is the deep face representa-
tion, and generates a latent code that is compatible with
StyleGAN2’s W+ space. The auxiliary encoder consists of
a ResNet50 backbone, a feature pyramid structure based on
FPN for feature refinement, and a set of non-linear mapping
networks to predict the latent code. It was also trained on the
FFHQ dataset. For more detailed information, please refer to
Zhu et al. [41]. The weights in Eq. 11 are set as β1 = 0.1,
β2 = 0.8, β3 = 8, β4 = 0.1, and β5 = 0.02. The latent
space transformer was trained on the Large-scale CelebFaces
Attributes (CelebA) Dataset [42], with a batch size of 16. The
initial learning rate was set to 0.01, and the Adam optimizer
was used for parameter updates, and the model was trained
for 20 epochs.

B. Model-Specific Deep Face Representation Parsing

The model-specific explanation focuses not on specific
facial samples, but rather on understanding the recognition
model itself in terms of the importance of facial attributes in
its decision-making process. In this experiment, nine facial
attributes are examined, which can be categorized into three
groups: The first group comprises shape, expression, and head
pose, which depict the spatial structure of faces. The second
group encompasses skin color, hair color, and age, which
describe the texture of faces. The final group of attributes
characterizes facial accessories, including glasses, hats, and
earrings. By considering these three groups of attributes,
we are able to provide a comprehensive explanation of the
facial recognition model from an attribute perspective. It is
worth noting that the proposed methodology is not limited to
these attributes. Any other facial attribute can be subjected to

the same analysis. Our selection is merely a choice of the most
illustrative attributes for demonstration purposes.

To assess the face shape, we employ 3DDFA [43],
[44], [45], a model that predicts the 3D morphable model
(3DMM) [46] of faces, as the attribute estimator. This enables
us to represent the face shape by the reconstruction coefficients
of the face shape principal components. For the estimation of
expression, head pose, and age, we rely on a state-of-the-art
commercial face analysis API.1 Color moments are utilized
to capture the color attributes of skin and hair. For further
details on the Color moments, please refer to the appendix.
As for accessories, we adopt a binary attribute to denote
whether they are worn or not. Details on the calculation of
mutual information can be found in the appendix. As for the
test dataset used for analysis, we utilize LFW [47], which
comprises 133,233 facial images belonging to 5,749 identities.

1) Qualitative Analysis: In order to gain an intuitive and
qualitative understanding of the facial attributes contained in
deep face representations, we first visualize the recovered
images, as shown in Fig. 6. More recovered images can be
found in the appendix. From the figure, it can be observed
that the recovered images generally maintain the shape of the
original faces, including the overall facial proportions, jawline
contours, sizes and shapes of facial features, as well as the
relative layouts of the features. This indicates that deep facial
representations effectively encapsulate the shape information
of the faces. Even in cases where self-occlusion occurs due
to head poses, as seen in the third sample from the left,
the recovered image still manages to reasonably restore its
shape. This suggests that deep recognition models are capable
of inferring and completing the shape of a face, even under
challenging head pose conditions, which contributes to their
robustness in face recognition.

On the other hand, the original expressions and head poses
are not well preserved in the recovered facial images. For
instance, in the first and second samples from the left, there are
distinctions in expressions, but the recovered images exhibit
similar expressions. Similarly, although the third sample from
the left has a different head pose compared to the others, the
recovered facial image shows minimal variation in head pose.
This suggests that the deep recognition model, during the
feature extraction process, essentially abandons information
pertaining to facial expressions and poses.

1Face++ Research Toolkit: https://www.faceplusplus.com.cn/.
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Fig. 7. Quantitative comparative analysis of ArcFace and MobiFace.

The hair color of the input facial image is generally
preserved in the recovered image, yet it is also subject to
interference from background colors or the color of hats,
as seen in the fourth image from the left and the second from
the right. In the case of the fourth sample from the right, the
age is evidently older than the other samples. However, this
age gap is not effectively reflected in the recovered images,
indicating that the recognition model does not retain age-
related information.

Furthermore, the three samples from the right wear acces-
sories such as glasses, a hat, and an earring. However, these
accessories are not reflected in the recovered facial images,
indicating that the recognition model selectively gives up the
accessory-related information.

2) Quantitative Analysis: Furthermore, we utilized the pro-
posed mutual information based quantitative interpretation
method to explore these nine attributes. The results are shown
in Fig. 7. The quantitative interpretation confirms and validates
the observations we made through the recovered images.
Through this quantitative analysis, we can draw the following
conclusions:

• The quantitative analysis reveals that the attributes con-
tained in deep facial representations are not balanced.
The importance of shape significantly outweighs the
other attributes, with hair color ranking second, but
significantly lower than shape. This suggests that the
facial recognition model places a strong emphasis on
extracting shape information during the feature extrac-
tion process. Additionally, it considers a partial amount
of information related to hair color, while neglect-
ing the other facial attributes during the recognition
process.

• This quantitative analysis method allows us to compare
the judgments of deep facial recognition models with
those of humans in understanding facial recognition. This
enables us to fundamentally assess the rationality of the
recognition models. For instance, it is reasonable that
attributes like expressions, head pose, and accessories are
considered less important in most applications since they
are not inherently tied to an individual’s identity from
a human perspective. However, the importance of some
attributes like hair color may be debatable since it can be
changed for the same person.

• Through this quantitative analysis, we can acquire a lucid
comprehension of how the recognition model “compre-
hends” the notion of identity. Analyzing the model’s
“perception” of identity can provide valuable insights
for various facial-related research fields. For instance,
in tasks like face editing and talking face, which entail
preserving or decoupling facial identity, researchers often
resort to complex models and loss functions to constrain
these models, particularly when the specific connotations
of “identity” are not fully understood. [48], [49], [50].
Understanding the dominant attributes of identity can
make such operations more convenient and targeted.

3) Differences Between Recognition Models: What differ-
entiates one facial recognition model from another? Do dif-
ferent recognition models focus on different facial attributes?
These questions have been difficult to answer explicitly, but
the proposed method offers a possibility to address these
questions.

The MobiFace [51], as a lightweight facial recognition
model, has been used for comparative analysis with Arc-
Face, and the training dataset of MobiFace is consistent
with ArcFace. They are different in terms of model structure
and training objective. The quantitative analysis results are
depicted in Fig. 7.

The quantitative comparison between ArcFace and Mobi-
Face provides a clear understanding of the similarities and
differences between them:

• The overall distribution of attributes that MobiFace and
ArcFace focus on during the feature extraction process
is similar. Both methods prioritize facial shape and hair
color, while ignoring expressions and head pose.

• The differences between the two models are also evident.
Overall, deep face representations of MobiFace contain
more information compared to ArcFace, indicating that
ArcFace applies a stricter information refinement process
during feature extraction.

• There are significant differences between the two mod-
els in terms of age and glasses attributes. MobiFace
incorporates more information about these two attributes
compared to ArcFace, which is also evident in the recov-
ered facial images, as shown in Fig 8. This may result in
more noise interference for MobiFace when dealing with
glasses disturbances or performing cross-age recognition.

In order to further validate the discrepancies observed
between ArcFace and MobiFace, both models were subjected
to testing on two datasets, namely LFW and AgeDB-30 [52].
The LFW dataset functioned as a benchmark for appraising
the general face recognition capabilities of the models. On the
other hand, AgeDB-30 deliberately introduced age disparities
within its intra-class sample pairs, aiming to assess the mod-
els’ ability for cross-age facial recognition. The experimental
results are summarized in Table I.

The experimental results reveal that the performance dis-
parity between ArcFace and MobiFace on the LFW dataset
is minimal, with a mere 0.17% difference. However, on the
AgeDB-30 dataset, the performance gap between the two mod-
els reaches 1.77%, which is ten times more pronounced than
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Fig. 8. Recovered facial images by ArcFace and MobiFace. In the left
column are the original images. In the middle column are the images recovered
from the deep face representations of ArcFace. In the right column are the
images recovered from the deep face representations of MobiFace. Notably,
the glasses are exhibited in the recovered images of MobiFace, and more
details about age are encompassesed.

TABLE I
VALIDATION EXPERIMENT ON AGE ATTRIBUTE. THE PERFORMANCE

GAP BETWEEN THE TWO MODELS ON AGEDB-30 IS TEN TIMES
MORE PRONOUNCED THAN THAT ON THE LFW DATASET. THIS

INDICATES THAT MOBIFACE TENDS TO RETAIN A GREATER
AMOUNT OF AGE-RELATED INFORMATION DURING THE

FEATURE EXTRACTION PROCESS

that on the LFW dataset. This indicates that the introduction
of age disparities within intra-class sample pairs significantly
impacts the facial feature representation of MobiFace, com-
pared to ArcFace. In other words, MobiFace tends to retain a
greater amount of age-related information during the feature
extraction process. These findings validate the quantitative
analysis results of the proposed approach regarding the age
attribute of these two models.

C. Sample-Specific Explanations

In contrast to model-specific explanations, sample-specific
explanations focus on individual samples. This means that
when recognizing a specific sample, sample-specific expla-
nations assess the impact of its attributes on the recognition
result.

1) Qualitative Explanations: By recovering the recognized
faces and their corresponding reference faces, we can visually
observe the similarities and differences as perceived by the
recognition model. To demonstrate this, we have selected
and analyzed two pairs of face samples that are incorrectly
recognized by the model, as shown in Fig9.

Both pairs in the image are positive pairs, but the model
assigned a low similarity score, resulting in misrecognition.
Recovering the deep face representations reveals that for the
pair on the left, due to the obstruction caused by glasses,
the model “perceives” differences in the eyes and nose of
the two individuals, while the degree of nasolabial folds also
appears distinct. In the case of the pair on the right, the
model’s misrecognition is attributed to a difference in the

Fig. 9. Two pairs of face images that are incorrectly recognized by ArcFace.
By recovering the recognized faces and their corresponding reference faces,
we can visually observe the similarities and differences as perceived by the
recognition model.

overall aspect ratio that it “perceives” between the two faces.
Additionally, the recognition model “thinks” that there are
distinct differences in the shape of the eyes and eyebrows,
which contributed to the recognition error.

The aforementioned analysis provides an illustrative exam-
ple of offering sample-specific, qualitative explanations for
the recognition results. When the model makes an error
in recognizing a particular sample, we are no longer at
loose ends, but can clearly indicate where the problem lies.
This enables us to gain a deeper understanding of the model’s
limitations and boundaries, while assisting us in identifying
targeted improvements.

2) Quantitative Explanations: The proposed sample-
specific quantitative metrics offers a more detailed and
comprehensive analysis of the recognition results. For a facial
image and its reference image, as shown in Fig 10, an adver-
sarial sample is generated as the counterfactual samples for
quantitative explanations. PGD [53], which is a state-of-the-art
adversarial attacking method, is adopted to generate the adver-
sarial sample. In this case, the adversarial sample alters the
deep face representation with minimal modifications, result-
ing in an increased distance in the deep face representation
space compared to the reference image, thereby altering the
recognition result. Such modifications are initially challenging
for humans to comprehend, but the proposed framework not
only visually presents these changes in an intuitive manner but
also allows for quantitative measurements from an attribute
perspective.

Any facial attribute that can be precisely defined can
be quantitatively analyzed through the proposed method.
To demonstrate the scalability of this method, we have cus-
tomized 24 attributes related to face shape and color:
• Attributes related to facial shape, such as the ratio of eye

width to eyebrow width, the ratio of nose width to mouth
width, and others.

• Color attributes encompassing skin, hair, and iris.
For further information on all attributes, please refer to the
appendix.

The significance of the shape attributes and color attributes
are shown in Fig 11. The 10 most significant attributes to
recognize this facial image pair are: 1⃝ the ratio of the nose
width to the mouth width, 2⃝ the ratio of the distance between
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Fig. 10. x denotes the recognized facial image, xre f denotes the refer-
ence facial image, xadv denotes the adversarial sample. The corresponding
recovered images are displayed in the second row. The adversarial sample
alters the deep facial representation with minimal modifications, thereby
altering the recognition result. The proposed framework visually presents these
modifications.

Fig. 11. These attributes serve as quantitative, image-specific explanations
for the outcome. The proposed methodology ensures consistent image-specific
explanations across various types of adversarial examples. For a comprehen-
sive definition of the attributes, please refer to the appendix.

two eyes to the mouth width, 3⃝ the ratio of the distance
between the left eye and face edge to the mouth width, 22⃝ the
color of hair, 4⃝ the ratio of the nose length to the distance
between the nose and underjaw, 5⃝ the ratio of the distance
between the right eye and face edge to the mouth width, 6⃝ the
ratio of the eyebrow width to the nose width, 7⃝ the ratio of the
distance between mouth and underjaw to the distance between
eyebrow and mouth, 8⃝ the ratio of the distance between eye
and nose to the distance between nose and underjaw, 9⃝ the
ratio of the distance between two eyes to the face width. The
definitions of all attributes can be found in appendix.

Furthermore, it is even feasible to analyze the local texture
of the face as a unique form of “attribute”. The facial images
are partitioned into patches of size 7×7, and the LBP feature
is utilized to depict the local texture. The magnitudes of
importance pertaining to the local texture are depicted in
Fig. 12. Among these, the highest significance measures up
to 2.57. The visualized figure illustrate that the texture found
along the facial perimeter and the mouth region play a more
crucial role in recognizing this particular face image pair
compared to other regions.

The aforementioned sample-specific explanation based on
counterfactual samples serves as an exemplar, verifying that

Fig. 12. The visualization presents the significance of local texture in relation
to the recognition outcome. The left is the significance generated by PGD.
The right is the significance generated by TALFW. In both scenarios, it is
evident that the texture encompassing the facial perimeter and the mouth
region assumes a notably more pivotal role in the recognition of this particular
pair of facial images.

the proposed method can provide comprehensive explana-
tions of a specific recognition result from the perspective of
attributes. This approach signifies a paradigm shift in our
understanding of deep face recognition models, allowing
a complex, parameter-rich model obtained through gradi-
ent backpropagation to “communicate” with us through
attributes, which are an interface that humans can com-
prehend.

D. Ablation Study

This subsection presents the ablation study conducted on
the proposed method, examining it from three perspectives:
Firstly, the effects of different adversarial attack methods
employed during sample-specific explanations are explored.
Secondly, an experimental analysis is carried out to investigate
the impact of variations in the facial image decoder’s capabil-
ities. Finally, the role of the auxiliary encoder is demonstrated
through experiments.

1) Impact of Different Kinds of Adversarial Examples:
Adversarial examples offer a versatile approach to generating
counterfactual samples. Nonetheless, it is worth considering
whether different adversarial examples yield distinct expla-
nations. To address this inquiry, we utilize TALFW [54] as
a counterpart to PGD. TALFW is a transfer-based black-box
adversarial attack, which significantly differs from PGD in
both its attack principle and implementation methods.

The comparative analysis of sample-specific quantitative
analysis generated by PGD and TALFW is presented in
Fig. 11 and Fig. 12. From the illustration, it is evident that
the significances of the two kinds of adversarial examples
exhibits striking similarities. Among the top 10 most sig-
nificant shape and color attributes, 9 of them are shared.
Furthermore, in terms of texture attributes, both kinds of
adversarial examples focus on the facial contour and the area
around the mouth.

This experimental result indicates that although differ-
ent types of adversarial examples may introduce certain
variations in sample-specific quantitative explanations, they
generally maintain consistency for the majority of attributes,
particularly those that primarily influence the recognition
outcome.

2) Impact of Different Facial Image Decoder: Within the
proposed framework, the facial image decoder plays a crucial
role as it directly affects the expressive capabilities of facial
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Fig. 13. Examples recovered by StyleGAN2-based and VAE-based facial
image decoder. The facial images recovered by the StyleGAN2-based
facial image decoder capture a greater amount of information from the original
image. In contrast, the facial images recovered by the VAE-based facial image
decoder appear blurred and only retain the general facial shape, losing many
details.

attributes and overall performance of the proposed framework.
To explore the impact of different facial image decoders, apart
from the StyleGAN2-based facial image decoder, we train
a VAE-based facial image decoder for comparison pur-
poses. The training dataset used is identical to that of the
StyleGAN2-based decoder. Furthermore, the corresponding
latent space transformer was also retrained, with the train-
ing settings remaining consistent with those described in
Sec. IV-A.

The facial image recovering results from both the
StyleGAN2-based and VAE-based decoders are illustrated in
Fig. 13. From the images, it is evident that the facial images
recovered by the StyleGAN2-based facial image decoder cap-
ture a greater amount of information from the original image.
In contrast, the facial images recovered by the VAE-based
facial image decoder appear blurred and only retain the general
facial shape, losing many details. Quantitative comparisons
further validate this observation, when estimating the mutual
information between deep face representation and the nine
attributes, as shown in Fig. 14. The mutual information
obtained from the VAE-based facial image decoder is sig-
nificantly lower than that from the StyleGAN2-based facial
image decoder. Additionally, the VAE-based facial image
decoder struggles to recover attributes beyond facial shape.
This is attributed to the proposed framework, which estimates
the mutual information between facial attributes and deep
face representation using a compact lower boundary. The
difference between this lower bound and the actual mutual
information, I (a; z|â), is amplified when the facial image
decoder has limited capabilities, resulting in inaccurate esti-
mates. Hence, employing a weaker model does not provide

Fig. 14. Quantitative comparative analysis of StyleGAN2-based and
VAE-based facial image decoder. The VAE-based facial image decoder
struggles to recover attributes beyond facial shape.

Fig. 15. Ablation study on Lguide . The recovering capability of the proposed
framework significantly diminishes without the direct supervision of Lguide
in the encoding space of the facial image decoder. The recovered images of
different faces exhibit only subtle variations, collapsing towards the average
face.

a strong foundation for attribute-based interpretations of face
recognition models.

3) Ablation Study on Lguide: During the training process
of the latent space transformer, in order to provide direct
supervision signals in the encoding space of the facial image
decoder, we introduce an auxiliary encoder and employ the
Lguide loss function for optimization. To evaluate the efficacy
of Lguide, we conducted an ablation experiment where the
model was trained without incorporating Lguide.

The recovered facial images obtained from training without
Lguide are shown in Fig. 15. From the figure, it is evident that
the recovering capability of the proposed framework signifi-
cantly diminishes without the direct supervision of Lguide in
the encoding space of the facial image decoder. The recov-
ered images of different faces exhibit only subtle variations,
collapsing towards the average face. Consequently, it becomes
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difficult to further interpret and analyze the facial recognition
model. This experiment confirms the indispensability of Lguide
during the training process of the latent space transformer.
Moreover, it also demonstrates the significance of the latent
space transformer in terms of its recovering capability within
the proposed framework.

V. CONCLUSION AND FUTURE WORK

To address the inadequacy of interpretability in face recogni-
tion models and the subsequent challenges it poses, this paper
proposes the use of facial attributes to understand deep face
representations and introduces a framework for quantitatively
measuring the relationship between facial attributes and deep
face representations. Within this framework, we propose an
attribute importance measurement method based on mutual
information and incorporate adversarial attack techniques as
an effective tool. This enables us to quantitatively interpret
deep face recognition models from both a model-specific
and sample-specific perspective. It allows a black-box deep
learning model to “communicate” with us through perceptible
attributes, thereby providing an interface that is intelligible to
human understanding. Additionally, the proposed framework
facilitates a profound comprehension of how the recognition
model “understands” the concept of identity, thus granting us
a deeper understanding of its limitations and boundaries. The
proposed framework may bring about a paradigm shift in the
comprehension of deep face recognition models.

The proposed framework needs to be trained for diverse
face recognition models to achieve facial attribute recovery.
This requirement arises from the diverse distributions of
deep facial representations extracted by different recogni-
tion models. These differences necessitate distinct parameters
for the Latent Space Transformer. To enhance the practical
applicability of the proposed framework, future efforts should
concentrate on improving its generalizability across different
face recognition models. This would enable effective facial
attribute recovery and interpretation across various models.
To achieve this, it is first necessary to investigate the deep
face representation spaces of different recognition models.
If the deep face representation spaces of various models are
isomorphic or have similar structures, targeted transformations
of these spaces may suffice. However, if there are significant
differences between the deep face representation spaces of
different models, methodologies from the field of domain
generalization, such as domain-invariant representation learn-
ing and meta-learning strategies, could be employed. These
approaches aim to increase the adaptability to diverse distri-
butions of deep facial representations, thereby transforming
the proposed framework into a plug-and-play module.
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