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Abstract—The combination of mobile edge computing
(MEC) and sensing technologies, such as light detection
and ranging (LiDAR), offers a viable path toward enhanc-
ing autonomous vehicle navigation and traffic monitoring
in the context of intelligent transportation systems. In or-
der to meet these needs, this article offers a methodol-
ogy that investigates the use of elevated LiDAR (ELiD) and
its integration with MEC. Our work focuses on two main
challenges: optimizing the placement of ELiDs to ensure
extensive urban coverage and minimizing network latency
by efficiently routing data to MEC servers. By proposing
a heuristic for real-time task allocation, we aim to en-
hance safety and operational efficiency in smart cities. Our
findings show a modest optimality gap where the heuris-
tic achieves a balance between computational efficiency
and minimized cloud dependency, albeit at the cost of
a marginally increased latency, highlighting the nuanced
tradeoffs in edge-to-cloud task distribution for efficient Li-
DAR data processing in smart cities.

Index Terms—Elevated light detection and ranging (Li-
DAR), infrastructure planning, intelligent transportation
systems (ITS), mobile edge computing (MEC), optimization.

LIST OF THE MATHEMATICAL NOTATIONS AND THEIR

DESCRIPTIONS

Notation Definition
λ,Λ ELiD, set of ELiDs.
r,R Roadway, set of roadways.
θ Horizontal FoV.
φ Vertical FoV.
fscan Scan refresh rate.
xλr Location of ELiD.
xλr

1 ELiD’s latitude.
xλr

2 ELiD’s longitude.
xλr

3 ELiD’s altitude.
ρλr

1 ELiD’s rotation relative to the axis orthogonal to the
ground.
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ρλr
2 ELiD’s rotation relative to the perpendicular roadway

plane’s normal vector.
Dr Road’s length.
yrmin ELiD’s fixed distance from the roadway.
yrmax Distance from the side of the potential ELiD location

to the far curb on the other side of the street.
τt Road’s angle relative to east.
g, G Section, set of sections.
Irg Importance metric.
Aλr

cov Effective coverage area.
δ Scan depth parameter.
Γλr Max data produced per scan.
Δλr Data produced per scan.
zcov Predetermined height of the coverage prism.
Eλr Joint RSU-ELiD apparatus.
Eλr RSU energy consumption.
Eλr

ELiD Amount of energy required to power the ELiD scan
laser.

Ptrans Transmission power.
Rtrans Transmission rate.
c, C Computer network node, set of computer network

nodes.
lij ,L Fiber-optic link, set of fiber-optic links.
(i, j),V Nodes, set of nodes.
Tij Link data throughput.
T Set of directions.
γ Fraction of the initial map.
Δλr

c Size if processed map.

I. INTRODUCTION

R ECENT developments in embedded systems and sensor
technologies have opened up a wide range of applications

in the field of intelligent transportation systems (ITS) [1]. Light
detection and ranging (LiDAR) is one crucial sensing technique
that could greatly improve ITS sensing capabilities [2]. LiDAR
uses laser technology to measure the distance between the sensor
aperture and the target object of the laser beam. Multiple laser
projections over a field of view (FoV) region can be used
to build 3-D virtual maps of the vicinity around the LiDAR
unit [3].

LiDAR technology has become an essential sensing tool
in many ITS-related domains, including autonomous vehicles
(AVs) [4] and urban mapping/surveying [5], [6]. It is also re-
markable for its crucial role in helping AVs with the simulta-
neous location and mapping process for autonomous navigation
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in a variety of environments [7], [8], [9]. The ability of LiDAR
systems to deliver detailed data enables the creation of precise
3-D maps of an AV’s environment, facilitating more accurate
navigation. Despite its significance, LiDAR technology also
presents challenges, including the need for large local data
storage and processing resources to support AV operations. In
specific scenarios, the data generation by AVs can reach sub-
stantial levels. For instance, during continuous operation over an
8-h period each day, it is possible for these vehicles to produce
a volume of data nearing 40 TB. This volume breaks down to
an approximate rate of 84 MB per minute. Therefore, to handle
this substantial volume of data, AVs are typically equipped with
onboard graphics processing units (GPUs). This approach is
adopted because LiDAR data, resembling image data, can utilize
established, efficient vectorized image processing methods that
take advantage of GPUs for enhanced performance. However,
this performance enhancement comes with a drawback, as these
power-intensive components can reduce the fuel efficiency of
an AV by nearly 10% compared to a conventional vehicle [10].
Moreover, the increased energy consumption leads to higher
costs, and the additional onboard sensors and components fur-
ther add to the expenses of owning an AV. For instance, a typical
LiDAR sensor by Velodyne, designed for AV applications, can
cost up to $8k USD per unit [11]. In addition, the placement
of LiDAR sensors on AVs can result in a limited perspective,
limiting their capacity to fully capture the surroundings. This
is contrasted by applications, such as aerial scans using LiDAR
on aircraft, which are aimed at quickly covering extensive ar-
eas [12], [13].

There are relatively few studies addressing the concerns
associated with using LiDAR in AVs [14], [15]. While the
majority of research emphasizes leveraging LiDAR technol-
ogy for enabling AV navigation [16], [17], [18], only a select
few tackle the challenges of deploying LiDAR with AVs. One
innovative approach, as suggested by Jayaweera et al. [19],
involves mounting LiDAR sensors at elevated positions along
roadways within an urban ITS framework—this configuration is
known as elevated LiDAR (ELiD). ELiD units, such as roadside
units (RSU) [20], are integrated with other ITS components
to facilitate efficient communication with passing AVs. The
intense sensing and processing tasks that AVs must perform
while processing LiDAR onboard will be partially handled by
the ITS and cloud infrastructure.

While ELiD is primarily envisioned for AV navigation appli-
cations, its utility extends to other potential areas that could sig-
nificantly benefit growing urban centers. A particularly valuable
application lies in infrastructure monitoring. With urban expan-
sion and technological advancements, maintaining the integrity
of existing infrastructure becomes crucial. ELiD, for instance,
emerges as a promising approach for monitoring subsidence,
a phenomenon where excessive groundwater extraction causes
the ground to gradually sink [21], posing significant challenges
in major cities, such as Mexico City and Beijing.

An inventive method for handling data from LiDAR sensing
is ELiD. The assignment of ELiD computational tasks to servers
located far away is a major issue that Jayaweera et al. [19]
drew attention to in order to circumvent the limitations of
local resources, which might not have the capacity to process

onsite [22] or might use excessive energy [10]. This problem
is new for LiDAR data handling, but it is similar to prob-
lems with mobile edge computing (MEC), which transfers data
processing from mobile devices to edge servers in order to
reduce battery use. Consequently, tasks demanding substantial
computational power for mobile applications are often executed
within the MEC framework. Given that LiDAR sensors generate
huge amounts of data, which increase with enhanced scanning
precision [22], and the objective of ELiD systems to reduce
the computational demands on AVs [19], incorporating MEC
technology into ELiD’s backhaul architecture appears to be a
strategic choice.

Compared to in-network processing, which consumes a lot
of power, data transfer is a significant performance bottleneck
in a cloud-only backend, struggling with the transmission of
very large data volumes [23]. By incorporating edge computing
into the backhaul, MEC task offloading is a developing field
that attempts to relieve the network bottleneck that the cloud
is experiencing. ELiDs connect with each other through edge
computing devices, which are lower power and situated closer
to the network gateway on the periphery [24], [25], [26], [27].
These edge devices may not have as much processing capability
as cloud servers, but they save a lot of network transmission
latency because of their close proximity to the data source.
This decrease in latency compensates for their slower processing
capabilities, particularly given the substantial improvements in
MEC processor performance with each new generation [28].

Although MEC-based computing has advantages, it also has
drawbacks. In order to effectively optimize the utilization of
computational resources, MEC presents various destinations and
routes for communication traffic, requiring creative solutions for
backhaul routing and work distribution. Kong [29] developed an
optimization problem to divide up ELiD processing jobs across
virtual machines in the backhaul network with the goal of cutting
costs while meeting system requirements, such as RAM avail-
ability, and meeting processing demands. Cost-effective MEC
backhaul optimization has also been the subject of writing by
other authors [30], [31]. Santos et al. [32] created a mixed-integer
nonlinear programming (MINLP) problem to optimize wireless
backhaul networks in order to lower latency. Using robust opti-
mization techniques [33], and limiting energy consumption [34]
were the two other strategies for optimizing backhaul networks.
Our objective is to combine these tactics, taking care of routing
and edge offloading in order to reduce total latency, which is
essential for guaranteeing the security of AV operations.

The positioning of ELiDs presents another difficulty, in their
brief discussion of ELiD placement, Jayaweera et al. [19] made
the assumption that each ELiD would be positioned to cover
a complete road grid. Because of infrastructural or resource
limitations, it is essential to optimize the location of ELiDs.
Optimization in ITS infrastructure planning is exemplified by
literature examples, such as RSU placement [20] and UAV
station positioning [35]. ELiD placement along a single roadway
was examined by Lucic et al. [36]; our objective is to build on
this work by taking into account a 2-D road grid and adding
more flexibility to ELiD placing.

In this article, we present a comprehensive solution for in-
tegrating ELiD with MEC to enhance LiDAR-based traffic
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monitoring in smart cities. We first address the ELiD placement
optimization, followed by tackling the ELiD backhaul routing
problem to minimize latency when sending data to MEC servers.
The key contributions of this article are as follows.

1) We explore the application of ELiD for traffic mon-
itoring and as a support mechanism for AVs within
ITS.

2) We formulate two optimization problems: the first prob-
lem seeks to maximize the effective coverage of an array
of ELiDs across a 2-D urban road, while the second
focuses on reducing the total network latency through
offloading tasks to edge servers.

3) Given the critical role of LiDAR sensing in AVs for
safety [37], we have crafted a fast heuristic method for
real-time task allocation. These efforts cater to the re-
quirement for a backhaul management system that effi-
ciently directs ELiD data from sensors to servers (edge
or cloud) using current network infrastructures.

Thus, in the subsequent sections of this article, we introduce
a detailed ELiD planning framework tailored for urban environ-
ments. This framework accounts for the strategic positioning of
ELiDs along a realistic road grid and the efficient routing of
ELiD data to processing servers within a fixed-topology back-
haul. A simulation-based evaluation to validate the framework’s
effectiveness in urban traffic monitoring and AV navigation is
then performed. Simulations show that integrating ELiD with
MEC significantly reduces latency and improves LiDAR data
accuracy.

The rest of this article is organized as follows. Section II
defines the issue space, together with the underlying assump-
tions and mathematical models, and sets, parameters, and in-
dexes associated with the problem formulation. The backhaul
network model is given in Section III. The problem is for-
malized in Section IV. This is followed by a discussion of
the heuristic design in Section V. We next review the numer-
ical results in Section VI. Finally, Section VII concludes this
article.

II. ELID PLACEMENT SETTINGS

In this section, we study the system model of the ELiD
planning framework. We first examine the model pertaining
to the ELiD units’ locations. The Nomenclature contains an
exhaustive list of all the notations used in this article.

1) ELiD Characteristics: The maximum number of ELiDs
that may be installed is calculated as |Λ| x |R|. This computation
may take into account financial constraints. We consider a set
of ELiDs λ ∈ Λ to be installed along roadways r ∈ R. Physi-
cally, every ELiD is the same, with θ and φ for the horizontal
and vertical FoV angles, respectively, and a scan refresh rate
fscan, which is the frequency at which the ELiD rescans its
surroundings. According to Fig. 1, the ELiDs are placed in fixed,
elevated, and clear positions along the road, such as on lamp
poles or the sides of buildings, with their apertures facing the
road.

In addition to the aforementioned fixed attributes, the ELiDs
have variable attributes associated with their coverage of the
roadway. The effects of these attributes are shown in Fig. 2.

Fig. 1. Illustration of how an ELiD may cover an urban roadway.

The list includes the geographic information system (GIS) co-
ordinates associated with the location of the ELiD λ placed
along a roadway r (denoted by (xλr

1 , xλr
2 , xλr

3 ) = xλr ∈ R3),
where xλr

1 represents the latitude, xλr
2 represents the longitude,

and xλr
3 represents the altitude relative to the ground of the

ELiD’s position. In addition, the ELiDs have a set of angles
(ρλr

1 , ρλr
2 ) ∈ ρλr , where ρλr

1 represents the vertical rotation of
the ELiD relative to the axis orthogonal to the ground (modeled
as a flat plane), and ρλr

2 represents the rotation relative to the
direction perpendicular roadway r plane’s normal vector and
the direction of the traffic flow.

Since we assume that the ELiDs are mounted at fixed distance
yrmin away from the roadway r (which corresponds to the dis-
tance between the buildings and the curbside of the road), the
following relationship must hold:

ρλr
2 = tan−1

(
yrmin

xλr
3

)
. (1)

2) Roadway Characteristics: Characteristics of the road grid
R also need to be taken into account while modeling this prob-
lem. We presume that the city has a conventional roadway grid
since we are considering a dense urban region as our problem
setting (see Fig. 3). yr

start,y
r
end,y

r
1 ,y

r
2 ,y

r
3 ,y

r
4 ∈ R3) are the six

key coordinates that define the geospatial position of each road
segment r ∈ R. From these coordinates, we can express the road
length Dr and the road’s width yrmax − yrmin as follows:

Dr = ||yr
start − yr

end||2 (2a)

yrmax = ||yr
start − yr

3 ||2 (2b)

yrmin = ||yr
start − yr

1 ||2 (2c)

where yrmax is the distance from the side of the potential ELiD
location to the far curb on the other side of the street. Since the
roads in the problem space are assumed to be straightaway, the
roadways can be modeled as rectangles, where the corners are
determined by their GIS coordinates, and these coordinates can
be utilized to calculate the road width and length. We consider
the start of the roadway to be the northwestern-most point



GUEFRACHI et al.: COMPREHENSIVE PLANNING FRAMEWORK FOR CONNECTED ELEVATED LiDAR SENSORS 57

Fig. 2. Visualizing ELiD coverage. (a) Isometric view of the ELiD coverage of a roadway. (b) Cross-sectional perspective of the same ELiD,
showing how the ELiD coverage spans the roadway according to the ELiD altitude xλr

3 , and the horizontal FoV angle φ. (c) Top–down view of the
ELiD, with a focus on the triangular plane that spans from the ELiD aperture to the near-side curb. This perspective shows how xλr

a and xλr
b are

derived from yrmin, θ, and xλr . (d) Another top–down view, this time focusing on the triangular plane that comprises the “top” of the ELiD coverage
zone. This view is used to show how xλr

c and xλr
d are derived.

associated with the road boundaries. The roadway may also be
at an angle τ r relative to a heading directly east.

We introduce a new significance measure Irg ∈ [0, 1], a con-
tinuous and normalized utility function, where a score of 0
indicates that an area does not require coverage and a value
of 1 indicates a very important, busy, or risky area. This is due
to the possibility that some portions g ∈ G of the road r have
busier intersections. The boundaries of each section a can also
be defined using GIS coordinates irg1 , irg2 , irg3 , irg4 ∈ R3.

3) Modeling ELiD Coverage: With the spatial characteristics
of the roadway and ELiD considered, we now model the cover-
age of ELiDs λ along a roadway r. As illustrated in Fig. 2, we
can approximate the coverage area on the roadway as a rectan-
gular area with four coordinates xλr

1 ,xλr
2 ,xλr

3 ,xλr
4 ∈ R3 that

comprise the corners of the rectangle. Based on the geometric
characteristics of the ELiD coverage model, these coordinates
are expressed as follows:

xλr
1 =

(
xλ

1 − dλr
a , xλ

2 + yrmin, 0
)

(3a)

xλr
2 =

(
xλ

1 + dλr
b , xλ

2 + yrmin, 0
)

(3b)

xλr
3 =

(
xλ

1 − dλr
a , xλ

2 + yrmin + Lλ
eff, 0

)
(3c)

xλr
4 =

(
xλ

1 + dλr
b , xλ

2 + yrmin + Lλ
eff, 0

)
(3d)

where

dλr
a = yrmin tan

(
θ

2
− ρλr

1

)
(4a)

dλr
b = yrmin tan

(
θ

2
+ ρλr

1

)
(4b)

Lλr
eff = min{Lλr

width, y
r
max − yrmin} (4c)

Lλr
width = hλr min

{
cos

(
θ

2
− ρλr

1

)
, cos

(
θ

2
+ ρλr

1

)}
(4d)

Hλr = xλr
3 sec(ρλr

2 + φ) (4e)

hλr = Hλr sec

(
θ

2

)
. (4f)
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Fig. 3. Example of a street grid that needs to be covered by the ELiD
system. The longest road along the middle is the main thoroughfare. The
red lines represent the locations along the roadway where ELiDs may
be placed. The angles of inclination/declination relative to eastbound τr

are shown—we only have illustrated two because the angles of all of the
other roads can be inferred from the ones provided.

Fig. 4. Visualization of the octree structure representing the LiDAR
resolution.

Based on the rectangle bounding coordinates, we can there-
fore express the effective area coverage as follows:

Aλr
cov = ||xλr

1 − xλr
2 ||2 · ||xλr

1 − xλr
3 ||2 (5)

where ||.||2 is the Euclidean norm.
4) Modeling ELiD Data Production and Power Consumption:

The most commonly used data structure to represent the point
set cloud-based 3-D model generated by an ELiD scan of its
surroundings is the octree structure [38]. The scan sector of
an octree can be abstracted as a recursive set of cubes. If an
object or boundary is detected in the cube, it is split into eight
subcubes. In the subcube, a detection is assigned a value of 1, and
a nondetection is assigned a value of 0. This process is repeated
recursively until a finite depth δ is reached—this depth parameter
is based on the scan resolution of the ELiD. In addition to being
represented geometrically as a collection of cubes, the octree
is also represented as an 8-tree, where the subcubes are child
nodes of the parent cube/node, as shown in Fig. 4. Assuming

a worst-case scenario of a maximally populated octree given a
specific depth parameter δ, the amount of data produced per scan
volume Γλr (bytes/m3) is expressed as follows:

Γλr = 8δ−2 + 12 (6)

where the additional 12 bytes is the amount of data required to
storexλr as a 3-tuple of 32-bit floats. We can, therefore, estimate
the total amount of data produced per scan Δλr, which can be
expressed as follows:

Δλr = zcov ×Aλr
cov × Γλr × 1

fscan
(7)

where zcov is a predetermined height of the coverage prism.
Since the ELiD is connected to an RSU that transmits ELiD

point set map to AVs passing by, we approximate the energy
consumption of the joint RSU-ELiD apparatus Eλr as follows:

Eλr = Eλr
RSU + Eλr

ELiD + E0 (8a)

Eλr
RSU =

Ptrans ×Δλr

Rtrans
(8b)

Eλr
ELiD =

P λr

fscan
(8c)

whereEλr
RSU is the RSU energy consumption, based on the power

(W) Ptrans required to transmit Δλr MB of data at a rate of Rtrans

(MB/s), Eλr
ELiD is the amount of energy required to power the

ELiD scan laser of power P λr at a frequency of fscan Hz, and
E0 is the base power consumption lost to internal component
impedance.

III. BACKHAUL NETWORK MODEL

The LiDAR sensors are linked to a backhaul network that links
ELiDs to a dispersed network of computers on the edge and in
the cloud, enabling fast processing of the ELiD data. We present
the backhaul model for our problem scenario of relevance in this
section.

A. Network Topology

The network is comprised of a set of nodes V . These nodes
consist of two classes of devices: ELiDs, denoted by (λ, r) ∈
Λ×R, and computer network nodes c ∈ C, such that V = Λ ∪
C. We can further subdivide the set of computer network nodes C
into three subclasses: routers, MEC devices, and the cloud server.
Routers serve only to act as connection hubs in the network—
they do not have any processing capabilities. MEC devices are
devices with relatively slow computational devices and smaller
amounts of RAM, but are located much closer to the ELiDs than
the cloud server. The cloud server is a powerful virtual machine
instance located in a data center that is physically far away from
the urban street grid defined in our problem. As a result, the
expected hop-by-hop (hbh) transmission latency is much lower
to an MEC device compared to the one to the cloud server.

The backhaul network topology is fixed (i.e., all of the nodes
are linked by fiber-optic cables). We denote the fiber-optic links
as lij ∈ L, where i, j ∈ V . We construct the network in a hybrid
bus/star/daisy-chain topology that is a common configuration
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Fig. 5. Proposed backhaul network topology, along with the road
grid that the communications infrastructure is installed alongside with.
Routers are located at intersections, ELiDs are located along the road
between routers, edge servers are located nearby and are connected to
routers, and the cloud is located far away, accessible only from the main
trunk lines. Note that the number of ELiDs along the roadway may vary
based on the placement determined by the problem formulated in this
article.

for computer networks. In this problem setting, the main bus
runs along the main street of the street grid. Each intersection
has a router. Routers may be connected to MEC devices nearby,
and all ELiDs are positioned in a daisy chain between the nodes
at the ends of their streets. At the ends of the bus topology, the
two routers have direct links to the cloud server that are slow,
because these links must share throughput with other Internet
traffic. See Fig. 5 for an illustration of the network topology
with the road grid as a backdrop. Note that other topologies of
the network backhaul can be also addressed using our formulated
optimization problems and heuristic algorithms models.

B. Network Characteristics

After defining the network topology, we now discuss the var-
ious characteristics that will affect how the data are routed in the
backhaul network. Each ELiD λ along each roadway r produces
Δλr MB of data per scan; this relationship was highlighted in (7),
and is dependent on the ELiD’s configuration. Each link lij has
a data throughput rate of Tij in GB/s. The links are bidirectional
and can handle an arbitrary number of signals passing through, as
each can be broadcast on a slightly different visible light spectra.
Along each link, the direction of signals tmay be associated with
uplink messages from an ELiD (λ, r) to a server c, or downlink
messages from a server to an ELiD. We, therefore, denote the
set of directions as T = {up,down} : t ∈ T .

We assume that, after the server processes the data from a
LiDAR (λ, r), the processed map returned to the LiDAR to be
transmitted back to the passing AVs is some fraction γ < 1 of
the initial map, as extraneous information may have been filtered
out. As a result, the size of the processed map Δλr

c in MB is

TABLE I
DECISION VARIABLES FOR (P)

expressed as follows:

Δλr
c = γ ×Δλr. (9)

Each server in the network c has Mc GB of onboard RAM—
the total amount of RAM offered across all of the computers in
the network limits how much data may be processed. Routers
contain no onboard RAM, as they only route messages. MECs
have small amounts of onboard RAM, and the cloud server offers
an abundance of RAM. In order to estimate the speed in which
servers process data, we can estimate the server processing
throughputαc based on the image processing benchmarks of the
server’s processing units, as LiDAR data are similar to image
data if reorganized into voxel grids (3-D arrays). Since the ELiD
data may be processed in a similar manner to image data, we
assume that the data are embarrassingly parallel (i.e., exploiting
computational parallelism to accelerate processing is trivial, and
resources scale linearly—doubling the processing power halves
the processing speed and doubling the number of jobs halves the
amount of available resources).

IV. PROBLEM FORMULATION

In this section, we formulate two mathematical programming
problems. One is an MINLP problem that aims to address the
placement of ELiD units, and the other is a quadratic integer
programming (QIP) problem that is a variant of the quadratic
assignment problem, which aims to route the ELiD data through
the backhaul network. Note that outcomes of the first optimiza-
tion problem (i.e., ELiD placement) may impact the outcomes
of the second problem (ELiD data backhaul routing).

A. Optimization Problem for ELiD Planning

Our main goal in this problem (which we will refer to as
the problem (P) for the rest of this article) is to maximize the
effective coverage area of the ELiDs that have been put on the
urban road grid. Table I defines the decision variables that are
necessary to formulate the problem.

1) Coordinate Transformation: As mentioned in Sec-
tion II-A2, each roadway has a length of Dr meters, a width
of yrmax − yrmin, and can be defined by a set of coordinates that
comprise the corners of the roadway. In order to standardize
ELiD placement along each roadway, independent of the
orientation or direction of the roadway, we develop a coordinate
transformation, where theyr

start →mr
start = (0, 0, 0) is the origin

of the transformed coordinate plane,yr
end →mr

end = (Dr, 0, 0),
and the road is oriented to be parallel to the east–west axis. This
transformed perspective can be represented in Fig. 2(c) and (d).

There are two key steps in the transformation: translation and
rotation. In order to translate a coordinate yr →mr : mr

start =
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(0, 0, 0), we must define the transformed coordinates mr as
follows:

mr = Rcoord(−τ r)[yr − yr
start] (10)

where Rcoord(−τ r) is the rotation matrix that rotates a coordi-
nate −τr radians about the axis orthogonal to the ground, and
mr,yr , and yr

start are R3 column vectors. The rotation matrix
Rcoord(−τ r) is expressed as follows:

Rcoord(−τ r) =

⎡
⎢⎣cos(−τ

r) − sin(−τ r) 0

sin(−τ r) cos(−τ r) 0

0 0 1

⎤
⎥⎦ . (11)

Following the prior definitions, we define a decision variable
ελr , the transformed coordinate of the ELiD position, which is
expressed as follows:

ελr = Rcoord(−τ r)[xλr − yr
start]. (12)

The ELiD’s actual position may be reconstructed from ελr ,
τ r, and yr

start, which are decomposed characteristics of the
coordinate, as follows:

xλr = [Rcoord(τ
r)ελr] + yr

start (13)

since Rcoord(τ
r) = Rcoord

−1(−τ r).
2) Objective Function: We aim to configure the placement of

ELiDs so as to maximize their effective coverage of the road grid
and reduce the coverage overlap between adjacent ELiDs—an
area along a roadway r should only be counted as covered once
if it is covered by two ELiDs.

An ELiD λ was formerly specified in Section II-A1 to have a
coverage area shaped like a rectangle, determined by four points
based on the geometric relationships as a result of the ELiD’s
position and rotation. If this ELiD λ were to be placed along a
roadway r, we can transform the relevant GIS coordinates asso-
ciated with λ to the standardized coordinates ελr via (12). Since
all ELiDs must be placed yrmin meters away from the roadway,
εrλ2 = 0 ∀λ, r. Therefore, when dealing with the standardized
coordinates, we only need to be concerned with the “east–west”
position and the altitude regarding placed ELiDs. Therefore, we
deduce that ελr1 ∈ [0, Dr] and ελr3 ∈ [zmin, zmax].

For each ELiD λ placed along a road r, we can determine
the start and end boundaries of the coverage rectangle (ελrs and
ελre , respectively) by transforming xλr

a → ελr
a and xλr

b → ελr
b

via (12). The decision variables ελrs and ελre can therefore be
expressed as follows:

ελrs = max(ελra1, 0) (14a)

ελre = min(ελrb1 , D
r). (14b)

The max/min restrictions are put into place to ignore coverage
outside of the roadway, as these do not make the coverage more
effective in this problem setting.

The collection of these ελrs and ελre values can be organized
into a set of boundariesBr, along with the road boundaries 0 and
Dr. The collection of these boundaries are sorted in ascending
order (i.e., 0 to Dr, and can be denoted as ζrβ ∈ Br). These
boundaries are used to divide the entire road r coverage into

subrectangles, which have an area Ar
β , which can be expressed

as follows:

Ar
β = Lr

β ×W r
β (15a)

Lr
β = ζrβ − ζrβ−1 (15b)

W r
β = max

λ∈Λ
{ηλr

β × σλr × ||xλr
a − xλr

c ||2} (15c)

where ηλr
β is a binary indicator that equals 1 if an ELiD λ covers

a subrectangle β of the roadway r.
After defining the areas for the subrectangles, we must con-

sider the weighted coverage based on the importance scores
Irg. First, we utilize (12) to gain the following transformed
coordinates of the bounding box defining the importance score
coverage: irg1 → ιrg1 and irg2 → ιrg2 . Next, we utilize the im-
portance score boundaries along with the coverage boundaries
to consider the likely possibility that an ELiD may cover two
different importance zones. Thus, the weighted importance score
for a subrectangle πr

j can be expressed as follows:

πr
β =

{
1
Lr

β

∑
g Ω

rg
β , if Lr

β > 0

0, otherwise
(16a)

Ωrg
β = νrgβ Irg(min(ζβ , ι

rg
11 )−max(ζβ−1, ι

r(g−1)
11 )) (16b)

where νrgβ is a binary indicator variable that equals 1 if the rel-
evance sector g is located within the rectangle j along roadway
r.

With respect to the previously derived quantities, we can
define the model objective function as the effective area coverage
score for the entire roadway grid Agrid as follows:

Agrid =

∑
r∈R

∑
β∈{2...|Br |} Ar

βπ
r
β

ξ
∑

r∈RDr(yrmax − yrmin)
(17)

where ξ is the predefined percentage of the grid that should be
covered.

3) Constraints: There are physical limitations of the system
that must be codified as constraints.

a) Data Capacity Constraint: ELiD placement cannot exceed
the total RAM contained in the backhaul network. This con-
straint can be expressed as follows:∑

λ∈Λ
∑

r∈R σλrΔλr∑
c∈CMc

− 1 ≤ 0. (18)

b) Energy Capacity Constraint: ELiDs should not exceed
their maximum safety ratings for operating energy consumption
(Emax) as follows:∑

r∈R σλrEλr

Emax
− 1 ≤ 0 ∀λ ∈ Λ. (19)

c) Orientation Constraints: The vertical rotation of the ELiD
is dependent on the vertical position of the ELiD, because the
lowest coverage plane must intersect with the near-side curb as
indicated by (1).

a) Decision Variable Boundaries:The following restrictions
are placed on the decision variables based on the system model
and problem definitions. They define the limits of the different
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TABLE II
DECISION VARIABLES FOR (Q)

primary and auxiliary decision variables

ελr1 ∈ [0, Dr] ∀λ, r ∈ Λ,R (20a)

ελr2 = 0 ∀λ, r ∈ Λ,R (20b)

ελr3 ∈ [zmin, zmax] ∀λ, r ∈ Λ,R (20c)

ρλr
2 ∈

(
−
(
π

2
− θ

2

)
,

(
π

2
− θ

2

))
∀λ, r ∈ Λ,R (20d)

σλr ∈ {0, 1} ∀λ, r ∈ Λ,R. (20e)

4) Overlap Penalty Regularization: When placing the ELiD
units, we aim to minimize excessive overlap when covering the
roadway. Recall, in the objective function definition, we defined
an indicator variable, ηλr

β , that equals 1 if an ELiD covers a
subsection. We can thus define the number of ELiDs covering
each subsection (orβ) as follows:

orβ =
∑
λ∈Λ

ηλr
β . (21)

From this, we can define an ELiD λ as having its coverage
completely dominated if it overlapped in every section it covers.
We mathematically encode this as follows:

χλr =

{
1, if orβη

λr
β �= 1 ∀β ∈ Br

0, otherwise
(22)

where χλr = 1 means that the ELiD is dominated.
5) MINLP Formulation: With the problem space defined, we

now formulate the MINLP (P) as follows:

(P) min −Agrid + κ
∑
λ∈Λ

∑
r∈R

χλr

s.t. Constraints (1), (18)−(20)

where κ is a regularization parameter that penalizes excess
placement of ELiDs. In other words, dominated ELiDs do not
contribute any additional coverage whatsoever.

B. Optimization Problem for ELiD Data Backhaul
Routing

In this problem (which we will refer to as the problem (Q)),
our primary objective is to minimize the total backhaul network
hbh and processing latency. The decision variables that the
problem formulation depends on are defined in Table II.

1) Objective Function: The aim of (Q) is to minimize the
total latency associated with the backhaul network connecting
the ELiD’s (λ, r) ∈ Λ×R to the servers c ∈ C. For each ELiD,
we must model the total latency Sλr as a sum of the hbh (Sλr

hbh)
and processing (Sλr

proc) latencies associated with the route taken

in the backhaul network. We express these latencies for each
pair ELiD denoted by λ, r as follows:

Sλr = Sλr
hbh + Sλr

proc (23a)

Sλr
hbh =

∑
t∈T

∑
i∈V

∑
j∈V

[
μλrt
ij Δλr n

t + (1− nt)γ

νijTij

]
(23b)

Sλr
proc =

∑
c∈C

(
Jλr
c

[∑
λ∈Λ

Jλr
c

]
Δλr

αc

)
(23c)

1
νij

=
∑
t∈T

∑
λ∈Λ

μλrt
ij . (23d)

In (23), nt is a binary indicator that equals 1 if t = up and
0 if t = down. From these definitions, we express the objective
function Stotal as follows:

Stotal =
∑
r∈R

∑
λ∈Λ

Sλr. (24)

2) Constraints: a) Flow Balance Constraints: All messages
entering a server c should either move on to another link or
should be processed in that server[∑

t∈T

∑
i∈V

μλrt
ic

]
+ (1− nt)Jλr

c =

⎡
⎣∑

t∈T

∑
j∈V

μλrt
cj

⎤
⎦+ ntJλr

c

∀c ∈ C ∀r ∈ R ∀λ ∈ Λ. (25)

In addition, all ELiD’s (λ, r)must send out data for processing∑
j∈V

μ
λr(t=up)
(i=(λ,r))j = 1 ∀r ∈ R ∀λ ∈ Λ (26)

and must receive a processed map∑
i∈V

μ
λr(t=down)
i(j=(λ,r)) = 1 ∀r ∈ R ∀λ ∈ Λ. (27)

b) Topology Constraints: All messages sent across the backhaul
network must be transmitted along existing fiber-optic links—
the network has a fixed topology:

μλrt
ij ≤ lij ∀i, j ∈ V ∀λ ∈ Λ ∀r ∈ R ∀c ∈ C. (28)

c) Direction Double-Counting Prevention: If a message to/from
ELiD (λ, r) passes along a link lij , it is logically equivalent to
that message passing along link lji. Therefore, we express this
as follows:

μλrt
ij + μλrt

ji ≤ 1 ∀i, j ∈ V ∀λ ∈ Λ ∀r ∈ R ∀c ∈ C. (29)

d) Server RAM Capacity Constraints: All job processing is
performed in memory, as disk input/output is too slow for this
system to operate in a timely manner. As a result, the number of
jobs running on a server c is restricted by the onboard RAM Mc∑

r∈R

∑
λ∈Λ

ΔλrJλr
c ≤Mc ∀c ∈ C. (30)

e) Job Assignment Requirements: All ELiD’s (λ, r) must be
assigned to a server c to have its data processed∑

c∈C
Jλr
c = 1 ∀r ∈ R ∀λ ∈ Λ. (31)
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3) QIP Formulation: With the objective and constraints for
(Q) defined, we formulate the QIP as follows:

(Q) min Stotal

s.t. Constraints (25)−(31).

The optimization problem (Q) is formulated as a QIP prob-
lem, which is inherently NP-hard due to its quadratic objec-
tive function and integer-based decision variables. Specifically,
(Q) includes discrete routing and server assignment decisions
with nonlinear latency objectives, introducing complex, inter-
dependent constraints. Routing paths increase exponentially
with network size, creating an exhaustive set of possibilities
for determining efficient paths. In addition, server assignment
introduces combinatorial scheduling complexity, mirroring NP-
hard allocation problems. Flow balance and server memory
constraints add further layers of resource allocation challenges.
These combined elements lead to a computationally intensive
problem characteristic of QIP, similar to NP-hard problems,
such as the quadratic assignment problem and binary quadratic
programming. Solving (Q) demands advanced algorithms, par-
ticularly as network size scales, underscoring the challenge of
achieving optimal solutions [39], [40].

Hence, the optimization problem cannot be optimally solved
due to the nonlinearity of its constraints and objective function
since (P) contains nonlinear functions within the objective
function−Agrid + κ

∑
λ∈Λ

∑
r∈R χλr, along with the constraint

defined in (1). Therefore, applying exact methods, such as
branch-and-bound [41], that are implemented in off-the-shelf
optimization software, such as Gurobi, will be computationally
expensive.1 In fact, the running time grows exponentially with
the network size, which makes very complex to achieve an opti-
mal solution for large-scale problems in a real-time manner [42],
[43]. Therefore, in the following section, we propose to design
two low complexity algorithms to solve these NP-hard problems.

V. HEURISTIC DESIGN FOR ELID PLANNING AND

ROUTING FRAMEWORKS

In this section, we design the heuristic approaches that will
be applied to (P) and (Q), respectively.

A. Particle Swarm Optimization (PSO) for ELiD
Placement

Practically, the planning problem to permanently deploy
ELiDs needs to be solved once for each geographical region.
To this end, we consider the use of PSO [44], a nature-inspired
algorithm, which has been applied to numerous other problems
with effective results [35].

Since PSO was developed initially for unconstrained search
spaces, we must redefine P in a way that it is no longer
constrained. We accomplish this by converting the constraints
to exterior penalty functions that may be used as additional
regularization functions for the objective. Recall that P was

1 Gurobi Optimization, Inc., Gurobi Solver 8.01. [Software], Houston, TX,
USA, 2018.

formulated in such a way that all of the model constraints can
be generalized as follows:

hυ(X) ≤ 0 ∀υ ∈ Υ (32)

where X is a collection of all of the decision variables inP , and
Υ is the set of constraints in P . We can also express the model
objective function as follows:

f(X) = −Agrid + κ
∑
λ∈Λ

∑
r∈R

χλr. (33)

Therefore, we can now redefine (P) as follows:

(Ppso) min f(X) +
∑
υ∈Υ

κυhυ(X) (34)

where κυ is the regularization parameter for each exterior
penalty function.

With (Ppso) defined as an unconstrained nonlinear mixed-
integer minimization problem, we must reconcile the discrete
decision variables σλr with the fact that classic PSO is designed
to handle continuous decision variables. To address this short-
coming, binary PSO (BPSO) was developed [45].

In regular PSO, when a continuous variable y is updated, the
following update rules are used (note, these would be applied to
the decision variables ελr and ρλr):

vds(n+1) = ωvdsn + wprp(p
d
sn − ydsn) + wgrg(g

d
n − ydn) (35a)

yds(n+1) = ydsn + vds(n+1) (35b)

where n is the current iteration, s is the particle index (of |S|
particles), d is the decision variable dimension, vdsn is the particle
velocity, ω is the inertia parameter, pdsn and gdn are the values
that correspond to the local and global best values (based on an
evaluation of the cost function) for the particles, respectively,
wp and wg are the parameters that tune the particles to converge
faster toward the local and global best, respectively, and rp and
rg are random values drawn from a U(0, 1) distribution. We
must utilize the BPSO update rules in order to take into account
for σλr. After updating its velocity via (35b), we determine the
new position for σλr

s(n+1) as follows:

eλr
s(n+1) =

1

1 + exp
(
vλr
s(n+1)

) (36a)

σrn+1
sλ =

{
1, if re < eλr

s(n+1)

0, otherwise
(36b)

where re is a random value drawn from a U(0, 1) distribution.
With the update rules defined, we develop our PSO procedure
to terminate upon the satisfaction of either of the two following
conditions: 1) the solver reaches the maximum number of itera-
tions nmax, or 2) there is no improvement of the fitness function
(34) larger than ηstop for nstall consecutive iterations.

B. Heuristic Algorithm for Network Backhaul Routing

We can now improve the LiDAR data routing across the
backhaul network while taking into account the uplink/downlink
hop-by-hop and data processing latencies after positioning the
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Fig. 6. Flowchart diagram for the procedure outlined in Algorithm 1.

ELiDs in their optimum locations. In order to efficiently route
ELiD data flow to MEC devices and the cloud, we devise a
quick, low-complexity heuristic in this section. There are two
major components to the development process. To link an ELiD
(λ, r) to a server s, we first create a greedy routing algorithm for
all (λ, r) ∈ Λ×R. Next, we formulate a heuristic method that
establishes the proper sequence for the routing heuristic method.
Algorithm 1, with the flow diagram given in Fig. 6, contains the
suggested algorithm’s pseudocode.

a) Initialization Phase: First, the procedure initializes an
empty hash table object (see Line 2). A hash table object can be
represented as a set of key/value pairs. In this setting, the hash
table P represents the selected path from ELiD (λ, r) to servers
c for ELiD map treatment, back to ELiD (λ, r), where the treated
map is transmitted to an AV. The key is a tuple ((λ, r), c), and
the value is the hbh uplink/downlink cycle that minimizes hbh
and processing latency for that trip.

After initializing P , the procedure determines the minimum
cycle for each ELiD (λ, r) in a greedy manner (see Line 3). Since
solving for the minimal cycle that contains our desired server
in a directed graph is very hard (i.e., a famous vehicle routing
problem [46]), we break the problem into two subproblems:
uplink/processing and downlink phases.

b) Uplink Phase: For the uplink/processing phase, we first
define a directed graph where the edge weights are the expected
latency, and also factor in the processing latency. First, we define
a set of dummy nodes c′ ∈ C′, where C′ is mapped one-to-one to
the server nodes C (note that this one-to-one relationship is only
for MEC and cloud nodes, and not the routers). The edge weights
between C and C′ are the expected processing rates (in MB/s) for
one job in the server based on benchmark tests on the hardware.
With this initial set of definitions, we define an adjacency matrix
R, such that each elementTij ∈ T represents the data processing
rates (if server to dummy node), or transmission capacities (if
node-to-node communication link) in MB/s. Next, we define
a matrix M , where each element Mij represents the number
of messages transmitted along a link between i and j, or the
number of jobs being processed in a server c if i = c and j = c′,
if the link contained a new message from or to ELiD λ. For
example, if we were initializingM from scratch,Mij = 1∀i, j ∈

Algorithm 1: Routing Procedure.
1: function RoutingHeuristicΛsort, P
2: for λ ∈ Λsort do
3: Gup ← Initialize uplink directed graph with

latency edge weights for ELiD (λ, r)
4: Ptmp, Ttmp ← Get shortest path tree from (λ, r)

to all dummy nodes c′ via Dijkstra’s algorithm
applied to Gup

5: for c ∈ C do
6: if c is not a router then
7: Mtmp ← update M matrix temporarily with

the current path between (λ, r) and c.
8: Gdown ← Initialize the downlink directed

graph with updated latency edge weights by
Mtmp

9: pdown, tdown ← Compute A∗ shortest path
between c and (λ, r) in Gdown

10: Ptmp,c ← Ptmp,c + pdown

11: Ttmp,c ← Ttmp,c + tdown

12: p∗ ← Ptmp,c, where c : Ttmp,c = min(Ttmp)
13: P λr

c ← p∗

14: Update M with P λr
c

15: return P

V ∪ C′. After, we generate the adjacency matrixΓup, wherekup
ij ∈

Γup represents the transmission or processing latencies between
nodes i and j in the uplink graph. We determine these values by
kup
ij =

ΔλMij

Tij
. Γup is then used to generate the uplink graph Gup

(see Line 4). After initializing the uplink graph’s edge weights
with the expected latencies Γup, we then determine the shortest
path tree from ELiD λ to all mirror nodes c′ ∈ C′. This can be
used to update two more dictionaries Ptmp and Ttmp. The keys
in both are the servers c ∈ C that data from ELiD (λ, r) may be
transmitted to (see Line 5). The values that the keys point to in
Ptmp are the shortest paths between c and (λ, r), and the values
in Ttmp are the total uplink and processing latencies for their
respective paths. Now that we have the potential uplink paths,
we can focus on the downlink phase of the problem.

c) Downlink Phase: In the downlink phase, we determine
the shortest latency path back from the server c to ELiD (λ, r),
for each server c ∈ C (see Line 6). In a similar vein to how
we produced the uplink adjacency matrix Γup, we must also
produce a downlink adjacency matrix Γdown, where kdown

ij ∈
Γdown represents the downlink transmission latency. First, we
must temporarily update the M matrix with the selected path
Ptmp,c ∈ Ptmp, and save this temporary update as Mtmp. For
example, if we are still solving the first step of the problem,
where Mij = 1 ∀i, j, we first set Mtmp = M . After, for each
link between two nodes i and j in the path, we do the following:
Mtmp,ij = Mtmp,ij + 1 and Mtmp,ji = Mtmp,ji + 1. This is done
when both an uplink and downlink are going along the same
edges. Note that we can take the adaptive bandwidth sharing
into consideration when estimating the hbh latencies (see Line
7). From there, we then calculate the estimated downlink laten-
cies: kdown

ij =
γΔλrMtmp,ij

Tij
, where γ is the ratio of the processed

ELiD map size in MB to the uplink ELiD map data size in
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TABLE III
LIST OF SIMULATION MODEL PARAMETERS

MB. Γdown is then used to generate the downlink graph Gdown

(see Line 8).
After the initialization steps for the downlink phase, we then

use the A∗ algorithm to determine the shortest path pdown be-
tween c and (λ, r), along with the total hbh latency of this path
tdown (see Line 9). The use of A∗ in this scenario is motivated by
the performance advantage of single-origin to single-destination
shortest path calculation [47]. We then append the shortest path
to the uplink shortest path to get a completed cycle (see Line 10),
and we add the downlink hbh latency to the already-calculated
uplink hbh and processing latency (see Line 11).

After repeating the downlink step for all servers c, we then
select the cycle with the lowest total latency, denoted by p∗

(see Line 12). We store the cycle p∗ in P , indexed as the
following key/value pair: ((λ, r), c) : p∗ (see Line 13). After
this, we update M with this cycle (see Line 14). The process
is then repeated for each ELiD (λ, r).

The routing procedure alone is not sufficient to minimiz-
ing the total backhaul latency. This is because the order in
which the ELiDs are iteratively assigned to compute resources
in the backhaul system has a significant impact on the total
latency, due to the fact that it is a greedy approach. In the
next section, we aim to layer a metaheuristic approach around
the routing procedure that aims to address shortcomings in
Algorithm 1.

VI. SELECTED NUMERICAL RESULTS

In this section, we model how the suggested ELiD planning
techniques would function in an urban road grid. After devel-
oping an initial run solution, we offer a sensitivity analysis
for the scan depth parameter δ, as it affects the constraints
for (P). We employ the locations and road grid as a basis
setting for a simulated network backhaul architecture, which
is then used to evaluate the backhaul routing solvers’ perfor-
mance, after assessing (P). Table III provides a summary of
the simulation’s design parameters. Building on this simulated
model, the real-world setup would involve deploying ELiD units
at strategic elevated points within an urban road grid, closely
replicating the simulated locations for optimal coverage. Each
unit would connect to a live backhaul network, linking to edge
or cloud servers configured to handle varying data transmission
demands through dynamic adjustments to the scan depth pa-
rameter δ. The heuristic algorithm would then manage data flow
in real time, responding to changing conditions and network
congestion to minimize latency. By logging metrics, such as
latency, bandwidth, and routing efficiency, across different δ
values, this setup would allow for a detailed analysis to refine
ELiD placement and routing strategies tailored to dynamic urban

TABLE IV
LIST OF SIMULATION ROAD CHARACTERISTICS

environments. Unfortunately, performing the real-world exper-
iments is quite complex due to logistic and financial reasons.
Therefore, to test our proposed system, we rely on simulations
where we tried to mimic a real-world scenario with realistic
parameters.

A. ELiD Placement

We assume our model includes six roads, which are detailed
in Table IV. The configuration features the longest main road
at the center, surrounded by two parallel roads, and intersected
by three perpendicular roads. As given in Table IV, the roads
are numbered 1–6, with the main road identified as road 1, the
parallel roads as roads 2 and 3, and the perpendicular roads as
roads 4 through 6. In addition, itis important to note that the
height and rotation of each ELiD are constrained within specific
boundaries. We conducted the simulation for two distinct typolo-
gies, setting a maximum of 15 ELiDs per road in one scenario,
and six ELiDs in the other.

We employ 30 particles and a learning rate of 0.7 to solve
the ELiD placement problem using the PSO algorithm. The
convergence of the PSO algorithm is demonstrated in Fig. 7(a),
where the graph shows that both the fitness and cost functions
converge to feasible values while the penalty function declines
to zero over successive iterations. This indicates the algorithm’s
effectiveness in optimizing the placement of ELiDs while ad-
hering to the given constraints. Fig. 7(b) illustrates the ELiD
coverage zones on the roadways, with red regions representing
areas covered by the ELiD units. The coverage is extensive
and strategically placed, ensuring that nearly all the important
sectors, as identified in Fig. 7(d), are covered with minimal
overlap. This efficient use of ELiD units maximizes coverage
and ensures that critical areas are effectively monitored. The final
network topology produced by the PSO algorithm is presented
in Fig. 7(c). This topology confirms the optimal placement of
ELiD units based on sector importance, the maximum number
of ELiDs, and the depth parameter. Such strategic placement is
crucial for enhancing the overall efficiency and effectiveness of
the system. Fig. 7(d) highlights the varying levels of importance
for each roadway sector, with higher values signifying more
critical areas for coverage. By prioritizing these high-importance
sectors, the algorithm ensures that the most crucial areas are ade-
quately monitored, enhancing the system’s overall performance.
To evaluate the impact of the scan depth parameter on the effec-
tiveness of the coverage area, a sensitivity analysis is shown in
Fig. 7(e). The graph illustrates a significant tradeoff between data
generation and effective coverage, indicating that higher scan
depths lead to more precise data collection for specific locations,
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Fig. 7. (a) Convergence of the model’s fitness versus the number of iterations. The solid green line represents the penalty function for each
iteration. The solid black line corresponds to the model’s fitness showing the progress of the objective function, which is the effective coverage area.
Finally, the solid orange line represents the cost function for each iteration. (b) ELiD coverage zones on the roadways obtained from the PSO solver
solution. (c) Model’s topology graph, which is also obtained from the PSO solver results. (d) Importance of each sector for the roadways as an input
for the PSO solver. (e) Depth parameter effect on the effective coverage area.

but at the expense of broader spatial coverage. This tradeoff is
crucial for balancing data resolution and spatial coverage, as it
ensures that the system can provide accurate data where it is
most needed while still maintaining a comprehensive overview.
By managing this balance, the system can remain both compre-
hensive and efficient, allowing for optimal data utilization and
effective monitoring of critical areas. This balance is essential
for applications where both data and wide-area coverage are
necessary, highlighting the importance of considering scan depth
in the overall system design and operation.

In summary, the convergence graph in Fig. 7(a) demonstrates
the PSO algorithm’s capability to meet constraints and optimize
the objective function effectively. Fig. 7(b) shows that the ELiD
coverage zones are extensive and strategically placed, ensuring
that critical sectors are well monitored. The network topology in
Fig. 7(c) confirms the optimal placement of ELiDs, considering
sector importance and constraints. Fig. 7(d) underscores the
varying importance of roadway sectors, guiding the placement
of ELiDs. Finally, Fig. 7(e) reveals the tradeoff between scan

depth and coverage area, crucial for balancing data resolution
with spatial coverage.

The algorithm was further tested on a smaller scale by de-
ploying a reduced number of ELiDs and conducting a sensitivity
analysis on the scan depth parameter. The results, as presented in
Fig. 8, demonstrate the algorithm’s adaptability and consistency
across varying scales. Fig. 8(a) shows the convergence of the
fitness and cost functions over 1200 iterations, indicating that the
algorithm efficiently reaches an optimal solution. The penalty
function remains constant throughout the iterations, demonstrat-
ing that the constraints are consistently met. Fig. 8(b) illustrates
the ELiD coverage zones on the roadways, with red regions
representing areas covered by the ELiD units. The coverage
is thorough and systematically positioned, ensuring effective
monitoring of critical areas with minimal overlap, thereby maxi-
mizing the utility of each ELiD unit. The final network topology
produced by the PSO algorithm is presented in Fig. 8(c). This
topology confirms the efficient placement of ELiD units and
the connectivity within the network, ensuring that data from
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Fig. 8. (a) Convergence of fitness and cost function for the small-scale model. (b) ELiD coverage zones for the smaller model. (c) Solution output
topology for the smaller model. (d) Importance of each sector for the smaller model. (e) Depth parameter effect on the smaller model’s effective
coverage area.

the ELiD units are efficiently routed to processing nodes. This
well-structured topology is crucial for optimizing both coverage
and data handling capabilities. The sector importance map in
Fig. 8(d) indicates varying levels of importance for each roadway
sector, with higher values signifying more critical areas for
coverage. By prioritizing these high-importance sectors, the
algorithm ensures that the most crucial areas are adequately
monitored, enhancing the system’s overall performance and
responsiveness. This targeted approach not only optimizes the
deployment of ELiD units but also significantly improves the
overall effectiveness of the monitoring system. To evaluate
the impact of the scan depth parameter on the effectiveness of
the coverage area, a sensitivity analysis is shown in Fig. 8(e).
The graph illustrates a tradeoff between data generation and
effective coverage, indicating that higher scan depths result in
more precise data for specific locations but at the expense of
broader spatial coverage. This tradeoff is essential for balancing
data resolution and spatial coverage, ensuring that the system
remains efficient.

In summary, the results validate the algorithm’s robustness
across different scales and configurations, making it an adaptable
tool for ELiD planning in various urban environments. The con-
vergence behavior, strategic ELiD placement, efficient network
topology, prioritized sector coverage, and balanced tradeoffs
between data resolution and coverage area demonstrate the algo-
rithm’s comprehensive effectiveness. This adaptability ensures
that the algorithm can be deployed in diverse urban settings,
optimizing LiDAR sensor placement and data processing for
enhanced traffic monitoring and AV navigation.

B. Backhaul Routing Optimization

After generating topologies for both the main and smaller
models using the PSO algorithm, we applied our heuristic
algorithm to the backhaul network to measure latency across
various data generation rates and conducted a sensitivity analysis
on GPU speed and data generation to examine the impact on
ELiD assignment. We compared our heuristic approach with
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Fig. 9. (a) GPU speed versus ELiD assignment to cloud for the main model. (b) Data rate versus latency for the main model.

TABLE V
GUROBI SOLVER PARAMETERS

the Gurobi solution regarding convergence time and solution
quality. The initial tests were performed on a Windows 11-
bit system using Visual Studio and the Windows Subsystem
for Linux with Ubuntu for the Linux environment. The com-
puter was equipped with 8 GB of RAM and an 11th Gen
Intel Core i5-1135G7 processor. Table V outlines the settings
applied in the Gurobi optimizer, where we utilized two con-
current solvers: the first aimed at achieving a feasible solu-
tion, and the second focused on sustaining an effective upper
bound.

Fig. 9(a) provides a detailed comparison of the performance
between the proposed heuristic, the optimal Gurobi solver, and
Dijkstra’s algorithm. We use Dijkstra’s algorithm as a baseline,
given its effectiveness in finding the shortest path between nodes
in a weighted graph. It calculates the optimal routing paths
between LiDAR units and cloud servers within a backhaul
network, minimizing data transmission latency. Starting from
an initial source node, it progressively selects the lowest-latency
routes between nodes, optimizing network performance, reduc-
ing delays, and enhancing real-time processing capabilities. In
Fig. 9(a), as GPU speed increases, the percentage of ELiDs
assigned to the cloud decreases for all solvers. The proposed
heuristic consistently assigns a higher percentage at lower GPU
speeds, showing its adaptive strategy to utilize cloud resources
when local GPU capacity is limited. In contrast, the Gurobi
solver adopts a more conservative approach, with fewer ELiDs
assigned to the cloud, particularly at lower speeds, although the
gap narrows as GPU speed increases.

Fig. 9(b) shows latency trends as LiDAR data rates increase,
where Dijkstra consistently performs worse, with the highest
latency, indicating inefficiency for high-throughput applications.
While Gurobi achieves lower latency at moderate data rates, the

gap between Gurobi and the proposed heuristic narrows at higher
data rates, highlighting the heuristic’s competitive edge for
real-time applications. Average latency metrics reveal distinct
characteristics, with the Gurobi solver consistently achieving the
lowest latency (0.22–5.19 s), followed closely by the heuristic
(0.81–7.33 s). Despite slightly higher latency, the heuristic offers
flexibility and adaptability in resource management, making it
a compelling alternative for time-sensitive, dynamic environ-
ments. Dijkstra’s highest latencies (up to 4.5 s) make it less
suitable for such applications.

In Fig. 10(a), the percentage of ELiDs assigned to the cloud
as GPU speed increases is analyzed. At lower GPU speeds
(0.25 GB/s), the proposed heuristic assigns more ELiDs to the
cloud (16%) compared to the optimal solver (22.5%). As GPU
speed increases, both methods show a similar decline in cloud
assignments, reaching about 6%–7% at 1.00 GB/s. The heuristic
solution leverages cloud resources more at lower speeds, while
the optimal solver adopts a more measured approach. The gap
between the two methods reduces as GPU speed increases, sug-
gesting that both algorithms become more efficient at utilizing
local processing power.

Fig. 10(b) illustrates the impact on latency as LiDAR data
rates increase. Here, the proposed heuristic again demonstrates
slightly higher latencies compared to the optimal solver across
all GPU speeds. The latency differences are minimal at lower
data rates but become more pronounced at higher data rates
(close to 0.18 GB/s). Both methods show a linear increase in
latency as the data rate increases, with the proposed heuristic
maintaining a competitive latency profile. The heuristic’s per-
formance remains close to the optimal solution, especially at
higher GPU speeds, demonstrating its effectiveness for real-time
applications, despite the slight latency overhead.

The analysis of both the main and smaller models highlights
the strength of the proposed heuristic in balancing efficiency,
adaptability, and response times. It assigns more ELiDs to the
cloud at lower GPU speeds while remaining competitive in
terms of latency. Although the optimal solver achieves the lowest
latency, the heuristic closes the gap at higher data rates, making
it valuable for real-time applications. Dijkstra’s high latency
makes it unsuitable for high-throughput scenarios. Overall, the
proposed heuristic is an effective compromise, ideal for dynamic
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Fig. 10. (a) GPU speed versus ELiD assignment to cloud for the smaller model. (b) Data rate versus latency for the smaller model.

TABLE VI
CONVERGENCE TIME OF EACH SOLVER FOR THE MAIN MODEL IN SECONDS

(S)

TABLE VII
CONVERGENCE TIME OF EACH SOLVER FOR THE SMALLER MODEL IN

SECONDS (S)

environments requiring fast decision-making and adaptable re-
source allocation.

The convergence times for the three solvers reveal signif-
icant differences in their computational complexity, which is
presented in Table VI. The heuristic method demonstrates the
fastest convergence, with a mean time of approximately 101.898
s, reflecting its efficiency in finding solutions quickly. This
performance is particularly advantageous in scenarios requiring
rapid decision-making. In contrast, the optimal Gurobi solver
exhibits a notably higher mean convergence time of 243.241 s,
with maximum times reaching 395 s. While this solver guaran-
tees optimal solutions, its increased computational complexity
results in longer convergence periods, which can be a drawback
in real-time applications. The Dijkstra algorithm shows the high-
est variability, with a maximum convergence time of 523 s and a
mean of 307 s. This indicates a significant computational burden,
making it less suitable for applications that demand timely
responses. Overall, the heuristic approach not only converges the
fastest but also showcases lower complexity compared to both
the optimal and Dijkstra algorithms, underscoring its practicality
for applications that prioritize speed over absolute optimality.

Table VII presents the convergence time statistics for heuristic
and optimal solvers in the smaller model. The heuristic solver,
with a minimum convergence time of 26.097, a maximum of
93.885, and a mean of 33.783, demonstrates quicker conver-
gence overall compared to the optimal solver. The optimal

solver, while offering a higher degree of precision, shows a
significantly higher minimum (48.411), maximum (207.749),
and mean (106.456) convergence time, reflecting the tradeoff
between solution accuracy and computational efficiency. This
suggests that while the heuristic solver may be less precise, it
provides faster results.

C. Real-World Implementation and Practical Challenges

Our simulation results validate the efficiency of using an op-
timized ELiD-MEC infrastructure to support traffic monitoring
and AV navigation. However, validating these results via real-
world implementation would be very beneficial for practitioners.
However, this is a very elaborate task, which is left for a future
extension of this work. In this section, we discuss and present
some recommendations for practical implementation of the sys-
tem and highlight related challenges. Hence, it is recommended
to plan the deployment of ELiD units in an optimized manner
as presented in Section IV-A in the area of interest (e.g., road
segments or intersections) while taking into account key factors,
such as traffic patterns, congestion level, and road dimensions.
Live data collection could then be performed where ELiD sen-
sors capture real-time LiDAR data (e.g., collecting point cloud
of the monitored areas), which will then be offloaded to the
installed MEC servers for immediate processing. Different wired
and wireless paths (i.e., potential routes) could be established
between the ELiDs and the MEC servers according to the budget
availability. Then, the offload strategy presented in Section V-B
could be performed to route the data over the network, which
could integrate fiber-optic connections or wireless transmission.
While the system is operating, its ability to handle dynamic
urban challenges, such as fluctuating network loads, voluminous
data, and the variability of pedestrian and vehicular traffic, will
be assessed. The performance will be monitored in terms of
latency, data accuracy, processing speed, and the reliability of
processed outputs that could be shared with a test vehicle.

Deploying the ELiD MEC system in the real world would
face challenges in infrastructure setup, data management, and
environmental reliability. EliD with MECs would require stable
power, robust network connectivity, and weather resistance.
Managing high data volumes while maintaining low latency
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for real-time processing is critical, and algorithms may require
tuning to handle real-world data variability. Security and privacy
concerns, especially in urban areas, would demand strong safe-
guards, while operational costs and maintenance needs could
impact long-term feasibility. Together, these challenges make
real-world implementation difficult due to significant financial
and logistical demands.

Nevertheless, a real-world validation will provide comprehen-
sive insights into the ELiD-MEC framework’s scalability, relia-
bility, and effectiveness, enabling adjustments and optimizations
that are crucial for its implementation in smart cities. These steps
will ensure that the system not only meets the performance
requirements to support collaborative autonomous navigation,
but also proves its viability for large-scale deployment in urban
areas.

VII. CONCLUSION

In conclusion, our study presents a comprehensive examina-
tion of the integration of ELiD with MEC for traffic monitoring
in smart city infrastructures. The findings reveal that our pro-
posed heuristic approach successfully reduces reliance on cloud
processing, promoting computational efficiency at the network’s
edge. This approach marginally increases latency but maintains
a small optimality gap compared to the best possible solution,
which suggests that the heuristic is an effective strategy for
real-time LiDAR data processing in urban environments. The
research highlights the delicate balance between latency, cloud
resource utilization, and computational expediency, providing
a viable blackprint for future ITS. While our current results
are based on simulations, the next important step is to validate
the proposed ELiD-MEC framework through real-world experi-
ments at least for a small version of the system. Furthermore, we
aim to exploit the framework to leverage collaborative driving
techniques, such as collaborative perception and traffic flow
estimation.
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