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for Industrial Data Modeling
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Abstract—Despite the extensive applications of deep
neural networks in data modeling filed, there are still some
obvious deficiencies for the implementation in modern in-
dustrial cases. There are mainly reflected in the following
aspects: first, the architectures are difficult to configure;
second, the modeling process is time-consuming; third,
the training procedure easily falls into the local optimum
situation. To overcome these problems, exploring the non-
connectionist learning model has become a popular topic
recently. This article proposes a deep nonconnectionist
learning model based on kernel principal component re-
gression (KPCR), which is referred to as stacked KPCR
(SKPCR). By stacking multiple KPCR modules, a multi-
layer learning model is constructed by adopting hierarchi-
cal feature extraction. In SKPCR, the model structure is
determined incrementally and there is only one parameter
needed to be configured for each layer. Furthermore, an
enhanced learning strategy is designed for alleviating the
information loss problem in the training process. An actual
industrial case is used to validate the effectiveness, includ-
ing the prediction performance and modeling efficiency, of
our proposed method.

Index Terms—Data-driven modeling, deep learning, in-
dustrial processes, kernel principal component regression
(KPCR), quality prediction, soft sensor.

I. INTRODUCTION

MODELING technology plays an indispensable role for
industrial intelligence. With the rapid progress of dis-

tributed control systems (DCSs), the acquisition of process data
becomes much more convenient. These process data reflect the
operation situation at the present moment, which is significant
for process control and monitoring. How to utilize the huge
amount of industrial data are crucial and valuable [1], [2], [3]. In
the past few decades, multivariate statistical analysis methods,
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such as partial least squares (PLS) [4] and principal component
analysis (PCA) [5] are extensively applied in the industrial pro-
cesses for fault monitoring and quality prediction. Fundamen-
tally, these methods belong to linear learning model, which does
not accord with the complex situations of industrial processes.
Hence, the nonlinear forms of these models are developed to
better describe the processes features. One of these extensions
is called the kernel method, which applies the kernel trick to
execute the PLS or PCA in the high-dimension feature space.
The distinguished feature about kernel-based methods is that
the complex definition of high-dimension mapping is avoided,
which makes these models easy to construct and is very suitable
for industrial applications. Therefore, the kernel versions of
PLS and PCA are extensively implemented for industrial data
modeling [6], [7], [8].

In recent years, the deep learning technology has demon-
strated its powerful capability for data analysis [9], [10]. The
fundamental idea of deep learning is to stack multiple basic
nonlinear modules, then the very complicated functional expres-
sions can be expressed. Deep neural network (DNN) is the most
representative method of the multilayer architecture learners.
Composed of several nonlinear neurons, each layer of DNN
can slightly increase the representation ability of the model. By
stacking enough layers, a very complicated function is expected
to be learned by a DNN. With this excellent characteristic,
many types of networks are designed for different application
situation, such as stacked autoencoder (SAE) [11], recurrent
neural networks [12], and convolutional neural networks [13].

In industrial data modeling field, researchers have also in-
troduced and improved the deep networks for enhancing the
industrial intelligence [14], [15], [16], [17]. Although these
network-based models have shown strong abilities for industrial
data modeling, there are still some limits for the real application
for industrial processes. First, the architectures of deep networks
usually need to be predefined before the training process. That is
very difficult without the prior knowledge. Second, the training
process of a deep network is time-consuming. The backpropaga-
tion algorithm is usually adopted for adjusting the model param-
eters, which is executed iteratively. For a large-scale network,
the computational cost is sometimes unacceptable for industrial
application cases. Third, the combination of training parameters
is hard to determine optimally. The training parameters for a
deep network include batch size, the largest iteration number
and learning rate. Each of these parameters is crucial for the
modeling performances, and it is tough to find the appropri-
ate combination for these parameters. Especially for a deep
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network, the modeling accuracy is very sensitive to the training
parameters. In another word, the deeper the network is, the
harder the parameter combination is to be configured. Fourth,
training a deep network needs a huge number of samples. If the
number of training samples is too small, it is with great chance to
fall into the overfitting problem. Fifth, the prediction outcomes
of a deep network may not be global optimal. This issue is mainly
attributed to the mechanism of backpropagation algorithm. The
core computation of backpropagation algorithm is the derivation
operation, which is easily fallen into local optimality when the
structure of deep network is too complicated. All those problems
limit the further applications of deep networks in the industrial
modeling field.

To alleviate the aforementioned problems, researchers focus
on developing the nonconnectionist deep learning model with
more concise structures. Mitchell and Sheppard [18] first dis-
cussed the deep nonconnectionist architectures using PCA for
image classification experiments. Chen and Deng [20] utilized
kernel PLS as the basic learning module for constructing an
efficient deep learning model. To alleviate the information loss
problem of [20], Chen and Wang [19] proposed an enhanced
deep kernel PLS by using identity-mapping structure. Kong
and Ge [21] constructed a deep model based on independent
component analysis and PCA for process monitoring. These
nonconnectionist deep models have shown their superiorities
over the traditional deep networks in terms of modeling accuracy
and efficiency, which becomes one of the most popular methods
for industrial data analysis.

The essence of these novel deep models is to simply stack
multiple basic modules, which is effective in terms of increas-
ing the model complexity. However, the basic learning mod-
ules, such as PCA and PLS, are fundamentally the dimension-
reduction models, and it is conceivable that, with the depth
continuously increases, the information loss of these noncon-
nectionist deep models is expected to raise, which is harmful
for modeling precision. Therefore, the construction of non-
connectionist deep learning models still has huge rooms for
improvement.

This article extends the family of nonconnectionist deep
learning model by exploring the deep learning version of kernel
principal component regression (KPCR), which is referred to
as stacked KPCR (SKPCR). KPCR is a nonlinear multivariate
statistical method, which is commonly used for data modeling
analysis. By introducing the kernel technique into the traditional
PCR method, the principal components extracted by KPCR con-
tain nonlinear information of data and are suitable for nonlinear
process modeling application. However, KPCR belongs to the
shallow learning machine and may not perform well in the cases
where strong nonlinearities exist. Distilling the concept of deep
learning, traditional KPCR is deepened through constructing
a multilayer architecture in this article, where the hierarchical
feature extraction is executed. Furthermore, to alleviate the infor-
mation loss problem, an enhanced learning strategy is designed
to compensate for the dimension-reduction process of KPCR.
Attributed to the simplicity of KPCR modeling procedures, there
is only one parameter needed to be configured for each layer. As
a result, the computational cost of SKPCR is much lower than

Fig. 1. Schematic of KPCR.

that of deep networks. A real-world industrial case is used to
validate the effectiveness of SKPCR.

The contributions of this work can be clarified as follows.
1) A novel deep nonconnectionist learning model is pro-

posed based on KPCR, where the hierarchical feature
extraction is employed for mining deep data features.

2) An enhanced learning strategy is designed to alleviate
the information loss problem during the model training
process of the proposed method.

3) A real-world industrial case is used to evaluate the ef-
fectiveness of our proposed method, where the proposed
method is compared to the state-of-art deep learning
methods.

The rest this article is organized as follows. Section II briefly
reviews the basic definition of KPCR. Section III details the
proposed SKPCR method. Section IV gives an actual industrial
application to demonstrate the effectiveness of our proposed
method. Finally, Section V concludes this article.

II. KERNEL PRINCIPAL COMPONENT REGRESSION

The modeling process of KPCR is composed of two steps:
principal components extraction by KPCA and regression model
construction using principal components [21]. The schematic of
KPCR is demonstrated in Fig. 1.

Given normalized input data X = [x1,x2, . . . , xn] with n
samples and m variables, and output data y = [y1, y2, . . . , yn]
with n samples. A nonlinear mapping Φ is performed to map
the raw data onto the high-dimension feature space F

xi ∈ Rm → Φ (xi) ∈ F . (1)

It is believed that, in the feature space F , the functional
relation between Φ(X) and y is more likely to have the linear
form. Therefore, PCA method can be employed for extracting
the principal components.

The covariance matrixC of the mapped dataΦ(X) in feature
space is calculated as

C =
1
n
Φ (X) Φ(X)T =

1
n

n∑
i = 1

Φ (xi)Φ(xi)
T. (2)

Then, the next step is to find the eigenvalues and eigenvectors
of C, which is formulated as Cp = λp. This problem is
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equivalent to
n∑

i = 1

Φ (xi)Φ(xi)
Tp = nλp. (3)

Since the concrete form ofΦ is unknown, the aforementioned
equation is unable to be solved. Here, the kernel trick [7] is
adopted to complete the calculation without the awareness of
Φ. The kernel trick indicates that, the dot product of two vectors
in the high-dimension space can be computed in the original
data space through kernel function.

Define the kernel function as k (xi,xj) = Φ(xi)
T Φ(xj),

where k(., .) represents the kernel function. There are many
types of kernel functions, the Gaussian kernel function is used
in our work as

k (xi,xj) = exp

(
−‖xi − xj‖2

c

)
(4)

where c is the kernel parameter needed to be configured artifi-
cially.

Here, let us refocus on (3) and rewrite it as

p =
1
nλ

n∑
i = 1

Φ (xi)Φ(xi)
Tp (5)

where Φ(xi)
T p is a scalar. That means eigenvector p can be

formulated by the linear combination of Φ(xi) as

p =
n∑

i=1

αiΦ (xi) = Φ (X)α (6)

where α = [α1, α2, . . . , αn].
Combinining (3) and (6), we can obtain

Φ (X)Φ(X)TΦ (X)α = nλΦ (X)α (7)

and premultiply Φ(X)T, which leads to

Φ(X)TΦ (X)Φ(X)TΦ (X)α = nλΦ(X)TΦ (X)α.
(8)

Define the Gram matrix K = Φ(X)T Φ(X), and the ele-
ment of K is calculated by the kernel function as

K (i, j) = k (xi,xj) . (9)

Therefore, (8) is reformulated as

KKα = nλKα (10)

which is equivalent to

Kα = nλα. (11)

Hence, α represents the eigenvectors of Gram matrix K.
Usually, α needs to be normalized as ‖α‖ = 1

nλ
.

So far, the original problem is transformed into the eigenvalue
decomposition of Gram matrix K, which can be calculated by
data matrix X . Reformulate K through eigenvalue decomposi-
tion as

KA = ΔA (12)

whereΔ andA represent the eigenvalue matrix and eigenvector
matrix in descending order by the eigenvalue, respectively. For

the purpose of dimension reduction, only the first d columns of
A are used as the projection matrix. The value of d can be set
by the contribution of corresponding eigenvalues.

Therefore, the principal components T of KPCA are calcu-
lated by

T = KAd (13)

where Ad is the matrix consisted of the first d columns of A,
and the linear regression model can be established between T
and y as

y = T
(
TTT

)−1
TTy + ŷ (14)

where ŷ is the residual vector.
For the unknown query data Xt, the Gram matrix Kt is

firstly computed by Xt and X using (9). Then, the principal
components T t of query data are calculated by

T t = Kt Ad (15)

and the prediction values for Xt are

yt = T t

(
TTT

)−1
TTy + ŷt. (16)

III. STACKED KPCR

KPCR is essentially the shallow learning machine, which
cannot capture the intrinsic data feature information. To deepen
the traditional KPCR, a multilayer KPCR model assisted by
the enhanced learning strategy is proposed in this section. This
hierarchical structure strengthens the nonlinear expression abil-
ity by reconstructing the kernel mapping form at each layer.
The proposed model is easier to build compared with the deep
networks and has stronger learning ability compared with the
shallow learning machines.

A. Multilayer KPCR

The core of deep learning lies on the multiple representation-
learning. By composing several simple but nonlinear modules,
very complicated functions can be expressed by the deep learn-
ing model [10]. Therefore, the purpose of our work is to first
establish the multilayer architecture of KPCR.

Given normalized data X , they are first processed by
KPCA to extract the d1-dimension principal components T 1 =
[t1, t2, . . . , td1 ] by (13), where the number of d1 can be deter-
mined by the setting contribution rate.

Then, the components T 1 from the 1st layer are utilized to
construct the Gram matrix for the second layer as

K2 (i, j) = k (ti, tj) = exp

(
−‖ti − tj‖2

c2

)
(17)

where i, j = 1, 2, . . . , d1. The eigenvalue decomposition pro-
cedures are employed again on K2 for extracting the principal
components T 2 at the second layer

T 2 = K2 Ad2 (18)

where Ad2 is the first d2 columns of eigenvector matrix of K2.
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For the lth layer, where 3 ≤ l ≤ L(L is the depth of model),
the deep features T l are computed by

T l = Kl Adl
(19)

where Kl is the Gram matrix composed by the principal com-
ponents T l−1 from the previous l − 1 layer

Kl (i, j) = k (tl−1,i, tl−1,j) = exp

(
−‖tl−1,i − tl−1,j‖2

cl

)
.

(20)
The deep features TL are used for the final regression model

building by (14)

y = TL

(
TL

TTL

)−1
TL

Ty + ŷ. (21)

For query data Xt, they are needed to be transformed into the
deep features successively for giving the estimation values. The
testing Gram matrix at the first layer is computed by raw data
X and Xt

Kt,1 (i, j) = k (xi,xt,j) = exp

(
−‖xi − xt,j‖2

c1

)
(22)

and the corresponding data features can be calculated as

T t,1 = Kt,1 Ad1 (23)

where the projection matrix Ad1 has already been computed
in the modeling stage. For lth layer, where 2 ≤ l ≤ L(L is the
depth of model), the testing deep features are

T t,l = Kt,l Adl
(24)

where Kt,l is the Gram matrix composed by features from the
previous layer T l−1 and T t,l−1.

The final prediction values for Xt are

yt = T t,L

(
TL

TTL

)−1
TL

Ty + ŷt. (25)

The aforementioned modeling procedures transform KPCR
into a deep learning model by adopting the hierarchical learning
mechanism, where highly abstract features T t,L and TL are
used for the final regression analysis.

B. Stacked KPCR

In multilayer KPCR, the raw data are successively trans-
formed into the deep features for regression model building.
However, this may exist a problem: the dimension reduction
operations of KPCA are expected to cause the information loss.
The features extracted by KPCA represent the major information
of the unprocessed data, which is beneficial for reducing the
noise and declining the computational complexity. However,
this operation also indicates that a small portion of the data
information is discarded. With the depth of multilayer KPCR
continuously increases, the accumulation of information loss
is accordingly raised. That is harmful for reserving the useful
regression information at the modeling stage.

To alleviate this problem, one straightforward way is to enrich
the data information at each layer. In this section, an enhanced
learning strategy is designed for better training the multilayer
KPCR, which is referred to as SKPCR. In SKPCR, the original

raw data X participate in the feature extraction process at each
layer.

At the first layer of SKPCR, raw data X are processed by
KPCA to obtain the data features T 1 = [t1, t2, . . . , td1 ] by (13).
For the second layer, T 1 are not directly used for establishing
the Gram matrix. Instead, an enhanced input matrix is built as

E1 =
[
T 1,X

T
]
= [t1, t2, . . . , td1 ,x1,x2, . . . , xm] (26)

where xp(p = 1, 2, . . . ,m) represents the pth variables of X .
Then, the enhanced inputs E1 = [e1, 1, e1, 2, . . . , e1,d1+m] are
used to construct the Gram matrix for the next layer

K2 (i, j) = k (e1,i, e1,j) = exp

(
−‖e1,i − e1,j‖2

c2

)
. (27)

According to KPCA, the data features at the second layer are

T 2 = K2 Ad2 (28)

and for the lth layer, where 3 ≤ l ≤ L(L is the depth of model),
the data features are

T l = Kl Adl
(29)

where Kl is the Gram matrix composed by the enhanced inputs
El−1 from the previous l − 1 layer

El−1 =
[
T l−1,X

T
]
= [t1, t2, . . . , tdl−1 ,x1,x2, . . . , xm]

(30)
and the prediction values are produced using deep features T l

by (21).
For query data Xt, they are also transformed into the deep

features through data augmentation. At the first layer, data
features T t,1 are obtained by (22) and (23). Then, the enhanced
inputs for the second layer are constructed by

Et,1=
[
T t,1,Xt

T
]
=[tt,1, tt,2, . . . , tt,d1 ,xt,1,xt,2, . . . , xt,m]

(31)
where xt,p(p = 1, 2, . . . ,m) represents the pth variables of
Xt. Accordingly, the enhanced inputs feeding to the lth layer,
where 2 ≤ l ≤ L(L is the depth of model), are Et,l−1 =
[T t,l−1,Xt

T]. At the lth layer, deep features of Xt are for-
mulated as

T t,l = Kt,l Adl
(32)

where Kt,l is the Gram matrix of enhanced inputs El−1 and
Et,l−1.

After all L layers’ feature extraction procedures are com-
pleted, deep features T t,L are used for the prediction by (25).
The schematic of SKPCR is given in Fig. 2.

Remark 1: Compared to multilayer KPCR, there is only one
extra operation of SKPCR: the inputs feeding to each layer are
augmented by the original data matrix X and Xt (except for
the first layer). The purpose of this design is to compensate for
the information loss problem caused by the dimension reduc-
tion operations of KPCA. The principal components extract by
KPCA represent the major information of original data, which
means a small part of the data information is discarded. This
small part of the data information is expected to be the noise
or irrelevant information. However, with the accumulation of
information loss by multiple layers, deep features extracted by
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Fig. 2. Schematic of stacked KPCR (SKPCR).

multilayer KPCR may have lost major characteristics of original
data and not be the appropriate representation for regression
analysis. The design of SKPCR alleviates this problem by using
original data (X and Xt) to construct the enhanced inputs for
each layer. In this way, the inputs for each layer contain the
information both from previous layer and the original data.

The augmentation operation of SKPCR at each layer does not
increase the computational cost greatly due to the mechanism
of kernel technique. From (4) and (9), it is clear that the scale of
Gram matrix is related to the number of data samples, and the
enhanced inputs do not change the scale of Gram matrix at each
layer.

Remark 2: There is only one parameter needed to be config-
ured at each layer of SKPCR, which is the kernel parameter cl
at lth layer. In our work, the number of principal components is
automatically determined by the setting contribution rate, and
the kernel parameter is determined by exhaustive search using
validation data. In this way, the selected parameter is global
optimum under certain searching range.

Therefore, the aim of training a SKPCR model is to determine
the suitable kernel parameter for each layer. Accordingly, the

TABLE I
MODELING PROCEDURES OF SKPCR

training process for SKPCR is conducted incrementally. Be-
ginning from the conventional KPCR, extra layer is added to
the current model successively until validation error no longer
descends.

C. Model Training Strategy

The objective of training a SKPCR model is to properly deter-
mine the model parameters. There are two parameters of KPCA
method: the number of principal components and the kernel
parameter. In our work, the number of principal components
is automatically determined by the global-setting contribution
rate, and the kernel parameter for each layer is determined by
exhaustive search using validation data.

Let {Xv,yv} represents the validation dataset, the validation
error el)v at lth layer is computed by

el)v =
1
nv

nv∑
a

√
( fl (xv,a)− yv,a)

2 (33)

where nv is the number of validation dataset, fl(·) denotes
the current model with l layers, xv,a and yv,a represent the ath
sample of Xv and yv .

The kernel parameter cl selected for this layer is to produce
the minimum validation error el)v under searching range 1 : 1 :
cmax. The value of cmax is configured before the training process.
Since all potential candidates are evaluated in this stage, it is
guaranteed that the selected parameter is global optimization
under the searching range 1 : 1 : cmax.

D. Modeling Procedures of SKPCR

The modeling procedures of SKPCR can be divided into two
steps: offline training stage and online application stage (the
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detailed procedures can be found in Table I). At the training
stage, SKPCR model is built based on historical data. At the
application stage, the trained model is used to give the prediction
values for upcoming unknown data. The details are illustrated
as follows.

Offline modeling stage:
1) Obtain historical data and separate them into training

dataset {X, y} and validation dataset {Xv,yv}. Stan-
dardize them by the variance and mean of training dataset.

2) Set contribution rate and searching range 1 : 1 : cmax for
kernel parameter.

3) Transform X into deep features TL by (29) and (30),
and search the best kernel parameter for each layer by
(33), which can reach the minimum prediction error under
validation dataset.

4) Set model length L = l while e
l)
v ≤ e

l+1)
v , the training

process is completed.
Online application stage:
1) Obtain query data Xt and standardize them by the vari-

ance and mean of training dataset.
2) Transform Xt into deep features T t,L successively by

(32).
3) Give the prediction by (25).

IV. CASE STUDY

This section uses an actual industrial case to verify the ef-
fectiveness of our proposed method, including the comparisons
between several state-of-art modeling methods. Two common
indicators, root-mean-squares error (RMSE) and R2 (coefficient
of determination), are used for quantifying the modeling perfor-
mances. The formulations of RMSE and R2 are

RMSE =

√∑
(yt − ŷt)

2

N
(34)

R2 = 1 −
∑

(yt − ŷt)
2∑

(yt − ȳt)
2 (35)

where N is the number samples, yt are the real values of query
samples and ŷt are the prediction values produced by a learning
model.

A. Process Description

In the petroleum refining industry, debutanizer column is an
important unit for separating naphtha and desulfuration [23],
[24]. Its main flowchart is demonstrated in Fig. 3.

There are six devices located in the process, which are over-
head condenser, reflux accumulator, heat exchanger, head reflux
pump, bottom reboiler, and feed pump to the liquified petroleum
gas (LPG) splitter. Propane (C3) and butane (C4) are required
to be removed in the process. To achieve that, content of butane
in the bottom product needs to be aware timely.

Unfortunately, the measurement of butane content is usually
obtained by a gas chromatograph, which is located in the over-
head of the column. The location of gas chromatograph is far

Fig. 3. Basic flowchart of the debutanizer column [23].

TABLE II
VARIABLES DESCRIPTION OF DEBUTANIZER COLUMN

away from the process, and it may cause great time-delay prob-
lem. Therefore, it is unpractical to rely on the gas chromatograph
for measuring the butane content.

One feasible way is to construct the mathematical model of
butane content, which uses some easy-to-measure variables to
predict the hard-to-measure variables, such as butane content.
According to the mechanism of debutanizer column, there are
seven routinely measured variables have relevant relation with
butane content, which are listed in Table II.

This study uses data from the debutanizer column located in
Syracuse, Italy. A total of 2394 samples are collected from the
process, including the seven easy-to-measure variables and the
quality variables. Considering the process dynamics, the final
mathematical relation between easy-to-measure variables and
quality variables are described as [24]

y(k) = f

⎛
⎝X (k) , X2 (k) , . . . , X5 (k) , X5 (k − 1) ,

X5 (k − 2) , X5 (k − 3) , X6(k)+X7(k)
2 ,

y (k − 4) , y (k − 5) , y (k − 6)

⎞
⎠ . (36)

B. Experiments Results

Among all 2394 samples, a quarter is used as the training
dataset for establishing the learning models (one third for val-
idation), and the other three thirds are simulated as the testing
dataset for application assessment.

For SKPCR, the contribution rate is set 0.9999 and the search-
ing range for kernel parameter is set 1:1:100. Then, the SKPCR
model can be established. Table III illustrates the validation error
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TABLE III
VALIDATION ERRORS AND PARAMETERS OF SKPCR AT TRAINING STAGE

trend and the model parameters at training phase of SKPCR. It
can be seen that the validation error continuously declines while
the model goes deeper, which means the expression ability is
strengthened. When the depth reaches 5, the validation error is
larger than that of the previous layer, and the training process
is accordingly finished. Otherwise, the deeper model may lead to
the overfitting problem. Hence, the three-hidden-layer SKPCR
model is established by the training dataset, and it can be directly
utilized for the online application stage.

The proposed SKPCR is compared with the state-of-art
deep learning networks: SAE and stacked supervised encoder–
decoder (SSED) [14]. For those deep networks, the architecture
is determined by the trial-and-error method. That is, the archi-
tecture obtains the minimum validation error is selected as the
eventual architecture (the validation dataset is the same as that
used in SKPCR and the searching range of the number of hidden
nodes is set 1:1:50). Finally, the structure of deep networks is set
[12 8 40 5 1], where 12 and 1 indicates the dimension of input
and output variables. The number between 12 and 1 represents
the hidden nodes at the corresponding layer. The activation
function of deep networks is Sigmoid function, the learning rate
is set 1 and the training epochs is set 1000. SAE produces the
slightly better performance than that of KPCR, for the reason
that deep networks have stronger expression ability due to the
complex model structures. However, the pretrain process of
SAE is unsupervised, which tries to reconstruct the input data
for initializing model parameters. For industrial modeling field,
it is the quality variables matter for data modeling, and the
mechanism of SAE may not be appropriate. The novel SSED
uses quality variables for guiding the pretraining stage, which is
verified to be an effective way for quality prediction [14].

Our proposed model is also compared with the novel DeKPLS
[20]. DeKPLS is the deep learning version of KPLS, which also
belongs to a nonconnectionist deep learning model. Similar to
SKPCR, the absence of backpropagation process makes DeK-
PLS an efficient method in terms of industrial data modeling.
The training process of DeKPLS is more complicated than that
of SKPCR. Because there are two parameters needed to be
configured at each layer, and all parameters are determined by
the grid search. Not to mention the process of KPLS iteration
for every parameter combination testing. Although the modeling
efficiency of DeKPLS has been validated to be better compared
with the deep networks, it is expected to be less efficient than
that of SKPCR. The searching range of parameters for DeKPLS
is set 1:1:50, and the structure of DeKPLS is eventually set a
three-hidden-layer (the details of modeling process can be found
in [20]).

TABLE IV
PREDICTION PERFORMANCES OF DIFFERENT METHODS

Table IV lists prediction performances of different methods.
KPCR, as a traditional multivariate regression method, gives the
worst prediction accuracy with an RMSE of 0.0253. It is obvious
that traditional shallow learning machines may not produce the
satisfactory modeling performance due to their simple model
structure. Although kernel techniques help PCR transform into
the nonlinear modeling method, it is difficult to ensure the
complex functional relations between variables can be expressed
thoroughly by one specific kernel mapping. The state-of-art
deep learning networks, SAE and SSED, demonstrate better
modeling precision than that of KPCR. Especially for SSED,
by utilizing quality variables for guiding the whole pretraining
process, its parameter setting is quality oriented. Accordingly,
SSED provides a better prediction performance than that of SAE,
with an RMSE of 0.0227.

Deep networks have shown their strong learning ability for
data modeling. However, the training process is time-consuming
and complex. For industrial data modeling, sometimes it is
the modeling efficiency play a more important role. The novel
DeKPLS performs better in terms of modeling accuracy and
efficiency, with the minimum RMSE compared with the deep
networks. However, DeKPLS has two parameters at each layer,
and the objective of training process is to find the optimal
combination of these two parameters, which is very complicated
and inefficient. Furthermore, DeKPLS simply stacks several
KPLS modules for constructing the deep model. Since KPLS
also has the dimension-reduction procedures, the deep features
of DeKPLS may have the information loss problem as multilayer
KPCR does. Similar to DeKPLS, multilayer KPCR stacks sev-
eral KPCR modules to build a hierarchical learning model. This
design may improve the model complexity and learning ability,
which can be proven by the better prediction RMSE of multi-
layer KPCR. However, the accumulation of PCA process makes
deep features relatively uncorrelated to the original data. That
makes deep features the improper representation for regression
building.

SKPCR achieves the best prediction performance among
these methods. The strong learning ability of SKPCR mainly
attribute to the reconstructed kernel mapping at each layer. Ker-
nel mapping belongs to the nonlinear mapping form. By stacking
multiple kernel mappings, very complicated expressions can be
learned. Furthermore, the risk of information loss caused by
deep model is compensated by the enhanced inputs at each layer.
The detailed prediction results can be found in Fig. 4, and the
absolute prediction errors of different models are demonstrated
in the box plots of Fig. 5. In the box plots, the narrower the error



112 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

Fig. 4. Detailed prediction results of SKPCR.

Fig. 5. Box plots of prediction errors of different methods.

TABLE V
COMPUTATIONAL COST OF DIFFERENT METHODS (UNIT IN S)

range is, the better the prediction performance is, which means
the model’s prediction outcomes are closer to the real values.

Modeling efficiency is another significant factor for prac-
tical applications. Table V illustrates the computational costs
of different deep models. For SAE and SSED, the CPU time
consumption is great due to the backpropagation learning mech-
anism. The model parameters of deep networks are usually with
a great amount, and they are fine-tuned repetitively by the back-
propagation process. That is the main cost for training a deep
network, and the modeling performance is deeply influenced by
the initial setting of parameters. The novel DeKPLS abandons
the network-based architecture for mining the deep features
of data, which makes it much more timesaving than that of
deep networks in terms of modeling efficiency. However, the
modeling process of DeKPLS is still not concise enough in our
opinion. Because the number of parameters at each layer is 2,
and the essence of training a DeKPLS is to search the optimal
combination of these two parameters. Not to mention that, for
each potential combination, the KPLS iteration is executed for
evaluating the model performance. For SKPCR, after setting the
contribution rate, there is only one parameter needed to be deter-
mined for each layer. For this parameter, it can be exhaustively
searched, which is not time-consuming due to the noniterative

modeling procedures of KPCA. The low computational cost
of SKPCR makes it more suitable and applicable for the real
implementation in industrial processes.

V. CONCLUSION

This article proposes a deep nonconnectionist learning model
based on KPCR, which is referred to as SKPCR. By stacking
multiple KPCR modules, a hierarchical feature extraction model
is built. Considering the information loss problem, an enhanced
learning strategy is designed by reconstructing the inputs for
each layer. A real-world industrial case is used to demonstrate
the effectiveness, including modeling accuracy and efficiency,
of our proposed method.

For industrial soft/smart sensing implementations, artificial
intelligence (AI) algorithms are playing more important roles
in recent years. With the powerful predictive ability and strong
adaptability, AI algorithms can relieve the workers or equipment
from extreme working environment. The proposed method has
great chance to improve the soft sensing performance for indus-
trial applications. For the reason that the proposed method is
much more time-efficient in terms of modeling cost, which is
the key factor for real industrial applications.

Although SKPCR has demonstrated superiorities over the
state-of-art deep learning methods, there are some challenges
for the applications of our proposed method. One major chal-
lenge is the configuration of kernel parameters. The modeling
performance of SKPCR greatly relies on the values of kernel
parameters at each layer. In the present work, the determination
of kernel parameters is completed by the grid search method,
which belongs to the exhaustive searching method and is rela-
tively time-consuming. This obvious shortcoming restricts the
implementation of our proposed method in the industrial field.

In the future, our work will focus on the optimization of
model parameter configuration. One feasible way is to utilize the
randomized methods for training the kernel learning machine.
One of the biggest advantages of randomized methods is that the
stochastic configuration of model parameters does not require
prior knowledge of the process. Simultaneously, in this way, the
exhaustive searching of the potential candidates can be avoided,
and the training cost of the model is expected to be reduced to a
lower level.
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