
7508 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Wahoo: A DAG-Based BFT Consensus With Low
Latency and Low Communication Overhead

Xiaohai Dai , Member, IEEE, Zhaonan Zhang, Student Member, IEEE,
Zhengxuan Guo , Student Member, IEEE, Chaozheng Ding , Student Member, IEEE,

Jiang Xiao , Member, IEEE, Xia Xie, Member, IEEE, Rui Hao , Member, IEEE, and Hai Jin , Fellow, IEEE

Abstract— To parallelize data processing within BFT consensus
protocols, Directed Acyclic Graph (DAG) structures have been
integrated into consensus design, shaping the realm of DAG-
based BFT protocols. Existing DAG-based protocols rely on
the Reliable Broadcast (RBC) protocol or its variants for block
dissemination, which ensures consistency and totality properties
of the data delivery. However, the inherent communication
overhead of O(n2) in RBC (where n is the total replica
count) results in an unwieldy O(n3) overhead in current DAG-
based solutions, as each replica disseminates blocks through
RBC in parallel. In response to this issue, we propose
two new broadcast protocols: Provable Broadcast (PBC) and
Enhanced Provable Broadcast (EPBC). Both PBC and EPBC
maintain the consistency property of data delivery, similar to
RBC, while offering linear communication overhead without
totality. Leveraging these broadcast protocols, we devise Wahoo,
a novel DAG-based BFT protocol that significantly reduces
communication overhead to O(n2). To address the absence of
the totality property, we introduce a block retrieval mechanism
to assist replicas in acquiring missing blocks. Additionally,
under favorable conditions, Wahoo achieves a low latency of
4δ (where δ symbolizes the actual network delay), rivaling
the best performance of existing DAG-based protocols. Various
experiments showcase Wahoo’s high performance, owing to its
substantially reduced communication overhead.

Index Terms— Byzantine Fault Tolerant (BFT), consensus,
Directed Acyclic Graph (DAG), blockchain.

I. INTRODUCTION

WITH the burgeoning popularity of blockchain tech-
nology [5], [27], the Byzantine Fault Tolerant (BFT)

Manuscript received 1 January 2024; revised 2 April 2024; accepted 27 May
2024. Date of publication 3 June 2024; date of current version 14 August
2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2021YFB2700700 and in part by
the Key Research and Development Program of Hubei Province under Grant
2021BEA164. The associate editor coordinating the review of this article and
approving it for publication was Prof. Haibo Hu. (Corresponding author:
Jiang Xiao.)

Xiaohai Dai, Zhaonan Zhang, Zhengxuan Guo, Chaozheng Ding,
Jiang Xiao, and Hai Jin are with the National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Laboratory, and the Cluster and Grid Computing Laboratory, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China (e-mail: xhdai@hust.edu.cn;
zhaonanzhang@hust.edu.cn; gzxhere@hust.edu.cn; chaozhengding@
hust.edu.cn; jiangxiao@hust.edu.cn; hjin@hust.edu.cn).

Xia Xie is with the School of Computer Science and Technology, Hainan
University, Haikou 570228, China (e-mail: shelicy@hainanu.edu.cn).

Rui Hao is with the School of Computer Science and Artificial
Intelligence, Wuhan University of Technology, Wuhan 430070, China (e-mail:
ruihao@whut.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3409082

consensus has garnered renewed attention, serving as a
pivotal foundation for blockchain systems [43], [44]. At a
high level, the BFT consensus protocol facilitates agreement
on data among a distributed group of replicas, some
of which act as Byzantine replicas, deviating arbitrarily
from the protocol. Traditional BFT consensus protocols,
like PBFT [13] and HotStuff [46], process data in a
sequential manner, significantly constraining the system
throughput.

To enhance system throughput, a line of recent studies,
such as DAGRider [28] and GradedDAG [45], have introduced
the Directed Acyclic Graph (DAG) structure to consensus
design, parallelizing data processing. These DAG-based BFT
consensus protocols operate in successive rounds, with each
replica broadcasting a block through the Consistent Broadcast
(CBC) [41], Reliable Broadcast (RBC) [9], or a variant called
GRBC [45] protocol in each round. Both CBC and (G)RBC
can guarantee the consistency property of data delivery, and
(G)RBC can further ensure the totality property. However, both
CBC and (G)RBC incur a communication overhead of O(n2),
where n is the number of replicas, resulting in an overall
communication overhead of O(n3) for DAG-based consensus.

In this paper, we aim to propose a new DAG-based
BFT consensus protocol to reduce communication overhead.
Through an analysis of DAG-based protocols, we discover that
CBC or (G)RBC is not indispensable in designing DAG-based
protocols. Instead, we introduce two new broadcast protocols,
namely Provable Broadcast (PBC) and Enhanced Provable
Broadcast (EPBC), both boasting linear communication
overhead. While PBC and EPBC guarantee the consistency
property, akin to CBC or (G)RBC, they forego the totality
property.

PBC can be simply implemented within three communi-
cation steps, while EPBC involves five communication steps,
whose delivery includes three distinctive tags: TS1, TS2, and
TF. In EPBC, a replica delivering data with the TS2 tag
can assert that a sufficient number of non-faulty replicas
have delivered the same data with the TS1 tag. Similarly,
a replica delivering data with the TF tag can assert that
enough non-faulty replicas have received the same data. These
two assertions play a pivotal role in upholding consensus
safety. A replica in EPBC can deliver data with TS1 or TS2
after three or five communication steps, respectively. Besides,
in favorable situations, it can deliver data with TF after three
steps.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7822-4512
https://orcid.org/0009-0007-5892-5849
https://orcid.org/0009-0009-5798-5131
https://orcid.org/0000-0002-4216-0497
https://orcid.org/0000-0003-3012-0276
https://orcid.org/0000-0002-3934-7605


DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7509

Leveraging PBC and EPBC, we devise Wahoo, a DAG-
based BFT protocol with O(n2) communication overhead—an
order of magnitude less than existing solutions. Wahoo oper-
ates in successive waves, with each wave comprising an EPBC
phase and a PBC phase. In the EPBC phase, each replica
broadcasts a block through EPBC, named the EPBC block.
An EPBC block must include at least n- f hashes of blocks
delivered in the previous PBC phase, where f denotes the
fault tolerance. After delivering n- f EPBC blocks, a replica
transitions to the PBC phase, broadcasting a block through
PBC, named the PBC block. A PBC block also has to include
at least n- f hashes of blocks delivered in the previous EPBC
phase, regardless of the delivery tag.

Each PBC block includes a threshold signature share on the
wave number, a mechanism used to randomly select a leader
block for the wave. This mechanism, also known as Global
Perfect Coin (GPC), designates an EPBC block within this
wave as the leader block. If the leader block is delivered with
the TS2 or TF tag, it and its ancestor blocks can be directly
committed. In favorable scenarios where n- f EPBC blocks
are delivered with TF, each replica advances to the PBC phase
after only three communication steps. The first communication
step of the PBC phase can reveal the leader block. In such
scenarios, a leader block can be committed in just four steps,
resulting in a low consensus latency of 4δ, equivalent to the
best result achieved by GradedDAG.

Even in unfavorable scenarios, where some EPBC blocks
are delivered with the tag TS2, each replica advances to the
PBC phase after five communication steps. The probability
of the elected leader block being delivered with tag TS2 or
TF is approximately 2/3. Therefore, in expectation, it takes
about 1.5 waves to commit a leader block. Given that each
wave consists of eight communication steps in unfavorable
scenarios, Wahoo’s expected latency is approximately 12δ.
Regardless of the scenario, Wahoo employs n parallel EPBC
or PBC instances to broadcast blocks, resulting in O(n2)

communication overhead. To supplement the totality property
absent in PBC and EPBC, we introduce a block retrieval
mechanism, assisting replicas in acquiring missing blocks.

We conduct a thorough analysis of Wahoo’s correctness,
demonstrating its ability to satisfy both safety and liveness
properties. A series of experiments are conducted to verify
Wahoo’s efficiency. Tusk and GradedDAG, representing
the state-of-the-art, are chosen as comparison counterparts.
We compare different protocols’ performance under both
favorable and unfavorable situations. Experimental results
reveal that Wahoo outperforms others, especially in scenarios
with a large number of replicas. This superior performance is
attributed to Wahoo’s lower communication overhead.

In summary, this paper makes the following contributions:
• To reduce quadratic communication overhead found in

the broadcast primitives of existing DAG-based BFT
protocols, we propose two new broadcast protocols
named PBC and EPBC, which achieve linear overhead.

• Based on PBC and EPBC, we devise Wahoo, a novel
DAG-based BFT protocol with O(n2) communication
overhead, which delivers low latency of 4δ under favor-
able situations, comparable to state-of-the-art protocols.

• We conduct several sets of experiments to evaluate
Wahoo, whose results validate its high efficiency and low
communication overhead.

The rest of this paper is organized as follows. We first
provide background and preliminary knowledge in Section II.
After defining the models and introducing some building
blocks in Section III, we elaborate on the design of
Wahoo in Section IV. Section V analyzes its correctness, while
Section VI verifies the protocol’s efficiency through various
experiments. We finally make a summary of related works in
Section VII and conclude the paper in Section VIII.

II. BACKGROUND & PRELIMINARIES

In this section, we provide essential background information
on BFT consensus and the asynchronous DAG-based consen-
sus, which motivates our work in this paper.

A. BFT Consensus and Timing Assumptions

As a fundamental component of the blockchain system [5],
[27], BFT consensus [43], [44] has regained substantial
attention over the past decade, owing to the explosive rise
of blockchain technology. Generally speaking, BFT consensus
aims to facilitate agreement on data among distributed replicas,
when a subset of these replicas behaves arbitrarily, often
referred to as Byzantine replicas [33].

In the context of blockchain technology, all committed data
are structured into units called blocks, with each committed
block assigned a sequence number to indicate its position
in the chain. A block consists of multiple transactions,
which are generated and submitted by upper-layer clients.
A BFT consensus protocol has to satisfy the following three
properties:
• Safety: If two non-faulty replicas pi and p j commit two

blocks Bi and B j with the same sequence number, Bi
must be equal to B j .

• Liveness: If a client submits a transaction t x to the
system, t x will eventually be committed.

• Completeness: For each sequence number k, each non-
faulty replica will commit a block numbered k eventually.

The network assumptions play a crucial role in designing
BFT consensus protocols and can be categorized into
three types: synchronous, partially-synchronous, and asyn-
chronous [19]. The synchronous network assumes that all
messages can be delivered within a predetermined period,
while the asynchronous network places no constraints on
delivery timing. The partially-synchronous network, serving
as an intermediary, assumes a synchronous network after
an unknown Global Stabilization Time (GST). Consequently,
BFT consensus protocols fall into three categories. While
synchronous and partially-synchronous protocols promise
higher performance, they are criticized for vulnerability
to network attacks [25], [38]. Recent studies have thus
refocused on asynchronous protocols and aimed to improve
the asynchronous protocol’s practicability [18], [22], [47].

B. DAG-Based Consensus

Traditional BFT protocols, such as PBFT [13] and
Zyzzyva [32], process transactions individually. The advent



7510 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
COMPARISON BETWEEN DIFFERENT DAG-BASED PROTOCOLS. LATENCY IS MEASURED BY THE COMMUNICATION STEPS

of blockchain technology introduced a novel approach to
organizing transactions as blocks and linking all blocks into
a chain, which simplifies the consensus design with notable
examples being Tendermint [10] and HotStuff [46]. However,
these chain-based protocols process data sequentially, resulting
in a significant limitation in throughput. To address this, the
DAG structure is introduced to consensus design, giving rise
to DAG-based consensus [16], [28], [40], [45]. To guarantee
liveness, these DAG-based protocols adopt the assumption of
an asynchronous network. However, they rely on the RBC
protocol or its variant, Graded RBC (GRBC), to broadcast
blocks. Given the quadratic communication overhead of
(G)RBC, consensus protocols built upon it suffer from
high communication overhead, often reaching cubic levels,
as illustrated in Table I.

This prompts a natural question: Can we design a DAG-
based BFT consensus protocol with lower communication
overhead?

C. Global Perfect Coin (GPC)

In response to the FLP impossibility [20], asynchronous
consensus protocols [3], [6], [35] must incorporate random-
ness, typically achieved through the GPC. The GPC works
like a global function; when a specified threshold of replicas
triggers it with the same input, it consistently produces an
output. Crucially, GPC maintains the following properties:
• Consistency: If two non-faulty replicas receive outputs o

and o′ from the same input, then o = o′.
• Unpredictability: With at most t − 1 replicas triggering

the GPC function with an input (where t is the threshold),
no replica can forecast the output.

• Termination: When at least t replicas engage GPC with
the same input, all replicas can eventually output.

• Randomness: GPC outputs uniformly random results.
GPC can be implemented easily through threshold sig-

natures [8], [12], configuring the threshold parameter as
t . Replicas initiate GPC by generating and broadcasting
a signature share based on the input. Upon collecting t
shares, a replica constructs a complete threshold signature,
symbolizing GPC’s output. In DAG-based BFT scenarios, the
GPC function plays a critical role in selecting leaders for
waves.

Fig. 1. The algorithm construction of PBC (ALGpbc).

III. MODELS AND BUILDING BLOCKS

In this section, we outline the models underpinning our
protocol and introduce essential building blocks integral to
our design.

A. Models and Definitions

The system is composed of n replicas, allowing for a
maximum of f Byzantine replicas (where n ≥ 3 f +1), which
achieves optimal resilience. Each replica is uniquely identified
by the notation pi (0 ≤ i < n). Byzantine replicas fall under
the manipulation of an adversary capable of coordinating
their actions. Every pair of replicas is interconnected through
a reliable network link. The network is assumed to be
asynchronous, with no specific assumptions regarding message
delivery timings. The adversary possesses the capability to
delay messages arbitrarily, as long as these messages can
eventually be delivered.

Within this system, a robust security framework is
established, incorporating a Public Key Infrastructure (PKI)
and a Threshold Signature Infrastructure (TSI). PKI facilitates
global verification of a message sender’s identity, immune
to falsification or repudiation. TSI implementation involves
a trusted leader or a Distrusted Key Generation (DKG)
protocol [2], [17], [31]. The assumption of computational
limitations restricts the adversary from compromising the
safety of PKI or TSI. The threshold t for GPC is set to f +1.

B. Building Block: PBC

The Provable Broadcast (PBC) protocol functions as a
stronger broadcast primitive, which ensures non-faulty replicas



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7511

deliver identical data (if capable) despite potential Byzantine
behavior from the broadcaster. In addition to delivering data,
a replica in PBC also delivers a certificate for the data, serving
as proof for the data delivery. A global validation predicate,
denoted as Q, verifies this proof. Specifically, a non-faulty
replica delivers a tuple from PBC in the format ⟨d, σ ⟩, where
d signifies the data and σ represents the certificate, and
Q(d, σ ) = True. The PBC protocol, for a single broadcast
instance, adheres to the following properties:
• Consistency. In a PBC instance, if two non-faulty replicas

deliver ⟨d, σ ⟩ and
〈
d ′, σ ′

〉
respectively, then d = d ′ and

σ = σ ′.
• Validity. When the broadcaster is non-faulty and

transmits data d , each replica will deliver ⟨d, σ ⟩, where
Q(d, σ )=True.

• Integrity. Each non-faulty replica delivers at most once
in a PBC instance.

PBC can be constructed through three communication steps,
represented as ALGpbc and demonstrated in Fig. 1. In the first
step, the broadcaster transmits its data d to each replica. Upon
receiving d, a replica generates a (n- f )-threshold signature
share ρ on d and returns it to the broadcaster. After collecting
n- f shares, the broadcaster generates a complete threshold
signature σ and broadcasts it in the third step. Upon receiving
σ , a replica delivers ⟨d, σ ⟩. The validation predicate Q is set to
the (n- f )-threshold signature verification function. It is easy to
find that ALGpbc has a latency of 3δ and linear communication
overhead, where δ denotes the actual network delay.

C. Building Block: EPBC

1) Definition: The Enhanced Provable Broadcast (EPBC)
protocol is an enhanced version of PBC. A replica delivers
a three-element tuple ⟨d, t, σ ⟩ if capable, where d and σ

retain the same definitions as PBC, and t (t ∈ {TS1,TS2,TF})
denotes a delivery tag. On the one hand, if a non-faulty replica
delivers ⟨d,TS2, σS2⟩, it can assert that at least n − 2 f non-
faulty replicas have delivered ⟨d,TS1, σS1⟩. On the other hand,
if a non-faulty replica delivers ⟨d,TF, σF⟩, it can assert that
all non-faulty replicas have received d . It is important to note
that ‘deliver’ holds more significance than ‘receive’. After a
replica receives some data, it can deliver the data only if some
stronger condition is met. Two global validation predicates,
denoted as Q and P , are defined to verify the delivered tuple’s
correctness. For a single instance of broadcast, EPBC must
satisfy the following properties:
• Consistency. In an EPBC instance, if two non-faulty

replicas deliver ⟨d, t, σ ⟩ and
〈
d ′, t ′, σ ′

〉
, then d = d ′.

• Validity. If the broadcaster is non-faulty and broadcasts
d , each non-faulty replica will deliver ⟨d,TS1, σS1⟩
and ⟨d,TS2, σS2⟩, where Q(d,TS1, σS1) = True and
Q(d,TS2, σS2) = True. Besides, if all replicas are
non-faulty, each replica will deliver ⟨d,TF, σF⟩, where
P(d,TF, σF) = True.

• Integrity. Each non-faulty replica can deliver at most
three times in an EPBC instance.

• Delivery assertion. If a non-faulty replica delivers
⟨d,TS2, σS2⟩ in an EPBC instance, at least n − 2 f

Fig. 2. The algorithm construction of EPBC (ALGepbc).

non-faulty replicas must have delivered ⟨d,TS1, σS1⟩ in
the same instance.

• Reception assertion. If a non-faulty replica delivers
⟨d,TF, σF⟩ in an EPBC instance, all non-faulty replicas
must have received d in the same instance.

2) Construction (ALGepbc): We introduce ALGepbc, a dual-
path construction for EPBC comprising a slow path and a
fast path, depicted in Fig. 2a and Fig. 2b, respectively. The
slow path unfolds five communication steps. Initially, the
broadcaster transmits data d to all replicas. Upon receipt,
each replica produces a (n- f )-threshold signature share
for ⟨d,TS1⟩, denoted as ρS1, and sends it back to the
broadcaster in the second step. Once n- f signature shares
ρS1 are collected, the broadcaster generates a complete (n- f )-
threshold signature σS1 and broadcasts it in the third step.
At the end of the third step, a replica will deliver ⟨d,TS1, σS1⟩
after receiving σS1. Also, it will generate another (n- f )-
threshold signature share for ⟨d,TS2⟩, labeled as ρS2, which
is then sent to the broadcaster in the fourth step. Similarly,
upon gathering n- f ρS2 shares, the broadcaster constructs a
complete threshold signature σS2 and broadcasts it in the fifth
step. Receiving σS2 prompts a replica to deliver ⟨d,TS2, σS2⟩.

In contrast, the fast path involves three communication
steps beginning similarly with the broadcaster dispatching data
d . Each replica produces a n-threshold signature share on
⟨d,TF⟩, denoted as ρF, and forwards this to the broadcaster
in the second step. Upon collecting ρF from all replicas, the
broadcaster assembles a complete threshold signature, σF, and
broadcasts it in the third step. Receiving ⟨d,TF, σF⟩ enables
a replica to deliver σF.
ALGepbc melds these two paths as shown in Fig. 2c. Replicas

generate both ρS1 and ρF by the end of the first step, which
are then forwarded to the broadcaster in the second step.
After obtaining n- f ρS1 shares, the broadcaster forms σS1,
which is then broadcast in the third step. It continues to
collect more messages during the second step. Receiving n
ρF shares prompts the broadcaster to further construct σF for



7512 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 3. The overall structure of Wahoo.

broadcasting. Thus, a replica will deliver ⟨d,TS1, σS1⟩ or/and
⟨d,TF, σF⟩ if it receives σS1 or/and σF at the end of the third
step. The process for the remaining two steps mirrors that of
the slow path.

The validation predicates Q and P are set to the (n- f )-
threshold signature verification function and n-threshold
signature verification function, respectively. For brevity,
we denote the deliveries with tags TS1, TS2, and TF as TS1-
delivery, TS2-delivery, and TF-delivery, respectively. ALGspbc
similarly incurs linear communication overhead. Furthermore,
TS1-delivery, TS2-delivery, and TF-delivery have latencies of
3δ, 5δ, and 3δ, respectively.

IV. WAHOODESIGN

We answer the question raised in Section II-B affirmatively,
by proposing a novel DAG-based protocol named Wahoo.
Built upon EPBC and PBC, Wahoo achieves quadratic commu-
nication overhead. Besides, EPBC’s TF-delivery mechanism
allows Wahoo to deliver a low latency of 4δ under favorable
conditions, matching GradedDAG’s efficiency.

A. Overview of Wahoo

Generally speaking, Wahoo is designed by leveraging
EPBC and PBC to broadcast blocks. As shown in Fig. 3,
Wahoo operates through successive waves, where each wave
comprises two distinct phases: the EPBC phase and the
PBC phase. The EPBC phase involves block dissemination
using EPBC, while the PBC phase utilizes PBC for block
broadcasting. Blocks transmitted in these phases are termed
EPBC blocks and PBC blocks, whose data structures are
described in Algorithm 1. Both EPBC and PBC blocks include
fields of payload (p), replica number (p), wave number (w),
and hashes (re f s) of blocks in the previous phase. An EPBC
block will also include a partial threshold signature (sh) to
implement the GPC function, while an EPBC block will
include the leader link (ll) and proof (p f ) to implement the
leader-linking mechanism. Waves are sequentially numbered,
each assigned an incrementally higher number w. Accordingly,
the EPBC phase and the PBC phase in wave w are denoted
as E P BCw and P BCw, respectively.

Algorithm 1 Data Structures & Utilities
1: struct PbcBlock{
2: pl, p, w // payload, replica number, and wave

number
3: re f s // hashes and tags of blocks in previous phase
4: sh // partial threshold signature to implement GPC
5: }
6: struct E PbcBlock{
7: pl, p, w // payload, replica number, and wave

number
8: re f s // hashes of blocks in previous phase
9: ll, p f // leader link and proof

10: }
11: func Gen PbcBlock():
12: initialize a PbcBlock as B
13: B.pl ← outstanding txs from the replica’s buffer
14: return B
15: func GenE PbcBlock():
16: initialize an E PbcBlock as B
17: B.pl ← outstanding txs from the replica’s buffer
18: return B

A block in Wahoo must include at least n- f hashes of
blocks from the previous phase, referred to as references.
We say a block B directly references another block C if
B contains C’s hash. Additionally, if block C references
block D, then block B is considered to indirectly reference
D. Particularly, we stipulate that each block must directly
reference its broadcaster’s block in the previous phase. The
blocks directly referenced by a block B are termed B’s parents,
while those it references, either directly or indirectly, are
termed B’s ancestors. Notably, a block is also an ancestor
of itself.

In an EPBC phase, if a replica successfully delivers a
minimum of n- f blocks tagged as TS2 or TF, it can progress to
the subsequent PBC phase. During the PBC phase, the replica
creates a block referencing all blocks delivered in the previous
EPBC phase, regardless of their tags. One replica is elected
as the wave’s leader via the GPC function. The EPBC block
proposed by this leader is considered the wave’s leader block.
If a replica delivers the leader block tagged as TS2 or TF,
as illustrated in waves w−1 and w+1 in Fig. 3, it can commit
the leader block and its ancestor blocks. Upon delivering at
least n- f PBC blocks, a replica can progress to the next wave
by broadcasting a new EPBC block.

When an EPBC block cannot reference the previous wave’s
leader block, it must incorporate a leader-linking mechanism.
This mechanism necessitates the inclusion of a hash value,
termed the ‘leader link’, along with a corresponding proof,
as shown by Line 9 in Algorithm 1. The mechanism has two
cases: if the leader link is non-empty, the proof is referred to
as an ‘exclusive-commit proof’; otherwise, it is identified as
a ‘no-commit proof’. In essence, a non-empty leader link of
a block L , along with the exclusive-commit proof, signifies
that L is the exclusive leader block eligible for committing in
the previous wave. Conversely, the combination of an empty
leader link and a no-commit proof certifies that no leader



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7513

Fig. 4. Schematic diagram for the EPBC block construction.

block from the previous wave qualifies for committing. It is
important to note that when determining the ancestor blocks
of a given block, blocks interconnected through the leader
links will also be counted. This means if an EPBC block B
embeds L’s hash as the leader link, the ancestors of L are also
considered to be B’s ancestors.

Algorithm 2 The EPBC Phase in Wave w (for Replica pi )
1: Let Sb denote blocks delivered in phase P BCw−1.

Besides, let B represent the block to be broadcast by pi
in phase E P BCw, and hash refers to the hash function.

2: Let L denote the leader block in wave w − 1.
3: Let SignShr and Comb denote threshold sig. functions.
4: h ← hash(L), ρ ← SignShr(h)
5: broadcast ⟨RCEP, h, ρ⟩

6: upon receiving n- f RCEP messages:
7: h, c ← most frequently occurring hash and its

frequency
8: if c ≥ f + 1 then:
9: ll ← h, shares ← f +1 threshold shares on h

10: proof ← Comb(shares, h)
11: else:
12: ll ←⊥
13: proof ← all n- f RCEP messages

14: Sh ← {h(b) | b ∈ Sb}

15: B ← GenE PbcBlock()
16: B.p← i , B.w← w, B.re f s ← Sh
17: if L is ancestor of B then:
18: B.ll ←⊥, B.p f ←⊥
19: else:
20: B.ll ← ll, B.p f ← proof
21: broadcast B through the EPBC protocol

22: upon delivering n- f E P BCw blocks with tag TS2 or TF:
23: advance to the phase P BCw

B. EPBC Phase

Each wave starts with an EPBC phase. Except for the first
wave, each EPBC block must reference at least n- f blocks
in the previous PBC phase. The EPBC phase is described in

Fig. 5. Schematic diagram for PBC block construction. Case 1 illustrates a
scenario where fewer than n- f EPBC blocks are delivered with tags TS2 or
TF, leading to the inability to construct B4. In Case 2, two EPBC blocks are
delivered with TS2, and one EPBC block is delivered with TF, allowing the
construction of B4. Case 3 exemplifies a situation where B1 is received but
not delivered, preventing its referencing in B4.

Algorithm 2. If the new EPBC block can indirectly reference
the leader block of the previous wave, no additional actions are
required (Lines 17-18 of Algorithm 2). For instance, in Fig. 4a,
the EPBC block B5 indirectly references the previous leader
block B1, eliminating the need for B5 to include extra fields.
On the contrary, if the EPBC block cannot reference the
previous leader block, it necessitates a leader link accompanied
by a proof. As depicted in Fig. 4b, the EPBC block B5 contains
a leader link that points to B1 along with an exclusive-commit
proof ψ , whereas the EPBC block B6 includes an empty leader
link plus a no-commit proof χ .

To generate the leader link and the corresponding proof,
replicas exchange ‘reception’ information about the previous
leader block by broadcasting messages in the format
⟨RECP, h, ρ⟩ (Lines 4-5). Here, h represents the hash of the
previous leader block, and ρ is a ( f +1)-threshold signature
share on h. Upon receiving a ⟨RECP, h, ρ⟩ message, a replica
that lacks the corresponding block will use the block retrieval
mechanism (Section IV-D) to acquire the absent block data
from the message’s sender.

Upon receiving n- f RECP messages, a replica identifies
the most frequently occurring hash h, with its frequency
noted as c. If c equals or exceeds f +1, the replica will
generate a complete ( f +1)-threshold signature on h using
the signature shares contained in RECP messages. The EPBC
block includes h as the leader link and the complete signature
as the exclusive-commit proof. Otherwise, if c is less than
f +1, the leader link is set as empty, and all received RECP
messages are packaged into the EPBC block, serving as the
no-commit proof (Lines 6-20 of Algorithm 2). The constructed
EPBC block will then be broadcast through EPBC.

Upon receiving an EPBC block B, a replica will first check
whether it has delivered all of B’s parent blocks. If any are
missing, the replica proceeds to retrieve the absent data from
B’s constructor, as elaborated in Section IV-D. Only if all
of B’s parent blocks have been delivered can the replica
participate in the EPBC process of B.

C. PBC Phase

A replica advances to the PBC phase only after delivering
at least n- f blocks in the previous EPBC phase with tags TS2
or TF, as described in Lines 22-23 of Algorithm 2. Taking



7514 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 3 The PBC Phase in Wave w (for Replica pi )
1: Let Sb denote blocks delivered in phase E P BCw, while

Tb signifies all blocks being broadcast in E P BCw.
Furthermore, let B represent the block to be broadcast
by pi in phase P BCw.

2: Sh ← {⟨hash(b), b.tag⟩ | b ∈ Sb}

3: B ← Gen PbcBlock()
4: B.p← i , B.w← w, B.re f s ← Sh
5: B.sh ← SignShr(w)
6: broadcast B through the PBC protocol

7: for each b in Tb do
8: if b /∈ Sb then:
9: terminate its participation in b’s EPBC process

10: upon receiving f +1 PBC blocks in phase P BCw:
11: shares ← all threshold shares in these blocks
12: sig← Comb(shares, w)
13: parse sig as an integer number g
14: l ← g%n
15: Lw ← bifb ∈ Sb and b.i = l
16: if Lw is delivered with the tag TS2 or TF then:
17: commit Lw and its ancestors
18: upon delivering n- f P BCw blocks:
19: advance to the phase E P BCw+1

Fig. 5a as an example, where n = 4 replicas are involved and
f = 1, the replica cannot create a PBC block B4 since it only
delivers two blocks B2 and B3 with the tag TS2, which is less
than n- f . However, this case represents a transitional state,
and it is expected that additional EPBC blocks with tags TS2
or TF will soon be delivered. As illustrated in Fig. 5b, after
delivering one block with tag TF (i.e., B0), the replica can
construct the PBC block B4. A PBC block can reference all
delivered blocks in the previous EPBC phase, irrespective of
their tags. Fig. 5c shows block B4 referencing blocks B0, B2,
and B3, and even B1, which is delivered with tag TS1. On the
contrary, if the EPBC block is only received, exemplified by
B1 in Fig. 5c, it will not be referenced by the new PBC block.
A PBC block will specify delivery tags of its parent blocks in
the block using a map structure, with the parent block hash
as the key and the delivery tag as the value.

The PBC phase is outlined in Algorithm 3. Once a replica
constructs the PBC block B, it will stop its involvement in the
EPBC process of a block b if b is not referenced by B (Lines
7-9). Similar to the EPBC phase, a replica participates in the
broadcast process of a PBC block B only if it has received or
delivered all blocks referenced by B. It also makes use of the
block retrieval mechanism to acquire its missing blocks.

An ( f +1)-threshold signature share on the wave number w
is generated and included in the PBC block. This signature
share serves to implement the GPC function, configured with
the threshold parameter in GPC set to f +1. When a replica
receives f +1 valid PBC blocks, it can generate a complete
threshold signature, subsequently converted into an integer
denoted as g. The output of the GPC function, representing

Fig. 6. An example to show the process of committing blocks.

the leader’s replica number, is established as g modulo n. The
EPBC block proposed by the leader is named the leader block
for this wave, labeled as Lw (Lines 10-15). Should Lw be
delivered with the tag TS2 or TF, it can be committed directly
(Lines 16-17). At the same time, the ancestor blocks of Lw
can also be committed, as detailed in Section IV-E.

D. Block Retrieval Mechanism

The block retrieval mechanism in Wahoo is implemented
through an interactive mechanism between the requester and
the responder. The responder is the constructor of a block B,
while the requester is a replica who receives B but has not
received or delivered all ancestors of B.

The requester sends a request message ⟨REQ, h, t⟩ to the
responder, where h is the hash of the missing block C , and t is
a tag. When C is PBC block, t is set to PBC. For EPBC blocks
linked through references, t is an element in {TS1,TS2,TF}.
If linked via the leader link, t is set to RECP. Besides, multiple
blocks can be retrieved in one request by including multiple
pairs of h and t , thus increasing the retrieval efficiency.

Upon receiving the request message, the responder
addresses each pair of h and t in the message. If t is in
{PBC,TS1,TS2,TF}, the response includes the block data and
a corresponding certificate—σ for PBC, σS1, σS2, or σF for
TS1, TS2, or TF. For RECP, the response only includes block
data. After receiving the response, the requester validates the
block, particularly the correctness of the included certificate,
before accepting or delivering it.

The above request-and-response process is recursive.
If blocks referenced by the newly received block are missing,
the requester initiates another retrieval request. This recurs
until all of B’s ancestor blocks are received or delivered.

E. Block Committing Mechanism

In Wahoo, the process of committing blocks depends
on leader blocks, categorized as direct or indirect. Direct
committing occurs when a leader block, denoted as B,
is delivered with tag TS2 or TF. Following this event, a replica
thoroughly tracks down all ancestor blocks of B to identify
any uncommitted leader blocks. If an uncommitted leader



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7515

Algorithm 4 The Mechanism to Commit Blocks
1: Let AB represent the ancestors of a block B and S

represent the already committed block sequence.
2: Let Lc denote the leader block to be committed.
3: U ← uncommitted leader blocks in ALc

4: sort U based on the wave number
5: for each u in U do:
6: H← Au \ S
7: sort H first by wave number, within the same wave

prioritize EPBC over PBC, and then sort by broadcaster’s
replica number within the same phase.

8: S ← S +H

block, such as C , is detected, the process to commit it is
prompted by the committing event of B, referred to as the
indirect committing of C . For instance, as illustrated in Fig. 6,
leader blocks G and U demonstrate direct committing, while
N showcases indirect committing, triggered by the committing
of U . These committing actions occur sequentially, aligning
with the ascending order of their assigned wave numbers.

In a DAG-based system like Wahoo, committing blocks
involves sorting them to form a block sequence. When a leader
block is committed, either directly or indirectly, it initiates
by eliminating all already committed blocks from its set of
ancestor blocks. The remaining blocks undergo sorting first
according to their wave numbers. Within each wave, blocks
from the EPBC phase precede those from the PBC phase.
Further, within the same phase, blocks are sorted by the
broadcaster’s replica number. This sorted collection of blocks
is then appended to the existing sequence of committed blocks.
For example, in Fig. 6, committing the leader block G leads to
the sorting of its ancestor blocks into the sequence B, C , D,
and G. Committing the leader block U triggers the committing
of the leader block N . N then sorts its ancestors into the
sequence A, E , F , H , I , J , K , and N , appended after G.
Further, U sorts its ancestors into the sequence L , M , O , P ,
Q, S, T , and U , appended after N . The pseudocode outlining
the process of block committing is described in Algorithm 4.

F. Performance Analysis

With ALGpbc and ALGspbc boasting linear communication
overhead, Wahoo significantly reduces its communication
load to O(n2). This stands in stark contrast to the O(n3)

overhead prevalent in existing DAG-based BFT protocols.
Under optimal conditions, all instances of EPBC within
Wahoo successfully complete with a TF tag after just three
communication steps and transition to the subsequent PBC
phase. In these ideal scenarios, the GPC output during the
first communication step of the PBC phase efficiently reveals
the leader block in the wave. Consequently, the time taken for
a leader block to be committed is a mere 4δ, aligning with the
best performance of leading DAG-based BFT protocols such
as GradedDAG [45].

However, in less favorable scenarios, an EPBC instance may
require 5δ to produce an output, extending the completion
time for an entire wave to 8δ. Given the approximate

2/3 probability of committing a leader block, the expected
number of waves required for this averages around 1.5.
Consequently, in these suboptimal conditions, the anticipated
latency for committing a leader block could extend to 12δ.

V. CORRECTNESS ANALYSIS OF WAHOO

The correctness of Wahoo includes three aspects: safety,
liveness, and completeness, which are analyzed respectively
in this section.

A. Safety Analysis

In accordance with Section IV-E, committed blocks collec-
tively form a block sequence, denoted as S. Each committed
block within this sequence is uniquely identified by a distinct
sequence number represented as ⟨i, B⟩, where i signifies
its unique sequence identifier. Moreover, since this block
sequence is generated based on leader blocks, these leaders
collectively form their own sequence, termed ‘leader sequence’
and denoted as L. A relationship is established between these
sequences using the prefix relationship, symbolized as ≺ and
defined as follows: if S1 equals the initial segment of S2
(expressed as S2[0 : S1.len]), then S1 is considered a prefix
of S2, denoted by S1 ≺ S2. The same logic applies to leader
sequences: if L1 equals L2[0 : L1.len], then L1 is a prefix
of L2, symbolized as L1 ≺ L2. The relationship inherently
upholds the reflexive property, signifying that a sequence
always serves as a prefix to itself.

The safety property of Wahoo is expressed in Theorem 3,
whose proof relies on Lemma 1 and Lemma 2.

Lemma 1: If two leader blocks L1 and L2 are committed
directly, then either L1 is an ancestor of L2 or L2 is an
ancestor of L1.

Proof: If L1 and L2 are from the same wave, it implies
they are delivered through the same EPBC instance. As per
the consistency property of EPBC, in such a case, L1 must
be equal to L2, establishing that L1 is an ancestor of L2.
Otherwise, without loss of generality, we assume the wave
number of L1, denoted as w1, is smaller than that of L2,
denoted as w2. Since L1 is committed directly, it must be
delivered with tag TS2 or TF.

If L1 is delivered with TS2, based on the delivery assertion
property of EPBC, at least n−2 f non-faulty replicas must have
delivered L1 with TS1 and will reference L1 in the subsequent
PBC phase. Given that n − 2 f ≥ f + 1 and a block in the
subsequent EPBC phase references at least n- f blocks in the
PBC phase, each block in a wave w (w ≥ w1) will indirectly
reference L1. Hence, L2 must indirectly reference L1.

If L1 is delivered with TF, following the reception assertion
property of EPBC, all non-faulty replicas must have received
L1 and will broadcast a RECP message containing the
hash of L1 before advancing to the next wave w1 + 1.
Consequently, if an EPBC block in wave w1 + 1 cannot
reference L1 indirectly, it will receive at least n−2 f matching
RECP messages and can only generate a leader link at L1.
Thus, each block in a wave w (w ≥ w1), including L2, will
also reference L1.



7516 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

In conclusion, L1 must be an ancestor, thus establishing the
validity of the lemma. □

Lemma 2: If two non-faulty replicas pi and p j commit two
block sequences Si and S j , then either Si ≺ S j or S j ≺ Si .

Proof: Suppose Si and S j are committed based on two
directly committed leader blocks, L i and L j , respectively.
Lemma 1 establishes that either L i is an ancestor of L j or vice
versa. Without loss of generality, assume L i is an ancestor of
L j . When p j commits L j , it traces back through all leader
blocks in its ancestors, which includes L i . If p j has already
committed L i , then the block sequence Si produced by L i ,
is pre-existing in p j . If p j has not yet committed L i , it will
first sort all ancestor blocks of L i into a block sequence,
precisely identical to Si . Subsequently, p j removes blocks in
Si from its ancestors and sorts the remaining blocks. These
sorted blocks are appended to Si , forming S j . Thus, Si ≺ S j .

□
Theorem 3 (Safety): If two non-faulty replicas pi and p j

commit two blocks Bi and B j with the same sequence number,
Bi must be equal to B j .

Proof: Let Bi and B j be included in two block sequences
Si and S j , respectively, with their sequence number being
m. According to Lemma 2, either Si ≺ S j or vice versa.
Without loss of generality, assume Si ≺ S j , namely Si =

S j [0 : Si .len]. Therefore, Si [m] = S j [0 : Si .len][m] = S j [m].
On the other hand, since Bi = Si [m] and B j = S j [m] = B j ,
it follows that Bi = B j , confirming the safety of Wahoo. □

B. Liveness Analysis

The liveness property is articulated through Theorem 5,
firmly established upon the foundation laid by Lemma 4.

Lemma 4: Starting from any given moment t0, the proba-
bility of directly committing a leader block approaches 1 as
time progresses.

Proof: Consider the moment when the leader of a wave
is revealed through the GPC function. The unpredictability
property of GPC establishes that at least one non-faulty replica
has broadcast the PBC block of this wave. This non-faulty
replica must have delivered at least n- f EPBC blocks of
this wave with the tag TS2 or TF. Once the leader block
happens to be one of these EPBC blocks, the likelihood of
directly committing the leader block is at least n− f

n . Given n ≥
3 f +1, this likelihood is greater than 2/3. In other words, the
probability of the leader block being directly committed in a
wave denoted as p, exceeds 2/3. Consequently, the probability
of at least one leader block being directly committed within k
waves after t0 is 1− (1− p)k , and this probability approaches
1 as k increases. □

Theorem 5 Liveness: If a client submits a transaction tx to
Wahoo, t x will eventually be committed.

Proof: Let t0 denote the time when t x is received by all
non-faulty replicas. We define a block B to directly include a
request t x if t x is contained in B. Additionally, we say that
B indirectly includes t x if t x is contained in a block C and C
is referenced by B. Upon committing B, all requests included
by B, whether directly or indirectly, are committed as well.

In the subsequent phase after t0, denoted as s, all blocks
proposed by non-faulty replicas will include t x directly or

indirectly. As a block in the following phase must reference
at least n- f blocks in the previous phase, each block in a
phase after s, including the leader block, will definitely include
t x . Let t1 be the time when the first replica advances to the
phase following s. According to Lemma 4, the probability of
a leader block being directly committed after t1 approaches 1,
consequently committing t x as well. Therefore, t x will
eventually be committed. □

C. Completeness Analysis

Theorem 6 Completeness: For each sequence number k,
each non-faulty replica will commit a block numbered k
eventually.

Proof: Since a block references at least n- f blocks from
the preceding phase, directly committing a leader block will
result in committing at least n − f + 1 blocks. Therefore,
as long as a replica can keep directly committing leader
blocks, the number of its committed blocks will continue
to rise, allowing it to commit a block for each sequence
number k. Consequently, in the following parts, we focus on
demonstrating that each non-faulty replica can continuously
commit leader blocks directly.

According to the proof of Lemma 4, when a wave’s leader
is revealed, a non-faulty replica, denoted as pi , must have
delivered at least n- f EPBC blocks of this wave, tagged either
TS2 or TF. If pi can directly commit the wave’s leader block,
denoted as L , it must have referenced L with tag TS2 or TF
in its next PBC block, which we refer to as B. A non-faulty
replica that receives B will check whether B’s parent blocks
have been delivered and retrieve the missing ones. As a result,
each non-faulty replica will eventually deliver L with tag TS2
or TF and directly commit L . In other words, with a probability
of exceeding 2/3, each non-faulty replica is capable of directly
committing the leader block in every wave. Thus, each non-
faulty replica can continuously commit leader blocks directly,
and the theorem is established. □

VI. IMPLEMENTATION & EVALUATION

In this section, we present a comprehensive evaluation of
Wahoo’s effectiveness, comparing it against state-of-the-art
counterparts—Tusk and GradedDAG.

A. Implementation & Setting

To ensure fairness in our assessment, we implement Tusk,
GradedDAG, and Wahoo using the same framework, which is
written in Golang and comprises approximately 4,100 lines
of code. We are open-sourcing our implementation.1 Our
implementation leverages reputable open-source libraries, such
as dedis/kyber2 for the threshold signature and hashicorp/go-
msgpack3 for the communication between replicas. The
transaction size is consistently set at 250 bytes.

Our performance evaluation centers around two key metrics:
latency and throughput. Latency is measured as the average

1https://github.com/CGCL-codes/Wahoo
2https://github.com/dedis/kyber
3https://github.com/hashicorp/go-msgpack



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7517

Fig. 7. Performance comparison under good situations.

time taken to commit a transaction from the moment it is
proposed by the client. Throughput is computed as the average
number of transactions committed per second, commonly
abbreviated as Transactions Per Second (TPS). We assess both
situations—good situations without any faulty replicas and
suboptimal situations with some faulty replicas.

Experiments are conducted on Alibaba Cloud, with replicas
distributed across six regions in a geo-distributed manner:
Japan (Tokyo), South Korea (Seoul), Singapore, the US
(Silicon Valley), the UK (London), and Germany (Frankfurt).
Specifically, when x replicas are involved in a group of
experiments, at least ⌊x/6⌋ replicas and at most ⌈x/6⌉ are
deployed in each region, ensuring that replicas are distributed
as evenly as possible. Each replica is deployed as an
ECS.g6e.xlarge instance, featuring 4 vCPUs, 16 GB memory,
and a 40 GB SSD disk, running the Linux Ubuntu operating
system. Each pair of replicas is interconnected through a
network link with a bandwidth of 100 Mbps. To enhance the
experimental accuracy, we repeat each group of experiments
three times and take the averages to draw the graphs.

B. Performance Under Good Situations

In situations without any faulty replicas, we conduct a
detailed performance evaluation among different protocols,
considering the increasing number of replicas. Additionally,
we examine the trade-off between throughput and latency,
exploring the protocols’ peak throughput capabilities.

1) Basic Performance Comparison: We conduct experi-
ments in two sets, with batch sizes configured to 100 and

200 transactions, respectively. For each set, we scale the
number of replicas from 4 to 49, and the results are depicted in
Fig. 7. Across both sets, Wahoo outperforms its counterparts
in terms of throughput and latency, with the exception of a few
scenarios involving a smaller replica count. Notably, at a batch
size of 200 transactions and with 49 replicas, Wahoo achieves
1.48x and 1.35x higher throughput compared to Tusk and
GradedDAG. Regarding latency, Wahoo reduces it by 42.6%
and 27.3%, respectively. The inferior performance observed in
Wahoo when operating with fewer replicas can be attributed
to the additional time required to collect all (i.e., 4) signature
shares for data delivery tagged TF. This is in contrast to
GradedDAG, which only requires two rounds for collecting
n- f (i.e., 3) votes.

An intriguing phenomenon in Fig. 7 is that the throughput
of all protocols experiences an initial increase followed by a
decrease as the number of replicas increases, regardless of the
batch size. This trend is due to the increased number of blocks
proposed in each phase as the replica count rises from a small
number, leading to more blocks being committed per second
and an improved throughput. However, as the replica count
continues to increase, the network becomes saturated, leading
to congestion that negatively impacts throughput. Besides,
a comparison between Fig. 7a and Fig. 7c reveals that with a
larger batch size, the saturation point is reached sooner as the
replica count increases, which aligns with expectations since
larger batches consume more network resources.

2) Trade-off Between Throughput and Latency: In this set
of experiments, we vary the number of replicas to 7 and



7518 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 8. Throughput v.s. latency under good situations.

31, gradually increasing the batch size to measure the peak
throughput achieved by each protocol. The results are depicted
in Fig. 8. With 7 replicas, both GradedDAG and Wahoo exhibit
superior performance compared to Tusk, showcasing lower
latency and higher peak throughput. In the scenario involving
31 replicas, Wahoo continues to surpass GradedDAG and
Tusk. To be more specific, Wahoo achieves 1.26x and
1.23x higher throughput compared to GradedDAG and Tusk,
respectively. In terms of latency reduction, Wahoo diminishes
it by 20.6% and 24.6% compared to GradedDAG and Tusk,
respectively. The enhanced performance of Wahoo is largely
attributed to its reduced communication overhead.

C. Performance With Faulty Replicas

Wahoo’s optimal latency of 4δ is achieved under ideal
scenarios, where all replicas are non-faulty, and the EPBC
instance delivers data with tag TF. This ideal scenario has been
thoroughly assessed in Section VI-B. On the other hand, it is
also essential to assess Wahoo’s performance in less favorable
settings, where some replicas might be faulty. In this section,
we simulate faulty replicas using simple crash faults.

1) Basic Performance Comparison: We examine through-
put and latency concerning the increasing number of replicas.
Specifically, we set the number of faulty replicas, denoted
as c, to half of the fault tolerance value f . For instance,
if f =10, c would be set to f/2=5. The batch size remains set
to 100 transactions. Experimental results, detailed in Fig. 9,
illustrate that when the replica count reaches or exceeds
22, Wahoo outperforms other protocols due to its efficient
communication overhead. Notably, in the scenario involving
49 replicas, Wahoo showcases a remarkable enhancement,
elevating throughput by 90.9% (or 49.8%) and reducing
latency by 48.0% (or 32.3%), compared to Tusk (or
GradedDAG).

On the contrary, in scenarios with a small number
of replicas, Wahoo might deliver lower throughput and
higher latency than GradedDAG. This occurrence arises from
Wahoo’s inability to commit through TF-delivery due to some
faulty replicas. Nevertheless, even when involving 14 replicas,
Wahoo surpasses Tusk either in throughput or latency.

2) Trade-off Between Throughput and Latency: We also set
the number of replicas to half of the fault tolerance value

Fig. 9. Performance comparison with faulty replicas.

Fig. 10. Throughput v.s. latency with faulty replicas.

in this group of experiments. Specifically, for system scales
of 7 and 31, we set c to 1 and 5, respectively. Fig. 10
depicts these experimental results. When the replica count
is 7, Wahoo exhibits slightly lower peak throughput than
GradedDAG. This disparity also stems from Wahoo’s inability
to commit through the TF-delivery, resulting in a higher
consensus latency. Nevertheless, it still achieves a significantly
higher peak throughput, approximately 1.31x greater than
Tusk. In the scenario involving 31 replicas, Wahoo surpasses
its counterparts in both throughput and latency, owing to its
optimized communication overhead.



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7519

Fig. 11. Network traffic comparison.

D. Communication Overhead Comparison

To evaluate the effectiveness of Wahoo in reducing
communication overhead, we conduct a group of experiments
to compare the network traffic generated by different protocols.
For this group of experiments, we maintain a consistent batch
size of 100 transactions while varying the number of replicas
from 4 to 49. All replicas are configured as non-faulty, and
each protocol is operated for 50 waves in each configuration.
We utilize the iftop4 tool to measure the network traffic.
To isolate the traffic resulting solely from the consensus
protocols, we conduct the experiments in two steps. Firstly,
we run only the operating system and measure the network
traffic of a clean system, denoted as Tc. Secondly, we launch
the consensus protocol and measure the total traffic, denoted
as Ts . The traffic resulting from the consensus protocol is
calculated as Ts − Tc. The measured results reveal that Tc is
significantly smaller than Ts . We measure both inbound and
outbound traffic, averaging the data across all replicas.

Experimental results are shown in Fig. 11. It is easy to find,
regardless of whether we consider inbound or outbound traffic,
Wahoo consistently incurs lower network traffic compared to
its counterparts. Furthermore, as the number of replicas rises,
the increase in Wahoo’s network traffic is more gradual than
that of the others. This disparity stems from the fact that
Wahoo is designed with a low communication overhead of

4https://pdw.ex-parrot.com/iftop/

O(n2), in contrast to both GradedDAG and Tusk, which suffer
from a higher communication overhead of O(n3).

E. Evaluation of the Block Retrieval Mechanism

As a critical component in Wahoo, the block retrieval
mechanism guarantees totality that if a non-faulty replica
delivers a block, all other non-faulty replicas can do the
same. Without the block retrieval mechanism, Wahoo must
incorporate a simple ‘block echo’ mechanism to achieve
totality. Specifically, the block echo mechanism requires that
a replica broadcast any blocks it has delivered in this phase
before moving to the next phase. We introduce a variant of
Wahoo named Wahoo*, which substitutes the block retrieval
mechanism with the block echo mechanism for comparison.

We evaluate the block retrieval mechanism by comparing
Wahoo and Wahoo*, with a consistent setup of seven non-
faulty replicas across all tests. We incrementally increase the
batch size from 100 to 1,200 transactions, conducting each
group of experiments for 50 waves. The results, depicted in
Fig. 12a and Fig. 12b, demonstrate that Wahoo significantly
outperforms Wahoo* in both throughput and latency metrics.
Additionally, we compare the number of blocks transmitted
under each mechanism, whose results are shown in Fig. 12c,
which highlights the efficiency of the block retrieval
mechanism over the block echo mechanism. Remarkably,
at a batch size of 1,200 transactions, the number of blocks
transmitted by Wahoo is only 1.51% of that by Wahoo*.
In conclusion, the block retrieval mechanism effectively
reduces the number of transmitted blocks, proving to be more
communication-efficient than its counterpart (i.e., block echo
mechanism).

VII. RELATED WORK

Given that Wahoo operates as an asynchronous protocol,
our discussion primarily focuses on related work within the
context of an asynchronous network. This includes both non-
DAG asynchronous protocols and DAG-based asynchronous
protocols. Additionally, we also talk about some interesting
studies that, while not strictly classified as asynchronous
protocols, bear significant relevance to Wahoo.

A. Non-DAG Asynchronous Protocols

Research on asynchronous BFT protocols has its origins
in the 1980s, marked by pioneering Asynchronous Binary
Agreement (ABA) protocols. As the simplest asynchronous
consensus primitive, ABA facilitates agreement on binary
values, whose representatives include Ben-Or [6], FMR [21],
MMR [39], and ABY [1]. However, due to their binary
limitation, ABA cannot directly serve as the consensus
mechanism in blockchain systems.

To agree on arbitrary values, the concept of Validated
Asynchronous Byzantine Agreement (VABA) or Multivalued
Validated Byzantine Agreement (MVBA) is introduced. These
VABA protocols are primarily divided into two groups based
on their design principles: ABA-based and view-change-
based. ABA-based VABA, exemplified by CKPS [11] and



7520 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 12. Comparison between the block retrieval mechanism and the block echo mechanism.

Dumbo-MVBA [35], iterates ABA instances to agree on
the broadcasted value. In contrast, view-change-based VABA,
such as AMS [3] and sMVBA [22], utilizes a locking
mechanism to restrict replicas to broadcast a consistent value
across different views. While VABA applies to blockchain
systems, they can only reach consensus on one block at
a time, processing blocks sequentially, and limiting system
throughput.

Another stream of works introduces a partially-synchronous
path to asynchronous BFT protocol [7], [15], [23], [34],
capable of delivering a high performance akin to partially-
synchronous protocols under favorable conditions, while
ensuring liveness comparable to asynchronous protocols in less
ideal scenarios. However, these protocols also process data
sequentially, constraining system throughput significantly.

B. DAG-Based Asynchronous Protocols

To parallel data processing, the DAG structure has
been incorporated into the BFT consensus design, initially
pioneered by DAGRider [28]. Successive efforts inspired by
DAGRider strive to diminish consensus latency. For instance,
Tusk reduces the wave length without compromising safety or
liveness, achieving a good-case latency of 7 communication
steps [16]. BullShark introduces an optimistic path that
attains a good-case latency of 6 communication steps [40].
GradedDAG, utilizing GRBC and CBC protocols for block
broadcasting, further reduces the wave length to two
rounds, thus achieving a good-case latency of 4 steps [45].
Similarly, leveraging CBC protocols to broadcast blocks,
LightDAG presents two variants to reduce good-case latencies,
respectively [14]. Despite the advances, these protocols
overlook the substantial communication overhead of O(n3).
This is addressed by Wahoo, which reduces communication
overhead to O(n2) while maintaining a low latency of 4 steps.

An additional notable contribution is Narwhal [16], which,
rather than proposing a DAG-based consensus protocol,
devises an underlying DAG-based mempool for efficient
transaction broadcasting. This mempool design is orthogonal
to our work in this paper and suggests the potential of
combining Narwhal and Wahoo as a promising direction
for future research. It is worth noting that Wahoo’s block
retrieval mechanism shares a similar idea as the block pull
mechanism in Narwhal. Both leverage certificates or proofs to

ensure totality, thereby simplifying garbage collection through
offloading blocks from prior rounds to a passive distributed
store. On the other hand, Wahoo’s block retrieval mechanism
can be viewed as an upgraded version of Narwhal’s block pull
mechanism, catering to blocks with diverse tags.

C. Other Related Works

Despite concerns over liveness [38], a substantial body
of research has concentrated on designing BFT consensus
within partially-synchronous networks, whose representatives
include FaB5 [37], SBFT [24], HotStuff [46], and Fast-
HotStuff [26]. Similar to the goal of Wahoo, a work named
BG [42] aims to reduce the communication overhead of
partially-synchronous protocols. Specifically, within a modular
framework, BG notably reduces the communication overhead
of FaB5 and SBFT by an order of magnitude. Another
work closely related to Wahoo is BBCA-CHAIN, which
focuses on reducing the latency of DAG-based protocols [36].
Unlike Wahoo, which operates under the assumption of
an asynchronous network, BBCA-CHAIN is designed for a
partially-synchronous network.

A recent line of work considers mitigating block manipula-
tion to enhance order fairness within consensus mechanisms.
Pompe [48] utilizes timestamps for fair ordering, Aequitas [30]
addresses the Condorcet paradox in transaction ordering via a
notion of batch-order-fairness, and Themis [29] introduces a
deferring technique to tackle the liveness issue in Aequitas.
Despite their innovative approaches, these protocols rely on
complex transaction graph processing, leading to efficiency
issues. In contrast, ACCORD adopts an alternative strategy
by designating multiple leaders to propose a block [4].
This method alleviates the risk of manipulation by a
single leader and promises higher efficiency by eliminating
the need for transaction graph analysis. These innovative
protocols, including ACCORD, could be integrated into
Wahoo, enhancing fairness in DAG-based protocols.

VIII. CONCLUSION

Current DAG-based BFT protocols excel in system
efficiency by enabling parallel block broadcasting. However,
they disregard the significant communication overhead.
Addressing this, we introduce two new broadcast protocols,



DAI et al.: WAHOO: A DAG-BASED BFT CONSENSUS WITH LOW LATENCY AND LOW COMMUNICATION OVERHEAD 7521

PBC and EPBC, designed to exhibit linear communication
overhead. Leveraging these protocols, we have devised
Wahoo, a lightweight DAG-based BFT protocol that reduces
communication overhead by an order of magnitude compared
to existing solutions. Remarkably, under favorable situations
where no replicas are faulty, Wahoo achieves low latency on
par with the best results offered by existing protocols. Our
experimental findings highlight Wahoo’s exceptional perfor-
mance in favorable conditions and its low communication
overhead compared to its counterparts.

REFERENCES

[1] I. Abraham, N. Ben-David, and S. Yandamuri, “Efficient and adaptively
secure asynchronous binary agreement via binding crusader agreement,”
in Proc. ACM Symp. Princ. Distrib. Comput., Jul. 2022, pp. 381–391.

[2] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Reaching consensus for asynchronous distributed key
generation,” in Proc. ACM Symp. Princ. Distrib. Comput., Jul. 2021,
pp. 363–373.

[3] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous Byzantine agreement,” in Proc. ACM Symp.
Princ. Distrib. Comput., Jul. 2019, pp. 337–346.

[4] G. D. Bashar, J. Holmes, and G. G. Dagher, “ACCORD: A scalable
multileader consensus protocol for healthcare blockchain,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 2990–3005, 2022.

[5] I. Bashir, Mastering Blockchain. Birmingham, U.K.: Packt, 2017.
[6] M. Ben-Or, “Another advantage of free choice (extended abstract):

Completely asynchronous agreement protocols,” in Proc. 2nd Annu.
ACM Symp. Princ. Distrib. Comput., 1983, pp. 27–30.

[7] E. Blum, J. Katz, J. Loss, K. Nayak, and S. Ochsenreither, “Abraxas:
Throughput-efficient hybrid asynchronous consensus,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2023, pp. 519–533.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. Gold Coast,
QLD, Australia: Springer, Nov. 2001, pp. 514–532.

[9] G. Bracha, “Asynchronous Byzantine agreement protocols,” Inf.
Comput., vol. 75, no. 2, pp. 130–143, Nov. 1987.

[10] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. thesis, School Eng., Univ. Guelph, Guelph, ON,
Canada, 2016.

[11] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Proc. Annu. Int. Cyptol. Conf.
Santa Barbara, CA, USA: Springer, 2001, pp. 524–541.

[12] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantipole:
Practical asynchronous Byzantine agreement using cryptography
(extended abstract),” in Proc. 19th Annu. ACM Symp. Princ. Distrib.
Comput., Jul. 2000, pp. 123–132.

[13] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proc. 3rd USENIX Symp. Operating Syst. Design Implement., 1999,
pp. 173–186.

[14] X. Dai et al., “LightDAG: A low-latency DAG-based BFT consensus
through lightweight broadcast,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2024, pp. 998–1008.

[15] X. Dai, B. Zhang, H. Jin, and L. Ren, “ParBFT: Faster asynchronous
BFT consensus with a parallel optimistic path,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2023, pp. 504–518.

[16] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: A DAG-based mempool and efficient BFT
consensus,” in Proc. 17th Eur. Conf. Comput. Syst., 2022, pp. 34–50.

[17] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination and its
applications,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 2705–2721.

[18] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous BFT
made practical,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 2028–2041.

[19] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988.

[20] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[21] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and efficient
oracle-based consensus protocols for asynchronous Byzantine systems,”
IEEE Trans. Dependable Secure Comput., vol. 2, no. 1, pp. 46–56,
Jan. 2005.

[22] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-NG:
Fast asynchronous BFT consensus with throughput-oblivious latency,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2022,
pp. 1187–1201.

[23] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback,” in Proc. Int. Conf. Financial Cryptography Data
Secur. Grenada: Springer, 2022, pp. 296–315.

[24] G. Golan Gueta et al., “SBFT: A scalable and decentralized trust
infrastructure,” in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2019, pp. 568–580.

[25] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2020, pp. 803–818.

[26] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai, “Fast-HotStuff: A fast and
resilient HotStuff protocol,” 2020, arXiv:2010.11454.

[27] H. Jin and J. Xiao, “Towards trustworthy blockchain systems in the era
of ‘Internet of Value’: Development, challenges, and future trends,” Sci.
China Inf. Sci., vol. 65, pp. 1–11, May 2022.

[28] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you
need is DAG,” in Proc. ACM Symp. Princ. Distrib. Comput., Jul. 2021,
pp. 165–175.

[29] M. Kelkar, S. Deb, S. Long, A. Juels, and S. Kannan, “Themis: Fast,
strong order-fairness in Byzantine consensus,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2023, pp. 475–489.

[30] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness
for Byzantine consensus,” in Proc. Annu. Int. Cryptol. Conf., 2020,
pp. 451–480.

[31] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asynchronous
distributed key generation for computationally-secure randomness,
consensus, and threshold signatures,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2020, pp. 1751–1767.

[32] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” in Proc. 21st ACM SIGOPS
Symp. Operating Syst. Princ., Oct. 2007, pp. 45–58.

[33] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
Jul. 1982.

[34] Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous
consensus as fast as the pipelined BFT,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2022, pp. 2159–2173.

[35] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal multi-
valued validated asynchronous Byzantine agreement, revisited,” in Proc.
39th Symp. Princ. Distrib. Comput., Jul. 2020, pp. 129–138.

[36] D. Malkhi, C. Stathakopoulou, and M. Yin, “BBCA-CHAIN:
Low latency, high throughput BFT consensus on a DAG,” 2023,
arXiv:2310.06335.

[37] J.-P. Martin and L. Alvisi, “Fast Byzantine consensus,” IEEE Trans.
Dependable Secure Comput., vol. 3, no. 3, pp. 202–215, Jul. 2006.

[38] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of
BFT protocols,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 31–42.

[39] A. Mostefaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous Byzantine consensus with t<n/3 and o(n2) messages,” in Proc.
ACM Symp. Princ. Distrib. Comput., Jul. 2014, pp. 2–9.

[40] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: DAG BFT protocols made practical,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2022, pp. 2705–2718.

[41] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms,” Distrib. Comput., vol. 2, no. 2,
pp. 80–94, Jun. 1987.

[42] X. Sui, S. Duan, and H. Zhang, “BG: A modular treatment of BFT
consensus toward a unified theory of BFT replication,” IEEE Trans. Inf.
Forensics Security, vol. 19, pp. 44–58, 2024.

[43] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Distributed consensus
protocols and algorithms,” Blockchain Distrib. Syst. Secur., vol. 1,
pp. 25–55, Apr. 2019.

[44] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Commun. Surveys
Tuts., vol. 22, no. 2, pp. 1432–1465, 2nd Quart., 2020.



7522 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[45] X. Dai, Z. Zhang, J. Xiao, J. Yue, X. Xie, and H. Jin, “GradedDAG: An
asynchronous DAG-based BFT consensus with lower latency,” in Proc.
42nd Int. Symp. Reliable Distrib. Syst. (SRDS), Sep. 2023, pp. 107–117.

[46] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,” in Proc.
ACM Symp. Princ. Distrib. Comput., Jul. 2019, pp. 347–356.

[47] H. Zhang and S. Duan, “PACE: Fully parallelizable BFT from
reproposable Byzantine agreement,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2022, pp. 3151–3164.

[48] Y. Zhang, S. T. V. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine
ordered consensus without Byzantine oligarchy,” in Proc. USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2020, pp. 633–649.

Xiaohai Dai (Member, IEEE) received the Ph.D.
degree from the School of Computer Science
and Technology, Huazhong University of Science
and Technology (HUST), Wuhan, China, in 2021.
He is currently a Post-Doctoral Researcher with
the School of Computer Science and Tech-
nology, HUST. His current research interests
include blockchain and distributed system. His
awards include the Outstanding Creative Award
in 2018 FISCO BCOS Blockchain Application
Contest and Top Ten in FinTechathon 2019.

Zhaonan Zhang (Student Member, IEEE) received
the bachelor’s degree from Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2018. He is currently pursuing the master’s
degree with the School of Computer Science and
Technology, HUST, under the supervision of Jiang
Xiao. His research interests include blockchain and
consensus.

Zhengxuan Guo (Student Member, IEEE) received
the B.S. degree in computer science from Soochow
University, China. He is currently pursuing the mas-
ter’s degree with Huazhong University of Science
and Technology (HUST), under the supervision of
Hai Jin. His research interests include blockchain
and Byzantine fault tolerance.

Chaozheng Ding (Student Member, IEEE) received
the B.S. degree in computer science from Yangtze
University, China. He is currently pursuing the mas-
ter’s degree with Huazhong University of Science
and Technology (HUST), under the supervision of
Jiang Xiao. His research interests include blockchain
and Byzantine fault tolerance.

Jiang Xiao (Member, IEEE) received the B.Sc.
degree from HUST in 2009 and the Ph.D. degree
from The Hong Kong University of Science and
Technology (HKUST) in 2014. She is currently
a Professor with the School of Computer Science
and Technology, Huazhong University of Science
and Technology (HUST), Wuhan, China. Her
research interests include blockchain and distributed
computing. Her awards include the CCF-Intel Young
Faculty Research Program 2017, Hubei Downlight
Program 2018, the ACM Wuhan Rising Star Award

2019, the Knowledge Innovation Program of Wuhan-Shuguang 2022, and the
Best Paper Award from IEEE ICPADS/GLOBECOM/GPC/BLOCKCHAIN.

Xia Xie (Member, IEEE) received the Ph.D. degree
in computer architecture from Huazhong University
of Science and Technology in 2006. She is currently
a Professor with Hainan University. Her research
interests include data mining and knowledge graph.

Rui Hao (Member, IEEE) received the Ph.D.
degree from Nanjing University (NJU), Nanjing,
China, in 2023. She is currently a Post-Doctoral
Researcher with the School of Computer Science
and Artificial Intelligence, Wuhan University of
Technology, China. Her research interests include
software quality, software security, and blockchain.

Hai Jin (Fellow, IEEE) received the Ph.D. degree in
computer engineering from Huazhong University of
Science and Technology (HUST), China, in 1994.

He was with The University of Hong Kong
from 1998 to 2000 and a Visiting Scholar
with the University of Southern California
from 1999 to 2000. He is currently a Chair
Professor of computer science and engineering with
HUST. He has co-authored more than 20 books and
published over 900 research articles. His research
interests include computer architecture, parallel and

distributed computing, big data processing, data storage, and system security.
He is a fellow of CCF and a Life Member of ACM. In 1996, he was awarded
a German Academic Exchange Service Fellowship to visit the Technical
University of Chemnitz in Germany and the Excellent Youth Award from
the National Science Foundation of China in 2001.


