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Metricizing the Euclidean Space Toward Desired
Distance Relations in Point Clouds

Stefan Rass , Member, IEEE, Sandra König , Shahzad Ahmad , and Maksim Goman

Abstract— We introduce the concept of an ε-semimetric that
satisfies the same axioms as a topological metric, except for
an arbitrarily small allowance to violate the triangle inequal-
ity. Under this modification, we demonstrate the possibility of
taking arbitrary points in space, assigning arbitrary desired
distances between them (independent of their geometric location
relative to each other, that is, independent of their “features”),
and constructing an ε-semimetric that measures exactly the
desired distances in the point cloud. This results in a threat
to fairness and objectiveness in applications of clustering algo-
rithms: suppose that an adversary subjectively classifies people
according to its whim or discriminatory preferences. Upon
accusations of unethical behavior, the malicious data processor
can plausibly deny these as follows: it designs a distance function
(an ε-semimetric) that is (up to a fully controllable numeric
“round-off-error” ε) equivalent to a standard distance like the
Euclidean. However, this crafted distance will exactly reproduce
the (malicious) results and thus confirm them while pretending
objectivity and transparency, since only standard and explainable
artificial intelligence was used. This demonstration works without
any data poisoning. We illustrate the method on randomly chosen
points with stochastically independent random classifications
assigned to them. Then, we apply standard implementations of
k-Means and DBSCAN on the data points, which both exactly
reproduce the desired (randomly chosen) classes. We also discuss
non-adversarial applications of ε-semimetrics, and corroborate
the construction with examples and implementation in Octave.

Index Terms— Adversarial machine learning, trust manage-
ment, non-repudiation, security, artificial intelligence (AI), data
integrity.

I. INTRODUCTION

CLUSTERING algorithms enjoy widespread use to cate-
gorize objects based on similarity in terms of features.

Objects classified as similar may undergo the same treatment
or processing to save resources. If human error and manual
labour shall be reduced or even eliminated by letting a
machine learning model do a prior classification of an object
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TABLE I
SELECTED RELATED WORK ON ADVERSARIAL CLUSTERING

or subject as a decision aid, questions of fairness and ethical
use of artificial intelligence (AI) become relevant [1], [2]. For
example, if the subjects of classification are people, AI shall
be used to treat all persons objectively and fairly. We give
a hypothetical example here to explain the issue but remark
that documented cases of unethical treatment of humans by
computers exist.1

Suppose two customers, let us call them A and B, with very
similar, but not entirely identical, features show up and ask
for a credit loan. The creditor is malicious and has subjective
discriminatory preferences for customer B, who would –
objectively – not deserve the loan. In contrast, customer A
shall not receive it (and would anyway be rejected for the
same reasons as customer B, since they are almost the same
regarding the relevant features, resp. aspects).

The creditor uses artificial intelligence to pretend trans-
parency, fairness, and objectiveness to disguise the wrong
intentions. To this end, it wants to apply some standard
clustering algorithm, but since the features are very similar
based on the Euclidean distance, B and A would both be
rejected. However, the creditor wants to support customer B
and hence seeks to forge the results by separating the otherwise
similar customers. A standard method to accomplish this (see
Table I for related references) is the addition of noise to the
data to manipulate its classification. However, if the data is
integrity-protected, for example, by a digital signature, such
a manipulation would be at least detectable afterward if the
creditor is asked to demonstrate (to an independent party) how
the results were obtained. If adding noise is precluded, another
way of forging would be a suitably designed distance function.

Siamese neural networks [11] are a natural method to
construct a distance according to specific application require-
ments. Still, these constructions amount to training deep
networks and may need massive data. Standard means of
adversarial machine learning [12] may be applicable, and
countermeasures are likewise known. However, the final deci-

1see https://amsalgorithmus.at/en/; retrieved June 26th, 2024.
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TABLE II
RELATED WORK ON NON-ADVERSARIAL APPLICATIONS

sions based on such a black box distance function can be
challenging to explain, thus putting the objectivity of such
decisions in question.

To avoid this situation, the creditor would prefer using a
distance function independent of any unknown data or prior
training, as the Euclidean distance would be. Only, it cannot
apply the Euclidean metric (since the customer’s features are
too close to merit a distinct treatment under this distance), but
it can find something that is not “too much different” from
Euclidean but will lead to the desired separation and unequal
treatment of A and B.

We show how this is possible by developing the concept
of an ε-semimetric as a slight generalization of a topological
metric.2 Such a function can act as a distance but requires no
training and can be made deterministic.

With this maliciously crafted distance, the clustering can
run and confirm the malicious creditor’s intended results while
appearing trustworthy because:
• the classification was done by a standard clustering

algorithm like k-Means or DBSCAN, neither of which
is a black-box,

• and the distance function these algorithms were using is
a topological metric, and hence “essentially the same” as
the Euclidean distance, which is a common default.

• Thus, the final results depend only on feature similarity
in explainable terms and may appear plausible.

Our goal in this work is the construction of distance
functions that are “almost” topological metrics but can cause
algorithms like k-Means [14] or DBSCAN [15] to produce
any desired result, while still being explainable, transparent,
and seemingly fair. In the above example, the creditor can
even arbitrarily decide how A and B should be classified
and claim only to follow the algorithm’s recommendation.
We demonstrate that if the similarity metric is not a priori
fixed and verifiably committed before the actual clustering is
done, a posterior forgery of the results becomes possible.

Besides adversarial clustering, our work also provides solu-
tions to some challenges in non-adversarial settings, such as
clustering under constraints, domain adaptation, and estab-
lishing trustworthiness. Table II provides an overview, with
a discussion following in Section II.

2A preliminary version of this work is available from arxiv.org [13].

It is well known that unfair biases can already exist in
the training data [16], [17], [18], in which case the AI will
learn the bias and apply it subsequently (cf. [19]). In this
work, we can safely suppose that a proper de-biasing has
already happened [20] and that the data is hence void of
any adversarial additions to it, whether it is noise or full
adversarial samples. Instead, we show how the clustering is
still manipulable if the configuration of the algorithm, specifi-
cally the distance function, is customizable. Table I relates our
work to prior work on adversarial clustering, most of which
assumes noise on the legitimate inputs (causative attack) or
additional adversarial examples (exploratory attack) [6]. Both
attack types have a common denominator for modifying the
training data or inputting it into the clustering algorithm. The
design of norms (and hence distance functions), detectors,
or other methods to become robust against noise, was as
studied in [21], [22], [23], [24], [25], and [26], as well as
in [27] who considered correlations in the data to define
clusters.

II. CONTRIBUTION AND FURTHER RELATED WORK

The authors of [7] study the challenging setting of how
to modify the clustering, if the feature vectors are not
directly accessible, and tackle this issue by letting the attacker
construct a surrogate to approximate the hyperparameters,
features, machine learning algorithms, and other information
missing in the original limited view of the attacker. Their meth-
ods likewise inject noise or exploit specific graph properties
in spectral clustering methods [28]. Our work deviates from
these directions in a twofold way, since it targets the algorithm
underlying spectral clustering (which is still a “standard”
algorithm like k-Means [28]), and we leave the data entirely
untouched, i.e., do not inject any noise to the input data of the
clustering (thereby automatically satisfying any tolerable noise
bounds, e.g. [8], [9], [10]). This delineates our work from most
prior work on attacking clustering algorithms (cf. Table I),
all of which share the idea of noise injection on the input
data in common to let a conventional clustering method run
into incorrect results. The work of [3] refines the attacker’s
goals to violations of integrity, availability, or privacy. Our
work fits into this categorization as an integrity violation
attack, in [3] described “as attacks aiming to deflect the
grouping for specific samples, while limiting the changes to
the original clustering”. The modification studied in this work
is limited in terms of being restricted to supplying a standard
clustering algorithm with a custom metric (only) and not
changing anything else. The goals here are similar to that
in [5], which introduces the concept of an adversarial set:
this is the transformation of a set into a slightly modified
set whose classification would be unchanged for a human
annotator, but the classification of a well-trained model would
become different upon the transformation. Similar to noise, the
input dataset is again manipulated, and the clustering algorithm
is standard (spectral clustering). This method, however, is also
vulnerable to changes of the metric inside the spectral clus-
tering pipeline (briefly reviewed in section VII-B), thus no
additional robustness is gained against our scenario by spectral
techniques.
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Non-Adversarial Applications: In practice, the need to adapt
the results of a classification algorithm may arise in case the
training accuracy is significantly different from the verification
accuracy, or the accuracy of results if a model trained on one
domain is applied to data of another domain. Concepts like
Siamese networks or pairwise similarity regulation [39] have
been developed to mitigate this issue. Our work can provide
a “direct solution” in the sense of allowing us to construct a
metric that, by design, accomplishes the clustering as desired.
It is, however, an open question if this construction lends
itself to domain adaptation, too, since the metric is specifically
crafted to put given points into desired distances but makes no
assertions about the resulting distances between yet unseen
data points. Another possible application relates to must-link
or must-not-link constraints in semi-supervised learning [37],
[38]: the explicit construction of metrics towards separating
points that must-not-link in the same cluster, or must-link
in the same cluster [29], is a method to incorporate prior
information into the clustering. We do exactly this in our
experiments in Section VI-A.

A notable non-adversarial instance of the idea to replace
the metrics used for clustering was also reported in [46],
which designed the metric for separating real from adversarial
examples to train generative adversarial networks (GANs).
An idea similar to our deterministic addition of noise has
also been used to improve the quality of clustering, such as
done in [47], where the number of neighbors in increasing
distance radii is used to map points into a high-dimensional
feature space. Closely related is also the concept of metric
embeddings [48]. These deal with the problem of mapping a
point cloud into another metric space at new locations, but with
unchanged pairwise distances (isometric mapping). Our goals
are “reversed” in the sense of leaving the locations unchanged
but manipulating the pairwise distances. Moreover, we do not
change the data space, whereas metric embeddings such as
Borgain’s theorem, would lift the points from the Euclidean
space to a sequence space, for example.

Many studies of clustering [3], [23], [26], [46], [47], [49],
[50] are concerned with noise robustness or poisoning attacks
(e.g., [51]), and demonstrate how sensitive the algorithm may
become upon insertion of (even a few) adversarial examples.
Our work extends these thoughts to not only poisoning the
input to the algorithm but also its configuration by replacing
the distance functions a posteriori to justify some (desired)
behavior. This is particularly problematic in, for example,
recommender systems, as was thoroughly studied in [49].
Attacks similar to our setting were also reported as adver-
sarial backdoors such as was proposed by [52], but with our
modification being not in the algorithm, but merely in its
configuration.

Interesting possible countermeasures to our attack technique
are methods of posterior cluster validation [53], [54], which
may judge the “plausibility” of clusters on different means
than our crafted metric. This is indeed conceptually close to
the countermeasure that we propose as a prior commitment to
the exact configuration of the clustering algorithm, including
the choice of distance in particular. Such commitments would
be up to independent party verification, and the cited reference

offers an additional tool for such third-party verification to
be done. Specifically, some robust classification techniques,
e.g., [55], work with specially designed metrics that should
not be silently replaceable.

Some algorithm implementations (see, e.g., [56]) allow the
specification and supply of a dissimilarity matrix, fixing the
i j-th element as the desired distance between data point yi and
data point y j , not necessarily constraining this dissimilarity
matrix to correspond to any topological metric. A famous
related result is Schoenberg’s criterion [57], which gives
conditions on a matrix to correspond to Euclidean distances
of points placed in some (possibly high-dimensional) space.
Constructive proofs of Schoenberg’s criterion take the norm as
fixed (to be Euclidean), and the desired distances, and from
this determine the placement of points such that they are in
consistent locations. Our work uses the same three items, but
two different ingredients for the third item as the outcome:
we first fix the distances, then place the points in the space,
and from there, construct a metric that puts the points into the
desired distance from each other (although their locations are
fixed).

III. PREPARATION

Symbols and Notation: The notation so far, and to be
continued, lets vectors appear as lower-case bold printed let-
ters, while scalar variables and functions are lower-case Latin
letters. Greek letters are used for constants while admitting that
some constants may depend on other constants (but are hence
themselves not variable). Upper case letters denote sets, and
when bold-printed mean matrices. Finally, calligraphic letters
denote probability distributions. We hereafter call the set R or
the higher-dimensional vector space Rℓ the Euclidean space
(for short), not implying that it is endowed with the Euclidean
metric.

We let the symbol B2,ε =
{
z ∈ Rn

: ∥z− y∥2 < ε
}

be
the Euclidean neighborhood of a point y ∈ Rn , being the
open ball of radius ε > 0. More generally, for a norm induced
by a positive definite quadratic form q : Rn

→ R, we will
write Bq,ε for the radius ε-ball, w.r.t. the norm ∥x∥q :=√

q(x). Since later, we will make use of random points chosen
uniformly from a neighborhood, we will let the symbol U(B)

for the continuous uniform distribution supported on a set B of
the Euclidean vector space. Further symbols will be introduced
along with the explanations. Table III provides an overview.

In the following, we will make frequent use of distances
δi j between two points yi , y j . We will write the distance δi j
synonymously as δk , with the convention that the integer k
one-to-one corresponds to the pair i j , written as k ≃ i j in
a slight abuse of notation. The reason is that we will several
times need to denote an arbitrary pair or enumerate all pairs,
and use a “single” index k for this purpose, while at other
times, we may speak about a specific pair, in which case we
use the (equivalent) double index i j .

A. Definitions

We will hereafter use different properties for a distance
measure, and therefore, define a metric together with a tabular
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TABLE III
LIST OF SYMBOLS

TABLE IV
DEFINITION OF A METRIC AND GENERALIZATIONS THEREOF

overview of generalizations. We stress that the terms used here
are not all standardized in the literature, and some authors may
prefer slight variations [58], [59].

Definition 1 (Metric, (ε-)Semimetric, and Generalizations):
Let V be a vector space. We call a function d : V × V → R

a metric, semimetric, premetric or quasimetric, depending on
which conditions of the following list is satisfied:

(I) Identity of indiscernibles: if d(x, y) = 0 then x = y.
(P) Positivity: ∀x ̸= y : d(x, y) ≥ 0 and d(x, x) = 0.
(S) Symmetry: ∀x, y : d(x, y) = d(y, x).
(T) Triangle inequality d(x, y) ≤ d(x, z)+ d(z, y).
The following table specifies a “yes” if a condition is

required for the respective term, and a “no” if the condition
is not demanded (although it may hold).

For any given ε > 0, we call d an ε-semimetric, if it satisfies
the triangle inequality up to an additive error ≤ ε on the right-
hand side, i.e., an ε-semimetric, satisfies (I), (P), (S) and

∀x, y, z ∈ V : d(x, y) ≤ d(x, z)+ d(z, y)+ ε. (1)
By our definition, a 0-semimetric is a metric, or otherwise
saying that if the ε-semimetric d is actually “zero-semi”, then
it is a metric.

B. Problem Statement

Our goal is to endow the space Rℓ with a metric d, such
that a set Y = {y1, . . . , ym} of points comes to lie in Rℓ at
pairwise distances d(yi , y j ) = δi j for all yi , y j ∈ Y , where
we can choose the distance value δi j freely and in advance
(but consistent to be a reasonable distance, i.e., non-negative
and symmetric), i.e., we require that

1) d is a topological metric,
2) δi j = δ j i > 0 for all i ̸= j , but not further constrained.

It is easy to see that finding such a d will not generally
be possible since once the locations of the data points are
fixed, their Euclidean distances are determined. Any other
norm-induced metric would necessarily be bounded within
constant multiples of these distances. However, by scaling
down to local neighborhoods, we can accomplish pairwise
closeness/distance relations, in the sense of, for example,
putting a point yi closer to y j than to yk , although the
Euclidean distances would induce different neighborship.

Specifically, we cannot hope that our metric d will satisfy
exactly d(yi , y j ) = δi j , but we can design it to satisfy almost
this equation, up to a multiplicative constant that depends on
the set Y , i.e., we can accomplish d(yi , y j ) = α ·δi j for all i, j ,
and some value α > 0 that depends only on Y (as a whole),
but does not change for different i, j’s.

This is enough for manipulation of a clustering: if the
algorithm needs to choose a class label based on “closeness”,
the situation that yi is closer to y j than it is to yk is reflected by
the distance relation δi j < δik . This inequality remains intact
if we multiply by any constant α > 0, so the “closest” cluster
to yi remains unchanged if we manage to put it at a distance
that is proportional (not necessarily equal) to what we desire.
This will be Theorem 2.

IV. RESULTS

Given the set Y ⊂ Rℓ of points and having chosen the
distances δi j at which we want yi and y j to be separated for
all i < j , we now proceed by showing how we can accomplish
this as long as m = |Y | ∈ O(

√
ℓ) holds. If the cluster centers

are known or definable a priori, such as in algorithms like
k-Means, we can place the cluster centers wherever we like
and at any distance we desire. This will cause the points in
the topological vicinity to be assigned to the nearest cluster
center, just as we like it (Section VI-B). For other algorithms
like DBSCAN, we can directly choose the cluster in which
points shall be put and set the distance metric accordingly to
produce this outcome (Section VI-C).

A. Embedding Points at Desired Distances

We start with a simple technical result that asserts a set of
points drawn at random is almost surely linearly independent.
The crucial point is that all they are sampled from distributions
that are absolutely continuous.

Lemma 1: Let n > 1 be fixed and let x1, . . . , xn ∈ R
n

be independently, but not necessarily identically sampled
from distributions that are all absolutely continuous w.r.t. the
Lebesgue measure3 on Rn . Put the vectors as columns into an
(n × n)-matrix M.

Then, M has almost surely full rank, i.e., Pr(rank(M) =

n) = 1.
We prove Lemma 1 in Appendix A. Armed with this as a

tool to assure that we can select linearly independent vectors
in Rℓ with high probability, we can state our first main result.

3Measures that are not absolutely continuous in this sense are, for example,
the Cantor distribution, or degenerate point masses defined on R. Conversely,
all “standard” distributions like continuous uniform, Gaussian noise, Laplace-
and all distributions with a continuous density function will satisfy this
requirement. Those are the only ones of interest here.
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Theorem 1: Let ℓ > 1 and choose a finite set D =

{x1, x2, . . . , xn} ⊂ R
ℓ of arbitrary but linearly independent

points. For every 1 ≤ k ≤ n, fix a value δk > 0 associated
with xk . Then, there is a norm ∥·∥q that satisfies ∥xk∥q = δk
for all k = 1, 2, . . . , n.

Proof: Since |D| <∞, we can enumerate the elements
of D as D = {x1, . . . , xn} in any fixed order (e.g., lexico-
graphic or other). We show that we can define a quadratic
form q : Rℓ

→ R that takes any desired value δ2
k at point xk

for all k = 1, 2, . . . , n.
For the moment, take k as fixed but arbitrary, and let the

matrix Bk besuch that its null-space is the subspace of Rℓ

spanned by
{
x j : j ̸= k

}
(such a matrix is easy to find using

singular value decomposition). Define Ãk := B⊤k Bk , then Ãk
is positive semi-definite. Moreover, since all x j with j ̸= k
are linearly independent of xk by hypothesis, we have xk
falling outside the null-space of Bk , so that x⊤k Ãkxk > 0,
and x⊤j Ãkx j = 0 for all j ̸= k. Finally, we will use the

scaled matrix Ak :=
δ2

k
x⊤k Ãk xk

· Ãk and define the quadratic form

qk(x) := x⊤Akx, which now satisfies

qk(x) =

{
δ2

k for x = xk;

0 for x = x j , j ̸= k.
(2)

Repeating this construction for all k = 1, 2, . . . , n, we can
define a “Lagrange-interpolation-like” quadratic form with the
matrix A :=

∑n
k=1 Ak , which is q(x) := q1(x) + q2(x) +

. . . qn(x). From this, we can define the norm ∥x∥q :=
√

q(x).
By construction, this norm achieves our goal, since for

every xk , we get
√

q(xk) =

√
δ2

k = δk . □
We seek to apply Theorem 1 to points xk that arise

as pairwise differences between a set of given data points
y1, . . . , ym whose classification we want to forge. However,
we cannot directly define xk := yi − y j as a sequence of
pairwise differences, since these will (unless m = 2) never
be linearly independent. Moreover, the number of pairwise
differences between m data points in total is

(m
2

)
, which needs

to be ≤ ℓ necessarily, as any larger set cannot be linearly
independent within Rℓ. This puts a limit of at most

m ≤
1
2
(1+
√

8ℓ+ 1) (3)

data points that we can work with. Even under this limit,
we will still need to add random distortions to the points for
linear independence, but Lemma 1 tells us that the setting
xk := yi − y j + εi j for a random noise εi j (with an absolutely
continuous probability distribution) will almost surely give the
desired independence, for all 1 ≤ i, j ≤ m and hence k =
1, 2, . . . ,

(m
2

)
. Under this setting, we arrive almost at a metric,

since ∥xk∥q =
∥∥yi − y j + εi j

∥∥
q differs from a metric only

in the additive εi j -error term. Using the triangle inequality,
we see that

∥∥yi − y j + εi j
∥∥

q ≤
∥∥yi − y j

∥∥
q +

∥∥εi j
∥∥

q =

dq(yi , y j )+
∥∥εi j

∥∥
q , where dq is the metric that the norm ∥·∥q

canonically induces. The additive error is what comes in new,
indicating that we may need to allow some limited violation
of the triangle inequality (motivating our introduction of an
ε-semimetric). We will make this intuition rigorous in the next
section.

Informally, for a maximum number of points as given
by (3) and with random noise added, Theorem 1 supports the
following statement.

Inside Rℓ, we can fix any set of O(
√

ℓ) many points
almost anywhere (up to random displacement for lin-
ear independence of the pairwise different vectors),
and define a metric that puts these points into mutual
distances that we can choose irrespectively of the
geometric location of the points.

Theorem 1 thus lets us put a “relative” number of points
(relative to the dimension of the space) at absolute (chosen
arbitrarily) distances. We now show how to twist this around
into the possibility of placing an absolute (arbitrarily chosen)
number of points such that we can still find a norm that
gives us distances relative, in the sense of proportional, to the
predefined distances.

B. Dropping the Constraint on m

We transfer the construction into a larger dimensional space
to escape the dimensionality bound that limits the number of
points whose pairwise distance vectors we can have as linearly
independent. We will map each point to a higher-dimensional
pendant that serves to compute the distance to all neighbors.
This construction leads to the following result:

Theorem 2: Let a set of points y1, . . . , ym ∈ Rℓ with
m > 1 and ℓ > 1 be given and let h =

(m
2

)
. To each pair of

distinct points yi , y j , assign a positive number δi j , subject to
the constraint that δi j = δ j i > 0 for i ̸= j . Fix an ε > 0 such
that B2,ε(yi ) ∩ B2,ε(y j ) = ∅ for all i ̸= j .

Then, with probability 1, we can endow Rh with a norm
∥·∥Q with the following properties:

(a) for every triple i, j, k, there are points zi , z j , zk in a
neighborhood
∥yi − zi∥2 < ε,

∥∥y j − z j
∥∥

2 < ε and ∥yk − zk∥2 < ε,
such that the distance relation δi j ⪋ δik holds if and
only if

∥∥zi − z j
∥∥

Q ⪋ ∥zi − zk∥Q . The symbol ⪋ will
practically become an explicit <, = or >, depending
on the left- and right-sides.

(b) BQ,ε(y) :=
{
z ∈ Rh

: ∥y− z∥Q < ε
}
⊆ B2,ε(y) for

all y ∈ {y1, . . . , ym}, i.e., disjoint Euclidean neighbor-
hoods remain disjoint in the topology that the norm ∥·∥Q
induces.

We provide the full proof of Theorem 2 in Appendix B, and
confine ourselves to an outline here:

Theorem 2 is proved by an application of Theorem 1,
but we cannot do so on a large number m of data points
yi ∈ R

ℓ, since their pairwise difference vectors will not be
linearly independent. Since there will be h =

(m
2

)
difference

vectors, we first map our data points into a space of dimension
h giving the canonic embeddings y′i ∈ R

h , where enough
linearly independent vectors can exist. Then, we pseudoran-
domly construct slightly displaced neighbors zi,s ∈ R

h for
each point y′i , between which the difference vectors will be
linearly independent. Figure 1 illustrates the idea. On the so-
constructed set of neighbors, we can finally apply Theorem 1
to get a norm measuring the distances in the desired way. The
neighborhood of each zi will contain the given data point yi
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Fig. 1. Linear independence by (stochastically) independent neighbor
choices.

(also y′i ), and be in the desired distance relation to all other
points by part (a) of the above theorem. This is all we need for
clustering, based on proximity relations, to come up arbitrarily
as we wish.

Intuitively and informally, we can rephrase Theorem 2 as
Any number of given data points can be placed
within disjoint neighborhoods of (virtual cluster cen-
ter) points in a higher-dimensional space, whose
distances we can freely control (up to a common
proportionality factor).

Roughly speaking, we can view Theorem 2 and Theorem 1
as two different answers to the challenge of placing points in
space at certain pairwise distances: Theorem 1 lets us embed
a relative number (w.r.t. the dimension of the space) of points
at desired absolute distances. Conversely, Theorem 2 lets us
embed an absolute number (in the sense of being independent
of the dimension) of points into a (larger) space, such that
relative proximities (in the sense of proportional distances in
the larger space) can be accomplished.

V. ε-SEMIMETRICS TO MANIPULATE DISTANCES

We can carry the ideas further by avoiding the explicit work
in the high-dimensional space, and instead endow the original
data space with an ε-semimetric that returns the desired
distances. The necessity of using only an ε-semimetric instead
of a full metric is because we cannot alter a norm-induced
topology in Rℓ to an arbitrary extent, which is precluded
by the equivalence of all norms on Rℓ, especially any norm
that we construct would be equivalent to the Euclidean norm.
However, we can bypass this natural limit by a simple trick:
we define a function d : Rℓ

×Rℓ
→ R that does the following

to compute the value d̃(x, y) for x, y ∈ Rℓ:
1) It takes the input points x, y and adds noise to map them

into the high-dimensional space Rh . The noise will be
such that it “depends” on both, x and y, intending to
create linearly independent noisy z-substitutes, which we
need for the previous construction (cf. Figure 1). Let us
call the resulting points zx and zy .

2) It then evaluates the distance
∥∥zx − zy

∥∥
Q inside Rh ,

with the norm ∥·∥Q as given by Theorem 2, and returns
this value as the value of d̃(x, y).

We stress that the added noise is only used “internally” by the
function d̃, but not brought onto the original data that is to be

Fig. 2. Violation of the triangle inequality: the triple yi , yk , y j would satisfy
the triangle inequality on the distances between them. However, the distances
between (zi,2, zk,1) and between (zk,2, z j,2) add up to a value less than
the direct distance from zi,1 to z j,1. Hence, the triangle inequality cannot
generally hold for distances between yi , y j , yk evaluated on the z-neighbors
as done by the ε-semimetric d̃, since the neighbors are determined under other
constraints than this inequality.

clustered. The random distortion is only required to achieve
linear independence.

The result obtained by materializing this plan is twofold:
we can show that d̃ is an ε-semimetric, for any ε > 0 that
we fix in advance, and second, we can let the noise even
be deterministic. This is important in its own right since it
means that we do not add information to the pair (x, y) when
evaluating their distance. In other words, a clustering building
upon our ε-semimetric will judge x against y only on grounds
of their features, but nothing else.

Making the above outline rigorous lets us prove (in
Appendix C) the following result:

Theorem 3: Let a finite set of points Y = {y1, . . . , ym} ⊂

Rℓ with ℓ ≥ 1 be given and let h =
(m

2

)
. To each pair of dis-

tinct points yi , y j , assign a positive number δi j ≤
∥∥yi − y j

∥∥
2,

only further constrained to satisfy δi j = δ j i > 0 for i ̸= j .
Fix any ε > 0.

Then, we can construct a deterministic function d̃ : Rℓ
×

Rℓ
→ R that is an ε-semimetric and satisfies d̃(yi , y j ) = δi j

for all distinct pairs yi , y j ∈ R
ℓ.

We remark that this result, unlike Theorem 2, is not proba-
bilistic, as it asserts the existence of d̃ for sure (not only with
probability 1). It is worth remarking that d̃ cannot in general
satisfy the triangle inequality with ε = 0, as a counter-example
situation shown in Figure 2 shows.

VI. EXPERIMENTAL DEMONSTRATION

We implemented the construction of Theorem 2 in
Octave [60] as a script that does the following:4

• We randomly drew points in Rℓ from a standard Gaus-
sian distribution (with zero mean and unit variance),
corresponding to hypothetical data points with (only) ℓ

features. For the following experiment, we had m = 10
and ℓ = 2, to avoid overloaded plots of point clouds and
lengthy tables.

• We iterated pairwise through the h =
(m

2

)
distinct pairs

of data points, assigning another random yet positive
distance uniformly chosen as δ ∼ U[1, 3].

• Then, we constructed an ε-semimetric as described in the
proofs of Theorems 1, 2, and 3, and verified whether the

4The code for all scripts is available from https://github.com/stefan-
rass/clustering-manipulations.
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desired distances came up as we randomly chose them.
Table VII in Appendix D shows the scaled distances
versus the values of the quadratic form q (from the proof
of Theorem 1), thus experimentally confirming that the
distances come up as we wanted them. The embedding
into Rh

= R45 is done by adding a random noise vector
with 43 dimensions, scaled in magnitude by a factor of
ε/
√

h with ε = 0.1, to accomplish an Euclidean distance
of the z-neighbor to the point y within ≤ ε; cf. Fig. 1.

A. Attacking Clustering: General Outline

An adversarial use of Theorem 2 to forge a clustering may
then proceed along steps described as workflow 1. We imple-
mented this in Octave [60], with the following basic setup: the
number m and dimension ℓ of points can be chosen arbitrarily
at the beginning. The program proceeds by computing all
pairwise difference vectors, and assigning random lengths
δi j ∼ U[1, 3] to them as target distances. It then proceeds by
enlarging the dimension from ℓ to h and padding the additional
coordinates with yet more pseudo-random values, drawn from
a Gaussian distribution such that the 5σ -range falls within an
interval of (−ε,+ε), with ε set to ε = 0.1 at the beginning
(but changeable). Lemma 1 is then verified by computing the
rank of the resulting matrix M and checking it to be maximal.

After that, the code constructs the quadratic forms using
singular value decomposition, adds up the resulting matrices,
and scales them down by the largest eigenvalue of the total.
For a final check, we computed the distances according to
the metric Q as defined by (7) and verified the values against
the (scaled) random distances δi j/λmax, with δi j as chosen
at the beginning. The equality of the desired and computed
distances was satisfied, and this observation was repeatable.
This verified the correctness of the construction and both,
Theorem 1 and Theorem 2, experimentally. Enlarging the
dimensions or number of points, however, quickly shows that
the construction scales badly since the dimension of the larger
space grows quadratically with the number of points. Thus, the
construction is practically feasible at best for a small number
of points and, hence, clusters.

A practical difficulty comes up with the dependence of the
proportionality factor α line 15 of the workflow, since this
value depends on both, ε and the set of chosen neighbors z
around the given data points (lines 6. . . 11). That is, we cannot
take the distances among the z-vectors independently of ε,
since these distances will scale by a factor that indirectly
depends on ε and is outside our full control. In that sense, the
parameterization of the algorithm needs care. We will come
back to the parameterization in Section VI-B and Section VI-C
when we describe how we chose the parameters to drive
the algorithms towards the desired results. Since this is a
one-to-one association of virtual cluster centers to points,
one may need to parameterize the algorithms accordingly,
or put the points zi, j into close neighborhood of one another
(for distinct i) or far away, such that the algorithm returns the
desired results. We will demonstrate this for DBSCAN and
k-Means.

Remark 1: The pseudorandom displacements that we
require to define the data point’s neighbors in workflow 1 can

in practical instances (which includes our implementation),
come from a conventional pseudorandom number generator
(PRNG) that produces Gaussian or uniformly distributed
values. This PRNG is seeded with an initial value that,
for the input pair (x, y) ∈ R2ℓ is different from the seed
for the (reversed) pair (y, x), which will be the function g
that algorithm 1 takes as input. Theorem 3 even defines a
deterministic function f to create perturbations that make
the neighbors provably linearly independent. Practically, how-
ever, a standard PRNG will be sufficient. This comes at
the “price” of the high-dimensional neighbors z′i , z′j for
y′i , y′j (see Figure 2) to be linearly independent only with
probability 1.

The experimental verification of Theorem 3 is done along
using its constructed ε-semimetric to manipulate standard
clustering algorithms. The next sections are devoted to
a demonstration of this. In addition, the verification of
Theorem 3 went successful along the same lines as outlined
above for Theorem 1 and Theorem 2, with the additional
verification of the triangle inequality to hold up to the additive
ε-error. This was successfully verified in another Octave script.

B. Manipulating k-Means

We tested the construction towards manipulating the well-
known k-Means clustering. The experiment followed these
steps, all implemented in an Octave script:

1) Generation of a set of m points y1, . . . , ym ∈ Rℓ

uniformly at random (as in Section VI-A).
2) Run through the list y1, . . . , ym , and to each yi , assign a

random but fixed class(yi ) ∈ U({1, 2, 3}), irrespectively
of any features of yi (i.e., independent of its location
relative to other points).
Figure 3 shows an example of the inputs to the algorithm
as constructed in this step, already assigning the desired
class (here chosen at random). To visualize the input,
the plot of the point cloud uses different symbols to
represent the desired classes. Visually this confirms that
the classes, since chosen at random, have nothing to do
with any geometric proximity (at least if it were the
Euclidean distance).

3) To assign the distances between points of the same clus-
ter, versus distances between points in distinct clusters,
we determined the closest pair of points among the set Y
at distance δ0 = mini ̸= j

∥∥yi − y j
∥∥

2. We likewise com-
puted the largest separation as δ1 = maxi ̸= j

∥∥yi − y j
∥∥

2.
Based on δ0, δ1, we defined the “small distance” to
be δsmall =

1
200 · δ0, and a “large distance” to be

δlarge = 200 · δ1.
4) Iterating over all pairs yi , y j (with i ̸= j), we assigned

the desired distances between them as follows:

δi j =

{
δsmall if class(yi ) = class(y j ),

δlarge if class(yi ) ̸= class(y j )
(4)

The inputs for workflow 1 are then the data points
{yi }

n
i=1 and the set of distances

{
δi j

}
1≤i< j≤n according

to (4). The further inputs are ε ← δsmall and PRNG()
was Octave’s built-in pseudorandom number generator
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Workflow 1 Forging a Clustering With Theorem 2
Require:

• data points y1, y2, . . . , ym ∈ R
ℓ

• arbitrary values 0 < δi j ≤
∥∥yi − y j

∥∥
2 with δi j = δ j i for

all distinct i, j ∈ {1, 2, . . . , m}, and.
• a nonzero positive value ε < 1

2 mini ̸= j
∥∥yi − y j

∥∥
2

• a function g : Rℓ
× Rℓ

→ R such that g(x, y) ̸= g(y, x)

for all distinct x, y ∈ Rℓ (see Remark 1)
1: h ←

(m
2
)

▷ dimension of the space in which distances
will be computed

2: fix a value s with 0 < s < ε/
√

h
3: D← ∅ ▷ to collect pairwise difference vectors
4: for i = 1, . . . , m do
5: for j = i + 1, . . . , m do
6: Seed a pseudorandom generator PRNG() with the value

g(yi , y j ), and let PRNG() output uniformly distributed values in
[0, 1].

7: Draw a lot of h − ℓ pseudorandom values
r1, . . . rh−ℓ ← s · PRNG()

8: Define zi,i ← (yi , r1, . . . , rh−ℓ) ∈ R
h .

9: Re-seed PRNG() with the value g(y j , yi )
10: Draw fresh values r1, . . . rh−ℓ ← s · PRNG()
11: Define zi, j ← (y j , r1, . . . , rh−ℓ) ∈ R

h .
12: D← D ∪

{
zi,i − zi, j

}
▷ almost surely, these will be

all linearly independent (Lemma 1)
13: end for
14: end for
15: Construct the norm ∥·∥Q on the points in D such that∥∥zi, j − z j,i

∥∥
Q ∝ δi j for all i ̸= j ▷ steps in the proof of

Theorem 1; see Table VII for an example
16: Define the ε-semimetric d̃ : Rℓ

×Rℓ
→ R on the input points

yi , y j as

d̃(yi , y j ) :=
∥∥zi, j − z j,i

∥∥
Q ,

with the vectors zi, j , z j,i computed by padding with
pseudorandom noise (as in lines 6. . . 11).
Ensured after this step (by Theorem 2):
d̃ is an ε-semimetric that satisfies d̃(yi , y j ) ∝ δi j for all
i ̸= j , which will make a similarity-based clustering give
results consistent with the chosen distances (next step).

17: Run a clustering algorithm (e.g., k-Means, DBSCAN, . . . ) using
d̃ as the distance function to classify the points y1, . . . , ym
with distances proportional to δi j between them

(towards the desired result).

rand() with a seed value computed nonlinearly from
both, x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ), under
constraints explained in Appendix C.
The quadratic form q exactly gives the desired distances,
as shown in Table VII for an example run of the
construction, and we refrain from repeating another table
showing similar results.

To verify our setup, we evaluated the intra-cluster and inter-
cluster distances. Table V shows a snapshot of one (out of
many runs), confirming that the distances are small inside a
cluster and large between any two clusters. To avoid very small
and very large numbers causing numeric issues, we used the
unscaled version (i.e., without the downscaling by the largest
eigenvalue as in (6)) of the quadratic form here, which does
no change to the desired relations of which points are close
to one another and which are far away from each other. The
experiments nicely show how the clusters are separated by

Fig. 3. 10 example points with spatial locations, and markers representing
the different desired classes.

TABLE V
SEPARATION WITHIN AND BETWEEN CLUSTERS

a large distance at least (proportional to δlarge), while points
within the same cluster are separated by a small distance at
most (proportional to δsmall).

With this setup, we ran a slightly adapted version of the k-
Means implementation provided by [61]. The change we made
was twofold, namely:
• We adapted the function to take our ε-semimetric to

compute distances,
• and we kept the number of iterations in the algorithm

fixed by not letting it terminate earlier than before reach-
ing the maximum number of iterations.

The k-Means algorithm then received the following input:
we computed the desired cluster centers by grouping and
averaging the points yi according to their cluster. The clus-
ter centers computed (also reproducible from the table in
Figure 3), are shown in Table Va.

That is, the center for the class c cluster is the arithmetic
mean of all points yi to which we assigned class(yi ) = c, and
this was done for all classes. The resulting cluster centers were
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then included in the data points (see Table VI, columns to the
left of the vertical separator line) on which we constructed
the metrics following the setup steps above, and put them in
front of the list of input points to the k-Means algorithm.
This covers two versions of how k-Means is usable: we can
either directly supply it with the cluster centers (this is what
our implementation does), and let it run on the given data
points (which then include the cluster centers accordingly).
Alternatively, we can refrain from supplying cluster centers,
in which case k-Means (in the given implementation) would
take the first k points as cluster centers to start with if there are
k classes. Since we have put the cluster centers upfront in the
list, the algorithm will in both cases be initialized identically.

1) Results: We found that the construction is numerically
relatively unstable since the eigenvalues of the matrix A
to construct the quadratic form in some cases fell out of
the numerical scope of the machine precision. Whenever the
experiment finished without over- or underflows, however, the
clustering of k-Means came up exactly as we desired. Table VI
shows the results of k-Means in the column “by k-Means”.
It is directly visible that k-Means produced just the random
classes assigned. The experiment is repeatable with a freshly
seeded random number generator each time and confirmed the
findings also over many independent repetitions. We also let
the algorithm run on cluster centers that were simply chosen as
arbitrary z-neighbors of some point within the desired cluster,
but not the direct arithmetic mean of the cluster as such.
This made the algorithm frequently update (shift) the cluster
center, which due to the construction of our quadratic form,
led to strong changes in the distances as were computed. The
resulting cluster assignments were, in that case, far off what
we desired them to be. The choice of the arithmetic mean of
the desired points to be the cluster centers, on the contrary, will
effectively let the algorithm re-compute the same cluster center
over and over again so that the distances that we designed
really come up as desired. This leads to the results reported
in Table VI.

Other work that tackles the problem of cluster center
determination (such as we require for k-Means for example),
is compatible with our constructions; noting that the cluster
centers can be computed by any means, including sophisticated
methods as in [62] and [63], for example. In our case, whether
the clustering algorithm will work well with the user-supplied
cluster centers depends on how much the cluster centers may
become adapted by the algorithm. We tested this version of
k-Means, finding that letting the algorithm change the cluster
centers, destroys the designed effects and outcomes and the
experiments all failed.

C. Manipulating DBSCAN

With the same setup as for k-Means, we let DBSCAN
do a clustering for us, with the following differences
to section VI-B:
• No inclusion of pre-computed cluster centers; the data

was given to DBSCAN just as it came out of the random
generator.

• DBSCAN’s parameters “neighborhood size ϵ” and
“minimum number min Pts” of points within the

TABLE VI
EXPERIMENTAL VERIFICATION OF PROPORTIONAL PAIRWISE DISTANCES,

RANDOMLY ASSIGNED PAIRWISE BETWEEN 10 POINTS IN R2 . THE
RIGHT COLUMNS SHOW WHAT k-MEANS AND DBSCAN

RECOVERED USING THE INPUT DATA ON THE LEFT,
AND OUR DESIGNED ε-SEMIMETRIC

TO MEASURE DISTANCES

ϵ-neighborhood were set to ϵ =
δsmall+δlarge

2 and
min Pts = 2.

1) Results: As far as the scalability issue concerns the
construction of the norm ∥·∥Q on Rh , this issue exists in all
experiments and relates to the method in general. However,
unlike k-Means, the experiments on DBSCAN ran without any
numerical issues and always terminated, in all cases delivering
an “isomorphic” clustering. That is, DBSCAN used a different
naming (enumeration) of the classes, but there was always a
one-to-one correspondence between the class c that DBSCAN
assigned to the point yi , and the (randomly desired) classifi-
cation class(yi ). Table VI shows the results in the column “by
DBSCAN”, where it is visible that the cluster naming does
not match the original clusters, but remains “the same” via the
one-to-one correspondence {1 7→ 3, 2 7→ 1, 3 7→ 2}, between
the randomly assigned desired classes and those that DBSCAN
recovered.

D. Manipulated DBSCAN on MNIST Data

Let us now test the manipulations of DBSCAN on elements
from the classical MNIST dataset on handwritten digits.
To keep the example simple, let us aim at the recognition
of primes in the set {0, 1, . . . , 9}. We let DBSCAN run first in
its “original” form, and then manipulate it to recognize primes
accurately, or inaccurately, including or excluding numbers as
we wish.

Feature engineering is often done to enhance the accuracy
and quality of predictions. Hence, we also do it here to keep
the example feasible and to rule out any manipulations by
(visually incomprehensible) noise on the picture (as is used
elsewhere in adversarial machine learning).

Our example features are partly manually, partly automati-
cally assignable, and are fourfold: (1) is the number positive?
(0/1 indicator), (2) is it an integer? (0/1 indicator), (3) does the
number have nontrivial divisors? (0/1 indicator) and (4) how
“similar” is the number to one of the primes {2, 3, 5, 7}, where
similarity is here measured by the earth-mover distance to a
fixed set of reference digits (in our case the first ones of each
kind to appear in the dataset). This feature is directly derived
from the visual appearance of the MNIST picture. We remark
that these choices are just examples and the overall method
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Fig. 4. Running DBSCAN under different manipulations.

does not depend on how the features are made. In a practical
setting, the features would, more likely, be extracted from the
images by more sophisticated means (by AI techniques) before
entering a classification. We keep our example simple here,
maintaining both, manual and automatically derived features
from the public dataset. Figure 4 displays the digit images,
with assigned features and a series of experimental runs of
DBSCAN with different underlying distance functions:

Experiment 1: DBSCAN with Euclidean distance,
min Pts = 2 and ε set to the middle of the range in which
the pairwise (Euclidean) distances between the feature vectors
lie. That is if dmin and dmax are the pairwise minimum and
maximum distances between the feature vectors, we put
ε := 1

2 (dmin + dmax) to get some nontrivial classification.
DBSCAN’s results are shown in row “Exp1” of Figure 4.
It becomes evident that, despite the sought result being
already among the features, the classification is far from
correct (if it were about recognizing primes); additionally,
the earth mover’s distance is here a particularly bad feature
to rely on visual appearance. However, let us, for illustration
only, that these features were meaningful and cannot be
adapted. In that case, manual correction may be necessary.
This is our next experiment 2.

Experiment 2: Given that the classification of DBSCAN
based on the given features is not satisfying (based on given
features that we may be unable to change) we can “manually
fix” the desired results by assigning class 1 for the num-
bers {0, 1, 4, 6, 8} and class 2 for the (primes) {2, 3, 5, 7}.
By defining the desired classes in this way, and designing

an ε-semimetric for it, the experiment’s results were perfectly
aligned with what they should be, assigning class “2” to
exactly the primes. This is a non-adversarial application
of the concept, although its performance on new data (for
which the ε-semimetric was not constructed) remains generally
undefined. Observed numerical round-off errors suggest that
some stabilization of the construction is needed, which is left
as an open problem for future research here.

Experiment 3: some people may ask why the number 1 is
not a prime, and mathematics has various good reasons to
exclude it from the primes. However, we can easily make our
prime classifier from the previous experiment 2 accept “1” as
a prime: all we have to do is define the class that the respective
picture (represented by its feature vector) should have to be the
“primes”, and after constructing the ε-semimetric, DBSCAN
will include it.

Experiment 4: extending the manipulation further, let us
now make all odd digits primes (against that 1 is by definition,
not a prime, 2 is a prime, and 9 = 3 × 3 is composite). The
matter is again only to define the classes for “1” and “9”
to be “prime”, constructing the ε-semimetric accordingly,
and letting DBSCAN run with it to confirm what we
desire.

1) Comparison to Alternative Manipulation Methods:
Experiment 5: as some sort of comparison to alternatives,
we remark that it is indeed possible to manipulate DBSCAN
without resorting to our particular construction. The most
sophisticated form of this alternative would be Siamese net-
works, but we can illustrate it easier: we constructed a simple
inverse-distance weighting interpolating function d(x, y) that
gives exactly the desired distances between feature vectors
x, y, in the very same way as shown for the construction of an
ε-semimetric. Quite expected, DBSCAN likewise reproduces
the desired classification (here, the ones from Experiment 2).
While this works well in terms of results, the plausibility of the
underlying distance is not ensured: indeed, the interpolator, but
probably most methods to approximate functions or number
sets, can mostly reproduce values at high accuracy, but,
unless constructed for it, will fail to also reproduce analytic
properties. In our case, it is a simple matter of “black-box-
testing” the underlying distance function on pairs and triples
to verify (in fact refute) the properties of a metric, thus
making the manipulation recognizable. On the contrary, an ε-
semimetric not only interpolates a given set of values but also
does so respecting analytic properties, which within a numeric
accuracy of ≥ ε cannot be recognized by black-box testing.
This feature substantiates its “plausibility” and distinguishes it
from alternatives like deep machine learning models or similar
for the same manipulation goals.

2) Observations: The construction suffers from numeric
round-off errors when the dimensionality becomes too high,
i.e., if we construct the distance to match more items, or if
the number of features becomes very high. Likewise, the
seeding function g should be chosen to give nonzero seeds
in all cases (again observing numerical issues otherwise).
DBSCAN was generally more stable than k-Means in this
respect, whose manipulation in the above sense failed for
exactly (and only) numerical round-off errors. If a clustering,
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however, is based on features extracted from the data at
hand, then a manipulation like shown for the MNIST images
becomes feasible again.

VII. DISCUSSION

A. Complexity

The complexity of workflow 1 is governed by the compu-
tation of nullspaces in line 15. This is done for h matrices
given by (5) of dimension h × h, with h ∈ O(m2) for
m data points. Using Gaussian elimination or singular value
decomposition (numerically more stable), the null spaces are
computable in O(h3) steps per vector. This computation can
be parallelized for all h vectors. The second most expensive
operation is the computation of eigenvalues in equation (6),
but this is done only once. Since we can replace the value
λmax(A) in (6) also by a bound obtained from Gershgorin’s
circle theorem [64], this step does not add significantly to
the runtime. With parallelization, the overall complexity is
O(h3) = O(m6) (sequentially, it would be h · O(h3) =

O(m8)). Practically, it nonetheless pays to resort to numeric
techniques and dimensionality reduction (e.g., by spectral
clustering techniques).

B. Applicability to Spectral and Hierarchical Clustering

ε-semimetrics are also applicable in spectral clustering
methods [28]. There, two functions are in use: one is a
similarity function (for example, using a Gaussian kernel) to
prepare a graph, and the other is a standard distance used in
a second step for the actual clustering on the graph nodes.
In rough terms, with details well explained in [28], the basic
outline of spectral clustering is the following: 1) arrange the
data points as nodes of a complete undirected graph, and label
the edge from the data point x to y with the similarity value
s(x, y). Then, remove some edges according to a fixed rule
from several possibilities:
• Fix some threshold ε > 0 and remove an edge if its

similarity is > ε,
• Fix some value k ∈ N and delete all edges, except those

with the k lowest similarity values
• Keep the graph complete (delete no edges at all), and only

rely on similarity values that are adjustable by choosing
the function s appropriately; for example, a Gaussian
kernel with zero mean and variance σ , which then plays a
similar role as the ε-threshold above (setting σ < ε/3 will
result in the same effect as the first heuristic for about
99.8% of nodes)

Once the graph is prepared, the clustering proceeds by con-
structing its Laplacian matrix, computing the eigenvectors, and
running a conventional clustering on the matrix of eigenvec-
tors (only). At this point, the second of the aforementioned
functions comes in since the last step is still done with a
standard technique, such as k-Means (which, for example,
[28] explicitly mentions). Since our method is independent
of the actual nature or dimension of the feature vectors,
it works, in the same way, to manipulate the last step only
in a spectral clustering, but this is sufficient to forge the
results likewise. However, since spectral clustering essentially

transforms n data points to a sequence of k eigenvectors of
potentially much lower dimension, the numeric stability of our
forgery method can be better than in a direct application of
k-Means or DBSCAN.

For divisive hierarchical clustering, our construction can
be used to design metrics to separate the points into desired
clusters in each stage, possibly using different metrics for
each step. Similarly, for agglomerative clustering, we can let
points be singleton clusters at the beginning, and design an ε-
semimetric to merge clusters as we desire in each step. Both
cases boil down to a systematic choice of distances to make
the clustering produce the desired results, which is a separate
issue of this work’s contribution.

C. Scalability and Practicality

Numeric round-off errors induce the practical limitation
of our method; specifically, we will need to compute singu-
lar value decompositions and eigenvalues of matrices whose
dimension is quadratic in the number of data points to a cluster.
Hence, practical manipulations on real-life size datasets may
require an implementation with arbitrary-precision arithmetic.5

Exploring this direction, especially in terms of the added com-
putational complexity for high-precision arithmetic, is beyond
the scope of this article. Applying the construction in the con-
text of spectral clustering in a thereby smaller set (consisting of
only a few, even though large-dimensional, eigenvectors [28];
cf. Section VII-B), may thus be a beneficial subject of future
studies.

Although experimentally verifiable, the procedure does not
scale well as the experiments with k-Means have shown (cf.
also Section VI-D2). The algorithms used here were selected
for their simplicity and availability as “bare bones implemen-
tation”, void of complicated overheads for integration in larger
libraries. This choice was aimed at easing matters of verifica-
tion and reproduction of results in this work. Future studies
may thus try to use off-the-shelf implementations of the same
or more powerful clustering algorithms in other programming
languages such as Python or similar. This work is intended
as a mere first step to establish the theory. Extending the
experiments to more advanced clustering algorithms than the
two basic ones that we have used here, is a further direction
for future work.

VIII. CONCLUSION

A natural question relates to how plausible the use of a
metric crafted like ours is in practice. Unless the clustering is
audited at the level of its source code, a numeric “black-box
testing” of the distance function’s properties may efficiently
and effectively indicate if the distance is not a topological
metric. Our construction would resist such a purely functional
verification, since it has the same properties as a true metric,
up to the ε-error in the triangle inequality. However, if numbers
are displayed to users with a numeric accuracy less than ε,
while the inner calculations are done with higher precision,

5Wikipedia provides a comprehensive list of suitable software libraries at
https://en.wikipedia.org/wiki/List_of_arbitrary-precision_arithmetic_software.
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the violation of the triangle inequality will become practically
indistinguishable from natural round-off errors.

Our findings have a qualitative impact on how clustering
should be made to be trustworthy. Essentially, the advice is
the same as in cryptographic security, namely to immutably fix
all configuration data of the clustering algorithm, in particular
the norm that it uses. If there is a verifiable commitment to any
(fixed) norm or metric, such as the Euclidean, is made, then the
results of the clustering will be modifiable only by violations
of the (input) data integrity, such as by poisoning. Otherwise,
if the metric is not fixed and hence changeable by an adversary
(e.g., by externally supplying its own function instead of the
default), clustering can be manipulated without touching any
of the input data, while preserving the input data integrity.
This is important in cases of adversarial denial of a clustering
result: suppose a person has, by some clustering algorithm,
been assigned to a certain group suffering discrimination (of
any kind). If the clustering is a posteriori manipulable, this
assignment becomes demonstrably deniable, if the adversary
designs the metric to produce the same output as before,
but puts the person in question into a different cluster than
before. If the metric is verifiably fixed from the beginning, the
clustering becomes undeniable (at least by our techniques).

The lesson we learned from our study and experiments
is the inevitable need to enforce transparency and a prior
commitment to algorithms, parameters, metrics, and all details
of a clustering algorithm before applying it to data. Our
“attacks” depend on the possibility of a posterior manipulation
of the algorithms to justify a desired result. This possibility
can include reproducing a past set of legitimate clustering
decisions and may only affect the manipulation of a single
or a few data points (set the distances accordingly to match
an honest setup, and only set some values to distances of
malicious desire).

The operational principles to derive from these insights
are well known and standard in cryptography, known as
Kerckhoffs’ principle, and elsewhere also called a “nothing-
up-my-sleeve” design choice.6 The idea is to explain where
design choices, even if they refer to seemingly arbitrary
constants, come from, and are not due to some hidden agenda
of the designer (“nothing up my sleeve”).

The principle is the same here: the implementer and user
of the clustering algorithm should be obliged to explain all
design choices and transparently and publicly commit to them
before letting the algorithms become operational. If not, then
a posteriori manipulations, just as we have demonstrated,
become possible.

APPENDIX

A. Proof of Lemma 1

We give the proof for uniform distributions, but remark that
the argument only depends on the continuity of the distribution
(w.r.t. the Lebesgue measure), but this more general claim is
not required in the following.

6This term stems from the field of symmetric cryptography, where constants
in algorithms are chosen in a way that allows to re-calculate the constant (e.g.,
use a hexadecimal representation of

√
2 as is done in some hashing algorithms

or similar).

We consider a selection of the first k column-vectors
(counted from the left) in M. By induction over k, we show
linear independence up to k = n, which then means full rank
of M. The case k = 1 is trivial, so let us assume that up to
k < n columns x1, . . . , xk ∈ R

n have been sampled linearly
independent as x1 ∼ F1, . . . , xk ∼ Fk . The new vector xk+1 ∈

Rn , to be a linear combination of x1, . . . , xk , would need to
lie in the k-dimensional subspace of Rn . This subspace has
dimension k < n and is therefore a nullset w.r.t. the Lebesgue
measure on Rn . Since we sample from absolutely continuous
distributions on Rn w.r.t. the n-dimensional (Lebesgue) mea-
sure, we have PrFk+1(xk+1 ∈ span {x1, . . . , xk}) = 0 too under
the distribution Fk+1, thus completing the induction step. □

B. Proof of Theorem 2

We will place a “virtual neighbor” near each data point
y1, . . . , ym , such that the distances between the virtual neigh-
bors of each data point are freely specifiable. To bypass the
O(
√

ℓ)-bound on m given by (3), we will respectively increase
the dimension towards h =

(m
2

)
to have a sufficient number of

pairs embeddable with linearly independent differences, and
in close proximity to the given data points y1, . . . , ym .

Let us first put the data points into the higher-dimensional
space Rh as y′i = (y⊤i 0(h−ℓ)×1)

⊤
∈ Rh . Then, fix some

positive ε < 1
2 mini ̸= j

∥∥∥y′i − y′j
∥∥∥

2
=

1
2 mini ̸= j

∥∥yi − y j
∥∥

2,
and to each point y′i , associate a set of m − 1 random
points zi,1, . . . , zi,m−1 within an Euclidean distance < ε

towards yi . These points will serve to measure the pair-
wise distances between yi and y j using higher-dimensional
“substitutes”. Note that we cannot just use y′i , y′j directly,
since the pairwise differences between them could not give
us linearly independent vectors as we require. To see this,
recall that we have m such vectors y′1, . . . , y′m , and computing
pairwise differences is a linear operation. Hence, the result
cannot be linearly independent vectors. For that to happen,
we need points that are “independent” of yi , y j to give linearly
independent differences, but still close enough to yi , y j to
“represent” their spatial location. Therefore, we sample from
an ε-neighborhood that is small enough to ensure disjointness
between any two points y′i , y′j , and sample a fresh random
point near yi whenever we need a distance vector between yi
and one of the other points. Figure 1 shows this.

To see why this establishes the required linear indepen-
dence, let us systematically iterate through the pairwise
differences to see why linear independence is accomplished
by the construction as described.

Start with y1 ∈ R
ℓ, respectively y′1 ∈ R

h : for all other
points y′j for j = 2, . . . , m, we sample a fresh neighbor
zi, j ∈ U(B2,ε(y′i )) and z j,1 ∈ U(B2,ε(y′j )) uniformly at
random. We then compute the distance vector xk = zi, j − z j,1
(with the index k ≃ i j). This procedure is likewise repeated for
i = 2, . . . , m, giving the difference vectors x1, x2, . . . , x(m

2)
∈

Rh , all collected in a matrix

M = (x1, . . . , xh) ∈ Rh×h . (5)

Claim 1: Let y1, . . . , ym be given, The matrix M con-
structed from pairwise differences of uniformly random points
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xi ∼ U(B2,ε(yi )) within neighborhoods centered at the points
y′1, . . . , y′m , has almost surely full rank, i.e., Pr(rank(M) =

h) = 1.
Proof of Claim 1: This is a mere application of Lemma 1

with the distribution for xi being U(B2,ε(yi )). Since these
are all absolutely continuous, the coordinates of each xk
are differences of independent uniformly distributed random
variables, and as such have a trapezoidal shaped distribution,
which is again absolutely continuous, and Lemma 1 applies.□

Claim 1 assures the conditions needed for the construction
in Section IV-A are met with probability 1, and it just remains
to assign the distances between the substitute points zi,s, z j,t
(for 1 ≤ s, t ≤ m − 1) in the neighborhood of yi (resp. y′i )
and y j (resp. y′j ) to be as we desire.

Now, repeating the construction from Section IV-A on the
pairwise difference vectors (that are now all linearly inde-
pendent, since they were computed from distinct z-neighbors
of the original points), we get a quadratic form qh on the
higher-dimensional space Rh . The resulting norm ∥x∥q :=√

qh(x) is equivalent to the Euclidean norm, and the respective
constants are given by the eigenvalues of the matrix A within
qh(x) = x⊤Ax, since every quadratic form satisfies

λmin(A) · ∥x∥22 ≤ x⊤Ax ≤ λmax(A) · ∥x∥22 ,

where λmin(A), λmax(A) are the smallest and largest eigenval-
ues of A. Experimentally, one quickly discovers that there is
not much control over the eigenvalues of A directly, and this
is not surprising, since the norm induced by qh cannot diverge
arbitrarily from the Euclidean distances (due to its topological
equivalence). For our purposes, however, it will suffice to scale
all eigenvalues by the same factor and put

α :=
1

λmax(A)
(6)

to define the scaled quadratic form

Q(x) := x⊤(α · A)x (7)

whose induced norm satisfies

∥x∥Q =
√

Q(x) ≤ ∥x∥2 (8)

since its largest eigenvalue was just scaled down to 1. The
scaling is necessary for the subsequent construction of an ε-
semimetric, whose violation of the triangle inequality should
remain within an ε-bound. This tolerance ε is set based on
Euclidean distances and our norm should hence be bounded
by the 2-norm.

We show that ∥x∥Q induces distances that are consistent
with the closeness relations induced by the set of desired
distances

{
δi j : 1 ≤ i < j ≤ m

}
in the following sense: let

i, j, k be a triple selection from the set of given points, for
which we want yi to be closer to/equal/or farther away from
y j than yk . The possible relation can be that the distance from
point i to point j is less than, equal to, or larger than the
distance to the third point k, which we jointly express as

δi j ⪋ δik . (9)

The norm
√

Q(x) by construction is consistent with (9) for
all possible triples of neighboring points zi , z j , zk (dropping

the double index to simplify notation and to signify that these
points are arbitrary ones from the list of existing), since∥∥zi − z j

∥∥
Q =
√

α · δi j ⪋
√

α · δ jk = ∥zi − zk∥Q , (10)

in which the <, = or > relations are in all cases preserved
since α > 0, as A is positive definite.

The Euclidean ε-neighborhoods of each given data point yi
will be contained in the neighborhoods that our constructed
norm induces, and the same ∥·∥Q-ball will contain points that
do have the desired distances between them, up to the constant
multiple α. The proof is complete. □

C. Proof of Theorem 3

The proof structure is essentially the description preceding
Theorem 3 but only made rigorous. To this end, let ε > 0 be
given, and choose some deterministic function f : Rℓ

×Rℓ
→

R with two properties:

| f | ≤
ε

6
(11)

f (x, y) ̸= f (y, x) for all x ̸= y. (12)

The mapping of y ∈ Rℓ
7→ z ∈ Rh , with h =

(m
2

)
, is done by

using the function f to add the “random noise”. Note that the
purpose of this random noise was, however, just to create linear
independence, and we can accomplish this also in entirely
deterministic ways: Lemma 1 implies that each pair (yi , y j )

admits, with probability 1, a selection of two neighbors zi, j ∈

BQ,ε/6(yi ) and z j,i ∈ BQ,ε/6(y j ) such that the pairwise
differences

{
zi, j − z j,i

}
i j are linearly independent. Since this

selection can be done with probability 1, suitable neighbor
points exist and we can fix them as constants. The “noise” is
then an additive term f (yi , y j ) = εi j to give y′i + εi j = zi, j
(likewise gives y′j = y j + f (yi , y j ) = z j,i ), where y′i =
( yi︸︷︷︸
∈Rℓ

, 0, . . . , 0) ∈ Rh and y′j are the canonic embeddings of

yi , y j into Rh . To keep the noise magnitude under the allowed
ε-bound for the triangle inequality, we scale the noise by a
factor s > 0 to make

∣∣s · f (yi , y j )
∣∣ = ∥∥s · εi j

∥∥
Q < ε/6. Since

f adds a fixed noise vector in all cases, the noise function
itself is deterministic. For pairs (x, y) /∈ Y × Y , we let f
return a zero vector (i.e., add no noise to the points).

On the chosen neighboring points, we can define
the quadratic form and induced norm that satisfies∥∥zi, j − z j,i

∥∥
Q = δi j . This construction is possible, since by

hypothesis, the distances desired are all less or equal to the
Euclidean distances, so we do not have problems with scaling.
The ε-semimetric is then defined as

d̃(x, y) := ∥(x, f (x, y))− (y, f (y, x))∥Q .

It remains to show that this is indeed an ε-semimetric, so we
check the corresponding properties:

Identity of Indiscernibles: since f is a deterministic map-
ping, we get the noise f (x, x) identically in both terms, giving
∥(x, f (x, x))− (x, f (x, x))∥Q = 0, since we have a norm
on Rh .

Positivity: for x ̸= y, we have (x, f (x, y)) ̸= (y, f (y, x)),
and since ∥·∥Q is a norm on Rh , positivity follows directly.
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TABLE VII
EXPERIMENTAL VERIFICATION OF PROPORTIONAL PAIRWISE DISTANCES,

RANDOMLY ASSIGNED PAIRWISE BETWEEN 10 POINTS IN R2

Symmetry: directly by construction, since
d̃(x, y) = ∥(x, f (x, y))− (y, f (y, x))∥Q =

∥(y, f (y, x))− (x, f (x, y))∥Q = d̃(y, x).
Approximate Triangle Inequality: for this, we first prove the

following claim, saying that d̃ and d differ by at most ε
3 by

construction: to see this, let the noise part f (x, y), f (y, x) be
the vectors ϵ1, ϵ2. Then (using canonic embeddings of x, y ∈
Rℓ inside Rh), d̃(x, y) = ∥(x, f (x, y))− (y, f (y, x))∥Q =

∥x− y+ (ϵ1 − ϵ2)∥Q and by the converse triangle inequality,
we get

|d̃(x, y)− ∥x− y∥Q | ≤

∥∥∥d̃(x, y)− (x− y)

∥∥∥
Q

= ∥(x− y)+ (ϵ1 − ϵ2)− (x− y)∥Q

= ∥ϵ1 − ϵ2∥Q ≤ ∥ϵ1 − ϵ2∥2 ≤ 2
ε

6
=

ε

3
, (13)

using the bound ∥ϵ1∥2 = ∥ f (x, y)∥2 = | f (x, y)| ≤ ε/3 that
likewise holds for ϵ2. Consider the metric d(x, y) := ∥x− y∥Q
on Rℓ, using the canonic embedding the points x, y into Rh .
This metric satisfies the triangle inequality and is no more

than ε/3 different from d̃ , which will establish the claim:

d̃(x, y)
(13)
≤ d(x, y)+

ε

3
≤ d(x, z)+ d(z, y)+

ε

3
(13)
≤ d̃(x, z)+

ε

3
+ d̃(z, y)+

ε

3
+

ε

3
= d̃(x, z)+ d̃(z, y)+ ε.

□
Our practical evaluation in section VI combined the choice

of neighboring points with the definition of the noise func-
tion f , by seeding an available pseudorandom number
generator with a value that depends non-symmetrically on
both yi , y j (i.e., provides different seeds for (yi , y j ) than
for (y j , yi )), and which produced a pseudorandom uniform
distribution in [0, 1]. This delivers the desired neighbors
zi, j and z j,i while achieving linear independence with high
probability. Scaling the pseudorandom noise down by a factor
0 < s < 0.9 · ε

·
√

h
accomplished bound (11).

D. Experimental Verification of Distances

Table VII shows the results of constructing a norm as in the
proof of Theorem 1 for 10 arbitrarily chosen points in R4 with
distances that were assigned stochastically independent of the
point locations
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