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Non-Parametric Multi-Target Data Association
and Tracking for Multistatic Radars

S. Sruti and K. Giridhar

Abstract— Multistatic radar systems provide better de-
tection performance for stealth airborne platforms and are
resilient to single-point failures. However, when multiple
targets are present over the radar surveillance region, in-
correct target associations to the measurements could cre-
ate ghost targets. Computationally efficient and accurate
de-ghosting and tracking multiple targets are critical tasks
in real-time distributed radar systems. By exploiting the
geometry of the measurement model in the association
process, we propose a novel and efficient data associ-
ation approach followed by a tracking algorithm in this
work. It utilizes the Time-of-Arrival and bistatic Doppler
frequency measurements of the targets with respect to
different transmitter-receiver pairs to accurately determine
and track the 3D positions and velocities of the targets.
The proposed approach is non-parametric as it does not
need any assumption on the initial states or the number
of targets and their motion models, but only uses the
knowledge of the geometry of the terrestrial radar sen-
sors. This Non-Parametric Data Association and Tracking
(NPDAT) algorithm is tested with multiple targets in two
significant scenarios: (i) all the targets are simultaneously
present in the region, and (ii) targets arrive and depart the
region based on a random arrival pattern. Our approach
precisely tracks targets even during cross-over and also
tracks fast-maneuvering targets. This NPDAT algorithm is
compared with popular existing methods and is shown to
exhibit superior performance in estimation accuracy and
maneuvering target tracking ability, even while enjoying a
significantly lower time and implementation complexity.

Index Terms— Data association, De-ghosting, Geomet-
rical approach, Localization, Multistatic radar, Multi-target
tracking

. INTRODUCTION

HE motivation for a distributed radar includes detection

and tracking of low Radar Cross Section (RCS) maneu-
vering targets, counteracting anti-radar tactics and overcoming
single-point failure. Multistatic radar with widely separated
transmitters and receivers [1] achieves superior performance
over conventional monostatic radars due to large area coverage
and inherent spatial diversity.

Multi-target data association and tracking are critical tasks
in a multistatic radar system. It involves estimating the number
of targets and their states and tracking them at successive
intervals from a noisy and cluttered set of observations. The
challenges associated with Multi-Target Tracking (MTT) are
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the time-varying number of targets, false measurements, mis-
detections, track initiation and management, data association,
and clutter. Several algorithms available in open literature
address the problem of MTT and data association. Many prob-
abilistic approaches exist but are rarely used in practice due
to their complexity and assumptions on the number of targets
and their motion models. Techniques that handle maneuvering
target tracking are intricate and pose challenges for real-time
implementation. Commonly, in tracking context, data associ-
ation is performed using prior knowledge from the target’s
state model, usually involving either “soft” association based
on probabilistic association [2] or “hard” association based on
assignment techniques [3]. There exist other approaches that
do not need explicit associations, such as Random Finite Sets
(RFS) [4] and Symmetric Measurement Equations (SME) [5].

Target tracking is accomplished through explicit data asso-
ciation in techniques like Nearest Neighbours (NN), Multiple
Hypothesis Tracking (MHT) [6], multi-target Particle Filter
(PF) [7] and Probabilistic Data Association (PDA) [8]. At each
time step in NN, a single nearest measurement is associated
with each target by assuming all other measurements are
generated from clutter. MHT carries forward all the association
hypotheses to the next time-step and aggregates them over
time. The best possible hypothesis for the previous time is
evaluated in retrospect [6]. The PDA framework is an all-
neighbor data association method that associates based on the
likelihood of measurements to each target.

These data association-based algorithms are invariably com-
binatorial in nature and suffer from an exponential increase in
computational complexity as the number of targets increases.
Recently, the Probability Hypothesis Density (PHD) filter
based on the RFS framework [4] and Bayesian analysis has
gained significant interest in MTT for problems involving
many targets. Multisensor MTT cannot be derived as a simple
extension from the single-sensor case owing to the added
uncertainties in track formation, track maintenance and track-
to-track association [9]. The mathematical structure of the
optimal solution for multi-sensor MTT is well analyzed in
[10]. However, the optimal solution to the multi-sensor MTT
problem using a recursive Bayes filter is computationally
intractable [11]. It is well established that the data association-
based algorithms such as Global NN (GNN), MHT and Joint
PDA (JPDA) [12] suffer from a prohibitively high computa-
tional cost in a multi-sensor model. In PF-based algorithms, it
becomes necessary to propagate a large number of particles to
avoid sample impoverishment, rendering these methods nearly
practically infeasible [13]. Even for the RFS-based algorithms,
their multi-sensor generalization is computationally intractable
[14]. As such, multi-sensor MTT remains an open problem
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from an implementation perspective.

Multi-target data association and localization for multistatic
radar are achieved by various other techniques in literature.
Empirical data association approaches also exist [15] [16]. The
de-ghosting methods utilize all possible combinations of mea-
surements and involve the calculation of metrics or geometric
analyses in determining the correct associations. However,
the complexity increases exponentially when the problem is
scaled with many towers or targets, making implementation
very difficult. The problem of de-ghosting is also solved using
Bayesian analysis [17], or a Multi-Dimensional Assignment
(MDA) scheme solved by S-D algorithm [18], or a group
sparsity-based approach [19], etc. In all these approaches,
which are challenging to implement in real-time, known dis-
tributions were used to model the birth and death processes of
the targets and an initialization of the association to a specific
state was also assumed. In [20], a “self-tuning” framework
with belief propagation was proposed to adapt online to time-
varying system models by continuously inferring unknown
model parameters along with the target states. The complexity
of this algorithm scaled only quadratically in the number of
targets and linearly in the number of sensors, but accurate
knowledge of the maximum number of targets was assumed
in [20].

A. Tracking Filters

If the state and measurement models are linear and the
probabilities are Gaussian, the Kalman Filter (KF) [21] is an
efficient and optimal solution to the filtering problem in the
least-squares sense. If the models are nonlinear, Unscented
Kalman filter (UKF) [22], Extended Kalman Filter (EKF) [23]
or Monte-Carlo methods [24] could be used. A PF [25] is
used when linearizations and Gaussian approximations are
intractable or yield an inadequate performance. When the
targets are moving according to various kinematic models
(maneuvering targets), in addition to associating measurements
to targets and estimating their states, their models must also
be evaluated at each point. Approximate methods such as
Interacting Multi-Model (IMM) filters [10], where a bank of
filters with each filter tuned to a specific model, is used to solve
this problem. However, this is also computationally intensive.

Hence, to the best of our knowledge, there is no method
currently available in open literature with a non-parametric
and practically implementable approach for MTT-cum-data
association for multistatic radar systems.

The motivation for our work is to design a real-time, com-
putationally efficient data association and tracking algorithm
for multiple targets in a multistatic radar system. The perfor-
mance of this proposed Non-Parametric Data Association and
Tracking (NPDAT) algorithm is compared to popular tracking
algorithms to bring out the efficacy of our approach.

B. Notations and Paper Organization

The following notations are used in the paper. x, x and
X represents scalar, vector and matrix respectively. diag(x)
represents a diagonal matrix with x as the diagonal elements.
Iy denotes a M-dimensional identity matrix.

The rest of the paper is organized as follows. The system
model is illustrated in Section II. In Section III, the theory
behind the system is explained and the problem of multiple tar-
get data association and tracking is formulated. The complete
methodology of the NPDAT algorithm is described in Section
IV. The algorithm is explained in Section V. Simulations to
show the performance of the proposed algorithm in various
scenarios and the comparison with existing algorithms is
demonstrated in Section VI. Finally, the paper is summarized
in Section VII.

[1. SYSTEM MODEL
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Fig. 1: Placement of Transmitters and Receivers at an Instant

The region of interest is a set of seven hexagonal cells with a
3 km inter-cell distance as shown in Fig. 1. Four static ground-
based radar nodes acting as transmitters or receivers at an
instant (referred to as towers) are randomly dropped in each
cell. The height of the towers is taken randomly between 15 m
and 25 m (comparable height). One of the towers in each cell
acts as the transmitter and the others as receivers at any instant.
This is referred to as a hop. Four such hops constitute one
complete illumination cycle. The transmitters and receivers are
time-synchronized, and the transmitters transmit orthogonal
waveforms such that they are distinguishable at the receivers.
Let N;, N,., and N}, denote the total number of transmitters,
receivers, and hops, respectively. The measurements from the
towers are sent to the fusion center, where they are further
processed. A fixed fusion center at the center cell works
independently for the set of seven cells. The NPDAT approach
is implemented at this fixed fusion center. Thus, targets flying
anywhere within the region of interest are correctly associated
and tracked based on various separation levels. The targets
outside the region of interest have fewer measurements and
poor visibility as the fusion center is fixed. Hence, those targets
are localized with comparatively higher error rates and thus
are not continuously tracked correctly. This can be resolved by
introducing appropriate interaction between the fusion centers,
which, however, is beyond the scope of this current work.

I1l. PROBLEM FORMULATION

Let z;[n] be the samples of the signal transmitted by the
it" transmitter. After getting reflected from the targets in the
surveillance region, the discretized received signal at the ;"
receiver is y;[n] and is given by,

Ny G .
- JQWfdi,j,gn

y;ln] = Z Z ai jgTi[n—"Ti j 4lexp( 7,

i=1 g=1

)+w;[n],

n=0,..,N—1 (1)
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where N; and G denote the region’s total number of transmit-
ters and targets. Also, a; j 4, 75,5, and fdi,j,g are the complex
amplitude indicating the propagation loss and RCS, Time-
of-Arrival (TOA) and bistatic Doppler of the g target for
the (i,7)'" bistatic pair respectively. w;[n| represents i.i.d
complex Gaussian noise with zero mean and variance o2.

At each receiver, y;[n] in (1) is sent through a bank of cor-
relators with Doppler filters where it is cross-correlated with
frequency-shifted replicas of the local copy of the transmit
signal. This yields range-Doppler maps given by,

/

N—-1 fd
Ty, M, q] = Z y;[n]Z;[n — mlexp(—j2r—Ln),
n=0

m=0,.,N—1¢g=0,..,Q—1 (2

where r,, .[m, q] denotes the correlated signal in the range-
Doppler map with respect to (i, j)* bistatic pair and different
Doppler hypothesis fL'iq, fs is the sampling frequency, Z;[n]
represents the complex conjugate of the transmitted signal
and @ denotes the total number of Doppler hypotheses. The
correlated signal would have the highest peak in that Doppler
bin, corresponding to the target’s correct bistatic Doppler.

Targets are detected from (2) by a thresholding method.
The threshold T}, is determined by estimating the approximate
mean noise floor [26]. The TOA (also referred to as lag values)
7;,; and bistatic Doppler fdi’j measurements are obtained from
the peaks in the range-Doppler map that have crossed T}.
The receivers record these measurements corresponding to
each transmitter and forward them to the fusion center. At
the fusion center, the measurements from each receiver are
first associated with corresponding targets, and their positions
and velocities are then estimated and tracked.

Note on the Impact of Constant False Alarm Rate (CFAR):

Our model uses a high value of T}, resulting in a low false
alarm rate of 10°. However, false alarms can still occur. When
the targets are far apart, the NPDAT algorithm clusters the
TOA or the lag measurements from multiple bistatic pairs to
different targets and localizes with only those measurements.
The false alarms may mainly affect the NPDAT algorithm
when the targets are close to each other. In this case, a
hypothesis testing-based approach using the combinations
method is used, which evaluates all possible measurement
combinations across four bistatic pairs and selects those
with the lowest ASOE (discussed in Section IV-B.5). This
approach aims to mitigate the impact of false alarms by
filtering out hypotheses with higher false alarm rates. Despite
these measures, a minimal number of false alarms may
persist, even in cases with lower ASOE. Operating at a low
false alarm rate helps to minimize their occurrence, and
the combinations method significantly reduces their impact.
While complete elimination of false alarms may not be
feasible, our approach substantially mitigates their effects.

IV. METHODOLOGY
A. Tracking

At time instant ¢=0 (initialization), all the estimated loca-
tions from the data association block are considered to belong

to individual target tracks. The predicted position for the next
time instant is determined depending on the position and
velocity estimated in the current instant and is given by,

Ri+1 = X + Vit 3)

From the next instant, if the lag estimates based on prediction
fall within the validation region in the nearest neighbor sense
uniquely, the corresponding lags are directly associated, local-
ized, and then tracked. The lags corresponding to new-born or
unassociated targets alone are then sent to the data association
block. After localizing these targets, the targets are associated
with the remaining tracks in the nearest neighbor sense or with
new tracks. Tracks that are not updated for more than three
instants are terminated.

B. Data Association

The algorithm follows a sequential approach and associates
the measurements to targets at different separation levels. First,
the targets are segregated based on various sub-levels of height
differences as per Sections IV-B.1 and IV-B.2. If targets cannot
be separated in these levels, then the second level of separation
is performed for close-by targets as per Section IV-B.3.

1) Separation By Heights: The fusion center maintains the
estimated lags with respect to the bistatic pairs in each hop in
ascending order. Based on these lags, the maximum possible
height within which the target would lie is determined based
on the intersection of the coverage patterns of the transmitters
and receivers in the region.

Creation of Maximum Height Dictionary: The surveillance
region is divided into different height levels, h € 1, ..., H. For
any height h, let the boundary of the surveillance region be
represented by (Zmin, Tmax, Ymin, Ymax)- Lhis region is divided
into a grid of bins based on a resolution res. Let x = (z,y, h)
represent a bin in this hypothesised grid at this height h. The
coverage of this bin from a given bistatic pair (¢, j) is assured
if the received Signal to Noise Ratio (SNR) along with the
pulse compression gain (PC) during correlation is greater than
the threshold (7},), which is given by,

j
—L L+ PC > T, 4
~ + h 4

p

P .. . s

where —7+ is the received SNR. The quantities in (4) are
P, . .

expressed in linear scale. IV, denotes the noise power and the

received signal power P, , is given by,

_ Pti, Gti Gr‘j )\QUmin

P, = (5)
i, 2
(4m)*R? R

where A\, Gy, G, Ry, and R, represent the wavelength of
the signal, gain of *" transmitter, gain of j*" receiver, and
it" transmitter-to-target and target-to-j*"receiver distances,
respectively. These distances are inturn given by,

and R, = |[x —x,,|| (6)

Rti = HX_XtiH

where x; and x, denote the transmitter and receiver co-
ordinates respectively. Here, o, represents the minimum
detectable target RCS based on the signal parameters taken
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for simulation as mentioned in Table II. In the simulation
considered, opmin = 0.1 m2. The minimum detectable RCS
can be lowered by correspondingly increasing the transmit
power and the gains of the transmitting and receiving antennas.
Hence, the NPDAT approach works irrespective of the target
RCS. The lags corresponding to the grid of bins given by,

(Rti + RTj)fS
C

(7

lagi,j =

that satisfy the condition in (4) are alone retained in a set
and the maximum of that set is taken as Ty, ; ,,» Where ¢ in
(7) denotes the speed of light. This is performed for all the
bistatic pairs at different heights in the surveillance region and
the maximum height dictionary is created. This initialization
process is carried out only once during the placement of
towers in the region. If new towers are added in the region,
this process must be performed only for those towers. This
procedure is summarized in Algorithm 1.

Fig. 2 depicts an example of the range of possible lag values
for targets flying at different heights for a bistatic pair. As
expressed in the figure, from a unique lag value of a target, it
is impossible to decide the exact height of the target as the lag
ranges will indeed overlap. However, the height within which
the target will be flying can definitely be determined if the
observation region is known.

Algorithm 1 Maximum Heights Dictionary

Input: (xmina Tmax s Ymin, ymax)
Output: 74, ; ,Vi=1,....Ny,j=1,....,N.,h=1,... H
1: fori=1to N, 5 =1to N, do

2 Xiter; j,n — 0
3: VXGG éxmin I TeS : Tmax, ym,? I T€eS : Ymax, h)
e Gy,Gri (TR —PC)N,(47)
4. if 2R, > 2Py, oo then
5 Xiter,;,j_,h = Xiteri,j‘h, Ux
6: end if
_ omaz(||Xier; ;=% |1 Xier; 5, =% 1) fs
7 Tdicti,jyh_ c
8: end for

9: Repeat Vh =1,... H
10: return Tgie

Target Heights (km)

1 1
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Fig. 2: Possible Lag Ranges for Targets at Different Heights

From the figure, it can be said that a target having a lag value
of less than L; would surely be within Hy; height. Similarly,
a target with a lag value of Ly would surely be within Hy
height. However, a target with a lag value between L, and
L; would be present anywhere between Hy; and Hy,, but it
can be concluded that it would surely be within Hy; height.

This inference is made only through the knowledge of the
minimum lag value for targets at Hy; height. The maximum
heights dictionary is constructed with this basic principle.

By mapping with the dictionary, the maximum possible
height within which the target flies is determined for the lags
in the lag table at the fusion center. Two targets are separable
by heights for a bistatic pair if the range of maximum heights
corresponding to the first set of lags does not overlap with the
range of maximum heights corresponding to the second set of
lags and so on. The target corresponding to [ set of all lags
in the table is separable if,

mar(Hp, ;,_,) <min(Hpy, ;,) and

®)

maI(H”Lq',j,L) < min(Hmi,j,H»l)
where H,,, ;,_, denotes the maximum height lookup entry for
that lag set [ — 1 in the table for the (i, j)!" bistatic pair.

If the targets are separable by heights in all the cells for
all the hops, the corresponding lags can be directly associated
and the targets can be localized individually. If the criterion
of non-overlapping height ranges is satisfied only in one
cell, the targets appear to be separated for that one cell. In
that condition, the lag values corresponding to that cell are
alone used for localization. However, this leads to an increase
in the localization error as only fewer equations (a lesser
number of lags) are used. To overcome this limitation, these
estimated target locations are used as intermediate locations
and the accurate locations are determined subsequently by an
Ellipsoidal Ranging and Grouping (ERG) step as in IV-B.2.
Based on the criterion of non-overlapping height ranges, the
targets are classified into the following four categories:

TABLE [: Categories in Separation By Heights

Category Description
(a) In all the bistatic pairs of all the cells in all the hops
(b) In all the bistatic pairs of all the cells in at least one hop
(c) In the bistatic pairs of at least one cell in all the hops
(d) In the bistatic pairs of at least one cell in at least one hop

Except for (a) and (b), if the given set of lags corresponds to
the other categories, ERG is performed by which more lags
are associated and the targets are localized accurately.

2) Ellipsoidal Ranging and Grouping (ERG): This technique
is based on the concept of multi-lateration [27]. The input
to this algorithm is the intermediate location along the z,y
plane over which the target is present. A region around this
intermediate location is considered and is divided into a grid
of N, x-bins and NV, y-bins. For each bin position (x,y), the
feasible z estimate for the target is calculated from the lags
corresponding to a chosen bistatic pair as follows:

lag; ; - ¢
dij=—21— &)
N s
Substituting (6) and (7) into (9) we get,
. —B++vB2—-4AF
i = (10)

2A
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with,
A= (z, — 2, — B

B =V3(2; — z,) + Qd?’jz”
(Vs)? 2 2 2
E = T - d’i,jV2 — di,jZTj

Vl = (xti - .7})2 + (ytL - y)2
‘/2 = (ij - ‘T)2 + (y’l‘]‘ - y)2

2 2 2
V3:V’17‘/2+Ztiizrjidi,j

and the z estimate is then given by,

(11)

Here, (11) evaluates the larger of the roots of the quadratic
equation in an efficient one-line equation and can be calculated
in parallel for all the bins.

If Z falls within the possible z range (given by the maxi-
mum heights permissible in the dictionary), the corresponding
(z,y, 2) coordinates is regarded as a candidate position for the
target. The minimum and maximum lags possible for all the
bistatic pairs are found with these candidate positions. Based
on the determined ranges of lags and recorded lag values
in all the bistatic pairs, the lags are grouped to the targets
accordingly and targets are localized with these associated
lags. This step is done only if unique lags fall into non-
overlapping ranges and is summarized in Algorithm 2.

The efficiency of this method depends on the resolution of
bin sizes and the size of the intermediate region. The smaller
the intermediate region and bin size, the more accurate the
estimated target positions are, as a result of more lags getting
grouped. A trade-off exists between the computational time
and the number of bins considered in the intermediate region.

Z = max ()

Algorithm 2 Ellipsoidal Ranging and Grouping

Input: lag; ; and intermediate location (&, ) of target
Output: More grouped lags based on Ly, ; and Ly, ;
1: forz’:ltoNt,AjzltoNTdo
2 Xier,; = 0, lag; ; =0
3:  Intermediate region around (%, ) is divided into N, z
bins and N, y bins
4 fora=1to N;, b=1to N, do
5 ¥ bin position (z,y)
6: if 2< Hmw. then
7 x = (z,y, %)
8 Xiter,,yj = xiteriwj Ux
9 Calculate lag value 7 for x as per (7)
10: légi’j = légi,j ur
11: end if
122 end for ) .
13 Lmay, ; = maz(lag; ;), L, ; = min(lag; ;)
14: end for
15: Group recorded lags lag; ; based on estimated L.y, ; and
Lmini,j
16: return Associated lags

3) Combinations Method for Close-By Targets: This is the
separation level used for the data association of close-by

targets. This method necessitates finding at least four lags
corresponding to targets close by to estimate the intermediate
position. One transmitter and four receivers are chosen and
with the lags corresponding to these bistatic pairs, different
combinations of lags are generated [15]. For each of these,
target positions are estimated and only those with ASOE < Tj
(as discussed in Section IV-B.5) are identified as correct target
position estimates. However, this results in low estimation
accuracy as only four unique equations are involved in the
localization process. Therefore, the estimates are considered
as intermediate locations and processed further using ERG.

When one transmitter and four receivers are chosen (four
bistatic pairs), if there are G targets in the surveillance region,
the maximum number of possible lag combinations would be
G*. The complexity of this method increases exponentially
as the number of targets increases. However, the complexity
is capped since only one transmitter and four receivers are
selected for this method. The number of possible combinations
is also minimized by using ERG. The time complexity can
be combated by performing the localization corresponding to
different combinations of lags in parallel as it only involves
computation of 3x3 inverses [28]. Since this technique is used
only for close-by targets, the implementation complexity of the
algorithm is still limited and thus practically implementable.
The set of one transmitter and four receivers whose lag values
are used for generating the combinations of lags is chosen by
using one of the following two approaches:

o Approach A - Inclusive Periphery Algorithm (IPA):
The transmitter with maximum number of lags with
respect to the receivers is selected. Receivers are chosen
from all four quadrants in such a way that they are present
at the farthest distance from the selected transmitter.

o Approach B - Tight Periphery Algorithm (TPA):
If the receivers on all four quadrants could not be chosen
as per Approach A, then they are selected as follows:
Three receivers are chosen from the same cell as the
selected transmitter and the fourth receiver is chosen from
any other cell such that it has the least distance from the
selected transmitter.

The idea behind both of these approaches is to maximize
horizontal diversity for better localization. If such transmitters
and receivers are not present as per Approach A, then the
towers are chosen so the target is enclosed within their
locations.

4) Localization and Velocity Estimation: Once the lags are
associated with the targets, it is localized by following closely
the algorithm in [28]. The locus of the points corresponding
to the distance derived from the TOA value is an ellipsoid
with the corresponding transmitter and receiver at its foci.
The intersection of the ellipsoids determines the position of
the target. Due to the lower height diversity in ground-based
towers, the accuracy of height estimates suffers. Hence, after
obtaining the position estimates, the height estimate is further
improved using the modified least squares framework. Using
estimated d; ; in (9), the following set of bistatic equations
are formulated:

Six =12z; + riRtl (12)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3517513

IEEE JOURNAL OF SELECTED AREAS IN SENSORS

Rti = ||Xti _XH
X?:1 — Xzz di,l
S; = r;, =
X/, — X1, di,N, (13)
1%, 12 = dZ =[x,
1
zZ; = 5
2

1%, 1 = d v, =[x,

The nuisance parameter R;, is removed by pre-multiplying
(12) by M; = VI'D; where D; = ((diag(r;))~'. Here, V
is obtained from the SVD of [I, — Z] where Z is a circular
shift matrix [28]. Thus,

All such equations for the /V; transmitters over one cycle of
hops are stacked and are expressed in matrix form as,

Ax=Db (15)

Due to the measurement errors and noise in the bistatic range
estimation, only noisy versions of A and b, A and b are
obtained. Hence, the position estimate is given by,

%= (ATA)'Ab (16)
With the position estimates of targets obtained in localization
and the corresponding associated bistatic Doppler measure-
ments, the velocities of the targets are estimated following
[15]. Due to the measurement errors and noise in bistatic
Doppler estimation, noisy versions Y and % are used instead
of Y and z, which is written as,

v=XTY) vz (17)
where,
T—Tpy T—Tt, Y—Yry Y=Yty 2—2Zry 2—2¢y
R,y Re, R,y Rq, R,y Ry,
=Ty T—x¢; Y~ Yrn, Y=Yt FFrn, z—2tg
Ry Re, Rry. Re, Roy Re,
Y =
T—Tpy LTy, Y—Yrq Y=Ytn, Z—2Zry ET2tN,
R RtNt Ry RtNt Ry RtNt
T—Tpp T—Ten, Y~Yry Y=Yiy, Z—Zry, =2ty
Ry, Riy, By, Ry, Roy Riy,
!
11
!
dy, 1
z = (18)
U
1,N¢
!
deNt
and, d,; is the bistatic range rate with respect to (i, 4t
bistatic pair, and is expressed as
, d
dj; = a(Rti +Ry)) = —fa, ;A (19)

After localizing each target, the corresponding unassociated
lags from other bistatic pairs are eliminated so that they do
not interfere with the association of other targets.

5) Absolute Sum of Errors (ASOE): 1t is a metric defined to
check for the correctness of the localization estimate. Similar
to the Weighted Sum of Squares (WSOS) in [15], it checks
for consistency between the actually measured bistatic ranges
and the estimated bistatic ranges from the position estimates.
Let d.;; and cZC,m» be the measured and estimated bistatic
ranges corresponding to hop ¢, transmitter ¢ and receiver j
respectively. The ASOE is given by:

Np Nt Nr
ASOE =Y "% "|dei; — dei ]
e=1i=1 j=1
If ASOE < Threshold (7p) (appropriately chosen as discussed
in [27]), the position estimate corresponds to a true target. A
higher ASOE value implies a higher error in localization.

(20)

V. NPDAT ALGORITHM FLOW
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Fig. 3: Outline of the NPDAT Algorithm
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Fig. 4: The Four Steps in the Data Association Section

The complete flow of the NPDAT algorithm is illustrated
in Fig. 3. The algorithm quickly tracks those targets whose
positions and velocities of targets in the previous instants are
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available, if the measured lags fall within the validation region
of the estimated lags with respect to the different bistatic pairs.
The data association algorithm is performed only for newborn
and non-trackable targets at the current instant.

The data association section of the NPDAT algorithm is
broken down into the following four steps as shown in Fig. 4.
Step 1: Sort out targets separated by heights belonging to
category (a) as specified in Table I and directly localize them.
Step 2: Segregate targets separated by heights belonging to
category (b) as specified in Table I and directly localize them.
Step 3: Segregate targets separated by heights belonging to
category (c) or (d) as specified in Table I. Associate maximum
number of lags through ERG and localize the targets.

Step 4: This step utilizes the method discussed in Section I'V-
B.3 to identify and localize closely spaced targets. Step 4 can
be broken down into two parts: (4A) and (4B). Here, (4A) and
(4B) involve choosing the transmitters and receivers accord-
ing to approaches A and B of Section IV-B.3, respectively.
Intermediate locations are found, ERG associates a maximum
possible number of lags, and the targets are localized.

Flow of the data association algorithm is outlined in Fig. 5.

Lags of N N>1 Remaining
targotsTrom <Check N sTep1 | |STEP 2

simulator N=1 ———
STEP 3

targets

At least
one targetis
localised

At least
one targetis
localised

At least
one targetis
localised

Fig. 5: Outline of Data Association Section

VI. SIMULATION RESULTS

The algorithm is tested in a simulation environment de-
veloped in Matlab. It simulates a multistatic radar setup
with distributed transmitters and receivers with the following
system parameters as given in Table II. The coverage of the
transmitters and receivers is bounded primarily because of
their antenna patterns. Thus, all the targets cannot be observed
in all the bistatic pairs. The algorithm is tested with such
a varying number of misdetections in various bistatic pairs.
Based on the link budget of the system, the detection of targets
with a minimum RCS o,;, is assured for the entire surveillance
region. The RCS of the targets is taken anywhere between 0.1
m? to 1.0 m? in the simulation. The threshold (7},) is set such
that the false alarm rate is 10°® with respect to the lowest
possible RCS (0 yin= 0.1 m?). The TOA and bistatic Doppler
measurements of targets corresponding to the bistatic pairs are
determined as explained earlier in Section IIL

3

A. Association - Multiple Targets Appearing "All at Once’

The algorithm has been tested by simulating 2, 3, and 4
targets appearing at once in the surveillance region. Initializa-
tion is not needed for the process. The targets are assumed

TABLE II: Simulation Parameters

Parameters Values

Inter-Cell Distance 3 km

Bandwidth (B) 20 MHz

Number of Targets (G) 23 or4

Antenna Gain 18 dBi

Number of Towers in the Region 28 (4 towers in each cell)
Doppler Bin Resolution 100 Hz

Transmit Power (P) 100 W

to move with arbitrary velocities ranging from 50 m/s to 150
m/s. Different scenarios have been considered with targets at
different height differences and varying z-y separations. As a
result of the antenna patterns of the transmitters and receivers,
all the bistatic pairs cannot observe all the targets, and not all
bistatic pairs report the same number of lag values. It is worth
mentioning that the algorithm has been developed to adapt
to such situations without knowing or explicitly estimating
the number of targets. Height differences between the targets
vary from 3 km to targets flying at the same height. The
x,y separation between the targets varies from 1 km to 100
m. In each combination of this separation, 300 Monte Carlo
(MC) simulations have been performed with independently
generated measurements, and the consolidated results, rounded
to the nearest meter, are alone presented in Tables III and IV.
3D position and velocity estimation accuracies are measured
by Root Mean Square Error (RMSE) in each coordinate, which
is given by,

1 U
PosRMSEj, = , | — (Ixx — %x[?) (21)
¢ m=1
1 M,
_ = 512
VelRMSE,, = i Z:l(m. Vi|2) (22)

where x; and vj denote the true position and velocity coor-
dinates, Xj, and V; denote the estimated position and velocity
coordinates of the k' target respectively and M, denote the
total number of MC runs.

Table III shows the 3D position accuracy for this scenario.
As per the results, the position RMSE (PosRMSE) indicates
high precision in location estimation. There is an increase in
error for certain cases (shown as the maximum error which
is denoted by Max. Error). This occurs when targets are
present at the corners of the outer cells, resulting in fewer
bistatic pairs seeing the targets. Thus, for these targets, there
is a lower accuracy in localization, which can be combated
by introducing interaction between adjacent fusion centers.
When three and four targets are present at once at the same
height within 100 m x 100 m ambiguity region (region within
which if the targets are present, the estimation accuracy drops),
error shoots up higher than the mean for 1.4% and 2.8% of
the trials respectively. As more targets are present closely,
the localization accuracy decreases, or the ambiguity region
increases. This is because, during the initial phase of the
algorithm, lags of all the targets seen from all the bistatic pairs
are taken together for the association process. Hence, there is
greater interference from other targets. This ambiguity region
depends on the bandwidth considered. The bandwidth used
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for the signals is only 20 MHz. If the bandwidth is increased,
the bistatic range resolution improves. Hence, the ambiguity
region decreases, and localization accuracy improves.

TABLE Ill: Position Localization Accuracy

G | Separation between tar- | PosRMSE Max. Error
gets [x,y,2] m) | [x,y,z] (m)
2 Any height difference and | [2,1,2] [6,5,12]
> 100 m in either = or y
500 m and above height dif- | [2,2,2] [9,7,12]
3 ference and > 100 m in
either x or y
Same height and > 200 m | [1,1,2] [5,4,11]
in either x or y
Same height and 100 m in | [3,3,5] [33,48,63]
either x or y
500 m and above height dif- | [2,1,2] [10,10,11]
ference and > 100 m in
4 . =
either x or y
Same height and > 200 m | [I,1,2] [4,4,12]
in either x or y
Same height and 100 m in [2,3,5] [22,27,56]
either x or y

TABLE IV: Velocity Estimation Accuracy
Vel RMSE

G | Separation between tar- Max. Error

A spike in error seen in the last row of Table V during
the later instants is due to reduced separation or cross-over
between the targets. Except in the first instant, in the presence
of previous track updates, the algorithm rarely goes to Step 4.
With the inclusion of tracking, the number of trials entering
Step 4 reduces by 25%. Also, as per results in Table VI, it
can be observed that the accuracy of velocity estimation has
also improved in comparison with Table IV.

TABLE V: Localization Accuracy - Sequential Birth

tmax Separation between | Instants | PosRMSE | Max. Error

targets x,y,2] | [x.y,2]
(m) (m)

500 m and above | All [3,3,3] [8,12,15]
height difference and

100 ms | > 100 m in either =
ory
Same height and 500 | All 2,2,3] [6,7,13]
m in either z or y
Same height and 200 | All 2,2,3] [6,5,17]
m in both x and y
Same height and 200 | Till 8™ [2,2,4] [6,6,16]
m either along only Only at | [2,2,6] [35,60,37]
x or only y gth

TABLE VI: Velocity Estimation Accuracy - Sequential Birth

gets [vx, vy, vzl [vx, vy, vzl
(m/s) (m/s)
Any height difference and | [2,2,3] [8,7,20]
> 100 m in either x or y
Any height difference and | [2,3,3] [10,7,19]
> 100 m in either x or y
4 Any height difference and | [3,3,4] [10,8,22]

> 100 m in either = or y

In the algorithm, the step with the highest computational
complexity is Step 4 of Section V. For all target cases (2,3,4),
only the trials corresponding to targets flying at a height differ-
ence of 500 m or less with x — y separation less than or equal
to 500 m reach this step. Of these, only about 3 to 5% of them
tend to go to approach B of Section IV-B.3. Thus, approach
B improves accuracy, albeit at a slightly higher computational
cost. The velocity estimation results are presented in Table I'V.
Based on the lags associated with targets, bistatic Doppler
measurements are taken for velocity estimation. The accuracy
thus depends upon the extent of grouping of lags to the targets.
Since the Doppler bin resolution in the simulator is 100 Hz,
the maximum velocity error goes up to [10,8,22] m/s. If the
Doppler bin resolution is improved, the maximum error in
velocity estimation will be reduced.

B. Association and Tracking

The performance of the NPDAT algorithm with sequential
occurrence and random death of the targets at different po-
sitions with arbitrary velocities in all three coordinates from
50 m/s to 150 m/s are shown. Each instant, also called the
update rate tx, is the time the following data set is processed.
One target appears at every instant, moving in any random
direction. The algorithm is tested with ¢y,,x=100 ms. The
RMSE and maximum error values for position and velocity
estimation for the targets at different instants are presented in
Table V and Table VI respectively.

tmax | Separation be- | Instants | VeIRMSE Max. Error
tween targets [vx, vy, vzl | [vx,Vy,Vz]
(m/s) (m/s)
100 500 m and above | All [3,3,4] [10,8,14]
ms height difference
and > 100 m in
either x or y
Same height and | All [2,2,4] [8,7,14]
> 200 m in either
T ory

C. Comparison with Existing Algorithms

The assignment-based multi-target tracking algorithms com-
pared with the NPDAT algorithm are GNN, JPDA, and MHT
[12]. GNN and JPDA are single-scan methods, whereas MHT
is a multi-scan method. The measurement model is non-linear,
so the tracking filter used is EKF. Using the Jacobian matrix
in the KF equations essentially linearizes the function around
the current estimate. The assignment for tracking is done using
the S-D assignment solved using the Lagrangian relaxation
method [3].

Constant Velocity (CV), Constant Acceleration (CA), and
Constant Turn (CT) are the state models used for tracking
depending upon the scenario considered. However, more than
one model is essential to track targets with motion uncertainty.
Hence, IMM is used where it assumes a set of models as
possible candidates of the true mode each time and runs a bank
of elemental filters, each based on a unique model in the set.
The overall estimate is generated based on the results of these
elemental filters. Each estimated target is assigned to at least
one track. A new track is created if it cannot be assigned to any
existing track. Any new track is started in a tentative state. If
enough assignments are done to the tentative track (at least two
in the last three updates), its status is changed to confirmed. If
enough assignments are not done to the confirmed track within
a specific number of updates (three in the last three updates),
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the track is deleted. For MHT implementation, the maximum
number of track branches allowed for each track is three,
and the maximum number of global assignment hypotheses
maintained at each step is fixed as five.

The performance metric used for the comparison of the
algorithms is the RMSE of the position and velocity estimates
of the targets given by,

1 Ninst

RMSE=,| ——
NinslNcoord nz::l

(I = %) (23)

where x and X denote the true and estimated position or
velocity vectors of targets, Ninge and Noorg denote the total
number of time instants the targets’ movements are recorded
and the total number of coordinates (z,y, z) which is equal
to 3 respectively.

1) Difference between Existing Association-cum-Tracking
Approaches and NPDAT: The contrast between the basic ap-
proach of NPDAT and the other algorithms is highlighted in
the table.

Existing Algorithms NPDAT Algorithm

Clusters TOA values from multiple
bistatic pairs to different targets,
localises only those and assigns to
tracks based on predictions of
nearest neighbours

Considers all the possible
associations from multiple bistatic
pairs, localises, retains those with
least cost and assigns to tracks
based on specific methods

Estimated positions have only the
correct targets as the TOA values
are clustered to targets and only
those are localized. Hence, TOA
values of false alarms may not be
grouped to any targets as they
will be random

Estimated positions may have
correct targets as well as
false alarms/random clutter

Non-parametric and hence no

Highly parametric on number of
targets and motion models

assumption on the number of targets
and motion models

Localises targets even within

Does not localise as well as track

ambiguity region but does not
associate them to tracks correctly

targets within ambiguity region

2) Ability to Handle Maneuvering Targets: A combination of
CV, CA, and CT models is used to incorporate the targets’
motion maneuverability. The extent of change in motion is
brought by varying parameters like linear velocity, accelera-
tion, and angular velocity. Fig. 6 shows the true trajectory of
two targets maneuvering slow and fast. The tracking ability
of the various algorithms when the targets are maneuvering
slowly is shown in Fig. 7. GNN-IMM creates many tracks as
it cannot handle frequent motion changes. JPDA-IMM, MHT-
IMM, and NPDAT track the targets precisely. The analysis in
terms of RMSE in position and velocity estimation for both
the targets is shown in Table VII. The error performance for
the above three algorithms is also approximately the same.

TABLE VII: Estimation Accuracy - Slow Maneuvering Targets

RMSE | GNN-IMM | JPDA-IMM | MHT-IMM | NPDAT
P"(Sr‘r?)"“ 3.15 343 | 208 268 | 190 243 | 1.83 1.56
Velocity | 2902 2015 | 363 5.68 | 3.01 328 | 272 3.52
(m/s)

The tracking ability of the algorithms for fast maneuvering
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targets is captured in Fig. 8. NPDAT precisely tracks the fast
change in the target’s motion. GNN-IMM, JPDA-IMM, and
MHT-IMM exhibit poor tracking performance as the extent
of maneuverability here is very rapid. The estimation perfor-
mance analysis in terms of RMSE in position and velocity for
both the targets is shown in Table VIII. In addition to rightly
tracking the targets, NPDAT is shown to have the least error
in estimating position and velocity.

Tracker: GNN. Model: IMM

[—Track Paths
60 * True Trajectory| 60

Tracker: JPDA Model: IMM

[—Track Paths
« True Trajectory|
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——
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o 100y (S0 0

Fig. 8: Tracking Ability of Algorithms - Fast Maneuver

TABLE VIII: Estimation Accuracy - Fast Maneuvering Targets

RMSE | GNN-IMM | JPDAIMM | MHT-IMM | NPDAT
P O(Slﬁl)on 56.47 2391 | 37.30 26.85 | 9.01 12.99 | 1.03 1.67
Vfrllf/‘;‘)ty 10691 87.71 | 46.30 84.04 | 4432 89.82 | 3.55 3.96

3) Ability to Handle Close-By Targets: The ability to track
the close-by targets is analyzed by simulating two targets
whose true trajectory is shown in Fig. 9. The least distance
between the two targets is 40 m. For successful association
and tracking by the NPDAT algorithm, two targets should be
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separated by +1 lag, which approximately comes to 40 m in
close x — y or height separation. The tracking ability of the
algorithms is illustrated in Fig. 10. MHT-IMM tracks better
than GNN-IMM and JPDA-IMM. However, when the targets
are undergoing the turn motion, all the above three algorithms
fail to get them onto their tracks. NPDAT tracks the targets
irrespective of their change in motion. The only criterion for
NPDAT to track targets is that their least distance should be
greater than that corresponding to -1 lag. The performance in
Table IX indicates that NPDAT has good estimation accuracy
in addition to correct target tracking.

True Position

[®-Constant Velocity]
|9 Constant Velocity
-®-Constant Turn
[ ¥ Constant Turn

300 0! 0 0

-200 -10(
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&
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g 8 8 8

)

-50

Fig. 9: True Trajectory - Close-By Targets
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Fig. 10: Tracking Ability of Algorithms - Close-By Targets

TABLE IX: Estimation Accuracy - Close-By Targets

RMSE | GNN-IMM | JPDA-IMM | MHT-IMM | NPDAT
P"(S;:‘)O“ 60.98 524 | 1459 2058 | 1.83 3.87 | 1.98 1.79
V‘(*III‘]’/Z‘)W 59.00 39.63 | 47.50 31.95 | 8.15 21.99 | 521 5.84

4) Ability to Handle Cross-Over Targets: Two targets fly at a
height difference of 40 m whose true trajectories are plotted
in Fig. 11. In the first scenario, the targets cross each other
and proceed with the same velocity. In the second scenario,
the targets come face-to-face and go back with an abrupt
change in velocity. The tracking results for the cross-over
scenario are shown in Fig. 12, and the performance for both
the targets is demonstrated in Table X. CV model is used for
the tracking filters for this analysis. All the algorithms track
the targets properly. NPDAT has slightly greater RMSE than
the conventional algorithms. This is because, in conventional
approaches, all the possible combinations of lags from all the
bistatic pairs are utilized to obtain target positions. However,
in NPDAT, only the clustered lags from various bistatic pairs
corresponding to different targets are used for the same.

The tracking results for the meet-go-back scenario is cap-
tured in Fig. 13 and error metrics for the same is shown in

True Position

e

True Position

[+-Target 1 B Targot 2
DX Target 2|
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Fig. 11: True Trajectory - a) Cross-Over b) Meet-Go-Back
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TABLE X: Estimation Accuracy - Cross-Over Targets

RMSE | GNN-CV | JPDA-CV | MHT-CV | NPDAT
P"(S;‘)"“ 127 1.68 | 1.17 1.65 | 126 1.68 | 1.69 1.81
Velocity | 515 638 | 4.04 657 | 508 423 | 506 572
(m/s)

Table XI. The existing algorithms fail to track the targets in
this case. Even the IMM model for these algorithms did not
exhibit good tracking performance. Observe that only NPDAT
tracks the targets correctly.
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Fig. 13: Tracking Ability of Algorithms - Meet-Go-Back

TABLE XI: Estimation Accuracy - Meet-Go-Back Targets

RMSE | GNN-CV_[ JPDA-CV | MHI-CV_| NPDAT
PO(SI%O“ 4.65 538 | 2739 2697 | 124 099 | 2.16 1.79
V?]f/cs‘)ty 30.02 29.09 | 36.87 3823 | 21.31 21.38 | 9.42 15.55

5) Time Complexity: The average time taken for data as-
sociation and tracking is determined for all the algorithms,
with two and four targets moving in arbitrary directions. The
time taken is measured as the run-time of the algorithms’
Matlab implementation. The processor used was an Intel i7-
6700 clocked at 3.4 GHz utilizing 16 GB of DDR4 2133 MHz
RAM. The total number of possible measurement associations
for the assignment-based approaches is (G)™t*N* where G,
Ny and N, are the number of targets, transmitters and receivers
respectively in the region. Since there is a greater number of
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transmitters and receivers, the number of possible associations
for these approaches is reduced by gating. The time taken per
instant for a two-target scenario is shown in Fig. 14. The data
association assignment part for the other algorithms consumes
most of the run-time (103.76 s). It is observed that the run-
time for NPDAT is almost 100 times less than the existing
algorithms.

Time Complexity Comparison
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Fig. 14: Average Time Taken per Instant - Two Targets
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Fig. 15: Average Time Taken per Instant - Four Targets

The time taken per instant for a four-target scenario is
shown in Fig. 15. The run-time increases exponentially for
the assignment-based tracking approaches. The time taken for
the data association part is 1278.58 s. The increase in the
number of targets in the scenario has increased the run-time for
NPDAT only in the order of milliseconds. This shows the time
efficiency and, hence, the scope of real-time implementation
possibility of the NPDAT algorithm compared to the other
algorithms.

6) Note on Algorithm Complexity: The existing algorithms
take into account all the possible measurement associations.
Localization and cost calculation are performed for all these
associations. This is the costliest step as the complexity
increases exponentially as the number of targets, transmitters,
or receivers increases. The IMM-based approaches reasonably
estimate the target’s mode if the targets are maneuvering.
However, its implementation adds to the complexity. These
reasons question the chance of real-time execution of these
approaches. NPDAT follows a sequential approach but never
requires processing all the associations. Even in the association
of closeby targets, it considers associations only from four
bistatic pairs. Hence, the computational complexity of NPDAT
is minimal.

VIlI. CONCLUSION

A novel and efficient sequential data association and track-
ing algorithm has been developed based on the underlying
geometrical aspects of a multistatic radar system. This Non-
Parametric Data Association and Tracking (NPDAT) approach
does not require knowledge of the number of targets or
their motion models. It does not assume any initial state for

the targets and works with more than one target appearing
simultaneously in the surveillance region. The performance of
the data association and tracking algorithm for targets flying
with arbitrary velocities at various heights and horizontal
separation levels was presented. The ambiguity region and
cap on accuracy for a given number of targets are dependent
on the implementation parameters, such as signal bandwidth,
Doppler resolution, and the speed of the targets desired to
be detected. NPDAT displayed enhanced tracking performance
even with significantly lower run-time and algorithm complex-
ity compared to the existing algorithms. The proposed NPDAT
approach is, therefore, amenable for practical implementations.
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