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Abstract— Parkinson’s disease (PD) is a complex neu-
rodegenerative disease in the elderly. This disease has no
cure, but assessing these motor symptoms will help slow
down that progression. Inertial sensing-based wearable
devices (ISWDs) such as mobile phones and smartwatches
have been widely employed to analyse the condition of PD
patients. However, most studies purely focused on a sin-
gle activity or symptom, which may ignore the correlation
between activities and complementary characteristics. In
this paper, a novel technical pipeline is proposed for fine-
grained classification of PD severity grades, which identify
the most representative activities. We also propose a multi-
activities combination scheme based on MDS-UPDRS. Uti-
lizing this scheme, symptom-related and complementary
activities are captured. We collected 85 PD subjects of dif-
ferent severity grades using a single wrist sensor. Our best
results demonstrate F1 scores of 95.75% for PD diagnosis
and the fine-grained classification accuracy of PD disease
grade is 82.41% when combing 4 activities which improved
by 11.02% over a single activity. The experiments and theo-
retical analyses can serve as a useful foundation for future
investigations into the effect of proposed solutions for PD
diagnosis in uncontrolled environment setup, ultimately
leading to self-PD assessment in the home environment.

Index Terms— Feature selection, inertial sensing-based
wearable devices, machine learning, multi-activities,
parkinson’s disease

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most prevalent
neurodegenerative disorder globally, with a significant

impact on over 6 million individuals [1], [2]. This condition is
characterised by various motor impairments, including tremor,
bradykinesia, muscle rigidity, and postural instability [3].
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Nowadays, no disease-curing therapy for PD, but dopamine
replacement therapies such as Levodopa or L-Dopa are still
able to provide relief for controlling abnormal movements
as they have been since its discover [4], [5]. PD patients’
quality of life is directly enhanced by precise titration of
medications by clinicians [6]. To precisely provide precise
medication titration and assess the related motor impairments,
the MDS-Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [7] has been widely employed. However, MDS-
UPDRS has some drawbacks, such as 1)inter-rater and intra-
rater score variability, 2)subjectivity and 3)time-consuming.
The scale only delivers a static snapshot view of the patient
during the clinical visits. Therefore, it remains a challenge
for clinicians to effectively track motor symptoms during the
out-of-clinic time.

With the popularisation of various inertial sensing-based
wearable devices(ISWDs) and the improvement of machine
learning(ML) technologies, mobile sensing-based PD diagno-
sis approaches objectively estimate motor symptoms. Several
studies [8]–[15] have demonstrated that ISWDs are able to
support uncontrolled activity assessment of PD progression
and symptoms effectively. Inertial sensor recording, ML meth-
ods’ analysis and decision-making offer significant insight
into achieving continual, precise PD motor assessment and
treatment of disease progression and medication titration.

Despite the advancements of those techniques, there is
limited understanding of the connection between the data from
wearable sensors and the information on potential clinical
motor symptoms of PD patients with different severity grades.
Firstly, limitations of the application scenario. To ensure the
consistency between experimental results and clinical findings,
most studies of PD severity grade diagnosis focus on clinical
or specific controlled laboratory scenarios. For instance, many
studies [16], [17] scored patients on the MDS-UPDRS in
clinical scenarios and required them to wear inertial sensors,
which were employed to record signals of tremor, bradykinesia
and other motor symptoms. This work demonstrates the high
correlation of data from inertial sensors with clinical motor
symptoms. If the above studies focus on PD motor detection in
the controlled scenario, then in the uncontrolled environment
the focus slides towards PD daily monitoring. Many studies
[9], [18] identified the advantages of smartwatches for remote
patient monitoring and found mobile and wearable technolo-

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3432714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

gies are more than capable of tracking motor fluctuations in
PD. In contrast to PD daily monitoring, there have been few
studies that have assessed the role of timely self-assessment
of PD motor symptoms using wearable devices. In contrast
to PD daily monitoring, there have been few studies that
have assessed the role of timely self-assessment of PD motor
symptoms using wearable devices.

Secondly, limitations to research on a single symptom
or activity. Many studies hold a preference for one motor
symptom. For instance, Rigas et al. [19] accessed the tremor
type (resting/action postural) and symptom severity. Ullrich
et al. [10] proposed an unsupervised standardized detection
for gait symptoms at home. To impose a minimal constraint
on patients, Kim et al. [20] quantified the bradykinesia via
the clinical motor of finger taps using a gyrosensor sensor.
Giubert et al. [21] analysed sit-to-stand task on the MDS-
UPDRS scale and emphasised leg agility task play a key role in
the PD diagnosis. However, specialising in a single symptom
to assess PD may suffer from inadequate evaluation results.
Even when clinicians assess PD severity using the MDS-
UPDRS scale, they also need to consider multiple activities
in combination. In the MDS-UPDRS scale for constancy of
rest tremor(item 3.18), for example, the raters are required
to examine all movements before scoring this item, which
implies that there exists a potential clinical connection between
symptoms and motors and that motors assessment alone is
not recommended. Additionally, more sensors and performing
more activities would enable get more accurate PD severity
diagnosis, but this is not practical in the uncontrolled scenario.
Rigas et al. [19] utilised 6 sensors to assess tremor and Ricci et
al. [22] employed 12 sensors throughout the body to estimate
the effectiveness of Levodopa treatment. Sensors all over the
body and too many compulsory activities impose a heavy
burden on the patient and reinforce the erasure of wearable
applications in uncontrolled environments.

Targeting at above-mentioned issues, this paper focuses on
finding the representative MDS-UPDRS activities with a single
wearable sensor in uncontrolled environments. More precisely,
we firstly collected 85 PD subjects of different severity grades
and 70 healthy controls, each subject performed the 14 ac-
tivities within the part-III of MDS-UPDRS scale and was
scored by the movement disorders neurologist. Meanwhile,
only one single device where on the wrist was utilised to
record the activities of subjects. We then explored the potential
correlations of all the activities and thereby identified the
most representative ones. These activities provide the highest
amount of motor symptoms’ clues of all activities. Afterwards,
we selected the most significant features most relevant to
the disease and conducted experiments using our proposed
activity combination method. Utilizing these, we were able
to accurately classify PD severity grades on a fine-grained
scale. Furthermore, as illustrated in Fig.1, we proposed a
novel technical pipeline for identifying the most representative
activities in uncontrolled environments. Selecting the fewest
activities to reduce the burden on patients. Notably, instead
of designing complex fusion algorithms based on multiple
activities, we focused on capturing the most critical features
across all activities, which will serve as a useful insight

TABLE I
UPDRS PARADIGM ACTIVITIES

Num Activity name Abbr.
1 Finger taps FT
2 Clench and open alternately COA
3 Rapid alternating movements of hands ALTER
4 Hand rotation-right HR-R
5 Hand rotation-left HR-L
6 Finger to nose-left FN-L
7 Finger to nose-right FN-R
8 Standing with arms hold STANDH
9 Walk back and forth WA

10 Arising from chair AC
11 Drinking water DRINK
12 Picking things PICK
13 Sitting SIT
14 Standing STAND

for the development of lightweight wearable devices in an
uncontrolled environment. Overall, we make the following
contributions:

• A novel technical pipeline is proposed for classifying PD
severity grades in a fine-grained manner and a simple yet
effective multi-activity combination scheme is designed
for analysing complementary and redundant activities in
MDS-UPDRS.

• The most representative activities from the MDS-UPDRS
scale and their symptom-related features are provided to
enable effective PD self-assessment in the uncontrolled
environment.

• A large-scale data collection is implemented which in-
cludes 14 activity data from 85 PD and 70 healthy
individuals which have been labelled by neurologists.

The rest of this paper is arranged as follows: Section II
summarizes the related work in this research field. Section
III describes participants and data acquisition. Section IV
describes the methods used in this work. We discuss the results
of our research in section V. Finally, section VII summarizes
this paper and puts forward the future prospects.

II. RELATED WORK

A. Single Activity/Symptom-based Diagnosis

There are many studies on PD, but most of them are
based on a single activity or symptom and single symptom,
unfortunately, the provided information does not give rise to a
severity assessment of the condition. Guo et al. [23] conducted
a study in a laboratory setting where they gathered walking
data from 10 individuals diagnosed with PD. The purpose of
the study was to ascertain the freezing of gait by utilizing
the freezing index. However, this research only detected a
single motor symptom. Pérez-Ibarra et al. [24] conducted
a data collection study involving 5 healthy individuals and
7 PD. The participants were instructed by a professional
to walk both on a treadmill and the floor. They devised a
novel, real-time adaptive unsupervised algorithm to detect
and classify gait events and phases using a solitary IMU
mounted at the posterior aspect of the foot. Luis Sigcha et al.
[25] leveraged the inertial sensors integrated into mainstream
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Fig. 1. Technical pipeline of our approach. Our core technical design is module D. Taking 174-dimensional features as an example, the horizontal
concatenating directly concatenates Activity 1 features and Activity 2 features, increasing the dimension of features. At this time, the concatenated
feature is 174+174=348 dimensions. The vertical concatenating adopts the form of upper and lower concatenating to concatenate features, and its
features are converted from the original one-dimensional data (1 * 174) to (2 * 174). Feature fusion weights the features of Activity 1 and Activity 2,
and their feature dimensions are consistent with the original activity dimensions.

consumer smartwatches and employed diverse ML models to
detect and evaluate the intensity of bradykinesia in the superior
extremities. The study encompassed six participants diagnosed
with disease and seven healthy individuals of similar age,
throughout a minimum period of six weeks, all participants
were furnished with a consumer smartwatch and instructed to
engage in a prescribed set of motor exercises. These studies
only used a single activity, which may have overlooked the
correlation between multiple activities, and they tested for one
of the symptoms without providing an overall assessment of
the condition.

B. Specific Scenario-based Diagnosis
The application scenarios can be divided into clinical,

laboratory and free-living environments. The literature has
examined a few potential PD biomarkers, among which cere-
brospinal fluid-blood biomarkers 16 and neuroimaging 17 have
demonstrated high. However, these biomarkers are costly, and
invasive and require access to specialized medical centres. The
researchers [26], [27] have explored several potential biomark-
ers for PD, including cerebrospinal fluid biomarkers, blood
biochemical markers, and neuroimaging techniques. These
biomarkers have demonstrated good accuracy in diagnosing
PD. However, they often come with drawbacks such as high
cost, invasiveness, and the need for access to specialized

medical centres. Most of the research on the diagnosis of
PD is carried out in the laboratory environment, As PD
movement symptoms are diverse and fluctuating, requiring
monitoring over multiple periods, another emerging research
trend in PD assessment is the evaluation of PD symptoms and
progression in a free-living environment. But still mainly focus
on distinguishing between normal and PD patients, and single
symptom assessment of PD. Chen et al. [8] developed an
automated disease assessment framework that utilized smart-
phone sensors to classify PD patients and healthy individuals
based on signals extracted during the performance of specific
activities at home. However, the framework does not consider
the abnormalities that may arise during the execution of these
activities in a home environment. To address this issue and
minimize anomalies during data collection in a home setting,
further measures need to be implemented. Erb et al. [9], [28]
put forth a scheme where patient logs were filled out by
caregivers to monitor the daily activities, PD symptoms, and
medication usage of patients. However, relatives often have a
limited understanding of PD symptoms and struggle to accu-
rately identify motor symptoms, resulting in misconceptions
and mistakes in the recorded data. This highlights the need
for improved caregiver education and additional methods to
facilitate accurate symptom identification in order to enhance
the reliability and usefulness of patient logs for tracking PD-
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related information. Martin Ullrich et al. [10] conducted a
data collection study involving 12 patients diagnosed with
idiopathic PD. Over a span of two weeks, the patients were
equipped with inertial measurement units to capture data. In
addition to their routine daily activities, the patients performed
a sequence of three successive 4 × 10-meter-walking tests at
varying walking speeds. Griffiths et al. [29] conducted a study
involving 34 patients with PD and 10 age-matched healthy
controls. Data collection spanned a minimum duration of 10
days. The researchers utilized a wearable device called the
Parkinson’s Kinetigraph (PKG), which was worn like a wrist-
watch and incorporated a 3-axis iMEMS accelerometer. The
PKG was employed to evaluate dyskinesia and bradykinesia,
two characteristic symptoms of PD. Hammerla et al. [11]
gathered data from 34 patients with PD for a minimum of
6 days within a home environment. They utilized movement
sensors equipped with a tri-axial accelerometer and employed
the RBM with a deep learning algorithm for training purposes.
Most research datasets are collected for intervention guidance
in a controlled environment, However, challenges in extending
such schemes to out-of-hospital environments, the accurate
identification of PD motor symptoms relies primarily on the
quality and amount of recorded data. The variability of PD
motor symptoms can significantly differ between individuals,
and activities, and also change over time [30].

C. Specific Data Source based Diagnosis

Currently, the data sources used for diagnosing PD can be
categorized into three main types: sensor-based, video-based,
and wireless signal-based. With advancements in wearable
motion sensors, the evaluation of PD based on patients’
movement patterns has emerged as a prominent research area.
Ricci et al. [22] conducted a study involving 36 PD patients
who wore 14 sensors while performing seven activities from
the MDS-UPDRS. The patient’s condition was evaluated using
an SVM before and after medication intake to determine
the stage of their disease. It is crucial to highlight that this
study was conducted in a controlled laboratory environment,
and potential factors such as abnormal activity during task
performance and the potential stress experienced by patients
wearing multiple sensors were not taken into consideration.
Video-based deep learning algorithms have been increasingly
utilized for the assessment of the MDS-UPDRS and other
evaluation methods. Weiping Liu et al. [31] captured two
videos obtained for the 3.17 and 3.15 tests to quantify PD
tremor severity. Mandy Lu et al. [32]proposed the use of an
ordinal focal neural network to estimate the MDS-UPDRS
scores from input videos. In their study, they collected video
recordings of gait and finger tapping, taking into account the
ordinal nature of the MDS-UPDRS scores and addressing the
challenge of class imbalance. By leveraging this approach,
they aimed to improve the accuracy and reliability of eval-
uating PD severity based on video data. The third category is
wireless signal. Yuzhe Yang et al. [33] conducted research
on the identification and evaluation of PD using AI and
nocturnal breathing signals. In their study, they explored the
possibility of collecting breathing signals without the need

for wearable devices. This was achieved by transferring a
low-power radio signal and assessing the reflections of this
signal off the person’s body. By leveraging AI techniques,
they aimed to develop a non-invasive and convenient method
for detecting and assessing PD based on these breathing
signals. Wearable devices’ increasing popularity stems from
their ease of operation, affordability, and ability to function
in harsh environments without compromising others’ privacy.
The video-based method requires infrastructure support as it
requires the installation of cameras in monitoring locations
and is highly dependent on lighting. The wireless respiratory
signal instrument has high environmental requirements, but it
has disadvantages such as low detection accuracy and easy to
be submerged by noise, the respiratory detection method is
only applicable to a small indoor range and cannot be applied
in outdoor scenes.

III. MATERIALS

A. Participants

We have collected the signal data from 14 activities of 85
PD patients and 70 healthy controls in the past two years.
All individual patient information has been anonymised. Table
II shows the demographic information of the subjects. All
subjects have identified and signed the informed consent form.

B. Data Collection

The activity data is collected by the wearable sensor shim-
mer3 IMU units with a sampling frequency of 204hz. These
data include a three-axis accelerometer, three-dimensional gy-
roscope signal and three-axis magnetometer. Due to the lack of
integration and high-efficiency consumption of sensors used in
many studies, accelerometer signals are the main data source.
In order to obtain more accurate motion signal data, we also
use gyroscopes to assist the acceleration signal identification
activities. Fig. 2 shows the waveform of activity data signals
collected by the accelerometer in the sensor.

During the data collection, we placed sensors in five loca-
tions (waist, 2 feet, and 2 wrists) on the subjects. For imitating
the use of a watch, only the signals of the right wrist were
used. Then, under the guidance of professionals, the exercise
tasks in Table I are executed in turn (all movements, except
standing, walking and picking up things, are completed by
the patient sitting on a chair with a height of 40cm). The
collection process of UPDRS activities is shown in Fig. 3.
It is synchronously transmitted to the computer through a
Bluetooth connection, and the activity data is recorded (each
action collected for 20s without special instructions), the total
duration of the procedure is approximately 15 minutes. The
accuracy of wearable devices was ensured by the use of
equipment: professional Shimmer3 Inertial Measurement Unit
(IMU) units. We chose the high sampling frequency of 204 Hz,
which ensures that even the subtlest movements are accurately
recorded. This high sampling rate is critical for our study’s
objective to assess complex PD motor symptoms accurately.
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(a) Finger to nose-right (b) Hand rotation-right (c) Walk back and forth

Fig. 2. Active signal waveform diagram. the waveform of activity data signals collected by the accelerometer.

TABLE II
THE MDS-UPDRS SCORE DISTRIBUTION AND DEMOGRAPHIC INFORMATION OF SUBJECTS

UPDRS Score PD PD(1) PD(2) PD(3) PD(4) Healthy controls
N 85 18 34 19 14 70

Sex(F/M)% 39/46 9/9 14/20 9/10 7/7 32/38
Age(mean ± std) 67.2 ± 9.2 68.2 ± 10.4 65.8 ± 7.7 69.5 ± 6.3 67.5 ± 2.2 24.6±5.4

Height(mean ± std) cm 160.9 ± 7.4 163.0 ± 5.0 160.5 ± 5.9 161.0 ± 4.8 159.3 ± 4.3 171.33±3.2
Weight(mean ± std) kg 58.6 ± 8.7 61.0 ± 7.3 57.8 ± 6.9 58.8 ± 5.1 57.5 ± 3.9 63.75±3.4

Fig. 3. Data collection of fourteen activities according to the UPDRS-
part III.

IV. METHODOLOGY

A. Signal Preprocessing

In order to maintain the authenticity of the original signal
to a greater extent and reduce the interference of noise, some
simple filtering processing is usually performed at the front
end of the acquisition system. It is necessary to retain the
tremor information and the main information of different
movements since this study focuses on PD patients. Through
signal spectrum analysis of the signals we collected and review
of relevant literature, the tremor frequency of PD patients can
be divided into three categories: resting tremor 3-6hz, postural
tremor 4-12hz, and motor tremor 2-7hz [34]. Therefore, it is
recommended to use a 2-12hz band-pass filter to filter the noise
signals from the patient’s motion. After filtering, the data of
each axis were normalized by Z-score normalization [35]. This
filtering technique is specifically designed to improve the reli-
ability of these devices in capturing complex motor symptoms
and mitigate the impact of external noise. Noting that we have
taken great care to ensure that our filtering technique retains
the vital tremor information. This was achieved by closely
examining the overlap between the tremor frequency and the
filter range.

TABLE III
FEATURE EXTRACTION ON WIDE RANGE ACCELEROMETER AND

GYROSCOPE
Feature Dimension

Maximum, Minimum, Average, (X,Y,Z,A,T) 30
Variance, Standard Deviation, Amplitude(X,Y,Z,A,T)
Skewness(X,Y,Z,A,T) 5
kurtosis(X,Y,Z,A,T) 5
Maximum and minimum autocorrelation coefficient(X,Y,Z,A,T) 10
Spectrum maximum, average(X,Y,Z,A,T) 10
Correlation coefficient(XY,XZ,XA,XT,YZ,YA,YT,ZA,ZT,AT) 10
Root mean square(X,Y,Z,A,T) 5
Energy value(X,Y,Z,A,T) 5
Entropy(X,Y,Z,A,T) 5
Dominant frequency (A,T) 2
Total 87

B. Feature Extraction

After the operation of signal prepossessing, 87-dimensional
features are extracted from the accelerometer and gyroscope.
In the time domain, the features encompass the average, peak,
nadir, dispersion, root mean square, variance, correlation,
asymmetry, excess kurtosis, energy, median, and range. In
the frequency domain, the features consist of spectral entropy,
energy derived from the fast fourier transform, mean amplitude
and maximum amplitude. A total of 87 dimensional features.
Since we extract 87 dimensions from the accelerometer and
gyroscope respectively, the total feature dimension is 174
dimensions. X, Y and Z respectively represent the three axes of
the three-dimensional sensor, A is the fusion axis of the three
axes, T is the inclination axis, and the fusion representation of
the three axes is performed by calculating the signal amplitude
vector. For the fusion axis, the fusion representation of the
three axes is performed by calculating the signal amplitude
vector (SMV), which avoids the user’s change in a single
direction, which helps to measure the overall intensity of the
activity [36]. Detailed characteristics are shown in Table III.

C. Activity Correlation Analysis

Various activities are not only distinct but also how their
associations can reflect different aspects and severities of PD.
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According to the UK Brain Bank criteria, a diagnosis of
Parkinson’s syndrome can be made if bradykinesia is present
along with at a minimum the following: rigidity, rest tremor,
and postural instability [37]. Part III of the MDS-UPDRS
includes specific tests for tremors in PD patients. Test 3.17
assesses rest tremor, while test 3.15 evaluates postural tremor
[38] [39]. In the finger tapping tests of the MDS-UPDRS,
participants are requested to perform rapid and forceful tap-
ping of their index finger to their thumb for a total of 10
repetitions. This assessment aims to evaluate the speed and
amplitude of finger movements, serving as an indirect measure
of the functional status of cortical motor areas. The finger
tapping test is considered a valuable indicator of PD as it
assesses bradykinesia through the observation of decreased
rate or amplitude during repetitive finger movements. This test
provides valuable insights into the motor impairment associ-
ated with PD and helps in diagnosing the condition. Other
hand fine activities, such as wrist turnover, right-hand fingertip
and nose tip, were evaluated for speed, amplitude, hesitation,
pause and attenuation amplitude, and motion completion to
assess the severity of muscle rigidity and quantify PD motor
improvements [32]. So we think it would be better to evaluate
the disease after integrating multiple symptoms, Fig.4 shows
the correlation between activities. We use cosine similarity
to calculate the cosine value of the angle between different
activities’ corresponding features. It measures the similarity
in direction between two feature vectors, regardless of their
absolute magnitudes. The specific steps are as follows, firstly,
compute the dot product of feature vectors A and B, multiply
the corresponding elements of vectors A and B, and sum up
the products. This value represents the similarity between the
two vectors in each dimension. Secondly, Computing the norm
of vector A/B, summing up the squares of each element in
vector A/B, and taking the square root of the result. This value
represents the length or magnitude of vector A/B. Thirdly, by
dividing the dot product obtained in step 1 by the product of
the norms computed in step 2, this result represents the cosine
similarity. From the figure, it can be seen that activities with
significant differences in symptoms have a lower correlation.
In the experimental section, we conducted a combined analysis
of high/low correlation activities.

D. Activity Combination Method

Different from traditional methods, activity combination
steps are added after feature extraction. Because the informa-
tion reflected by a single activity is limited, the UPDRS scale
gives a comprehensive score based on all the activities of the
patient, so our method tries to select representative activities to
combine, concatenate multiple activity features, and add fea-
ture dimensions. In this way, it is more reasonable to evaluate
the disease level of patients by integrating multiple activity
information. Considering the correlation between activities and
making full use of the data information of multiple activities,
we try different feature concatenate methods on activities. This
experiment adopts four concatenating strategies, cause we have
multiple activities, we donate Ai as the activities, and FAi

is
the feature extracted from the activities, the four concatenating

Fig. 4. Activity correlation analysis. The cosine similarity value ranges
from -1 to 1, when the cosine similarity is close to 1, it indicates that
the two vectors have a very similar direction; when the cosine similarity
is close to -1, it indicates that the two vectors have very dissimilar
directions; when the cosine similarity is close to 0, it indicates that there
is no significant correlation between the directions of the two vectors.

strategies are: (1) Horizontal concatenating: increase feature
dimension;(2) Vertical concatenating: increase the number
of samples;(3)H+V: Horizontal and vertical concatenating;(4)
Weighted: active feature fusion.

Concatenate H (FA1 , FA2 , · · · , FAN
) (1)

Concatenate V (FA1
, FA2

, · · · , FAN
) (2)

Concatenate H + V (FA1 , FA2 , · · · , FAN
) (3)

Weight =

N∑
i=1

FA1
·ACCi (4)

The extensive adoption of machine learning (ML) brings
opportunities for a variety of real-life applications [40]–[45].
In order to assess the effectiveness of combination strategies,
we utilised four classical ML algorithms: Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), Extreme Gra-
dient Boosting (XGB), and Light Gradient Boosting Ma-
chine (LGBM). We chose activities 2(COA), 3(ALTER),4(HR-
R),5(HR-L) for different combination strategies. The specific
classification accuracy after concatenating is shown in Table
IV. It can be seen that the accuracy of horizontal concatenating
on the XGB model is the highest (74.07%), which is greater
than the effect of vertical and weighted concatenating. The
experimental findings indicated that the classification accuracy
can be effectively improved by transforming features through
horizontal concatenating. The reason why horizontal splicing
is more effective than other splicing methods is that it expands
the feature dimension, which can get uncorrelated information
from the different activities which will lead to better accuracy.
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TABLE IV
ACCURACY OF DIFFERENT CONCATENATING METHODS

LGBM SVM KNN XGB
V 245 62.96 44.44 46.3 67.59

H+V 245 67.59 53.7 61.11 73.15
W 245 62.04 48.15 51.85 65.74
H 2345 70.37 58.33 60.19 72.22
H 245 69.44 62.96 63.89 74.07

E. Significant Feature Selection

Due to the high dimensional curse brought about by directly
conducting a combination of multiple activities, we are trying
to reduce the dimensions and identify important features that
are more relevant to the disease. After this dimensionality
reduction shown in Fig.5, the dimension is small and the model
performance is better.

Fig. 5. Feature dimensionality reduction

Fig. 6. Feature importance ranking. This figure shows the top 10 most
important features jointly selected by the three models. Corr represents
the axis correlation. The sensor contains three axes: X, Y, and Z to
capture motion information. The features at the front of the figure are
concentrated on the axis correlation, indicating that this feature plays a
more important role in classification

After four model experiments and their common results, the
feature importance ranking is shown in Fig. 6. Among the 10
features with the highest frequency in the four models, axis
correlation is a feature worthy of attention. Axis correlation
represents the correlation of the degree of change between the
two axes, reflecting the degree of action completion, such as
wrist turnover. When the x and z axes are negatively correlated
when turning, when the patient is stuck in the middle of the
illness when performing activities, the correlation will also
change. Therefore, the correlation of different axes may be
related to some delays, obstacles and coagulation during the
movement.

V. EXPERIMENTS AND RESULTS

In this section, we introduced the validation methods and
evaluation indicators, and then used a single activity and
a selected combination of activities to test and verify the
effectiveness of the activity combination, and analyzed its
interpretability. Finally, we selected the most representative top
20 important features for clinical reference. It is worth men-
tioning that, our research content is fine-grained severity stage
classification which involves the classification of mild(1+2),
moderate(3), and severe symptoms(4).

Validation. We validated our approach on datasets collected
in a laboratory environment. All our experiments were carried
out on an ordinary computer with a 2.6GHz CPU and 8GB
memory. In the selection of verification methods, we choose
the ”Leave-One-Subject-Out Cross Validation”.It is to make
k equal to the number of data in the dataset, using only one
test set at a time and the rest as the training set. The final
result is the mean of these k verifications, and the result
obtained by this method is closest to the expected value
of the entire training test set. This is because a Semi-Non-
Overlapping window is used when generating samples, so the
same sample fragments may exist in the training set and the
test set simultaneously, resulting in bias in the experiment. It is
worth noting that the semi-non-overlapping window technique
used in the leave-one-subject-out validation protocol is not
influenced by bias. This is particularly desirable as the training
and testing samples are separated by subjects. Consequently,
the raw signal used to generate the samples, even if temporally
close, will only appear in either the training or the testing set,
but not in both. This approach ensures a more robust and
unbiased evaluation of the model’s performance.

Evaluation metrics and models. Accuracy, F1-score, pre-
cision and recall are utilised in our experiments. We build
the model on four ML algorithms: LGBM, SVM, KNN and
XGB.For LGBM, the learning rate is 0.05, the maximum depth
of trees is 2, the maximum number of trees is 300. For SVM,
the kernel function is sigmoid, the penalty coefficient is 1. For
KNN, the number of neighbors is 5, the weights distribution
is uniform and the distance is 2. For XGB, the learning rate
is [0.01,0.05], the number of iterations is [700,1500], and
the minimum loss decrease is 0. One of the advantages of
utilizing the gradient lifting algorithm is the direct obtainment
of importance scores for each attribute once the lifting tree is
constructed. This attribute-specific importance scoring feature
enhances the interpretability of our results.

A. Construction of Balanced Dataset

During the data collection process of PD patients, we
encountered the issue of data imbalance. Specifically, there
was an uneven distribution among disease stages, with a higher
number of patients classified as having mild disease (stages 1,
2) and a relatively small number of patients classified as having
severe disease (stage 4). Therefore, the sample imbalance had
a great impact on the experimental results, we chose to use
the ”Leave-One-Subject-Out” method to construct a balanced
data set, which can decrease the negative influence of the data
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TABLE V
CLASSIFICATION RESULTS OF HEALTHY INDIVIDUALS AND PD PATIENTS

Act Num Act Name Acc F1 Pre Rec
1 FT 87.50 87.40 87.85 87.45
2 COA 84.10 84.10 84.15 84.15
3 ALTER 83.30 83.25 83.55 83.30
4 HR-R 92.50 92.45 92.90 92.45
5 HR-L 92.50 92.45 92.60 92.45
6 FN-L 85.00 84.90 85.15 84.95
7 FN-R 95.80 95.80 96.05 95.82
8 STANDH 95.80 95.75 96.25 95.80
9 WA 86.60 86.50 87.90 86.65

10 AC 73.30 73.15 74.15 73.30
11 DRINK 85.80 85.75 86.30 85.80
12 PICK 91.10 91.05 91.40 91.05
13 SIT 95.00 94.95 95.05 94.95
14 STAND 78.30 78.20 78.60 76.65

imbalance. More details are analysed in supplement material
S1.

B. Detection and Classification of motor severity based
on a single activity

On the basis of the verification method based on construct-
ing balanced data sets, We conducted two major types of
experiments, one is the detection experiment between healthy
individuals and PD, which aims to accurately identify high-risk
individuals who are considered healthy and tend to develop
into early PD patients. Table V below shows the classification
results of healthy individuals and PD patients. According to the
experimental results, for early PD detection, the vast majority
of UPDRS activities can be well detected, especially activities
7(FN-R) and 8(STANDH). Bold indicates an accuracy rate
greater than 92%.

Another type of fine-grained disease severity classification
for PD patients. We use single activity data for the experiment.
Table VI shows the classification accuracy of 14 single activi-
ties. We found that most patients had obvious symptoms in the
fine movements of the hand (clench and open alternately, hand
rotation right), while the symptoms were suppressed in the
whole-body movements (drinking water, rising from a chair)
or static activities (standing with arms hold, sitting, standing).
Such activities with no obvious symptoms would interfere with
the experiment, So we aim to find the most representative ones
among these activities. Our experimental findings align with
this observation as well. The accuracy of hand movements is
always higher than that of large amplitude or static movements.
We choose this kind of hand-fine activity to carry out the
following activity combination.

Fig.7 shows the confusion matrix of the Clench and Open
Alternately(COA) and Finger to Nose-Right(FN-R). The COA
has a better classification effect in critical patients (stage 4),
and the FN-R has a better classification effect in patients with
mild symptoms (stages 1 and 2). The reason why severe can
not be correctly divided may be that there are too few patients
in stage 4, severe patients cannot complete some activities, and
there is no activity data. In the middle stage(stage 3), we also
find the number of samples that were wrongly divided in many
activities, The possible reason is that the patients with moder-
ate disease are in adjacent stages and have similar conditions

(a) Clench and Open Alternately (b) Finger to Nose-Right

Fig. 7. The confusion matrix of the Clench and Open Alternately(COA)
and Finger to Nose-Right(FN-R). The COA has a better classification ef-
fect in Critical patients (stage4), and the FN-R has a better classification
effect in patients with mild symptoms (stages 1 and 2).

with mild and severe diseases, which is difficult to distinguish.
The result revealed that Rapid alternating movements of hands
outperform other activities with an accuracy rate of more than
73%.

C. Classification of motor severity based on Multi-Activity
From the results of the single activity experiment, we can

see that several activities with high accuracy are concen-
trated in the hand fine activity, which is in line with the
previous experimental conclusion of the correlation analy-
sis of activity and disease, so the subsequent experiments
mainly focus on the combination of hand fine activities, we
selected seven activities: Finger taps(FT), Clench and open
alternately(COA), Rapid alternating movements of hands (AL-
TER), Hand rotation-right(HR-R), Hand rotation-left(HR-L),
Finger to nose-left(FN-L), Finger to nose-right(FN-R). After
the correlation analysis between activities, we combined the
high and low-correlation activities. The experimental findings
are presented in Table VII. The results indicate that the
combination of activities with low correlation exhibits a higher
rising trend compared to activities with high correlation. This
suggests that combining two activities with low correlation
can effectively supplement the characteristic information to
a certain extent. It is worth mentioning that when there are
too many combined activities, the accuracy rate decreases, as
shown in the last row of the Table VII. Therefore, selecting the
appropriate activities for combination is crucial, while com-
bining too many activities provides redundant and complex
information that can interfere with the model. Therefore, we
are committed to implementing as few activities as possible at
home to timely assess the condition of patients in an out-of-
hospital environment.

Table VII shows the experimental accuracy of high /low
correlation activity combinations. Taking activity 2(COA) as
an example, activities 1(FT) and 3(ALTER) have a high
correlation with it, while activities 4(HR-R), 5(HR-L), 6(FN-
L), and 7(FN-R) have a low correlation. They form differ-
ent combinations. At present, the combination with the best
classification effect is 2(COA)+4(HR-R)+5(HR-L), with an
accuracy rate of 74.07% in the XGB model. Compared with
single activity classification, the accuracy rate has increased by
12.03%. The results clearly demonstrate that the horizontal
concatenation method significantly enhances the correctness
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TABLE VI
CLASSIFICATION ACCURACY OF SINGLE ACTIVITY

Num Activity
Name LGBM SVM KNN XGB

Acc F1 Pre Rec Acc F1 Pre Rec Acc F1 Pre Rec Acc F1 Pre Rec
1 FT 42.59 41.89 41.73 42.59 27.78 27.72 27.84 27.78 35.19 33.90 34.81 35.19 44.44 44.28 44.99 44.45
2 COA 60.19 59.55 59.90 60.19 52.78 52.96 56.50 52.78 53.7 52.32 55.44 53.70 55.56 54.86 54.77 55.56
3 ALTER 73.15 72.99 73.42 73.15 49.07 49.08 49.46 49.07 54.63 54.50 56.37 54.63 67.59 66.88 66.70 67.59
4 HR-R 62.04 62.03 62.60 62.03 55.56 55.87 56.46 55.56 44.44 43.31 44.73 44.45 54.63 53.67 54.29 54.63
5 HR-L 59.26 58.98 59.99 59.26 44.44 43.87 43.66 44.45 46.3 44.55 44.31 46.30 62.04 61.23 61.41 62.04
6 FN-L 49.07 47.20 46.18 49.07 44.44 42.94 43.84 44.45 44.44 40.68 44.55 44.55 49.07 47.26 47.04 49.07
7 FN-R 52.78 52.74 53.94 52.78 35.19 34.10 34.76 35.18 38.89 36.65 37.94 38.89 57.41 57.83 58.93 57.41
8 STANDH 26.85 26.57 26.48 26.85 25.93 24.46 23.63 25.93 30.56 29.93 29.72 30.55 32.41 32.16 33.00 32.41
9 WA 47.22 45.68 44.71 47.22 52.78 51.96 52.64 52.78 53.7 52.39 52.60 53.70 48.15 47.25 47.52 48.15

10 AC 61.11 65.33 64.66 66.67 39.81 31.52 30.80 39.82 28.7 24.96 23.25 28.71 57.41 55.47 55.71 57.41
11 DRINK 47.5 59.4 55 65 25 27.10 30.82 25.00 40 39.67 39.96 40.00 50.83 49.03 48.14 50.83
12 PICK 54.17 52.76 61.79 46.88 42.71 41.00 47.23 42.71 50 50.11 51.82 50.00 58.33 58.71 60.84 58.33
13 SIT 36 33.87 46.33 28 25.33 23.40 26.00 25.33 21.33 19.85 20.73 21.33 21.33 19.17 17.55 21.33
14 STAND 19.44 13.69 15.28 12.5 19.44 18.20 18.24 19.44 22.22 19.98 18.52 22.22 19.44 19.82 21.86 19.45

TABLE VII
MULTIPLE ACTIVITY COMBINATION ACCURACY

Algorithm LGBM SVM KNN XGB
Motor correlation Acc F1 Pre Rec Acc F1 Pre Rec Acc F1 Pre Rec Acc F1 Pre Rec
High 1+2 55.56 55.45 55.80 55.56 53.7 53.34 54.36 53.71 51.85 50.97 52.34 51.85 50.93 53.34 50.87 50.93

2+3 62.04 62.02 62.77 62.04 53.7 54.22 56.36 53.70 57.41 57.02 59.40 57.41 62.96 62.05 62.01 62.96
Low 2+6 57.41 57.23 57.29 57.41 45.37 45.34 46.61 45.37 61.11 60.27 67.60 61.11 62.04 61.73 60.22 62.04

2+7 63.89 63.77 64.17 63.89 51.85 52.03 55.29 51.85 46.3 44.22 46.43 46.30 51.85 52.45 53.12 51.85
2+4 56.48 56.21 56.16 56.48 39.81 40.35 41.27 39.81 53.7 51.26 59.32 53.70 55.56 56.78 55.25 55.56
2+5 63.89 63.84 65.15 63.89 63.89 63.06 65.00 63.89 61.11 59.33 66.23 61.11 71.3 72.42 71.7 71.3

2+4+5 69.44 69.43 71.51 69.45 62.96 63.40 65.00 62.96 63.89 62.96 70.16 63.89 74.07 75.05 74.23 74.07
2+3+4+5 70.37 70.29 70.79 70.37 58.33 59.21 61.35 58.33 60.19 60.60 64.59 60.19 72.22 73.56 72.98 72.22

TABLE VIII
COMPARISON OF ACCURACY BEFORE AND AFTER DIMENSION REDUCTION

2+4+5
Feature Reduction Before After

Algorithm Acc F1 Pre Rec Acc F1 Pre Rec
SVM 62.96 63.4 65 62.96 53.38 65.3 65.35 54.38
KNN 63.89 62.96 70.16 63.89 63.54 62 71.24 54.56
XGB 74.07 75.05 74.23 74.07 72.03 77.4 76.12 72.03

LGBM 69.44 69.43 71.51 69.45 75.93 75.58 76.56 75.92
2+3+4+5

Feature Reduction Before After
Algorithm Acc F1 Pre Rec Acc F1 Pre Rec

SVM 58.33 59.21 61.35 58.33 68.52 68.52 70.87 68.52
KNN 60.19 60.6 64.59 60.19 65.74 65.17 67.74 65.74
XGB 72.22 73.56 72.24 72.22 77.78 77.27 78.22 77.78

LGBM 70.37 70.29 70.79 70.37 82.41 82.54 81.62 81.48

of staging evaluation in PD patients. The second best com-
bination is 2(COA) + 3(ALTER)+4(HR-R)+5(HR-L), with an
accuracy rate of 72.78%.We can observe that it is not that the
more activities you select, the better. When activity 3(ALTER)
was included, the accuracy decreased. Possible reasons for this
could be the introduction of redundant features and the curse
of dimensionality caused by the high dimensionality resulting
from activity combinations. To validate the effectiveness of
activity combinations, we performed feature dimensionality
reduction, which is explained in detail in section E of the
experiment.

D. Feature Interpretability Analysis

At the same time, We analyzed the reasons why the com-
bination of activities would increase. we found that after the
combination of activities, the first 20 significant features come
from different activities, as shown in Fig.8, which shows that

the horizontal combination of activities provides more feature
dimension information, which plays a certain complementary
role among multiple activities. The red box, green box and
yellow box are the characteristics of 2(COA),4(HR-R), and
5(HR-L).

On the other hand, we compare the importance weight of the
most significant feature in the combined activities in different
single activities as shown in Fig.9. The following two figures
show the importance of the maximum value of the x-axis of
the gyroscope in different activities (HMOV, HR-L, HR-R). It
can be seen that the same feature has different importance
in different activities, and the same feature extracted from
different activities reflects different information. Hence, when
the information dimension is expanded, it can provide more
complementary disease information.
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Fig. 8. Top20 Features of combined activities. The 20-dimensional
important features after combining activities come from the significant
features of different activities, indicating that horizontal activity combi-
nations provide more feature dimensional information, which plays a
certain complementary role among multiple activities.

(a) Gyro-XAxx in different activi-
ties

(b) Gyro-FCO in different activities

Fig. 9. Comparison of feature importance weights in different single
activities. The importance of the maximum value of the x-axis of the
gyroscope in different activities (HMOV, HR-L, HR-R), the figures show
the same feature has different importance in different activities.

E. Multi-Activity Important Features based Diagnosis

Due to the high latitude curse brought by the combination of
activities, After selecting the most significant 20-dimensional
features for the test, we observed a notable improvement
in the accuracy rate when we eliminated other redundant
features. This underscores the effectiveness of feature selection
in enhancing the performance of the test. Table VIII evaluates
the classification of the best activity combination(2(COA)
+ 3(ALTER)+4(HR-R)+5(HR-L)) before and after dimension
reduction with four ML algorithms. We can see that after the
dimensionality reduction, the performance increases to 82.41%
in LGBM, which improves 12.04% compared to using all fea-
tures and improves 10.19% compared to single activity in the
XGB model.LGBM is superior to SVM and KNN in terms of
performance, both before and after dimension reduction.This
may be due to the dimensionality reduction operation elimi-
nating a large amount of redundant information.The LGBM
model is insensitive to noise and has stronger robustness.
Outliers and missing values contain valuable information that
can be learned, whereas SVM and KNN are more sensitive

TABLE IX
COMPARISON OF PD ASSESSMENT ON SPECIFIC ACTION TYPES

References Action Type Assess symptoms
[15][27] tremor type(rest / postural) tremor

[21] motor exercises / finger tapping bradykinesia
[28] wrist turnover / finger to nose muscle rigidity

[19][20] walking freezing of gait

to noise, leading to a decrease in prediction performance. In
contrast, LGBM demonstrates better interpretability and can
assist in optimizing feature engineering to a certain extent. In
summary, activities 2(COA) + 3(ALTER)+4(HR-R)+5(HR-L)
are the representative activities that we need.

Furthermore, we estimated the performance of each severity
grade before and after the feature reduction, using accuracy,
precision, recall and F1-score. The accuracy before and after
feature reduction was 70.37 and 82.41 respectively. As shown
in Fig.10, we show the performance of accuracy, recall and
F1-score on three classifications. In order to improve the
confidence of the results, a more rigorous testing criterion is
adopted. The estimated performance of the three grades was
examined separately instead of averaging the statistics across
all grades in Table.VIII. We observed that:

• The feature reduction brings about 12% improvement in
performance while the confidence intervals (95% CI) are
wider.

• Individuals in the severe grade have the highest classifi-
cation performance, but feature reduction is not a major
contributor.

• The performance of the moderate grade is the most
challenging, despite performance gains from feature re-
ductions.

• Feature reduction provides the greatest improvement in
the classification of mild individuals, which is a key factor
in the overall ability of the model estimation.

The experimental conclusion has significant clinical im-
plications. It suggests that in clinical practice, doctors only
need to focus on hand-related activities for diagnosis and
assessment of the patient’s condition. This saves a considerable
amount of time and effort while making the evaluation process
more objective. This finding can greatly assist in facilitating
diagnosis and treatment procedures.

VI. DISCUSSION

Achieving self-assessment of PD using all types of UPDRS
activity is an open question. Our proposed method has been
able to identify the most representative activities under all
standard UPDRS, which are verified to work well with com-
mon machine-learning algorithms. Although existing studies
[19], [21], [23]–[25], [32] on PD assessment are limited to
specific action types, as shown in Tabel IX, we will do an in-
depth comparison to develop a representative self-assessment
algorithm.

For the classification result of healthy individuals and PD
patients in Table V, we used data from younger individuals
as a comparison. Normal older adults have a higher risk of
developing PD. More normal elderly subjects will be recruited
to further develop an efficient early screening study.
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Fig. 10. Bar charts for the three classifications. (a)-(c) show the precision, recall and F1-score for three classification with 242 dimensions.(d)-(f)
show the precision, recall and F1-score for three classification with 20 dimensions.

In this paper, all subjects’ activities were recorded using
the Shimmer3 sensor. Moving towards self-assessment of PD
in a free-living environment, we will utilise a consumer-level
sensor device (e.g. a watch) to collect data as a means of
validating the effectiveness of selected representative activities.

The heterogeneity of PD symptoms and the potential impact
of external factors in uncontrolled environments may influ-
ence the results. In the process of feature extraction, tremors
are characterized by features like Maximum, Minimum, and
Average values, and bradykinesia which is analysed through
frequency-domain features like the Energy value. In the future,
the goal is to ensure that the selected activities and their corre-
sponding features reflect a comprehensive view of the UPDRS
scale. Additionally, future work will involve a more detailed
investigation into these external factors(such as abnormal data
detection [46]) to enhance the robustness of our data collection
and analysis methods.

The integration of such technology into existing clinical
workflows could significantly enhance patient care by provid-
ing continuous, real-time data that could lead to more timely
and personalized interventions. For instance, it would involve
evaluating current clinical workflows to identify areas where
remote monitoring could augment or streamline processes,
such as routine check-ups or symptom tracking [47] It also
involves ensuring that technology interfaces seamlessly with
electronic health records and existing IT infrastructure to
facilitate efficient data transfer and analysis [48].

Ongoing and instantaneous surveillance of health status has
the capacity to detect nuanced variations in disease progression
that might not be evident during episodic clinical evaluations.
Monitoring provides a constant stream of health data, ensuring
that even the slightest changes in the patient’s condition
are documented over time. The discovery of representative
activities will help to advance the development of continuous
and timely home monitoring techniques.

VII. CONCLUSION

Accurately capturing motor symptom diagnosis of PD pa-
tients is particularly important to determine appropriate med-
ication schedules. Although all MDS-UPDRS activities are
designed for detecting related PD symptoms, the information
about symptoms tends to be complementary and redundant
with each other. In this paper, we propose a novel technical
pipeline for fine-grained classification of PD severity grades
and identifying the most representative activities combination,
which effectively provides more representative information
than enforcing all MDS-UPDRS activities. The experimental
results show that the fine-grained classification accuracy of
PD disease grade is 82.41% when combined 4 activities, and
the accuracy improves by 11.02% over only using a single
activity. Furthermore, we select the top 10 most significant
features for dimension reduction, which not only achieve good
results but also facilitate the later transplantation of lightweight
equipment and provide reference for the PD self-assessment at
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home environment. In the future, we will further explore the
relationship between these standard actions and unrestricted
automatic actions to achieve individual free-living monitoring.
We hope that our experiments and theoretical method will
make effects of proposed solutions for PD diagnosis in an
uncontrolled environment setup, finally leading to self-PD both
in and out of the hospital.

ACKNOWLEDGMENTS

This research was supported by the National Natural Sci-
ence Foundation of China (No. 62301452, No. 62061050)
and the 13th Postgraduate Research Innovation Project of
Yunnan University 2021Y397. We thank Yunnan First People’s
Hospital for its strong support.

[1] E. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The emerging
evidence of the parkinson pandemic,” Journal of Parkinson’s disease,
vol. 8, no. s1, pp. S3–S8, 2018.

[2] E. Leroy, D. Anastasopoulos, S. Konitsiotis, C. Lavedan, and M. H.
Polymeropoulos, “Deletions in the parkin gene and genetic heterogeneity
in a greek family with early onset parkinson’s disease,” Human genetics,
vol. 103, pp. 424–427, 1998.

[3] X.-a. Bi, X. Hu, Y. Xie, and H. Wu, “A novel cernne approach for
predicting parkinson’s disease-associated genes and brain regions based
on multimodal imaging genetics data,” Medical Image Analysis, vol. 67,
p. 101830, 2021.

[4] T. Asakawa, K. Sugiyama, T. Nozaki, T. Sameshima, S. Kobayashi,
W. Liang, H. Zhen, C. Shujiao, L. Candong, and H. Namba, “Can the
latest computerized technologies revolutionize conventional assessment
tools and therapies for a neurological disease? the example of parkin-
son’s disease,” Neurologia medico-chirurgica, vol. 59, no. 3, p. 69, 2019.

[5] N. C. C. for Chronic Conditions et al., “Symptomatic pharmacological
therapy in parkinson’s disease,” Parkinson’s Disease. London: Royal
College of Physicians, pp. 59–100, 2006.

[6] S. Rahman, H. J. Griffin, N. P. Quinn, and M. Jahanshahi, “Quality of
life in parkinson’s disease: the relative importance of the symptoms,”
Movement disorders: official journal of the Movement Disorder Society,
vol. 23, no. 10, pp. 1428–1434, 2008.

[7] K. P. Bhatia, P. Bain, N. Bajaj, R. J. Elble, M. Hallett, E. D. Louis,
J. Raethjen, M. Stamelou, C. M. Testa, G. Deuschl, et al., “Consensus
statement on the classification of tremors. from the task force on
tremor of the international parkinson and movement disorder society,”
Movement Disorders, vol. 33, no. 1, pp. 75–87, 2018.

[8] O. Y. Chén, F. Lipsmeier, H. Phan, J. Prince, K. I. Taylor, C. Gossens,
M. Lindemann, and M. De Vos, “Building a machine-learning frame-
work to remotely assess parkinson’s disease using smartphones,” IEEE
Transactions on Biomedical Engineering, vol. 67, no. 12, pp. 3491–
3500, 2020.

[9] M. K. Erb, D. R. Karlin, B. K. Ho, K. C. Thomas, F. Parisi, G. P.
Vergara-Diaz, J.-F. Daneault, P. W. Wacnik, H. Zhang, T. Kangarloo,
et al., “mhealth and wearable technology should replace motor diaries
to track motor fluctuations in parkinson’s disease,” NPJ digital medicine,
vol. 3, no. 1, p. 6, 2020.
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