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Abstract — Uniform circular arrays (UCAs) provide both omnidirectional (360°) and directive (sector) coverage of the azimuthal
plane. Superdirective versions with unidirectional, high front-to-back ratio (FTBR) properties could provide the radiated field char-
acteristics being pursued for NextG wireless networks and their  perceived applications.  Typical  UCA configurations – full,  semi-
circular,  and  sector – that  radiate  vertically-polarized (VP)  fields  and  are  composed  of  either  omnidirectional  electric  dipole  ele-
ments or unidirectional Huygens dipole elements are analyzed first with conventional methods as reference cases. These omni- and
uni-directional  element  configurations  are  then  treated  with  several  optimization  techniques:  the  classic  Rayleigh-quotient  (RQ)
method and its unidirectional-constrained version; the eigenbeam decomposition and synthesis (EBDS) technique used to design su-
perdirective acoustic receiving arrays; and the Bessel-azimuthal multipole (BEAM) approach developed herein. Several arrays are
identified as being superdirective with extremely high FTBR values. The performance characteristics of the arrays of unidirectional
elements are demonstrated to be superior  in general.  Moreover,  it  is  shown that  larger  radius arrays with RQ-specified excitation
amplitudes are robust  to changes in them whereas the outcomes of  the corresponding small  radius versions are not.  On the other
hand, the BEAM-optimized densely-packed small-radius superdirective arrays are quite tolerant to those variations while generating
unidirectional pseudo-needle beams.
Keywords — Directivity, Huygens dipole antennas, Multipoles, Needle radiation, Optimization, Superdirective arrays, Uniform
circular arrays.
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I. Introduction
Circular arrays have facilitated numerous acoustic and elec-
tromagnetic  (EM)  applications  over  several  decades.  They
can readily provide omnidirectional coverage in both trans-
mission  (e.g.,  broadcasting – information  dissemination)
and  reception  (e.g.,  sensing – information  capture)  modal-
ities. As phased-array systems, they are attractive for use in
multifunction  radar  and  communication  applications  that
require beam steering over the entire azimuth plane. More-
over, they offer the ability to combine both their omni and
directional  properties  in  a  single,  simple  system.  They  do
not  have  left-right  ambiguities,  and  their  directive  beams
can be scanned with uniform behavior over the entire 360°
azimuthal space.

Ring aerials (uniform circular arrays (UCAs) of dipole
antennas) as omni and directional systems have seen nearly
a  century  of  development  and  applications,  e.g., [1]–[3].

Their  early  applications  included  TV  broadcasting,  radio
monitoring, and remote sensing (e.g., radars). More recent-
ly,  UCAs have provided wireless communication coverage
over the azimuthal plane, e.g., [4]–[6]. They have been ap-
plied as the basis for smart antennas (adaptive arrays) to fa-
cilitate  mobile  communications,  e.g., [7], [8].  Very  large
resonant  UCAs  and  their  consequent  extreme  properties
have been studied for many years, e.g., [9]–[12].

Electrically steerable parasitic array radiator (ESPAR)
systems are notable UCA examples. Their original concept,
a circular array of parasitic dipole (monopole) elements ex-
cited by a concentric, driven (active) dipole (monopole) ele-
ment was considered by Harrington in the seminal paper [13].
The  specific  term appears  to  have  originated  in  the article
[14].  They  have  more  recently  been  developed  to  achieve
electronic  beam forming/steering over  the  entire azimuthal
plane [15]–[21].  They  avoid  the  cost  of  massive,  adaptive
phased arrays in which each of their elements are active in
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order  to  facilitate  precise  control  of  their  amplitudes  and
phases. ESPAR systems can direct radiation to intended re-
cipients and steer radiation nulls toward any interfering sig-
nals.  The  radiation  nulls  and  main  lobe  gains  complement
each other to maximize the system SINR (signal-to-interfer-
ence-noise  ratio).  As  a  consequence,  the  antenna’s  main
lobe  gain  dramatically  decreases  the  required  transmission
power  for  a  set  range.  Moreover,  directed  radiation  also
helps alleviate health concerns that  might accompany such
radiators.

They have been adapted for direction-of-arrival (DOA)
determination for position location services, e.g., [22]–[26],
as  well  as  for  V2V  (vehicle-to-vehicle)  communications
and  remote  sensing  e.g., [27], [28].  These  are  particularly
attractive features for NextG wireless systems. Metasurface
versions of ESPARs that mimic their functionalities are be-
ing  developed,  e.g., [6], [29]–[33].  UCAs,  ESPARs,  and
their  pattern-reconfigurable  advantages  have  been  realized
with standard radiating elements that are more complicated
than dipoles, such as log-periodic, Vivaldi, and horn anten-
nas,  e.g., [26],  and  other  more  exotic  elements,  notably
plasmas antennas, e.g., [34]–[42].

Because NextG systems require highly directive beams
to  minimize  power  requirements,  provide  low-probability-
of-intercept (LPI)  performance,  and  to  overcome  propaga-
tion losses  particularly  at  millimeter-wave (mm-wave) fre-
quencies,  arrays  with  superdirective  properties  would  be
very  advantageous.  As  will  be  discussed  in  further  depth
below, an array is said to be superdirective if its directivity
exceeds the value obtained when the array is uniformly ex-
cited.  The  concept  originated  over  a  century  ago  with  the
seminal  needle-radiation  paper  by  Oseen [43].  There  have
been  numerous  articles  that  have  examined  the  maximum
directivity  and,  hence,  gain  (i.e.,  gain  equals  efficiency
times directivity) in the last two decades of EM arrays, e.g.,
[44]–[51].  Superdirective  EM  UCAs  were  considered  in
early articles, such as [11], [52], but few have been report-
ed  recently  because  of  the  stigma  attached  to  the  concept,
i.e.,  the notions that  superdirective systems are impractical
because they are ill-posed designs that  are highly sensitive
to component and material variations; they require unrealiz-
able  excitations;  they  have  extremely  narrow  bandwidths;
and they have very low radiation efficiencies.

On the  other  hand,  superdirectivity  has  been  demon-
strated  with  many  EM  end-fire  uniform  linear  arrays
(ULAs)  of  electric  monopoles  and dipoles,  e.g., [53]–[62],
as well as other electric [63]–[65] and magnetic [66] based
systems.  Very  recent  explorations  of  superdirectivity  with
broadside radiating elements and arrays of them have been
enabled  by  mixtures  of  electric  and  magnetic  multipoles
[67]–[70]. These multipole concepts lead to attractive opti-
mization  approaches  specifically  for  UCAs  that  will  be
introduced later in this article.

While EM UCAs  will  be  emphasized,  there  is  a  sub-
stantial amount of literature to be found on acoustic UCAs,
most notably superdirective acoustic UCAs as receiving an-

tennas [45], [71]–[76]. Acoustic UCAs as sensing and data
acquisition systems are important,  e.g.,  for audio engineer-
ing and sonar. The eigenbeam decomposition and synthesis
(EBDS)  method  to  achieve  superdirective  acoustic  arrays
was  introduced  in  the  series  of  papers [77], [78].  These
eigenbeams are  essentially  the  azimuthal  multipoles  of  the
scalar (acoustic) Helmholtz equation. An eigen-beamformer
(EBF) [73] employs these multipoles to expand any square-
integrable function on a circle into a series of circular har-
monics or eigenbeams [72] that can be combined to synthe-
size the  coefficients  of  a  desired  pattern  by  Fourier  trans-
form. The EBF approach has been combined effectively with
many signal processing approaches such as the MUSIC and
ESPIRIT algorithms to perform all  signal  processing func-
tions of a sensor UCA in its beamspace.

In this paper, Section I explores optimizing the radiat-
ed field properties of vertically-polarized (VP) UCAs from
several  points  of  view,  including  the  acoustic  EBDS
method and an EM multipole-based approach, that achieve
compact  superdirecitve  UCAs.  The  basics  of  VP  dipole-
based UCAs will be reviewed in Section II. The omnidirec-
tional-mode (OM) properties of such UCAs, which consist
of  even  and  odd  number  of  elements,  will  be  discussed  to
lay  the  foundations  for  the  various  UCA  examples  to  be
treated.  Beam-forming  with  their  directive  modes  (DMs)
will be described in Section III. A UCA of half-wavelength
dipoles and its performance characteristics will be given; it
will act as the baseline design. To achieve higher directivi-
ty in either their OM or DM states, novel semi-circular and
sectoral UCAs are constructed with unidirectional Huygens
dipole  antennas  (HDAs) [79]  as  their  elements  in  Section
IV.  Since  they  are  unidirectional  radiators,  the  nuances  of
the HDAs pointing radially or in a specified beam direction
will  be  examined  and  compared.  The  Rayleigh  quotient
(RQ) optimization method will be applied to UCAs in Sec-
tion V  to  determine  if  the  DM  performance  can  be  en-
hanced further.  Several  of  the  EM UCA cases  given up to
this  point  will  be  demonstrated  to  be  superdirective.  The
acoustic  UCA-based  EBDS optimization  method  will  then
be introduced in  Section VI  and applied to  a  typical  ideal,
compact acoustic  UCA  of  isotropic  radiators  for  compari-
son  to  the  performance  characteristics  achieved  with  the
preceeding  EM  UCAs.  Finally,  a  Bessel-azimuthal multi-
pole  (BEAM)  method  will  be  developed  in  Section  VII.
This  BEAM approach will  be applied to  a  set  of  UCAs of
densely-packed half-wavelength VP electric dipoles and VP
HDAs. It will be demonstrated that the DMs of the resulting
BEAM-designed  compact  UCAs  are  also  superdirective,
but with  superior  performance  characteristics  when  com-
pared to the other systems. Conclusions are summarized in
Section VIII. 

II. Basic Analysis of a Circular Array of Dipoles
 

1. Dipole fields
A circular array of basic dipole elements is considered first.
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Let  the  electric  and  magnetic  dipoles  be  oriented  in  the 
and  directions, respectively,  in  free  space.  Let  their  cur-
rent  moments  and  locations  be , ,  and , re-
spectively.  Then  their  electric  fields  in  their  far  fields  are
given by the expressions [80]: 

E⃗ffJ (x,y,z) = jωµ0 (Ie ℓe)e+jk r⃗e ·r̂ e−jk r

4πr
(r̂× r̂× û )

E⃗ffK(x,y,z) = jωµ0 (Im ℓm)e+jk r⃗m ·r̂ e−jk r

4πr
(r̂× v̂ ) (1)

r = (x2+ y2+ z2)1/2 r̂ = r⃗/r k = ω
√
ε0µ0 =

2π/λ0 f0

ω = 2π f0 λ0 = 1/( f0
√
ε0µ0)

L +z

where  and  and 
,  and  is  the  operating  frequency  of  the  source  so

that  and .  Half-wavelength
dipoles will also be considered since, as noted, many UCAs
consist  of  them  or  their  equivalent  ground  plane-based
quarter-wavelength monopoles  to  achieve  higher  directivi-
ties.  Recall  that the far-field of an electric dipole of length

 oriented along the -axis is [81]
 

E⃗ffed,L(r, θ,ϕ) = jωµ0I0e+jk r⃗e ·r̂ e−jk r

4πr
EF ed,L(θ,ϕ) θ̂ (2)

where the element factor
 

EF ed,L(θ,ϕ) = 2
{

cos[ (k0L/2) cosθ]− cos(k0L/2)
sinθ

}
(3)

 

2. Array fields
N

z
xy

The basic circular array is taken to be one with  elements,
each being an ideal vertical electric dipole, i.e., each dipole
is oriented along the -axis and centered with respect to the

-plane.  Semi-circular  and  sectoral  UCAs  will  also  be
considered throughout. An example 13-element full UCA is
depicted in Figure 1(a). Similarly, example 7-element semi-
circular and 60°-sector arrays are illustrated in Figures 1(b)
and (c).

nThe far-field expression of the -th dipole is thus
 

E⃗ffn (r, θ,ϕ) = jωµ0 (I ℓ)n e+jk r⃗n ·r̂ e−jk r

4πr
(r̂× r̂× ẑ ) (4)

As compiled in the Appendix A, the element vector field of
this dipole is
 

EVFed(θ,ϕ) = r̂× r̂× ẑ
= sinθ cosθ cosϕ x̂+ sinθ cosθ sinϕ ŷ− sin2 θ ẑ
= sinθ θ̂ (5)

aBecause  the  array  elements  lie  on  a  circle  of  radius ,  the
dot-product portion of the phase terms becomes
 

r⃗n · r̂ = a (cosϕn x̂+ sinϕn ŷ)
· (sinθ cosϕ x̂+ sinθ sinϕ ŷ+ cosθ ẑ)
= a cosϕn cosϕ sinθ+a sinϕn sinϕ sinθ
= a sinθ cos(ϕ−ϕn) (6)

and, hence, the phase terms themselves become 

e+jk r⃗n ·r̂ = e+jk a sinθcos(ϕ−ϕn) (7)

I0

An = In/I0 n = 1,2, . . . ,N

ℓn = ℓ

To simplify the discussion and related notations, the excita-
tion  amplitudes  are  normalized  to  the  value  such  that
they are represented simply as , for .
Similarly, the length of each dipole is taken to be the same:

.  Consequently,  the  electric  field  radiated  into  its  far
field by this circular array of VP ideal electric dipoles is
 

E⃗fftotal(r, θ,ϕ) = jωµ0I0ℓ
e−jk r

4πr
AF(θ,ϕ)×EVFed(θ,ϕ) (8)

where the array factor
 

AF(θ,ϕ) =
N∑

n=1

Ane+jk a sinθ cos(ϕ−ϕn) (9)

In = I0

Furthermore, it will assumed initially that the current ampli-
tude  of  each  element  is  the  same,  i.e.,  so  that
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Figure 1  Typical UCAs to be considered in this article. (a) Full 13-elem-
ent  array  of  vertically  polarized  radiators;  (b)  7-element  semi-circular
array;  (c)  7-element 60°-sector array.  The red dots in (b) and (c)  indicate
the locations of each vertically polarized radiator.
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An = 1.0, and that the array elements are equally spaced on
its circle, i.e., a full UCA is considered. It radiates an omni-
directional field. A MATLAB code was written that calcu-
lates the array factor and element vector field terms to find
the directivity patterns that this omnidirectional mode (OM)
of the array produces, i.e., it calculates
 

APOM(θ,ϕ) =AFOM(θ,ϕ)×EVF ed(θ,ϕ) (10)

where the array factor term becomes simply
 

AFOM(θ,ϕ) =
N∑

n=1

e+jk a sinθ cos(ϕ−ϕn) (11)

L = λ/2
Similarly,  an  array  of  half-wavelength  dipoles,  i.e.,  those
with ,  is  considered.  Its  directivity  patterns  follow
from the analogous expression:
 

APOM−HW(θ,ϕ) =AFOM(θ,ϕ)×EVF ed,hw(θ,ϕ) (12)

EVF ed,hw(θ,ϕ) = EF ed,L|L=λ0/2(θ,ϕ) θ̂where .
 

3. Odd versus even number of array elements
A  UCA  of  vertical  electric  dipoles  provides  the  means  to
have a  natural  OM  and  associated  radiated  field  perfor-
mance in its azimuthal plane. However, the number of ele-
ments in a full UCA – whether it is even or odd – impacts
the shape and quality of its pattern. This is particularly true
of its out-of-roundedness (OoR) values, i.e., the differences
between  its  radiation  pattern  in  the  azimuthal  plane  and  a
circle whose radius is the average value of that pattern over
those  angles.  These  OoR  effects  were  studied  in  the  early
paper [3] where it was demonstrated that an odd number of
elements  yields  superior  performance  characteristics.  This
issue is important since we would like an array that works
optimally in both its  OM and DM states simply by chang-
ing the excitation amplitudes. As will be demonstrated later,
an odd number is also advantageous for the DM of a semi-
circular  or  sector  array  centered  about  the  desired  beam
direction  since  the  center  element  will  coincide  with  that
direction.

a = λ
ka = 2π 2πa = 6.28λ

Examples  of  UCAs  with  12  and  13  ideal,  Hertzian
dipole elements confirm the odd number outcome. The ra-
dius  of  the  array  is  arbitrarily  chosen  to  be ,  which
means  that  its  and  its  perimeter .  The
12- and 13-element UCA results  are presented,  respective-
ly, in Figures 2 and 3.

The  12-element  patterns  in  the  horizontal  azimuthal
plane and in the two vertical principal planes are given, re-
spectively, in Figure 2(a) and Figures 2(c) and (d). The ra-
dius of the red circle in Figure 2(a), 2.49 dB, is the average
of the blue circle’s values – the UCA’s pattern. The latter’s
maximum value is 2.56 dB. The OoR values, i.e., the differ-
ences  between  the  two  curves,  are  summarized  in Figure
2(b). The maximum OoR value is 0.07 dB, a 1.60% differ-
ence.  The  maximum  directivity  in Figures  2(c)  and  (d)  is
3.72 dB. As Figure 2(c) shows, it is not along the azimuthal
plane.
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Figure 2  Calculated  directivity  results  for  the  OM  of  the  UCA  with  12
vertical  dipole elements and a radius giving .  (a)  Array pattern in
the  azimuthal -plane  compared  to  the  average  directivity  reference.
(b) OoR values. Array patterns in the two principal vertical planes. (c) Lin-
ear plot. (d) Polar plot.
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9.17×10−6

2.11×10−4%

xy

The  13-element  patterns  in  the  horizontal  azimuthal
plane and in the two vertical principal planes are given, re-
spectively, in Figure 3(a) and Figures 3(c) and (d). The ra-
dius of the red circle in Figure 2(a), 2.49 dB, is the average
of the blue circle’s values – the UCA’s pattern. The latter’s
maximum value is 2.49 dB, i.e., the two curves are basical-
ly  coincident.  The  OoR  values  are  summarized  in Figure
3(b).  The  maximum  OoR  value  is  dB,  a

 difference. Thus, the odd number of elements
indeed  yields  superior  OoR  values  of  the  OM’s  pattern  in
the -plane. However, note in Figures 3(c) and (d) that the
maximum directivity is again 3.72 dB. Moreover, as Figure
3(c) clearly shows, it too is not along the azimuthal plane.

θ = π/2
xy

2.11×10−4%

xy

Corresponding UCAs with 12 and 13 ideal, half-wave-
length dipole elements were also considered. The results are
essentially the same, but with some notable differences. The
12-element UCA yields a maximum directivity of  3.17 dB
(2.075) on the horizontal plane and at  for both ver-
tical  planes,  i.e.,  on  the -plane.  Thus,  the  longer  dipoles
facilitate producing the maximum directivity along the hori-
zontal  plane.  However,  the average directivity value in the
horizontal  plane is  only 3.10 dB.  Therefore,  the  maximum
OoR  value,  0.07  dB,  is  the  same  as  that  of  the  Hertzian
dipole-based UCA. In contrast, the 13-element UCA yields
a maximum directivity of only 3.10 dB (2.043) in the hori-
zontal  plane.  Nonetheless,  its  OoR  properties  are  also  the
same  as  those  of  the  corresponding  Hertzian  dipole-UCA,
i.e.,  the  maximum  OoR  value  is  again  only 
different from  the  average.  On  the  other  hand,  the  maxi-
mum directivity is  3.14 dB (2.062) in both vertical  planes.
While it is not precisely along the -plane, it is only 0.92%
different.  These  results  again  confirm  the  OoR  superiority
of  an  odd  number  of  elements,  but  they  also  explain  why
the maximum directivity results in the horizontal and verti-
cal planes were significantly different in the Hertzian dipole
cases.  The  smallness  of  the  Hertzian  dipoles  and  their
broader patterns  produce  significant  constructive  interfer-
ence at large elevation angles. 

III. Beam Pointing

(θ0,ϕ0)

The  ability  to  phase  a  UCA to  achieve  a  collimated  beam
whose  maximum  directivity  is  pointed  in  the  direction

 is another  important  applications  feature.  The  sim-
plest version is achieved by weighting the amplitudes only
with  progressive  phase  terms.  The  well-known  expression
is [7], [8], [81]
 

An = BnejΨn = Bne−jk a sinθ0 cos(ϕ0−ϕn) (13)

Bn

Bn = 1.0
Bn

Comparing  this  phase  choice  with  (9),  the  elements  of  the
array will  radiate  coherently (in phase)  in the specified di-
rection.  The  amplitudes  are  taken  at  this  point  to  be
identical and untapered, i.e., . If sidelobe control is
desired, then the  would have to be defined according to
the desired outcome of which there are many choices.  The
subsequent array factor and directivity patterns that result in
this directional mode (DM) of the array are 
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Figure 3  Calculated  directivity  results  for  the  OM  of  the  UCA  with  13
vertical  dipole elements and a radius giving .  (a)  Array pattern in
the  azimuthal -plane  compared  to  the  average  directivity  reference.
(b) OoR values. Array patterns in the two principal vertical planes. (c) Lin-
ear plot. (d) Polar plot.
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AFDM(θ,ϕ) =
N∑

n=1

Bn× e+jk a [ sinθcos(ϕ−ϕn)−sinθ0 cos(ϕ0−ϕn) ] (14)

where for the ideal dipoles
 

APDM,ed(θ,ϕ) =AFDM(θ,ϕ)×EVF ed(θ,ϕ) (15)

and for the half-wavelength dipoles
 

APDM,hw(θ,ϕ) =AFDM(θ,ϕ)×EVF ed,hw(θ,ϕ) (16)

(θ0 = π/2, ϕ0 = 0)

xy zx

xy

yz

The directivity  patterns  for  a  specified  maximum  di-
rection, which is taken to be  simply as an
example, were obtained with another MATLAB code. They
are presented in Figure 4 for  the 13-element UCA of half-
wavelength vertical  dipoles.  It  can be readily confirmed in
Figures  4(a)  and  (c)  that  the  maximum  directivity  in  the
horizontal -plane  and  the  principal  vertical -plane  is
12.67  dB  in  the  specified  direction.  The  backlobe  level  is
3.68 dB yielding a front-to-back ratio (FTBR) of only 8.99
dB. The first sidelobe level in the -plane is 4.77 dB, only
−7.90  dB below the  peak  value.  The  maximum directivity
in the orthogonal -plane is −3.68 dB. The corresponding
polar  plots  of  the  directivity  patterns  are  given  in Figures
4(c) and (d). 

IV. Arrays of Vertically Polarized Huygens Dipole
Antennas (HVP)

With  the  desire  to  enhance  the  directivity  of  the  array,  it
was  felt  that  using  unidirectional  HDAs [79], [82]–[87]
could avoid radiated energy being wasted in the back direc-
tion when vertical dipoles are used to form the UCA with-
out any additional structures to recover it. A linearly polar-
ized (LP) HDA is formed with two orthogonal current mo-
ments, an electric and a magnetic one that are in-phase and
in balance, which create radiated far fields of equal magni-
tude. The  LP nature  of  the  fields  is  along  the  electric  cur-
rent direction.

+z êd = +ẑ
z

xy
xy
xy

xy

z
z

In analogy with the dipole array, let the electric dipole
element of the HDA be oriented along the -axis, .
It is then VP along the -axis, and the magnetic dipole ele-
ment  lies  in  the -plane.  Moreover,  the  HDA’s unidirec-
tional field will then have its maximum along the -plane.
Therefore, because the array is on a circle in the -plane,
the array’s maximum beam direction will also be along the

-plane. In fact, one could consider the ultra-thin Huygens
dipole antenna array developed in [80] as a replacement for
the  single  dipole  radiator  and  orient  the  plane  of  the  array
along the -axis to act as a subarray of the UCA. This multi-
layer  along-the- -axis  configuration  would  offer  beam
scanning in the elevation plane. However, in either the sin-
gle or multi-element case, there is then a choice. One could
have the maximum radiated field direction of each HDA be
along  the  radial  direction  or  point  in  a  specified  direction.
Consequently, the potential improvement of the UCA’s dir-
ectivity is considered in two cases, i.e.,  when the unidirec-

tional fields of the HDA elements are pointed in the radial
direction  corresponding  to  their  location  in  the  array  or
when they are all pointed in the same specified direction. 
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Figure 4  Calculated directivity results of the basic DM of the UCA with 13
vertical half-wavelength dipole elements and a radius giving . Hor-
izontal -plane: (a) Linear plot and (b) Polar plot. Two principal vertical
(  and ) planes: (c) Linear plot and (d) Polar plot.
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1. Each element points in its radial direction

(θ,ϕ) = (π/2,ϕn)
z

−ϕ̂(π/2,ϕn) xy

m̂d = sinϕn x̂− cosϕn ŷ
êd × m̂d =

cosϕn x̂+ sinϕn ŷ = r̂ (θ=π/2,ϕn)

If each VP HDA, now denoted throughout as a HVP, is to
be pointed in the radial direction corresponding to its posi-
tion  in  the  UCA,  then  its  maximum  direction  is  identified
by the angles . With the electric dipole ele-
ment  being  oriented  along  the  + -axis,  this  configuration
then  requires  the  magnetic  dipole  element  to  be  oriented
along  the  direction  in  the -plane.  From  the
Appendix A,  this  means  the  magnetic  dipole  element  vec-
tor  should  be . Therefore,  the  requi-
site  Huygens  cross-product  direction  is  correct: 

. A representative 7-element
semi-circular UCA of radially-directed HVPs is depicted in
Figure 5.
 
 

a

y

xz

Vertical ED
Horizontal MD

HVP radially-directed

Figure 5  7-element semi-circular UCA of radially-directed HVPs.
 

The  UCA’s  directivity  then  follows  from  the  HVP’s
element vector field:
 

P⃗(θ,ϕ) = r̂× r̂× ẑ+ r̂× (sinϕn x̂− cosϕn ŷ) (17)

The unit  vector  terms are  obtained with  the  expressions  in
the Appendix A to yield
 

P⃗(θ,ϕ) = cosθ
[
sinθ cosϕ− cosϕn

]
x̂

+ cosθ
[
sinθ sinϕ− sinϕn

]
ŷ

− sinθ
[
sinθ+ cos(ϕ−ϕn)

]
ẑ (18)

As a check, one finds
 

P⃗(θ = π/2,ϕ) = − [1+ cos(ϕ−ϕn)
]
ẑ (19)

ϕ = ϕn

−2 ẑ ϕ = ϕn 0 ϕ = ϕn+π
+z

xy −z

xy
ϕ = ϕn

which is  correct,  i.e.,  it  is  a  cardioid  shape  with  its  maxi-
mum in the  direction. In particular, the element vec-
tor field is  for  and  for . Recall that
because the electric dipoles are oriented along the -direc-
tion, their fields in the -plane are along the -direction.
Consequently, its magnitude squared (power pattern) in the

-plane  also  exhibits  the  cardioid  shape  with  its  peak
along  the  direction,  i.e.,  the  direction  broadside  to
the electric and magnetic dipole elements: 

|P⃗(θ,ϕ)|2 = [1+ cos(ϕ−ϕn)
]2 (20)

|P⃗(θ = π/2,
ϕ = ϕn)|2/|P⃗(θ = π/2,ϕ = ϕn+π)|2 =∞
Therefore,  the  FTBR  of  the  power  patterns  is 

.
 

2. Each  HVP  points  at  the  direction  specified  for  the
DM

xy
(θ,ϕ) = (π/2,ϕmax)

(θ,ϕ) = (π/2,ϕn)
(θmax,ϕmax) = (π/2,ϕmax)

−ϕ̂(π/2,ϕmax)
xy

m̂d = sinϕmax x̂−
cosϕmax ŷ

êd × m̂d = cosϕmax x̂ + sinϕmax ŷ = r̂
(θ = π/2,ϕmax)

On the other hand, let the desired maximum direction of the
beam  produced  by  the  entire  array  in  the -plane  be

. We  then  consider  the  maximum  direc-
tion of the HDA at each  to be this desired
direction: .  This in turn requires the
magnetic dipole element to be oriented along 
in the -plane. From the Appendix A, this means the mag-
netic  dipole  element  vector  should  be 

.  Therefore,  the  requisite  Huygens  cross-product
direction  is  correct: 

.  A  representative  7-element  semi-circular
UCA of max-directed HVPs is depicted in Figure 6.
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Figure 6  7-element semi-circular UCA of max-directed HVPs.
 

The  MATLAB  code  thus  needs  the  HVP’s  element
vector field:
 

P⃗(θ,ϕ) = r̂× r̂× ẑ+ r̂× (sinϕmax x̂− cosϕmax ŷ) (21)

The unit  vector  terms  are  again  obtained  from the  expres-
sions in Appendix A to yield
 

P⃗(θ,ϕ) = cosθ
[
sinθ cosϕ− cosϕmax

]
x̂

+ cosθ
[
sinθ sinϕ− sinϕmax

]
ŷ

− sinθ
[
sinθ+ cos(ϕ−ϕmax)

]
ẑ (22)

As a check, one finds
 

P⃗(θ = π/2,ϕ) = −[1+ cos(ϕ−ϕmax)] ẑ (23)

ϕ = ϕmax

−2 ẑ ϕ = ϕmax 0 ϕ = ϕmax+π

+z xy −z

which is  correct,  i.e.,  it  is  a  cardioid shape with maximum
in  the  direction.  In  particular,  the  element  vector
field  is  for  and  for .  Recall
again that because the electric dipoles are oriented along the

-direction,  their  fields  in  the -plane are  along the -
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direction.

xy
ϕ = ϕmax

Consequently,  its  power  pattern,  which  is  magnitude
squared  of  (23),  in  the -plane  also  exhibits  the  cardioid
shape with its peak along the  direction, i.e., the di-
rection broadside  to  the  electric  and  magnetic  dipole  ele-
ments:
 

|P⃗(θ,ϕ)|2 = [1+ cos(ϕ−ϕmax)]2 (24)

|P⃗(θ = π/2,ϕ =
ϕmax)|2/|P⃗(θ = π/2,ϕ = ϕmax+π)|2 =∞
Therefore,  the  power  patterns’ FTBR  is 

.
 

3. Comparison results
One immediate issue arose when the first radial cases were
simulated.  Because  the  array  is  circular,  the  magnetic
dipoles  on  one  semi-circle of  the  array  are  oriented  oppo-
site to those on the other one. Thus, there is a cancellation
of the overall magnetic dipole fields, much like what occurs
when  an  electric  dipole  is  oriented  parallel  to  a  ground
plane  and  near  to  it.  This  outcome  ruins  the  advantage  of
the  HVPs  for  the  OM.  On  the  other  hand,  the  DM  of  an
UCA is typically accomplished with only a limited number
of  its  elements.  Consequently,  only  semi-circular and  sec-
toral arrays of HVPs oriented along their radial position are
considered.

ϕ = −90° ϕ = +90°
30°

ka = 2π
x (θmax,ϕmax) = (π/2,0)

Semi-circular  arrays  consisting  of  seven  Hertzian  and
seven  half-wavelength dipoles  are  simulated  first  as  refer-
ence cases. These arrays extend from  to 
with  separation  between  each  element.  The  array  size
remains  and  the  desired  maximum  direction  is
again taken to be along the -axis: , in
both cases.

zx
xy

(θmax,ϕmax) = (90°,0°

yz

zx xy
(θ=90°,ϕ=0°

yz

The calculated patterns of the Hertzian dipole case are
shown in Figures 7(a) and (b). The peak directivity in both
the  vertical  plane  along  the  beam direction  ( -plane)  and
the horizontal -plane is 9.96 dB along the specified beam
direction ). The  corresponding  back-
lobe is 7.33 dB, yielding a poor FTBR of 2.63 dB. The peak
directivity in the orthogonal vertical ( ) plane is −3.09 dB.
The  calculated  patterns  of  the  half-wavelength  dipole  case
are  shown  in Figures  7(c)  and  (d).  The  peak  directivity  in
both  the  vertical -plane  and  the  horizontal -plane  is
10.32 dB along the specified beam direction ).
The corresponding backlobe is  7.70 dB,  yielding the  same
poor FTBR of 2.63 dB. The first sidelobe level is 3.94 dB,
only −6.38 dB below the maximum value. The peak direc-
tivity in the orthogonal vertical ( ) plane is −2.89 dB.

zx
xy

(θ = 90°,ϕ = 0°

yz

The  calculated  patterns  of  the  corresponding  semi-
circular array of seven radially-directed HVPs are shown in
Figure 8. The peak directivity in both the vertical -plane
and the horizontal -plane is 11.03 dB along the specified
beam  direction ).  This  peak  value  is  0.71
(1.07) dB larger than the half-wavelength (Hertzian) dipole
case.  The  corresponding  backlobe  is −0.09  dB,  yielding  a
significantly improved  FTBR  of  11.12  dB.  The  first  side-
lobe level is 1.03 dB, −10.00 dB below the maximum value.
The peak directivity in the orthogonal vertical ( ) plane is

−3.08 dB.
The DM of a UCA is most often realized with only a

set of its elements being excited over an angular sector. An
example is the multi-ring system reported in [5]. The refer-
ence sector array consists of seven half-wavelength dipoles
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Figure 7  Calculated directivity results of the semi-circular array of seven
elements with . Hertzian dipoles: (a) Horizontal, -plane, and (b)
Two principal vertical planes. Half-wavelength dipoles: (c) Horizontal, -
plane, and (d) Two principal vertical planes.
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60° ϕ = −30°
ϕ = +30° 10°

zx
xy

(θ = 90°,ϕ = 0°

yz

spanning a  arc, i.e., the array extends from  to
 with  separation  between  each  element.  The

calculated  patterns  are  given  in Figures  9(a)  and  (b).  The
peak  directivity  in  both  the  vertical -plane and  the  hori-
zontal -plane is 7.49 dB along the specified beam direc-
tion ).  The  corresponding  backlobe  is  5.58
dB, yielding a very poor FTBR of 1.91 dB. The peak direc-
tivity in the orthogonal vertical ( ) plane is −4.03 dB.

zx
xy

(θ = 90°,ϕ = 0°

yz

The calculated patterns of the corresponding sector ar-
ray  of  seven  radially-directed  HVPs  are  shown  in Figures
9(c)  and  (d).  The  peak  directivity  in  both  the  vertical -
plane and the horizontal -plane is 8.58 dB along the spec-
ified  beam  direction ).  This  peak  value  is
1.09  dB  larger  than  the  half-wavelength  dipole  case.  The
corresponding backlobe is −22.82 dB,  yielding a  FTBR of
31.40  dB,  which  is  significantly  better  in  comparison  to
those values of that case. The first sidelobe level is −12.25
dB, −20.83  dB below the  maximum value.  There  really  is
no definitive sidelobe in the comparison case because of its
very high  backlobe  value.  The  peak  directivity  in  the  or-
thogonal  vertical  ( )  plane  is  1.84  dB.  The  fact  that  the
FTBR  value  is  significantly  better  than  any  of  the  other
cases arises from the unidirectional nature of the HVPs.

The  results  clearly  indicate  that  there  are  benefits  to
utilizing  HVPs  as  the  array  elements  for  both  the  semi-
circular and sector arrays. Nevertheless, what would be the
benefit  if,  in  fact,  all  the  HVPs  had  their  maximum  beam
direction  pointed  to  the  specified  maximum  direction?  To

examine  this  issue,  both  the  same semi-circular  and  sector
array configurations  were examined with  each HVP point-
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Figure 8  Calculated directivity results of the semi-circular array of seven
radially-directed  HVPs  with .  (a)  Horizontal,  azimuthal  plane.
(b) Two principal vertical planes.
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Figure 9  Calculated  directivity  results  of  the -sector  arrays  of  seven
elements  with .  (a)  Half-wavelength  dipoles,  horizontal  plane.
(b) Half-wavelength dipoles, two principal vertical planes. (c) Radially-di-
rected HVPs,  horizontal  plane.  (d)  Radially-directed HVPs,  two principal
vertical planes.
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x
(θmax,ϕmax) = (π/2,0)
ing  in  the  desired  maximum  direction  along  the -axis:

.  The  calculated  results  are  presented
in Figure 10.

zx
xy

(θ = 90°,ϕ = 0°

60°

zx xy
(θ = 90°,ϕ = 0°

The semi-circular array results are shown in Figures 10
(a)  and  (b).  The  peak  directivity  in  both  the  vertical -
plane  and  the  horizontal -plane  is  12.13  dB  along  the
specified beam direction ). The correspond-
ing backlobe level is −314.76 dB, yielding a FTBR of 326.89
dB. The first sidelobe level is 4.94 dB, −7.19 dB below the
maximum value. The -sector array results are shown in
Figures 10(c) and (d). The peak directivity in both the verti-
cal -plane  and  the  horizontal -plane  is  8.71  dB  along
the  specified  beam  direction ). The  corre-
sponding backlobe level is −317.46 dB, yielding a FTBR of
326.17 dB. The only sidelobe level is −8.56 dB, −17.27 dB
below the maximum value.

y

These results  demonstrate that  the unidirectionality of
the  radiated  fields  of  the  DM  and  their  peak  directivity
value can be further enhanced by using HVPs pointed in the
desired beam direction. Direct comparisons of the directivi-
ty patterns in the horizontal and vertical planes of both the
radially- and max-directed HVPs are given in Figure 11. In
contrast  to Figure  11(a), Figure  11(c)  clearly  displays  a
much deeper  null  in  the  back  direction  which  follows  im-
mediately  from  each  HVP  being  pointed  to  radiate  unidi-
rectionally towards the desired beam direction of the array.
On the other hand, the array of radially-directed HVPs has a
lower  sidelobe  level.  This  occurs  because  the  radially-
directed elements on the outer edge of the array are radiat-
ing more power towards the back hemisphere whereas those
of  the  max-directed  HVPs are  radiating  more  along  the -
axis yielding the higher sidelobe level. Nevertheless, the dif-
ferences  are  not  large  except  for  the  drastically  enhanced
FTBR of the max-directed HVP array. Either sector array of
HVPs leads to quite acceptable DM performance. 

4. Tapered excitations

ka = 6π 120°
x

Tapering of  the  excitation  amplitudes  is  a  standard  ap-
proach to suppressing the sidelobe levels of the fields radi-
ated by an array.  Simply to  understand the  impact  of  such
tapering  on  the  HVP-based  sector  arrays,  the  well-known
binomial weighting of the excitation coefficients [81], [88]
is  applied  to  a  radially-directed  HVP  sector  array.  In  par-
ticular,  the  array  size  is  increased  to  and  a -
sector with 21 HVPs centered with respect to the -axis is
considered with and without the binomial weighting.

x

x

The calculated  directivity  patterns  of  these  sector  ar-
rays are presented in Figure 12. The uniform excitation re-
sults are shown in Figures 12(a) and (b). The maximum di-
rectivity,  15.19  dB,  is  along  the -axis.  The  first  sidelobe
level  is  3.53  dB  (−11.66  dB  down  from  the  peak).  The
backlobe level is −22.03 dB, yielding a FTBR of 37.22 dB.
The corresponding binomial-weighted excitation results are
shown in Figures  12(c)  and (d).  The maximum directivity,
11.21 dB, is along the -axis. There are two sidelobes in the
back hemisphere that are −36.21 dB down from the peak (at
a −25.00 dB level). The backlobe level is −36.62 dB, yield-

ing a FTBR of 47.83 dB. The number of sidelobes and their
levels  have  been  significantly  reduced  with  the  amplitude
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Figure 10  Calculated directivity results of the semi-circular and -sec-
tor arrays with  and seven HVPs whose beams point in the speci-
fied  beam direction of  the  array .  (a)  Semi-circular,
horizontal  plane.  (b) Semi-circular, two principal  vertical  planes.  (c)  Sec-
tor, horizontal plane. (d) Sector, two principal vertical planes.
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ka = 2π 60°

tapering. However,  it  is  with  the  expected  cost  of  a  de-
crease  (26.20%)  in  the  peak  directivity  and  a  wider  main
beam  width.  For  comparison  purposes,  the  binomial-
weighted  7  HVP, , -sector  array  has  a  6.64  dB

maximum directivity (23.77% smaller than the uniform ex-
citation  case),  no  sidelobes  in  the  horizontal  and  principal
vertical planes, and a FTBR of 39.97 dB.
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Figure 11  Calculated directivity patterns of  the -sector arrays of  sev-
en  HVPs  with  whose  beams  point  in  the  specified  direction

.  (a)  Radially-directed  HVPs,  horizontal  plane.
(b) Radially-directed HVPs, two principal vertical planes. (c) Max-direct-
ed HVPs, horizontal plane. (d) Max-directed HVPs, two principal vertical
planes.
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Figure 12  Calculated  directivity  patterns  of  the -sector  arrays  with
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The related HVP sector arrays with the elements point-
ing in  the  specified  direction  were  also  simulated.  The  re-
sults are similar in the forward hemisphere, but quite differ-
ent in  the  back  hemisphere.  With  no  tapering,  the  maxi-
mum  directivity  is  along  the -axis  and  a  tiny  bit  larger:
15.22  dB.  The  first  sidelobe  level  is  a  bit  higher  4.93  dB,
now  only −10.29  dB  down  from  the  peak.  On  the  other
hand, the backlobe level is −321.96 dB, yielding a FTBR of
337.18  dB.  In  contrast  to  the  radially-directed  case,  there
are  no  definitive  sidelobes  in  the  back  hemisphere.  How-
ever,  there  is  a  slight  penalty  in  that  those  field  levels  are
only  below −2.96 dB.  Similarly,  with  tapering  the  maxi-
mum directivity,  11.33 dB, is  along the -axis,  again a  bit
larger. The backlobe level is −321.96 dB, yielding a slight-
ly smaller FTBR of 327.91 dB. On the other hand, the two
sidelobes  in  the  back  hemisphere  are  only  29.52  dB down
from  the  peak  (−18.19  dB  level).  The  outcomes  of  either
HVP element are quite attractive. 

V. Rayleigh Quotient Optimization

ka = 2π

x
xy zx

yz

The  unconstrained  Rayleigh  quotient  (RQ)  optimization
[50], [51], [53], [59], [61], [89]–[94] and its unidirectional-
constrained  version  developed  in [70]  were  applied  to  the
UCAs of half-wavelength dipoles. The calculated results for
the  13  element,  full  UCA  with  the  unconstrained
RQ optimization approach and the specified direction again
being along the -axis are shown in Figures 13(a) and (b).
The  maximum  directivity  is  12.92  dB  in  the - and -
planes. The backlobe level is 5.52 dB, yielding a small FT-
BR of 7.40 dB. The maximum directivity in the -plane is
−1.60 dB.

xy zx

xy

yz

The  correspnding  constrained  results  are  shown  in
Figures 13(c) and (d). The FTBR constraint in the modified
RQ algorithm was set to −100 dB. The maximum directivi-
ty is 12.04 dB in the - and -planes. The backlobe level
is −87.96  dB,  yielding  a  very  large  FTBR  of  100.00  dB.
The largest sidelobe in the -plane is 3.76 dB, almost −8.28
dB below the maximum value. The maximum directivity in
the -plane is −5.30 dB. The cost of the substantially larg-
er FTBR is only a 6.81% decrease in the peak directivity.

60°
ka = 2π

x
yz

xy
yz

yz

60°
x

xy

For comparison purposes, the related semi-circular and
-sector,  7-element  half-wavelength  dipole  arrays  with

 were also  considered.  The  unconstrained  RQ  ap-
proach  applied  to  the  semi-circular case  produced  a  maxi-
mum of 10.26 dB along the -axis. The backlobe level was
7.81  dB,  yielding  a  poor  FTBR  of  2.45  dB.  The -plane
peak was −5.36 dB. The constrained version gave a 6.62 dB
maximum with a backlobe of −93.38 dB, yielding a FTBR
of  100.00  dB.  The  largest  sidelobe  in  the -plane  is  2.08
dB, which is −4.54 dB below the maximum value. The -
peak (peak directivity in the -plane,  which is  orthogonal
to the  specified  beam  direction)  was  2.28  dB.  The  uncon-
strained  RQ approach  applied  to  the  same -sector  case
produced  a  maximum  of  9.92  dB  along  the -axis.  The
backlobe level was −3.03 dB, yielding a FTBR of 12.95 dB.
The  largest  sidelobe  in  the -plane  is  4.23  dB,  which  is

yz−5.69  dB  below  the  maximum  value.  The -plane  peak
was −3.20  dB.  The  constrained  version  gave  a  9.69  dB
maximum with a backlobe of −90.31 dB, yielding a FTBR
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Figure 13  DM directivity patterns of the 13-element UCA of half-wavele-
ngth dipoles with  with specified beam direction DM 

 calculated with  the  RQ  optimization  approaches.  (a)  Uncon-
strained, -plot  (b)  Unconstrained,  polar  plot.  (c)  Constrained, -plot.
(d) Constrained, polar plot.
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of  100.00  dB.  The  largest  sidelobe  in  the -plane  is  5.33
dB, which is −4.36 dB below the maximum value. The -
peak was −1.78 dB. The maximum directivity values of the
sector cases are larger than those of the semi-circular ones.
This difference arises from the fact that the same number of
dipoles are closer together in the sector case and, hence, the
optimization  can  yield  amplitude  coefficients  that  better
reinforce the fields in the specified direction.

60°

x

yz 60°

x

yz

The unconstrained RQ optimization of the semi-circu-
lar and -sector 7-element max-directed HVP UCAs was
also considered.  It  was  not  necessary  to  consider  the  con-
strained  case  given  the  unidirectional  nature  of  the  HVPs.
The calculated directivity patterns in the horizontal plane of
both  cases  are  shown in Figure  14.  The semi-circular  case
in Figures 14(a) and (b) has a maximum directivity of 12.38
dB along  the -axis  with  a  backlobe  level  of −313.22  dB,
which  yields  the  FTBR  =  325.60  dB.  The  first  sidelobe
level is 3.70 dB, −8.68 dB below the maximum. The largest
sidelobe level  in  the back hemisphere is −7.15 dB, −19.53
dB below the maximum. The -peak was 0.11 dB. The -
sector case in Figures 14(c) and (d) has a maximum direc-
tivity of 11.70 dB along the -axis with a backlobe level of
−322.53 dB, which yields the FTBR = 334.24 dB. The first
sidelobe  level  is  4.42  dB, −7.28  dB  below  the  maximum.
The largest  sidelobe level  in  the back hemisphere is −3.04
dB, −14.74 dB below the maximum. And the -peak was
−0.46 dB. 

1. Initial summary
Several  different  types  of  UCAs  and  their  performance
characteristics  have  been  described  up  to  this  point.  The
well-known definition [81] of the maximum directivity of a
three-dimensional (3D) array that is uniformly excited is
 

D3D,max =
4πAeff

λ2
0

(25)

Aeffwhere  is the  effective  area  of  the  array.  The  corre-
sponding  definition  of  the  maximum  directivity  of  a  two-
dimensional (2D) radiating system was given in [95]:
 

D2D,max =
2πWeff

λ0
(26)

Weffwhere  is the effective width of the system. A superdi-
rective  3D or  2D array  is  one  whose  maximum directivity
exceeds, respectively, (25) or (26).

Weff

ka = 2π
Weff = 2λ0 D2D,max = 4π =

Weff

Herein,  because  the  UCA  Hertzian  dipole  and  HVP
examples are all a single layer centered about the azimuthal
plane and the maximum of their DMs was designed to be in
that  plane,  the  2D  definition  will  be  used  to  determine  if
any of those various arrays considered to this point are su-
perdirective. Consequently,  is taken to be twice the ra-
dius of the UCA. For instance, the arrays with , one
then has . Thus, one obtains  10.99
dB (12.57).  On  the  other  hand,  the  arrays  of  half  wave-
length dipoles are considered to be 3D systems. Their effec-
tive area follows from the effective width of the array, ,

Heff

ka = 2π
Weff = 2a = 2λ0 Heff = λ0/2 Aeff = λ

2
0

and its  effective height .  Then,  for  example,  the UCAs
of  half-wavelength  dipoles  with  have  an  effective
area:  times  equals  and
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Figure 14  Calculated unconstrained RQ optimization directivity results in
the  horizontal  planes  of  the  semi-circular  and -sector  arrays  of  seven
max-directed HVPs with . (a) Semi-circular, linear plot. (b) Semi-
circular, polar plot. (c) -sector, linear plot. (d) -sector, polar plot.
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Dmax,3D = 4πAeff/λ
2
0 =

4π
the  maximum  directivity  bound  is 

 = 10.99 dB (12.57). Note that it is the same as the corre-
sponding 2D value.

Table  1 summarizes the  calculated  performance  char-
acteristics of the various arrays considered up to this point.
It  is  found  that  the  non-optimized  DM  and  the  RQ-opti-
mized versions of the full half-wavelength UCA are super-
directive.  Similarly,  the  non-optimized  and  unconstrained
RQ-optimized  semi-circular  HVP  arrays  are  also  clearly
superdirective.  However,  the  corresponding  semi-circular
half-wavelength dipole arrays are not.

120°
ka = 6π Weff =

2a sin(120°) = 5.2λ0 D2D,max = 10.4π = 15.14

60° ka = 2π Weff = 2a sin(60°) = λ0

On the other hand, the sector arrays have different ef-
fective widths and, hence, different comparison values must
be determined. The effective width of the non-tapered, -
sector  radially-directed  HVP  case  with  is 

 so  that  dB.
Thus,  it  is  superdirective.  Similarly,  the  effective  width  of
the -sector cases with  is 

D2D,max = 2π =
60°

60° ka = 2π

Aeff = 0.5λ2
0

Dmax,3D = 2π =

so that  7.98 dB. Consequently, the non-opti-
mized  and  RQ-optimized -sector  radially-directed  and
max-directed  HVP  arrays  are  all  superdirective.  Morever,
the -sector  half-wavelength  dipole  arrays  with 
are  superdirective  as  well,  i.e.,  with  their  effective  area

,  their  peak  directivity  values  are  greater  than
 7.98 dB.

z
λ0/3 ka = 2π

60° Aeff = 0.67λ2
0

Aeff = 0.335λ2
0

Dmax,3D

Dmax,3D

60°

Furthermore, it  is  noted that if  the HDA developed in
[80]  was  used  for  the  HVPs,  its  length  along  the -axis
would be .  With  the effective area of that  the
semi-circular  ( -sector)  array  would  be 
( ).  Therefore,  the  corresponding  maximum
directivities are,  respectively,  = 9.23 dB (8.38) and

 = 6.22 dB (4.19). Hence, all of the semi-circular and
-sector radially- and max-directed HVP arrays with this

HDA as their element would also be superdirective.
Finally, despite  their  infinitesimal  height,  the  perfor-

mance  characteristics  of  the  superdirective  semi-circular

EL
EC

TR
O
M
A
G
N
ET

IC
 S

C
IE

N
C
E

 

Table 1  Summary of uniform circular array results

UCA type Mode Element type No. elements ka Dmax  (dB) Peak dir. (dB) FTBR (dB) Sidelobe (dB)

Full Omni Hertzian dipoles 13 2π 10.99 2.49 0.0 –

Full Omni Half-wavelength dipoles 13 2π 10.99 3.14 0.0 –

Full DM Half-wavelength dipoles 13 2π 10.99 12.67 8.99 4.77

Semi-circular DM Hertzian dipoles 7 2π 10.99 9.96 2.63 –

Semi-circular DM Half-wavelength dipoles 7 2π 10.99 10.32 2.63 3.94

Semi-circular DM radially-directed HVPs 7 2π 10.99 11.03 11.12 1.03

Semi-circular DM max-directed HVPs 7 2π 10.99 12.13 326.89 4.94

60°-sector DM Half-wavelength dipoles 7 2π 7.98 7.49 1.91 –

60°-sector DM radially-directed HVPs 7 2π 7.98 8.58 31.40 −12.25

60°-sector DM max-directed HVPs 7 2π 7.98 8.71 326.17 −8.56

60°-sector DM Binomial-weighted
radially-directed HVPs 7 2π 7.98 6.64 39.97 –

120°-sector DM radially-directed HVPs 21 6π 15.14 15.19 37.22 3.53

120°-sector DM Binomial-weighted
radially-directed HVPs 21 6π 15.14 11.21 47.83 −25.00

120°-sector DM max-directed HVPs 21 6π 15.14 15.22 337.18 4.93

120°-sector DM Binomial-weighted
max-directed HVPs 21 6π 15.14 11.33 327.91 −18.19

Full DM Unconstrained RQ
half-wavelength dipoles 13 2π 10.99 12.92 7.40 –

Full DM Constrained RQ
half-wavelength dipoles 13 2π 10.99 12.04 100.00 3.76

Semi-circular DM Unconstrained RQ
half-wavelength dipoles 7 2π 10.99 10.26 7.81 –

Semi-circular DM Constrained RQ
half-wavelength dipoles 7 2π 10.99 6.62 100.00 2.08

60°-sector DM Unconstrained RQ
half-wavelength dipoles 7 2π 7.98 9.92 12.95 4.23

60°-sector DM Constrained RQ
half-wavelength dipoles 7 2π 7.98 9.69 100.00 4.36

Semi-circular DM Unconstrained RQ
max-directed HVPs 7 2π 10.99 12.38 325.60 3.70

60°-sector DM Unconstrained RQ
max-directed HVPs 7 2π 7.98 11.70 334.24 4.42

  0050072-14 Electromagnetic Science, vol.2, no.1



60°and -sector  RQ-unconstrained  max-directed HVP  ar-
rays  are  superior  to  those  of  the  corresponding  half-wave-
length  versions.  In  fact,  the  semi-circular  half-wavelength
one is not even superdirective. The HVP-based arrays natu-
rally produced  higher  FTBR values.  Similarly,  their  maxi-
mum directivities are also higher as a consequence of their
unidirectional advantage. Nevertheless, are there other opti-
mization  approaches  which  actually  take  advantage  of  the
circular  nature  of  the  UCA  directly  to  achieve  yet  better
performance? 

VI. Acoustic Array Eigenbeam Decomposition and
Synthesis Approach

360°

Receiving  circular  arrays  are  simple  configurations  whose
OMs do not have left-right ambiguities. Consequently, they
are  convenient  and  advantageous  as  arrays  of  sensors.
Moreover,  if  their  DMs  have  high  directivity  values,  they
can  provide  directed  beams  over  the  entire  range  of 
azimuthal directions. Both modes are useful, e.g., for DOA
applications.

The  use  of  eigenbeams  have  been  an  exceptionally
successful  approach  to  the  realization  of  superdirective
acoustic  receiving  arrays [45], [71]–[78].  The  eigenbeam
decomposition and  synthesis  (EBDS)  method  was  intro-
duced  in  a  series  of  papers [77], [78] in  the  context  of  re-
ceiving arrays with ideal isotropic radiators in a spherically
isotropic  noise  field.  The  optimal  solution  is  decomposed
into  multipole  sub-solutions  which  facilitate  combinations
of them that lead to higher-order superdirective results.

N
N

ϕn = n∆ϕ n = 0,1, . . . ,N −1
∆ϕ = 2π/N ϕ0 x

A  UCA  with  an  even  number  of  elements, , is  as-
sumed for this approach. The angle positions of the  ele-
ments  remain  as ,  where  and

. Examples below take  to be along the -axis.
The column vector of the steering phases relative to the ele-
ment locations is
 

−−→
S V(θ,ϕ) = [v0(θ,ϕ),v1(θ,ϕ), . . . ,vN−1(θ,ϕ)]T (27)

nwhere T denotes the transpose and its -th component is the
now familiar directive phase term:
 

vn(θ,ϕ) = ejkasinθcos(ϕ−ϕn) (28)

Consider the column vector
 

M⃗n =
1

N1/2
[1,ej(n∆ϕ),ej2(n∆ϕ), . . . ,ej(N−1)(n∆ϕ)]T (29)

M⃗n

n ejn∆ϕ

M⃗m

Each  component  of  represents  different  powers  of  the
phase corresponding to the -th element of the array: .
Forming  a  circulant  matrix  with  the  outer  product  of  the

,
 

CM =
N−1∑
n=0

evn

(
M⃗∗

n ⊗ M⃗T
n

)
(30)

M⃗n

evn

one  finds  that  the  are its  eigenvectors  and  their  corre-
sponding eigenvalues are the . Its inverse is simply 

CM
−1

=

N−1∑
n=0

1
evn

(
M⃗∗

n ⊗ M⃗T
n

)
(31)

For isotropic elements in a spherically isotropic noise field,
the eigenvalues are:
 

evn =

N−1∑
m=0

sin
{
ka [2sin(|n−m|∆ϕ/2)]

}
ka [2sin(|n−m|∆ϕ/2)]

ejm (n∆ϕ) (32)

n m
a [2sin(|n−m|∆ϕ/2)

CM

M⃗m = M⃗∗
N−m

evm = ev∗N−m m = 1,2, . . . ,N −2
N

where  the  linear  distance  between  elements  and  is
.  The eigenvalue  is  essentially  the  sum

of the integrals  of  the difference in the phase between one
element  and  all  of  the  others.  Because  the  matrix  is
symmetric  and  real-valued,  the  eigenvectors  satisfy

.  Similarly  the  eigenvalues  are  real  and  satisfy
, where . These properties can

save significant compute times when  is very large.
w⃗(θ0,ϕ0)

(θ0,ϕ0)

If  is  the column vector of excitation weights
to  achieve  the  DM  with  its  maximum  directivity  in  the
specified  direction ,  the  desired  DM’s  beam pattern
is simply the inner product
 

DMBP,max(θ,ϕ) = w⃗H(θ0,ϕ0) · −−→S V(θ,ϕ) (33)

where H indicates the Hermitian transpose. Since the direc-
tivity is readily written as the Rayleigh quotient:
 

D =

∣∣∣∣ w⃗H · −−→SV
∣∣∣∣2

w⃗H ·CM · w⃗
(34)

the associated RQ-optimization procedure yields these opti-
mal weights as
 

w⃗(θ0,ϕ0) = CM
−1

· −−→SV(θ0,ϕ0) (35)

The maximum directivity is then
 

Dmax =
−−→
SV(θ0,ϕ0)H ·CM

−1

· −−→SV(θ0,ϕ0) (36)

EBn(θ,ϕ)

This analysis approach allows one to represent the op-
timized  pattern  (33)  as  a  sum  of  multipole-based eigen-
beams, , as
 

EBn(θ,ϕ) =
1
N

Real
{N−1∑

p=0

v∗p(θ0,ϕ0)ej p (n∆ϕ)


×
N−1∑

q=0

vq(θ,ϕ)e−jq (n∆ϕ)

} (37)
 

DMBP,max(θ,ϕ) =
N−1∑
n=0

1
evn

Real
{[−−→

SV
H

(θ0,ϕ0) · M⃗n

]
×
[
M⃗H

n ·
−−→
SV(θ,ϕ)

]}
=

N−1∑
n=0

EBn(θ,ϕ)
evn

(38)
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The maximum directivity then follows as a sum of the max-
imum directivity of each eigenbeam:
 

Dmax =

N−1∑
n=0

∣∣∣∣ M⃗T
n ·
−−→
SV

∗
(θ0,ϕ0)

∣∣∣∣2
evn

=

N−1∑
n=0

EBn(θ0,ϕ0)
evn

(39)

max[EBn(θ,ϕ) ] = EBn(θ0,ϕ0) Dmaxwhere, for clarity, . Thus, 
is  expressed  as  a  sum corresponding  to  different  orders  of
eigenbeams.  It  increases  as  more  elements  are  included  in
the array  and,  hence,  higher  order  eigenbeams become ac-
cessible.

ka = 0.25π
a = λ0/8

ka = 2π n = 0,1, . . . ,5

n = 1 n = 4

n = 1 1.11×10−5 n = 4
n

evn n
ev1 = 1.09 ev4 = 4.53×10−6

EB1/ev1 =

EB1/ev11, EB2/ev2 = EB10/ev10, . . . , EB5/ev5 = EB7/ev7

This  eigenbeam  approach  is  applied  to  a  12-element
UCA of isotropic radiators with , i.e., the radius
of  the  array  is ,  which  is  eight  times  smaller  than
the previous  cases.  Six eigenbeams, ,
were constructed  according  to  (37).  The  normalized  pat-
terns of the  and  cases are shown in Figures 15
(a)  and  (b),  respectively.  Clearly,  they  represent  a  dipole
mode  and  a  higher  order  azimuthal  multipole  mode.  They
are normalized by their  maximum directivity,  i.e.,  1.58 for

 and  for . The maximum values natu-
rally decrease as  increases. On the other hand, while the
eigenvalues  also  decrease  as  increases,  they  do  so
more  rapidly,  e.g.,  and .  Thus,
the  contributions  of  the  higher-order  eigenbeams  to  the
directivity  itself  are  significant.  As  expected, 

.

Dpeak,EBDS

Dpeak,EBDS > Dmax,2D = π/2

The  resulting  DM’s  directivity  pattern  is  shown  in
Figures  15(c)  (dB  linear  plot)  and  (d)  (linear  scale,  polar
plot). These plot choices are the best portrayals of these cal-
culated  results.  The  maximum  directivity  is  =
14.46  dB  (27.92)  is  along  the  specified  direction  and  the
backlobe  is  4.37  dB  (2.73),  yielding  a  FTBR  =  10.09  dB.
The first sidelobe level is 10.50 dB, only −3.95 dB smaller
than the maximum. Nonetheless, the outcome is superdirec-
tive because  = 1.57 = 1.96 dB, by
12.50 dB.

ka = 2π

ka 0.25π
ka = 0.15π

However, if , the directivity pattern deteriorates
significantly. The  maximum  drops  to  10.28  dB,  the  back-
lobe increases to 9.03 dB; the first sidelobe level is 6.74 dB;
and the smallest sidelobe level is 3.41 dB. The elements are
simply too far apart to achieve well-defined eigenbeams. It
was found that values of  near to  give the best re-
sults  with  small  differences  (e.g.,  peak  case  is 
with a 14.50 dB maximum and a FTBR = 10.12 dB). Con-
sequently,  the  EBDS  optimization  approach  appears  to  be
best applied to small-radius receiving UCAs. 

VII. EM Array BEAM Optimization

ka = π/4 = 0.785 < 1

The acoustic EBDS method actually achieved a superdirec-
tive outcome with an electrically small array, i.e., the exam-
ple  array  of  isotropic  sources  is  completely  enclosed  in  a
sphere  whose . However,  the  out-
comes were obtained with isotropic sources which can only
generate  acoustic  waves.  No  isotropic  EM  sources  exist.
Nevertheless, the  eigenbeam  concept  associated  with  tak-

ing advantage  of  higher  order  multipoles  to  attain  its  su-
perdirective  results  was  very  attractive  for  the  potential  of
realizing  unidirectional,  high-directivity UCAs  of  EM  ele-
ments. Consequently, the following straightforward BEAM
method is  developed.  It  is  based  on  the  azimuthal  multi-
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Figure 15  The EBDS results for a UCA with  that consists of 12
isotropic  radiators.  The  specified  beam  direction  of  its  DM  is

.  (a) Eigenmode 1. (b) Eigenmode 4. (c) Directivity
(dB), linear plot. (d) Directivity (linear scale), polar plot.
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xypoles in the horizontal, -plane, and will be first applied to
optimize  the  performance  of  a  three-dimensional,  UCA  of
half-wavelength vertical dipoles.

Recall that
 

ψm(ρ,ϕ) = AmJm(kρ)ejmϕ (40)

is  an  eigen-solution  of  the  two-dimensional  Helmholtz
equation, and that one has the Bessel function identity, e.g.,
Eq. 11-55a in [96]:
 

ejξ cosϕ =
+∞∑

m=−∞
jm Jm(ξ)ejmϕ (41)

2N +1
(θ0,ϕ0)

xy
ϕn = ϕ0 + n× [2π/

(2N +1)] n = −N, . . . ,0, . . . ,N

Therefore, the array factor of a UCA with  elements
whose DM’s main beam points in the direction  can
be  rewritten  as  a  sum  of  eigen-solutions  in  the  azimuthal
coordinates. In particular, let the angular locations of the ra-
diating  elements  in  the -plane  be  specified  with  respect
to  the  maximum direction  in  it,  i.e.,  let 

 for .  Then  the  array  factor  of
the UCA’s DM is
 

AFBEAM(θ,ϕ) =
+N∑

n=−N

Bne+jk a [sinθ cos(ϕ−ϕn)−sinθ0 cos(ϕ0−ϕn)]

=

+∞∑
m=−∞

CmjmJm(ka sinθ)ejm (ϕ−ϕ0) (42)

where
 

Cm =

+N∑
n=−N

Bn e+jm (ϕ0−ϕn)e−jk a sinθ0 cos(ϕ0−ϕn) (43)

As noted in [95], unidirectional needle radiation would
be  obtained  if  the  sum  of  the  eigen-solutions  (42)  was  to
yield
 

δ(ϕ−ϕ0) =
1

2π

+∞∑
m=−∞

ejm (ϕ−ϕ0)

=
1

2π
+

1
π

+∞∑
m=1

cos[m (ϕ−ϕ0)] (44)

Bn

n = −N,−N +1, . . . ,N

2N +1

However, we need to solve for the excitation amplitudes 
for , i.e.,  there is not an infinite num-
ber of them, rather there are a limited number. The system
of equations  (42)  and (43)  is  over-determined,  a  mismatch
existing between the two sums needed to achieve a unique
solution.  Thus,  the  sum  of  the  eigen-solutions will  be  re-
stricted to  terms, i.e., the sum over the higher order
azimuthal modes in (42) is restricted as
 

AFBEAM(θ,ϕ) ≈
+N∑

m=−N

CmjmJm(ka sinθ)ejm (ϕ−ϕ0) (45)

Then the  goal  becomes  determining  the  excitation  coeffi-
cients that will achieve, for instance, a pseudo-needle beam
outcome (other choices may be preferred depending on the

application), i.e., that will realize the distribution/function:
 

δN(ϕ−ϕ0) =
1

2π

+N∑
m=−N

ejm (ϕ−ϕ0) (46)

or better.

z
xy θ0 = π/2

As already demonstrated, the maximum field direction
of  the  UCAs  with  the  assumed -oriented  elements  is
broadside to them, i.e.,  along the -plane where .
Therefore,  the  pseudo-needle  beam  would  be  attained,  for
instance,  if  the  array factor  of  the  DM of  the UCA was to
yield
 

AFBEAM(θ = π/2,ϕ) = δN(ϕ−ϕ0) (47)

This outcome is realized if
 

Cm =

+N∑
n=−N

Bn e+jm (ϕ0−ϕn)e−jka sinθ0 cos(ϕ0−ϕn)
∣∣∣∣
θ0=π/2

=
1

2πjmJm(ka sinθ0)

∣∣∣∣
θ0=π/2

≡
+N∑

n=−N

Bn e+jm (ϕ0−ϕn)e−jkacos(ϕ0−ϕn) =
1

2πjmJm(ka)
(48)

{Mmn} m, n =
−N,−N +1, . . . ,N

Let the components of the matrix , where 
, be

 

Mmn = e+jm (ϕ0−ϕn)e−jkacos(ϕ0−ϕn) (49)

B = [BN , . . . ,B1,B0,B−1, . . . ,B−N]T

F = [ fN , . . . , f1, f0, f−1, . . . , f−N]T
and  let  the  vectors ,  and

 with
 

fm =
1

2πjmJm(ka)
(50)

M ·B = F M
All of these terms can be compiled into the matrix equation:

. Since  is invertible, the excitation coefficients
are then obtained immediately by matrix inversion, i.e.,
 

B =M
−1

·F (51)

z

L = λ/2

Let  us  assume  that  the  UCA  consists  of -oriented
half-wavelength  dipoles.  The  element  factor  for  a  half-
wavelength  dipole  is  (2)  with  the  length .  The far-
field pattern of the directional mode of such a BEAM opti-
mized UCA is
 

UCABEAM,hw(θ,ϕ) =AFBEAM(θ,ϕ)×EVF ed,hw(θ,ϕ) (52)

The directivity is then obtained by calculating the intensity
radiated in a specific direction and the total power radiated
averaged over all space:
 

DBEAM,hw(θ,ϕ) =
|UCABEAM,hw(θ,ϕ) |2

1
4π

w 2π

0

w π

0
|UCABEAM,hw(θ,ϕ) |2 sinθdθdϕ

(53)

It  has its maximum along the specified broadside direction
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(θ0 = π/2,ϕ = 0) AFDM

xy Cm

 because  does, i.e., the directivity in
the -plane with the desired  is
 

DDM,hw(θ0,ϕ) =
|EVF ed,hw(π/2,ϕ)×δN(ϕ−ϕ0) |2

1
4π

w 2π

0

w π

0
|UCADM,hw(θ,ϕ) |2 sinθdθdϕ

(54)

z
ka = 0.25π a = λ0/8

xy
zx xy

Dmax,BEAM

xy
−z

yz

The  UCA  of  13 -oriented  half-wavelength  dipoles
with ,  i.e., , is  simulated  first  to  illus-
trate its properties and to make comparisons with the other
UCAs considered hitherto. The directivity results in the two
vertical planes are shown in Figures 16(a) and (b). Those in
the horizontal -plane are shown in Figures 16(c) and (d).
The  maximum  directivity  in  the - and -planes  is

 =  15.00  dB  and  the  corresponding  backlobe  is
−7.28 dB, which gives the FTBR = 22.28 dB. The first side-
lobe level in the -plane is 1.91 dB, −13.09 dB below this
peak  value.  Moreover,  all  sidelobe  levels  in  the -direc-
tion  are  smaller  than −19.75  dB  below  it.  The  maximum
directivity in the -plane is −7.28 dB. These results are su-
perior  to  those obtained already with the conventional  EM
approaches.

Weff = 2a = λ0/4
Heff = λ0/2

Aeff =Weff ×Heff = λ
2
0/8

Dmax,3D = 4πAeff/λ
2
0 = π/2 =

1.96

Dmax,BEAM

Dmax,3D

The  effective  width  of  the  array  is 
and  its  effective  height  is . Therefore,  its  effec-
tive aperture area is ; and, hence, the
maximum  directivity  bound  is 

 dB  Consequently,  as  was  the  case  with  the  acoustic
EBDS method’s outcomes, the BEAM results indicate that
this EM array is superdirective. In fact,  is greater
than  by 13.04 dB.

xy

ka = 0.5π Dpeak,BEAM

ka = 0.5π
Dmax,BEAM = 18.46

Dmax,3D = π = 4.97
Dmax,BEAM

Moreover,  a  direct  comparison  of Figures  15(d)  and
Figure  17(a)  demonstrates  that  the  BEAM  results  are  su-
perior  to  those  of  the  EBDS  approach.  These  linear-scale
polar plots facilitate a simpler comparison. The mainlobe is
narrower.  The sidelobes of  its -plane pattern are signifi-
cantly smaller.  However,  neither  method gives exceptional
results when the radius of the array is much larger, but con-
tains  only  the  same  number  of  elements.  It  is  found  that
when the array elements are spread too far apart angularly,
the  superposition  of  the  higher  order  azimuthal  multipoles
is not as effective. For example, if the size of this 13-element
half-wavelength  UCA  becomes ,  then 
decreases to 29.52 (14.70 dB). On the other hand, the direc-
tivity  pattern  of  the  corresponding  25-element  UCA  with

 is  shown  in Figure  17(b).  The  peak  directivity
has increased significantly to  dB (70.19).
Even  with  an  increased  dB  (3.14),  the

 is larger than it by 13.49 dB. Thus, this larger ar-
ray  is  also  clearly  superdirective.  Moreover,  all  sidelobe
levels  in  the  back  hemisphere  have  become much smaller,
now being −25.20 dB below this peak value.

Further investigations of the advantages of employing
the  max-directed  HVPs  over  the  half-wavelength  dipoles
was performed. It was first found that the BEAM results did
not deteriorate with a smaller angular section of the circle if
enough  elements  were  present.  Semi-circular  arrays  of  13

ka = 0.25πhalf-wavelength  dipoles  and  HVPs  with  were
simulated.  The  BEAM  directivity  results  are  shown  in
Figure  18.  The  horizontal  plane  directivity  results  of  the
half-wavelength  dipole  array  are  given  in Figures  18(a)
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Figure 16  Directivity results for a UCA with  that consists of 13
half-wavelength  dipoles  and  optimized  with  the  Bessel-eigenmode ap-
proach. The specified beam direction of the DM is .
(a) Vertical plane, linear plot. (b) Vertical plane, polar plot. (c) Horizontal
plane, linear plot. (d) Horizontal plane, polar plot (dB).
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Dmax,BEAM = 15.00
x

yz

Dmax,BEAM

x

yz

and (b). The maximum directivity,  dB, is
along the -axis with a backlobe level of −7.28 dB, which
yields  the  FTBR  =  22.28  dB.  The  first  sidelobe  level  is
1.91 dB, −13.09 dB below the maximum. The largest side-
lobe  level  in  the  back hemisphere  is −4.75  dB, −19.75 dB
below the maximum. The -peak was −7.28 dB. Pleasant-
ly,  these  characteristics  are  essentially  identical  to  the  full
UCA  ones.  On  the  other  hand,  the  corresponding  max-
directed HVP results of the semi-circular case of HVPs are
presented  in Figures  18(c) and  (d).  The  superior  perfor-
mance  of  the  max-directed HVP case  are  immediately  ob-
served. Details  include the maximum directivity, 
= 15.21 dB, being along the -axis with a backlobe level of
−331.33 dB, which yields the FTBR = 346.54 dB. Again, in
addition  to  producing  a  higher  maximum  directivity,  the
max-directed HVPs  produce  highly  desirable,  exceptional-
ly smaller fields in the back direction. While the first side-
lobe level is 1.07 dB, 14.14 dB below the maximum, in the
front  hemisphere,  the  largest  sidelobe  level  in  the  back
hemisphere is −11.44 dB, −26.65 dB below the maximum.
The -peak is smaller at −11.70 dB. Both arrays are clear-
ly superdirective.

60°
ka = 0.25π

For  further  comparison  purposes  the -sector  array
of  7  max-directed  HVPs with  was also  consid-
ered. The BEAM directivity results are shown in Figure 19.
The  patterns  in  the  two  vertical  planes  and  the  horizontal
plane are given, respectively, in Figures 19(a) and (b), and
in Figures  19(c)  and  (d).  The  maximum  directivity,

EL
EC

TR
O
M
A
G
N
ET

IC
 S

C
IE

N
C
E

 

270°
300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°

(a)

0.4
0.6
0.8
30

35

15
0.410

20
25
30

35

270°
300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°

(b)

10
20
30
40
50
60
70
80

10
20
30
40
50
60
70
80

ka = 0.25π Dmax,BEAM

ka = 0.50π Dmax,BEAM

Figure 17  BEAM directivity  results  (polar  plots  in  linear  scale  to  com-
pare  with  the  acoustic  array’s)  for  half-wavelength  UCAs  of  different
sizes. (a) 13-element UCA with  and  = 31.60 (15.00
dB). (b) 25-element UCA with  and  = 70.19 (18.46
dB).
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Figure 18  BEAM directivity results in the horizontal, -plane for 13-ele-
ment  semi-circular  arrays  with  optimized  with  the  Bessel-
eigenmode  approach.  The  specified  beam  direction  of  the  DM  is

.  (a)  Half-wavelength  dipoles,  linear  plot.  (b)  Half-
wavelength  dipoles,  polar  plot.  (c)  Max-directed  HVPs,  linear  plot.  (d)
Max-directed HVPs, polar plot.
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Dmax,BEAM x =  12.07  dB,  is  along  the -axis  with  a  backlobe

yz

level of −329.09 dB, which yields the FTBR = 341.16 dB.
The  first  sidelobe  level  is −4.31  dB,  16.38  dB  below  the
maximum. The  largest  sidelobe  level  in  the  back  hemi-
sphere is −16.87 dB, −28.94 dB below the maximum. The

-peak was −9.46 dB.  In fact,  the field levels  in  the back
hemisphere  are  all  below −9.46  dB, −21.53  dB  below  the
maximum. This BEAM optimized sector case is superdirec-
tive  as  well.  In  fact,  its  results  are  superior  to  those  of  the
corresponding unconstrained RQ-optimized case.

ka = 2π

ka = 0.25π

ka = 0.25π

A final important comparison was made. The standard,
unconstrained  RQ-optimization results  can  be  quite  sensi-
tive to the number of decimal points kept in the determined
element amplitude coefficients. For the  semi-circu-
lar  array of  13 half-wavelength dipoles  optimized with the
FTBR-constrained  version,  the  maximum  directivity  and
FTBR values were 14.92 dB and 100.00 dB keeping all 16
decimal  places.  Keeping  only  3  of  them,  these  values
changed  to  14.91  dB  (very  slight  decrease)  and  49.77  dB
(large variation,  but  nonetheless,  very  acceptable  unidirec-
tional  performance).  Basically,  this  larger  array  was  quite
insensitive  to  small  variations  in  the  solution  coefficients.
On  the  other  hand,  when , the  maximum  direc-
tivity and FTBR values were actually 15.37 dB and 100.00
dB  keeping  all  16  decimal  places.  However,  when  only  6
were  kept,  they  deteriorated  significantly  to  5.77  dB  and
0.57  dB.  The  constrained  RQ-optimization  results  were
very sensitive  for  this  significantly  smaller  array.  In  con-
trast,  recall  that  the  corresponding  BEAM  results  for  the

 semi-circular  array  of  13  max-directed  HVPs
were 15.21 dB and 346.54 dB. These values were obtained
when  all  16  decimal  places  were  kept.  When  only  3  were
retained,  these  values  did  not  change.  The  BEAM  results
were  found  to  be  highly  tolerant  to  those  not  so  small
changes in the specified amplitude coefficients.

It  must  be  re-emphasized  that  the  pseudo-needle out-
come was a choice and that other patterns may be more de-
sirable for  specific  applications.  As  the  process  was  delin-
eated, it would be straightforward to adapt the BEAM opti-
mization approach to achieve whatever arrangement of the
far fields one desired by taking advantage of the best mix-
ture of multipoles. 

VIII. Practical Issues
As briefly noted in the introduction, the EM community has
had a long history of treating superdirectivity theoretically,
but then immediately dismissing it from practical points of
view.  This  consensus  opinion  was  nicely  summarized  in
1989 by R.W.P. King in [52] at the beginning of Section II
where he emphasizes: “The supergain theorem states that it
is theoretically possible to design an antenna with arbitrari-
ly small  dimensions and a directivity as high as desired.  It
follows from a proof by Oseen [43] that the theorem is con-
sistent  with  Maxwell’s  equations.  The  general  consensus
has been  that  superdirective  antennas  are  impractical  be-
cause  of  critical  tolerances,  narrow  bandwidth,  and  very
low efficiency [97], [98].” This statement echoed an earlier
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Figure 19  BEAM directivity results  for the 7-element max-directed 60 -
sector  HVP  array  with  and  with  the  specified

. (a) Vertical planes, linear plot. (b) Vertical planes,
polar  plot.  (c)  Horizontal  plane,  linear  plot.  (d)  Horizontal  plane,  polar
plot.
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one  of  the  same  nature  in [99].  However,  I  believe  that
there was  a  true  inflection  point  in  the  history  of  and  atti-
tudes towards superdirective arrays in the mid-2000’s with
the already noted set of papers by Dr. Arthur Yaghjian and
his Hanscom AFB colleagues in which they experimentally
demonstrated superdirective, electrically small, two-element
end-fire  arrays.  The  additional  references  provided  in  the
introduction  simply  highlight  the  reality  that  there  have
been  many  articles  describing  successfully  tested  super-
directive end-fire (linear) arrays since then, effectively over
the last two decades. In fact, these issues have become quite
popular  recently,  e.g.,  with  recent  reports  of  more  end-fire
[100]–[104] and even broadside-radiating [105], [106] sys-
tems. These  EM  community  successes  follow  better  theo-
retical understandings of the phenomena, enhanced numeri-
cal  simulators,  and the associated earnest  explorations into
novel  feeding  concepts,  lower-loss materials,  and  uncon-
ventional radiator designs that are overcoming the tradition-
al stigma attached to the anticipated practical drawbacks.

Given  the  many  noted  successes  associated  with
acoustic UCAs, the superdirective outcomes of the various
approaches used to custom-design the EM UCA exemplars
studied herein will  hopefully stimulate the necessary fabri-
cation and testing of their pathfinder concepts to guide fur-
ther  evolution of  their  subsequent  prototypes into  practical
systems.  Our  very  preliminary  practical  considerations  to
experimentally  verify  these  concepts  has  begun  by  taking
immediate  advantage  of  the  acumen  developed  from  the
EM  UCA  challenges  experienced  in [107].  As  suggested
earlier,  the  eventual  aims  would  be  to  replace  the  vertical
dipoles of such a UCA with the corresponding adaptations
of the electrically small, highly efficient, coplanar twin-line
differential-fed  HVPs  reported  in [80], [87].  Initial  design
studies  with  numerical  simulations  of  a  UCA  of  radially-
pointing  versions  of  those  HVPs  have  been  performed.
They account for all of the mutual coupling and impedance
matching effects  and  have  already  yielded  promising  re-
sults. We hope to report on these independent efforts in the
future. 

IX. Conclusions
The performance characteristics of several full, semi-circu-
lar, and sector UCAs of electric dipoles and HVP elements
were  considered.  Different  optimization  techniques  were
applied to maximize their directivity and FTBR values. The
intent  was  to  determine  which  techniques  and  arrays
achieved superdirective performance. It was confirmed that
an  odd-number  of  elements  in  a  full  UCA  produce  OMs
with superior OoR results. The unconstrained (constrained)
RQ-approach applied to the full half-wavelength dipole ar-
ray achieved a DM with superdirective (and unidirectional)
properties. The semi-circular arrays of HVPs, with no opti-
mization and with the unconstrained-RQ optimization, were
superdirective with significant,  natural  unidirectional prop-
erties.  The  two  multipole-based  approaches – the  acoustic
EBDS method  and  the  innovative  BEAM approach  devel-

oped herein – applied to significantly smaller-radius arrays
also achieved  superdirective  outcomes.  The  BEAM  tech-
nique produced superior directivity and FTBR results.

Comparisons between the arrays of dipole and HVP el-
ements clearly  demonstrated  that  the  unidirectional  Huy-
gens elements  produced  superior  performance  characteris-
tics. For  large  radius  arrays,  the  unconstrained  and  con-
strained RQ-optimization methods produced superdirective
properties that were quite tolerant to changes in the ampli-
tude  coefficients  they  specified.  It  was  not  the  case  for
small  radius  ones.  On  the  other  hand,  both  the  EBDS and
BEAM approaches produced very good results for the small
radius  arrays,  but  did  not  for  the  large,  sparsely  populated
ones.  The  BEAM  results  for  those  small  radius,  hence,
densely-populated arrays were shown to be quite tolerant to
changes in the excitation amplitudes the method prescribed.

z

While  only  one  ring  of  elements  was  treated  in  this
study,  several  rings  could  be  optimized  to  produce  further
enhanced  and  practical  performance  characteristics.  As
shown  in [5],  this  outcome  was  true  even  for  the  DMs  of
both sector and full multi-ring UCAs of electric monopoles.
Furthermore,  a  system  with  several  circular  ring  arrays,
each  at  different  heights  along  the -axis  could  provide
multiple  beam  coverage  of  the  azimuth  from  the  ensuing
multiple sector-DMs, each having superdirective properties.
This multi-beam capability, which is in demand for 5G and
NextG wireless systems, could also be facilitated with more
effort  in a single ring by taking into account and adjusting
for the  superposition  of  the  fields  in  any  overlapping  re-
gions  of  those  beams.  In  either  case,  the  appropriate  feed-
networks  and  associated  electronics  that  would  deliver  the
requisite amplitudes and phases to each element would have
to  be  developed.  Given  the  reported  practical  successes  of
superdirective  acoustic  receiving  arrays  designed  with  the
EBDS  approach,  it  is  expected  that  the  presented  BEAM
analysis  and  simulation  results  for  several  types  of  EM
UCAs will  lead  to  practical  transmitting  or  receiving  ver-
sions that  have  the  superdirective,  unidirectional  perfor-
mances reported herein. 

Appendix A
The conversions of Spherical-coordinate unit vectors to Cartesian
unit vectors are
 

r̂ = sinθ cosϕ x̂+ sinθ sinϕ ŷ+ cosθ ẑ
θ̂ = cosθ cosϕ x̂+ cosθ sinϕ ŷ− sinθ ẑ
ϕ̂ = −sinϕ x̂+ cosϕ ŷ (A-1)

The conversions  of  Cartesian unit  vectors  to  spherical-coordinate
unit vectors are 

x̂ = sinθ cosϕ r̂+ cosθ cosϕ θ̂− sinϕ ϕ̂

ŷ = sinθ sinϕ r̂+ cosθ sinϕ θ̂+ cosϕ ϕ̂

ẑ = cosθ r̂− sinθ θ̂ (A-2)

Cyclic permutation of the spherical-coordinate unit vectors yields 
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r̂ = θ̂× ϕ̂
ϕ̂ = r̂× θ̂
θ̂ = ϕ̂× r̂ (A-3)

Cyclic permutation of the Cartesian unit vectors yields
 

ẑ = x̂× ŷ
ŷ = ẑ× x̂
x̂ = ŷ× ẑ (A-4)

Cross-products  used  to  define  electric  and magnetic  dipole  fields
(spherical-coordinate unit vectors):
 

r̂× r̂× ẑ = sinθ θ̂
r̂× ẑ = −sinθ ϕ̂

r̂× r̂× x̂ = −cosθ cosϕ θ̂+ sinϕ ϕ̂

r̂× x̂ = sinϕ θ̂+ cosθ cosϕ ϕ̂

r̂× r̂× ŷ = −cosθ sinϕ θ̂− cosϕ ϕ̂

r̂× ŷ = −cosϕ θ̂+ cosθ sinϕ ϕ̂ (A-5)

Cross-products  used  to  define  electric  and magnetic  dipole  fields
(Cartesian-coordinate unit vectors):
 

r̂× x̂ =cosθ ŷ− sinθ sinϕ ẑ
r̂× r̂× x̂ =(−sin2 θ sin2 ϕ− cos2 θ) x̂

+ sin2 θ sinϕ cosϕ ŷ+ sinθ cosθ cosϕ ẑ (A-6)
 

r̂× ŷ =− cosθ x̂+ sinθ cosϕ ẑ
r̂× r̂× ŷ =sin2 θ sinϕ cosϕ x̂

+ (−cos2 θ− sin2 θ cos2 ϕ) ŷ+ sinθ cosθ sinϕ ẑ (A-7)
 

r̂× ẑ = sinθ sinϕ x̂− sinθ cosϕ ŷ

r̂× r̂× ẑ = sinθ cosθ cosϕ x̂+ sinθ cosθ sinϕ ŷ− sin2 θ ẑ (A-8)

Then, for example,
 

P⃗(θ,ϕ) = r̂× r̂× ẑ+ r̂× (sinϕn x̂− cosϕn ŷ)

= [sinθ cosθ cosϕ x̂+ sinθ cosθ sinϕ ŷ− sin2 θ ẑ]
+ sinϕn[cosθ ŷ− sinθ sinϕ ẑ]
− cosϕn[−cosθ x̂+ sinθ cosϕ ẑ]
= [sinθ cosθ cosϕ− cosθ cosϕn] x̂
+ [sinθ cosθ sinϕ+ cosθ sinϕn] ŷ

+ [−sin2 θ− sinθ (sinϕ sinϕn + cosϕ cosϕn)] ẑ
= cosθ [sinθ cosϕ− cosϕn] x̂
+ cosθ [sinθ sinϕ− sinϕn] ŷ
− sinθ [sinθ+ cos(ϕ−ϕn)] ẑ (A-9)

which immediately yields
 

P⃗(θ = π/2,ϕ) = − [1+ cos(ϕ−ϕn)] ẑ (A-10)
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