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Point Cloud Densification based on Scene Flow
Estimation and Kalman Refinement

Yufei Que, Junzhe Ding, Jie Xie, Jin Zhang, Luqin Ye and Cheng Wu

Abstract— Point cloud densification is an effective mea-
sure to alleviate the sparseness of point clouds. In 3D vi-
sion, the positional relationship of multi-frame point clouds
is applied to point cloud densification research to ex-
plain the rationality of the source of supplementary points.
Among them, scene flow estimation is effective for dynamic
scenes. However, scene flow estimation of long-sequence
dynamic point clouds is prone to cumulative positioning
errors. In order to solve this problem, this paper proposes
to correct the scene flow estimation results from a timing
perspective based on Kalman filtering. Specifically, the
scene flow estimation model is first optimized according
to the pyramid structure to improve the reliability of point
cloud feature extraction. Then, combined with the tempo-
ral relationship of the point clouds in the previous and
later frames, the point cloud is reconstructed uniformly to
complete the densification of the point cloud. Finally, the
densified point cloud is applied to the 3D detection task.
Results on the KITTI3D tracking dataset show that the point
cloud densification method based on scene flow estimation
can effectively improve the performance of LiDAR-only de-
tectors.

Index Terms— point cloud densification, scene flow esti-
mation, Kalman filter

I. INTRODUCTION

COMPARED with two-dimensional data, three-
dimensional point clouds provide additional depth

information. This makes point clouds widely used in assisted
driving [1], robotics [2] and other fields. However, limitations
such as object occlusion and scanning environment inevitably
lead to point clouds being sparse or even partially missing.
The sparse and discrete characteristics of point clouds
dismatch the requirements for high-precision perception.
Point cloud densification is one of the most effective
measures to promote the accuracy of three-dimensional
sensing. Therefore, obtaining high-quality dense complete
point clouds is an urgent task.

The point cloud densification task aims to process sparse,
uneven point clouds into dense, uniform point clouds. Anal-
ogous to an image super-resolution task, some studies also
call this task a point cloud super-resolution (PSR) task. The
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high-resolution (HR) output is generated from a low-resolution
(LR) input. Such tasks are generally divided into two methods:
generating virtual points for single-frame point clouds and
registering multi-frame point clouds to merge into a frame.

The most commonly used point cloud densification method
is to generate virtual points based on point cloud coordinates.
Inspired by PointNet++ [3], PU-Net proposed a point cloud
upsampling model based on deep learning for the first time
[4]. In order to prevent the upsampled points from clustering
around the original points, repulsion loss and reconstruction
loss are also introduced to help the network perform end-to-
end training. However, this method only targets a single point,
ignores neighborhood information, and easily loses local fine-
grained details. In order to solve this problem, EC-Net maps
the neighborhood information around each point into a feature
vector [5]. Then, it uses a feature expansion strategy similar
to PU-Net to learn the perturbation of the generated point
cloud relative to the original point cloud position to obtain
distance characteristics. However, the points generated by such
methods are virtual points, and it is usually difficult to explain
the rationality of the source of the points. Therefore, the multi-
frame point cloud registration method is applied to point cloud
densification.

The registration method [6]–[10] obtains a dense point cloud
map by aligning multi-frame point clouds. Commonly used
point cloud registration methods include random sampling
consistency (RANSAC), normal distribution transformation
(NDT) and Iterative closest point (ICP). By introducing global
structural information in point clouds, GeoTransformer can
significantly improve the inlier ratio of correspondences and
achieve RANSAC-free scene point cloud registration [9].
RoReg uses the estimated local rotation of a matching point
pair to directly find the global rigid transformation along
with the translation of that point pair [10]. This enables
RoReg to generate transformation hypotheses with only one
correspondence, reducing the search space for transformations.
Moreover, ICP is a classic registration method. It is based
on the mathematical idea of the least squares method, which
optimizes the correspondence between two point clouds by
minimizing the difference between them. Although the ICP
series of algorithms are designed to effectively align large-
scale point clouds, they often ignore the dynamic properties of
objects within the scene. With the emergence of deep learning,
various techniques [11], [12] exploit feature correspondences
and spatial relationships within point clouds to advance odom-
etry methods. Scene flow estimation aims to understand the dy-
namic changes of the environment to determine the connection

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3417309

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5451-3045


2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

between the point clouds of previous and subsequent frames.
Early works [13]–[16] focused on stereo vision cameras,
where knowledge-driven methods were used to estimate 3D
motion fields. Flownet3D [17] is the first end-to-end scene
flow estimation network based on deep learning. It utilizes
PointNet++ [3] as the backbone network and introduces a
novel stream embedding layer. NSFP [18] is the first scene
flow estimation method based on runtime optimization. It uses
a unique implicit regularizer to represent scene flow and is not
subject to data-driven constraints. However, when estimating
long sequence point cloud scene flows, the estimator is limited
by the motion relationship between the two frame point clouds,
which may cause the point cloud to be guided to the wrong
location.

This paper proposes a point cloud densification method
based on scene flow estimation, aiming to increase the density
of dynamic objects in long sequences of point clouds to
enhance the performance of 3D object detection. In order to
overcome the positioning error of scene flow estimation in long
sequence point clouds, this paper splices a correction module
based on Kalman filter to eliminate positioning errors frame by
frame. Specifically, we aggregate multiple frame point clouds
into the same frame via modified scene flow estimation. Then,
for the merged object point cloud, uniform point cloud data
is generated through reconstruction method. Our contributions
to this study are as follows:

• We propose a novel method for densifying point clouds
by utilizing motion information from multi-frame point clouds
with a novel scene flow estimator using a two-branch pyramid
network as the implicit regularizer.

• We address the issue of localization error in long-sequence
scene flow estimation by utilizing a Kalman filter to precisely
adjust the position of dynamic objects.

• We compare our point cloud densification method with the
ICP-based point cloud densification method and our method
outperforms in terms of accuracy and precision.

• We conduct extended experiments on the KITTI 3D
tracking dataset to demonstrate that our method effectively im-
proves the LiDAR-only detectors’ performance by achieving
superior results compared to the baselines.

II. RELATED WORK

A. Spatial Registration for Point Clouds

ICP is the most commonly used point cloud registration
algorithm. However, it will easily fall into local optimality
and no clear range can define whether the ICP algorithm
will fall into a local optimum. Consequently, [19] assesses
the effectiveness of both point-to-point and point-to-plane ICP
algorithms using overlap, angle, distance, and noise. GO-
ICP [20] optimizes globally by combining the local ICP
algorithm with the global boundary determination. Although
these algorithms have overcome the limitations of traditional
ICP The algorithm has shortcomings, but it has problems
with poor robustness and low universality when processing
a large number of point clouds. Consequently, [21] applied a
k-dimensional Tree (KD-tree) improved ICP algorithm on the
basis of coarse registration. [22] uses local optical flow for

point matching, avoiding the expensive point matching process
and thus accelerating the optimization step. [23] uses multi-
resolution based on hierarchical octrees to improve calculation
speed while overcoming the alignment risk caused by point
density which is usually sparse and uneven. Although this
algorithm has high registration accuracy and efficiency but the
registration effect is not good enough for objects with more
complex structures.

Considering the advantages and disadvantages of coarse
registration and precise registration, the two-step registration
algorithm has become mainstream. 3D normal distribution
transform (3D-NDT) combined with ICP can effectively re-
duce registration time and ensure accuracy even when the
amount of point cloud data is large [24]. Inproved 3D NDT-
ICP introduces kd-tree into the ICP algorithm for point pair
search, and uses the Gauss-Newton method to optimize the
algorithm to solve the nonlinear objective function to complete
the accurate registration of the tunnel tunnel point cloud [25].
But in general, ICP is more suitable for multi-pose spatial
registration. With the increase in the availability of point
cloud data, research on scene flow and related applications has
gradually become a hot spot in the field of 3D environment
sensing.

B. Timing Registration for Point Clouds
Scene flow prediction is a type of registration task that

registers two point clouds in a time sequence. With the
emergence of point cloud feature encoding networks such
as PointNet [26], PointNet++ [3] and DGCNN [27], scene
flow prediction networks based on optical flow prediction
emerged. FlowNet3D introduces Flow Embedding Layer and
Set Upconv Layer to estimate scene flow from continuous
point clouds in an end-to-end manner [17]. FlowNet3D++
overcomes the shortcomings of insufficient utilization of mo-
tion information in single-frame point clouds in FlowNet3D,
and combines multi-frame information through MeteorNet to
more fully predict displacements [28]. PointPWC-Net draws
on the optical flow prediction network PWCnet, and for the
first time introduces a coarse-to-fine method to process scene
flow in 3D point clouds [29]. However, this method will lead
to low-scale prediction errors, which can easily affect high-
scale prediction results. Furthermore, since point clouds are
irregular and disordered, it is challenging to efficiently extract
features from the correlations between all point pairs in 3D
space. Therefore, PV-RAFT proposes a method called Point-
Voxel Correlation Fields [30]. This method captures the local
and long-range dependencies of point pairs and effectively
handles small and large displacements. Neural Scene Flow
Prior (NSFP) introduces a neural scene flow prior, using the
architecture of a neural network as a new implicit regularizer
[18]. The neural prior implicit and continuous scene flow
representation allows us to estimate dense long-term corre-
spondences in point cloud sequences.

C. Kalman Filter
Kalman filter has excellent performance in theory and

practice [31], [32]. Kalman filtering uses a state space model
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to represent the unobserved component model. This allows
it to flexibly handle uncertainty and multiple state quantities.
Furthermore, based on a dynamic model of the system, control
inputs and multiple measurement sequences are considered.
This makes Kalman very useful in sensor fusion and data
fusion. Therefore, the Kalman filter is simple and effective
in processing long sequence point clouds. In four-dimensional
terrain point clouds, Kalman filtering combines the M3C2
distance with the uncertainty obtained through error propa-
gation to temporally resample the estimated change values to
improve modeling accuracy [33]. Kalman filtering is combined
with SLAM to enable the robot to determine its position and
analyze its surrounding environment [34].

III. PROPOSED METHOD

In this paper, we propose a point cloud scene flow estima-
tion method based on Kalman correction to reduce positioning
errors. Based on the results of scene flow estimation, dynamic
long-sequence point cloud densification is achieved. Specif-
ically, this paper first estimates the scene flow based on a
two-branch pyramid network to obtain the optimal estimation
weight. In the process of using weights for long-sequence
scene flow estimation, the Kalman filter is used to correct the
estimated position of the dynamic target, thereby reducing the
cumulative positioning error. Applying the above operations
to the point cloud sequence from the initial frame to the final
frame, the overall framework of the densification method is
shown in Fig. 1.

A. Long Sequence Scene Flow Estimation

In a three-dimensional scene, point cloud scene flow de-
scribes the motion of each point between consecutive frames,
recovering the motion field composed of the motion vectors
of each point in the given two or more point cloud scenes.

Pt and Pt+1 are defined as the neighboring two-frame point
clouds and SF is defined as the scene flow. In the actual scene,
there is no one-to-one correspondence between Pt and Pt+1.
Therefore, SF represents the motion vector from each point
in the Pt point cloud to the most matching position in the
Pt+1 point cloud.

SFt,t+1 = F (Pt, Pt+1, θ) (1)

where F(.) denotes the scene flow estimation model and
θ is the model weights. Scene flow estimation represents
the dynamic relationship between paired point clouds of two
frames in a point cloud sequence. For a given point cloud
sequence {P0,P1,P2,...,Pn}, the optimal scene flow model
weights are {θ0,1, θ1,2, ..., θn−1,n}. The classical forward
Euler method is applied to estimate the scene flow sequentially.

SFi,j = SFi,j−1 + F (Pj−1, Pj , θj−1,j) (2)

where i and j any two frames in the sequence.

B. A Two-branch Pyramid Network
A two-branch pyramid network is designed to estimate

the scene flow in Fig. 2. Specifically, it mainly includes
three modules: pyramid feature extraction, MLP-based implicit
regularization and regularizer constraints. The regularizer con-
straints are formulated into two parts which enable the output
to satisfy the position and flow consistency.

In pyramid feature extraction module, a point cloud frame
in the sequence Pt is fed into a pyramid feature extractor.
The pyramid consists of bottom-up and top-down pathways
for the point cloud. The number of sampling layers is set to
4 for both the bottom-up and top-down pathways, and the
scale rate is set to 2. The output of each downsampled layer
will be merged with the results of the upsampling layer and
fed into the next layer for the next upsampling operation. The
final output, noted as P pyr

t , is fed into an implicit regularizion
module for optimization.

In the implicit regularizion module, we construct the back-
bone using an MLP-based neural network. We include a
position head and a flow head to encode the positional and
motion information of the input point cloud. We adopt the
LeakyReLU [35] as the activation function. The input layer
for the backbone has 3 channels, and there are 6 hidden
layers with 128 hidden units. The backbone has a 128-channel
output which is followed by the position head and flow head.
Each head has two hidden layers with 128 hidden units. Each
head has a 3-channel output, as it represents the estimated
coordinates and motion vectors in the XYZ coordinate system.
Given the P pyr

t , the position head outputs the estimated
coordinates noted as P

′

t+1, and the flow head outputs the
estimated flow vectors noted as SFt,t+1.

In the regularizer constraints, we formulate the constraints
as two parts. On the one hand, the P pyr

t combined the SFt,t+1

should be consistent with the Pt+1. On the other hand, the
P

′

t+1 substract by the SFt,t+1 should be consistent with Pt.
Thus, the objective function can be defined as Equation 3.

F (P pyr
t , Pt, Pt+1, θ) =Ψ (P pyr

t + SFt,t+1, Pt+1)+

Ψ
(
P

′

t+1 − SFt,t+1, Pt

)
,

(3)

where Ψ(.,.) denotes the Chamfer distance function [36],
which is defined as Equation 4.

Ψ(a,B) = min
b∈B

∥a− b∥22, (4)

where a and b are point from point cloud A and B.
During the optimization process, we follow the gradient

descent technique and obtain the optimal scene flow model
weights θ∗, as shown in Equation 5.

θ∗ = argmin
θ

F (P pyr
t , Pt, Pt+1, θ) (5)

C. Kalman Filter Refinement
However, although all scene flow model weights{θ0,1, θ1,2,

..., θn−1,n}are the optimal estimation of the corresponding
point cloud pairs, these parameters tend to suffer from the
problem of accumulating localization errors when performing
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Fig. 1. The framework of densification method.

Fig. 2. Overall architecture of the two-branch pyramid network.

long sequences of scene flow estimation. To eliminate the
cumulative localization error of point cloud during the long
sequence estimation process, the Kalman filter [37] is intro-
duced to correct the dynamic targets’ position.

The cluster center of dynamic target is obtained as the
state quantity X = [x, y, z, vx, vy, vz]T and assumes that the
dynamic target conforms to the uniform motion, so the transfer
matrix A is set as

1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

Xk−1|k−1 is the optimal outcome of the previous state, A
and B are the system parameters, Uk is the control quantity of
the present state, and Xk|k−1 is the prediction of Xk−1|k−1.
Pk−1|k−1 is the covariance of Xk−1|k−1, A

′
is the transpose

matrix of A, Q is the covariance of the system process noise,
and Pk|k−1 is the covariance of Xk|k−1. H is the observation
matrix, R is the noise covariance of the system measurements,
and Kgk is the Kalman gain. Zk is the measured value, Xk|k
is the optimal predicted value at the current moment, and Pk|k
is the covariance of Xk|k.

The center of dynamic target is corrected using the optimal
Kalman filter prediction value Xk|k, which eliminates the
localization error frame by frame and obtains accurate scene
flow estimation results for a long sequence of point clouds.

D. Point Cloud Refinement
After accumulating multi-frame point clouds, duplicate

points exist in the same part of the target. We propose refining
and deduplicating the point cloud to reduce the noise accumu-
lation on the densification result and ensure the uniformity of
the target object’s density. The average point cloud distance D
of point cloud Pj is used as the search radius, and the average
point cloud distance D is calculated by Equation 6.

D =
1

n

n∑
i=1

√
(xi − x̄)

2
+ (yi − ȳ)

2
+ (zi − z̄)

2
, (6)

where x̄,ȳ,z̄ are the mean values of point cloud in x,y,z
dimensions respectively and n is the number of point clouds.

For any point p in the scene flow estimation result Pi,j

corrected by the Kalman filter, if a point in Pj falls within the
search radius of p, then p is replaced with the nearest point
in Pj ; otherwise the point p is retained. When the value of i
is taken all over the range from 0 to j − 1, the densification
results for the first j frames are obtained.
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IV. EXPERIMENTS

The performance of the proposed method is tested on
KITTI tracking dataset [38]. The superiority of ICP in point
cloud registration has been verified. This section introduces
the experimental setup and then presents the results of den-
sification. We first describe the settings of the scene flow
estimation model, and then we compare the proposed method
with the ICP algorithm on the densification results. For further
analysis, five different LiDAR detectors are trained on the
KITTI tracking datasets for evaluating the performance of ICP
and our method.

A. Experimental Setup

Table I gives the hardware and software configuration.
Adam optimizer is used to minimize the objective function.
The learning rate is set to 8e-3 and the optimization rounds
to 500 iterations to avoid overfitting. Chamfer Distance (CD)
[36] and Root Mean Square Error (RMSE) are two metrics.

TABLE I
HARDWARE AND SOFTWARE CONFIGURATION

Configuration Hardware/Software
System Ubuntu20.04

Environment Pytorch1.12.0+CUDA11.6
CPU Intel i7-12700H@
GPU NVIDIA RTX 3080 Ti

B. Densification Results and Analysis

The densification experiments are carried out on cars, cy-
clists, and trucks. We employ random cropping to disrupt the
structure of the raw point cloud. The experimental results of
our method and the ICP algorithm are depicted in Fig.3. Based
on the analysis of the experimental results, it is evident that our
method effectively preserves the shape of the densified point
cloud while minimizing the presence of noise points. A com-
parative analysis of the method’s performance across various
object classes is presented in Table II. As CD measures the
consistency of the densification outcome and the ground truth
and RMSE is used to weigh the accuracy of the densification
outcome in relation to the corresponding actual values of the
inner points, Table II demonstrates that the method proposed
in this paper achieves lower results for all three classes in both
metrics. The proposed method exhibits superior performance
compared to the conventional ICP algorithm, as it effectively
enhances the density and completeness of the point cloud.

TABLE II
COMPARISON OF POINT CLOUD DENSIFICATION PERFORMANCE

Trunk1 Trunk2 Car1 Car2 Cyclist1 Cyclist2

OURS-CD 0.2078620.2078620.207862 0.2771850.2771850.277185 0.2289930.2289930.228993 0.2067420.2067420.206742 0.1551470.1551470.155147 0.0991490.0991490.099149

ICP-CD 0.250756 0.528042 0.321194 0.295102 0.172999 0.134865

OURS-RMSE 0.0514840.0514840.051484 0.0611120.0611120.061112 0.0645330.0645330.064533 0.0480280.0480280.048028 0.0599120.0599120.059912 0.0508880.0508880.050888

ICP-RMSE 0.063821 0.070297 0.069794 0.065152 0.068576 0.059299

C. Densified point cloud four-channel detection
To obtain benchmarks for comparison experiments, we

conducted training sessions for five chosen detectors using
the raw KITTI tracking dataset. The dataset is shuffled and
divided into train (4001 frames) and val (3900 frames) splits
for evaluation purposes. Then, we densified the raw KITTI
tracking dataset using one and three point cloud frames and
investigated the impact of the proposed densification method
on five different LiDAR detectors. The training setup is consis-
tent with the Openpcdet framework [39]. The training epoch
is set to 200 to converge the detectors. Table III illustrates
that the proposed method led to significant improvements
in PointPillars [40], SECOND [41], PointRCNN [42], PV-
RCNN [43], and Part-A2 [44]. Especially in hard situations,
our proposed method offers up to 7.95% improvement in
the cyclist category when using the PV-RCNN detector. It
should be noted that these five LiDAR detectors show limited
improvement on the three-frame densified dataset compared
to the one-frame densified dataset. This suggests that the
number of point cloud frames used for densification needs
to be carefully determined under different situations.

The qualitative comparison of 3D object detection is de-
picted in Fig.5. The left column of images shows the re-
sults from the PV-RCNN detector trained on the three-frame
densified dataset, while the right column of images shows
the results from the PV-RCNN detector trained on the raw
dataset. Our method provides additional structural and seman-
tic information for the detector, which can help reduce false
positive detections in general scenes. As illustrated in the
highlighted section of the image, our approach successfully
reduces the occurrence of false positive detections for vehicles,
pedestrians, and cyclists.

D. Densified point cloud multi-channel detection
In the fields of image processing and computer vision, the

extraction of semantic tags is a key step in understanding
and parsing image content. This paper carries out a three-
dimensional detection task based on the semantic labels of
densified point cloud hybrid images to verify the effect of
densified point cloud. We first use the SLIC algorithm to seg-
ment the image into superpixels of similar size by iteratively
optimizing the cluster center in color and spatial proximity.
The goal is to divide the image into regions of consistent
color and texture. The pre-trained deep learning model GMA
is utilized to extract dense optical flow between pairs of
images. The superpixel map generated by the SLIC algorithm
is combined with the optical flow map obtained by the GMA
model, and ISODATA clustering is used to group superpixels
with similar motions. At this point, the mixed image semantic
tags are obtained, such in Fig. 4. Combining densified point
clouds and mixed image semantic labels to construct multi-
channel point cloud data. Table IV illustrates the performance
in PointPillars, SECOND, PointRCNN, PV-RCNN and Part-
A2.

V. CONCLUSION

This paper proposes a Kalman-based scene flow estimation
method for point cloud densification and 3D object detection
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Fig. 3. Densified dynamic targets using 4, 12, and 20 point cloud frames.

TABLE III
COMPARISON OF FIVE DIFFERENT LIDAR DETECTORS’ PERFORMANCE ON RAW AND DENSIFIED DATASET

Method Dataset mAP Car Pedestrain Cyclist
Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Raw Dataset 81.70 97.18 95.49 90.47 66.11 65.48 65.51 92.98 89.61 89.11
PointPillars One-frame densified 82.8082.8082.80 98.8898.8898.88 98.0698.0698.06 90.6190.6190.61 66.2366.2366.23 65.6565.6565.65 65.6065.6065.60 93.1893.1893.18 92.3592.3592.35 92.1892.1892.18

Three-frame densified 86.0686.0686.06 98.8398.8398.83 98.5198.5198.51 96.1596.1596.15 67.7667.7667.76 67.5067.5067.50 67.3067.3067.30 98.0698.0698.06 95.7895.7895.78 94.7394.7394.73
Raw Dataset 84.24 98.7798.7798.77 95.87 90.44 75.02 72.45 72.35 94.61 94.5494.5494.54 89.95

SECOND One-frame densified 87.3487.3487.34 98.25 96.0396.0396.03 96.2596.2596.25 76.3876.3876.38 73.6573.6573.65 73.6373.6373.63 96.3696.3696.36 92.21 92.1392.1392.13
Three-frame densified 87.6487.6487.64 98.21 97.4297.4297.42 96.1596.1596.15 76.1576.1576.15 74.2874.2874.28 74.6974.6974.69 94.7894.7894.78 92.11 92.0992.0992.09

Raw Dataset 83.93 98.35 90.09 89.90 72.03 73.33 72.98 90.68 90.01 88.92
PointRCNN One-frame densified 85.8585.8585.85 98.19 90.5190.5190.51 90.3790.3790.37 82.9982.9982.99 77.2077.2077.20 77.1277.1277.12 90.8590.8590.85 90.4190.4190.41 90.0790.0790.07

Three-frame densified 86.1686.1686.16 98.9598.9598.95 90.5590.5590.55 90.3990.3990.39 80.7680.7680.76 79.3579.3579.35 77.1377.1377.13 96.9196.9196.91 91.3791.3791.37 90.9790.9790.97
Raw Dataset 89.59 99.49 96.70 96.82 82.3482.3482.34 82.0582.0582.05 81.9181.9181.91 98.16 96.17 90.03

PV-RCNN One-frame densified 91.5491.5491.54 99.5099.5099.50 97.3397.3397.33 96.8996.8996.89 81.20 80.85 81.54 98.7898.7898.78 96.11 96.2096.2096.20
Three-frame densified 92.5292.5292.52 99.5299.5299.52 98.6398.6398.63 98.6098.6098.60 78.49 80.10 80.98 99.2299.2299.22 98.1798.1798.17 97.9897.9897.98

Raw Dataset 87.09 99.41 90.48 90.35 81.2881.2881.28 80.54 80.8680.8680.86 98.14 90.18 90.06
Part-A2 One-frame densified 88.8588.8588.85 99.4899.4899.48 96.2696.2696.26 96.5196.5196.51 80.87 80.8180.8180.81 79.94 98.7498.7498.74 95.8695.8695.86 90.1190.1190.11

Three-frame densified 89.6089.6089.60 96.3096.3096.30 94.8794.8794.87 95.2295.2295.22 79.42 78.94 79.44 98.6098.6098.60 94.0294.0294.02 94.1394.1394.13

Fig. 4. Schematic diagram of dense semantic point cloud data structure.

TABLE IV
COMPARISON OF FIVE DIFFERENT LIDAR DETECTORS’ PERFORMANCE ON DENSIFIED POINT CLOUD MULTI-CHANNEL DETECTION

Method Car Pedestrain Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars 98.83 98.51 96.15 67.76 67.5 67.30 98.06 95.78 94.73
SECOND 98.21 97.42 96.15 76.15 74.28 74.69 94.78 92.11 92.09

PointRCNN 98.95 90.55 90.39 80.76 79.35 77.13 96.91 91.37 90.97
PV-RCNN 99.52 98.63 98.6 78.49 80.1 80.98 99.22 98.17 97.98

Part-A2 96.3 94.87 95.22 79.42 78.94 79.44 98.6 94.02 94.13
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Fig. 5. Comparison of the 3D object detection results. The left column shows the results from the PV-RCNN detector trained on the three-frame
densified dataset, and the right column shows the results from the PV-RCNN detector trained on the raw dataset. The boxes in the diagram are
green for cars, light blue for pedestrians, and yellow for cyclists. Our proposed method effectively reduces the false positive detection in general
scenes.

in dynamic scenes. Our method effectively overcomes the
problem of localization errors in estimating long sequence
scene flow and improves the accuracy and precision of shape
completion. The localization accuracy of the scene flow esti-
mation results can be effectively improved by introducing the
Kalman filter to correct the position of the dynamic target.
The densification results show that, compared with the ICP
method, our method is more suitable for dynamic targets and
achieves higher levels of accuracy and precision. Extended
experiments on the KITTI 3D tracking dataset prove that
our method effectively improves the LiDAR-only detectors’
performance and achieves superior results to the baselines.
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