
IEEE ROBOTICS & AUTOMATION MAGAZINE     2
This work is licensed under a Creative Commons Attribution 4.0 License. 
For more information, see https://creativecommons.org/licenses/by/4.0/

Applications in robotics or other size-, weight-, and power-con-
strained (SWaP) autonomous systems at the edge often require 
real-time and low-energy solutions to large optimization prob-
lems. Event-based and memory-integrated neuromorphic archi-
tectures promise to solve such optimization problems with 
superior energy efficiency and performance compared to con-
ventional von Neumann architectures. Here, we present a meth-
od to solve convex continuous optimization problems with 
quadratic cost functions and linear constraints on Intel’s scalable 
neuromorphic research chip Loihi 2. When applied to model 
predictive control (MPC) problems for the quadruped robotic 
platform ANYmal, this method achieves more than two orders 
of magnitude reduction in the combined energy-delay product 
(EDP) compared to the state-of-the-art solver, OSQP, on (edge) 
CPUs and GPUs with solution times under 10 ms for various 
problem sizes. These results demonstrate the benefit of non-von 
Neumann architectures for robotic control applications.

INTRODUCTION
Convex quadratic programming (QP) has been a topic of 
substantial research since the 1950s. The goal of this class of 
problems is to optimize a quadratic cost function subject to 
linear constraints. The convex nature of the problems 
ensures that iterative updates of the variables along the gra-
dient of the cost function are guaranteed to converge to the 
optimal solution. Convex QP optimization problems are par-
ticularly attractive for edge applications like robotic MPC, in 
which a smooth closed-loop interaction with the environ-
ment requires solving the problems within millisecond laten-
cy [1]. In such embedded applications, energy consumption 
is also critical for long battery life. As control systems incor-
porate more degrees of freedom, the underlying optimization 
problems grow in terms of the number of variables and 
require more complex cost and constraint functions. Solving 
increasingly more difficult optimization problems drives the 
search for more efficient and scalable approaches beyond 
conventional CPUs or GPUs.

Towards Advancing Speed and Energy Efficiency in Robotic Control 

Digital Object Identifier 10.1109/MRA.2024.3415005

Neuromorphic 
Quadratic 
Programming for 
Efficient and 
Scalable Model 
Predictive Control

By Ashish Rao Mangalore , Gabriel Andres Fonseca Guerra , Sumedh R. Risbud , 
Philipp Stratmann , and Andreas Wild

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-8496-7678
https://orcid.org/0000-0001-5403-4634
https://orcid.org/0000-0003-4777-1139
https://orcid.org/0000-0001-6791-9159
https://orcid.org/0000-0003-0380-5675


3     IEEE ROBOTICS & AUTOMATION MAGAZINE

Brain-inspired neuromorphic architectures have demon-
strated significant performance and energy gains over conven-
tional architectures for a range of optimization problems with 
superior scalability up to hundreds of thousands of problem 
variables [2]. Neuromorphic architectures derive their advan-
tage over conventional architectures from the integration of 
memory with compute units to minimize data movement, 
massive fine-grained parallelism, and a streamlined set of 
supported operations as well as architectural optimizations 
enabling sparse and event-based computation and communi-
cation only when necessary. As a result and similar to bio-
logical brains, these novel architectures have the potential to 
solve extremely complicated computational problems at low 
power and short response times on the order of Watts and 
milliseconds, respectively.

Among the algorithms that excel on neuromorphic 
architectures are solvers for constraint satisfaction prob-
lems [3], quadratic unconstrained binary optimization [4], 
and different optimization problems on graphs [5]. The 
development of the spiking locally competitive algorithm 
[6], [7]—to solve LASSO with neuromorphic hardware—
was the first approach to solve unconstrained convex 
QPs as a spiking neural network with wide-ranging 
applications, such as in sparse coding or signal process-
ing. Nonetheless, the problem of solving general convex 
optimization with constraints on neuromorphic hardware 
remained unaddressed.

In this article, we discuss a framework to solve general convex 
QPs on neuromorphic hardware and demonstrate the implemen-
tation of a QP solver that leverages the event-based, memory-
integrated, and fine-granular parallel architecture of the Intel 
Loihi 2 research chip [8] using the Lava 
open source framework (https://lava-nc.
org/). We further highlight its efficacy 
in solving large real-world QP problems 
arising in the context of the MPC of the 
ANYmal quadrupedal robot [9] (Fig-
ure 1). We explore the conditions under 
which neuromorphic architectures are 
more suitable hardware substrates to 
solve convex optimization problems 
than traditional von Neumann-based 
architectures.

Convex QP problems arising in 
SWaP systems are conventionally 
solved on CPUs, even though a few 
solutions have been developed to le-
verage the parallel compute capabili-
ties of GPUs, field-programmable gate 
arrays (FPGAs), and application-spec-
ified integrated circuits (ASICs). A 
range of high-performance QP solvers 
exists for CPUs, such as GUROBI [10], 
MOSEK [11], SCS [12], and CVXOPT 
[13]. Lightweight CPU solvers specifi-
cally optimized for embedded systems 

include qpOASES [14], ECOS [15], and OSQP [16]; such solv-
ers avoid any dependence on large external libraries, use only 
basic operations (e.g., avoiding division), minimize the steps 
to the solution, optimize the code for mobile processors, or 
often parallelize their code. Unfortunately, CPUs in general—
and the ones in embedded systems in particular—often do not 
support the degree of parallelism needed to accelerate large 
optimization workloads.

While GPUs offer a high degree of parallelism for optimi-
zation algorithms [17], [18], they primarily achieve their effi-
ciency through extremely wide data paths and deep pipelining, 
allowing them to stream batched data from off-chip memory to 
process many parallel threads. However, in the case of sparse 
problems, the GPU resources are massively underutilized, ren-
dering them inefficient. Similar to sparse problems, the inef-
ficiencies of using GPUs become apparent in real-time data 
processing applications, too (e.g., MPC), wherein the absence 
of batching (or batch size 1) leads to the inadequate usage of 
pipelining. In addition, both CPUs and GPUs suffer from high 
external memory access latencies that can hardly be hidden 
when solving iterative algorithms on a millisecond timescale 
in closed-loop control.

Similar to neuromorphic processors, more specialized 
solutions for solving QPs have been realized using FPGAs 
[19], [20] and ASICs [21]. While these approaches have 
their merits in terms of performance or energy consump-
tion, they require a vastly higher development effort and 
may serve only a single purpose (ASICs) compared to 
highly efficient and programmable neuromorphic proces-
sors like the Intel Loihi that can be applied to many other 
problems apart from QP.

System

MPC Controller

Reference
Trajectory

Output

Loihi 2
Destination

Source

ANYmal

Quadratic
Program

C
on

tr
ol

s

Optimizer

System Model

FIGURE 1. A class of convex optimization problems, namely, quadratic programs, is part 
of the MPC loop of the ANYmal. In this article, we explore running different sizes of these 
programs on Loihi 2, a neuromorphic research platform developed by Intel Labs, and see 
how they compare against conventional compute architectures in terms of performance 
and energy consumption. We show how the common motifs underlying many algorithms 
(such as gradient descent, primal-dual, or operator splitting methods) to solve convex-
constrained optimization problems are framed as the dynamics of event-based recurrent 
neural networks whose steady states represent the solutions to the problems. The resulting 
network topology enables the implementation of diverse first-order algorithms for efficiently 
solving convex QP and LP problems on neuromorphic hardware. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://lava-nc.org/
https://lava-nc.org/


IEEE ROBOTICS & AUTOMATION MAGAZINE     4

SOLVING QPs AND LPs WITH DISTRIBUTED DISCRETE 
DYNAMICAL SYSTEMS 
QP refers to

 ( )f x x Qx p x
2
1minimize: T T= +  (1)

 : ( )g x Ax k 0subject to #= -  (2)

where , , , ,A x p kR R R RM L L L M! ! ! !#  and .Q RL L! #  
This also covers the subproblem of linear programming 
(LP), wherein Q = 0. A quadratic program is convex when 
the feasible set is a convex set and Q is symmetric positive 
semidefinite .Q SL! +^ h  In the following section (the “Iter-
ative Solvers for Convex Quadratic Programs” section), we 
go over an iterative strategy to solve the QP from (1) and 
(2). In the “Neuromorphic Hardware Implementation” sec-
tion, we present the implementation of our neuromorphic 
algorithm to solve convex QP such that it respects the con-
straints and strengths of Loihi 2, as determined in previ-
ous studies [7].

ITERATIVE SOLVERS FOR CONVEX  
QUADRATIC PROGRAMS
The unconstrained QP defined by (1) alone can be solved by 
first-order gradient descent. The convexity of the unconstrained 
problem guarantees the convergence to the global minimum

 ( ) ( ) .x x f x I Q x p·t t t1 da a a= - = - -+  (3)

The constant 02a  determines the step size of the gradient 
descent.

When constraints are introduced, as defined by (2), pure gra-
dient descent according to (3) may lead to constraint  violations 
in the course of iterations. Mathematically, a constraint viola-
tion occurs if a hyperplane A kjx j=  is crossed (the hyperplane is 
defined by the normal vector ,A j  which is the jth row of A [22]). 
To avoid such violations, one can deflect the gradient descent 
dynamics into the direction of the normal vector if a constraint 
boundary is crossed. The dynamics are explained in Figure 2(a).

To ensure that the gradient dynamics evolves in the feasible 
region, it is a sufficient condition to add this correction to our 
dynamical system

Q

A3

A1
A2

x1

x2

C
os

t f
 (

x)

Fast and Efficient Variable Updates Due to
• Compute-and-Memory Integration
• Massive Parallelism
• Event-Based Computation and
 Communication

(a) (b)(b)

Q

Qx xL

xL – =
αtQxL + αt · pL +

βtA
TθG

AT
1

AT
MθG, M (x)

AT
2

AT
3

v1
–αp1

∑

–αp2

–αp3

–αpL

v2

v3

vM

x1

x2

x3

vL

AMx AMx – k1 if AMx > kM
0 Otherwise

θG, M (x) =
θG, M (x)

Constraint Correction Gradient Descent Convergence
Notifier

Gradient Descent Constraints Constraint Violation Correction Data Spike Event

FIGURE 2. The QP solver can be formulated as a spiking neural network. (a) The 2D projection of a convex region defined by Q, as 
contour lines, alongside constraint planes defined by A as shaded regions. Black arrows represent the trajectory of gradient descent 
until it crosses the blue constraint plane, violating it by an amount proportional to the red arrow. At that point, the gradient descent is 
corrected by the light blue arrow contribution, which brings the network state back to the feasible region (final green arrow). (b) The 
gradient descent block shows the network encoding of a solver for unconstrained QP. Each black circle represents a neuron that 
performs gradient descent updates, dashed lines represent biases, and arrows represent synapses. For constrained QP, we add the 
constraint correction block, where colored circles are the neurons computing constraint violations and corresponding corrections for 
each constraining plane. The correcting terms are sent to the gradient descent neurons via channels indicated as colored arrows. An 
integration neuron (navy blue) tracks the cost of the current network state. In the case of the proportional-integral projected gradient 
method, each of the L gradient descent neurons encodes one scalar entry xt

i  of the variable vector xt. It receives input xt from the other 
gradient neurons via synapses with multiplicative weights defined by the vector Qi. In addition, it receives input vt from the constraint 
neurons via synapses of weight .Ai

T  Its state is updated according to (6) and returned to the other gradient neurons. Each of the M 
constraint neurons maintains internal states w j

t  and .vt
j  It receives the states xt from all gradient descent neurons via synapses with 

multiplicative synaptic weights .AT
j  It then updates its internal states w j

t  and vt
j  according to (7) and (8). 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



5     IEEE ROBOTICS & AUTOMATION MAGAZINE

 ( ) ( )x I Q x p A x·t t t t t
T

G t1 a a b i= - - -+  (4)

 ( )
  

x
Ax k Ax k
0

if
otherwiseG t

t t 2
i =

-'  (5)

where ( )xG ti  denotes the rectified linear unit function, indi-
cating when xt 1+  crosses a constraint hyperplane during gra-
dient descent. Here, the hyperparameter ta  decays while tb  
grows over time as the solver approaches the minimum of the 
state space.

The convergence rate can be accelerated by an additional 
integral term that accumulates the deviation of the state vector 
outside the feasible region, i.e., the constraint violation, similar 
to a proportional–integral controller. With this additional fea-
ture, one can revise the dynamics as [23]

 ( ( ))x x Qx p A vt t t t
T

t1 Xr a= - + ++  (6)

 ( ) ( ( ))v v w Ax kt G t t t t1i b= + --  (7)

 ( )w w Ax kt t t t1 1b= + -+ +  (8)

where Xr  refers to the projection of the corrected xt  into the 
feasible set .X  The hyperparameters ta  and tb  depend on the 
curvature of the cost function [23].

The dynamics described by (6) to (8) can be interpreted as 
that of a two-layer event-based recurrent neural network, as 
illustrated in Figure 2(b), which minimizes the cost function 
(1) using gradient descent. After algebraically eliminating ,wt  
the variables xt  and vt  can be identified as state variables of 
different types of neurons, while Q and A can be identified as 
matrices representing (sparse) synaptic connections between 
those neurons. Relying only on element-wise or matrix-vector 
arithmetic, this type of network can be efficiently implement-
ed on neuromorphic hardware.

NEUROMORPHIC HARDWARE IMPLEMENTATION
Neuromorphic hardware architectures are designed to effi-
ciently execute event-based neural networks. Example sys-
tems include SpiNNaker 1 and 2, Dynaps, BrainScaleS 1 and 
2, TrueNorth, and Loihi 1 and 2 [24]. A shared characteristic 
of many of these architectures is a large number of parallel 
compute units operating out of local memory, executing 
either fixed-function or highly programmable neuron models. 
Typically, these architectures are optimized for sparse event-
based computation and communication. The use of Loihi 2 
for solving QP problems in this study has been motivated by 
prior work showing that the Loihi 2 architecture excels at 
solving iterative constraint optimization problems [7].

MAPPING THE QP SOLVER TO LOIHI 2
The QP solver corresponding to the dynamics of (6) to (8) 
was implemented on the second generation of the Intel Loihi 
research chip [8] (Figure 3). The massively parallel chip 
architecture consists of 128 independent asynchronous cores 
that communicate with each other by exchanging up to 24-b 
messages (graded spikes) using local on-chip routers. The 

innards of a core are shown in Figure 3. Ingress spikes from 
other cores are first buffered before passing through the syn-
apse stage. This stage effectively performs a highly opti-
mized dense or sparse matrix-vector multiplication with up to 
8-b synaptic weights and up to 24-b spike activation. The 
resulting product can be read by the neuron stage from the 
dendritic accumulator stage. The neuron stage executes state-
ful parametrizable neural programs supporting basic arith-
metic and bit-wise operations on variables up to 24 b as well 
as conditional logic. Programs can also generate egress mes-
sages, which are routed to other cores via the axon stage.

Variables xt  and vt  defined in (6) to (8) are encoded as 
24-b state variables of two different types of neurons in the 
chip, i.e., the gradient descent and constraint check neurons, 
respectively. As seen in Figure 3, the spikes, in this case, car-
rying the values of states xt  and ,vt  are multiplied with the 
synaptic weights, Q and A, and ,AT  respectively, the results of 
which are fed into the gradient descent and constraint check 
neurons, respectively. The neuron programs then perform 
the remaining arithmetic operations involved to complete the 
dynamics. This colocation of memory and compute in the 
neuromorphic chip leads to gains in terms of energy and time 
to solution (TTS) for the algorithm. Note that different types 
of QP solvers can be implemented by merely changing the 
state update dynamics of the constraint correction or gradient 
descent neurons, which is possible due to Loihi 2’s program-
mable neurons. The updated states are communicated only to 
the next neuron through synapses if necessary, in this case, 
when the value is nonzero.

According to Yue et al. [23], the hyperparameters, a  and 
,b  need to evolve at a certain rate for quicker convergence. 

This evolution, however, makes use of general-purpose divi-
sion and floating-point operations, which are not supported 
on Loihi 2. We emulate the evolution on Loihi 2 by halving 
a  and doubling b  at a schedule, i.e., implementing simulated 
annealing for the hyperparameter a  and geometric growth 
for .b  The decay by halving is achieved using a bit right-shift 
operation, which is the same as division by two. The vector of 
values of the state variables of the gradient descent neurons 
after the convergence of the dynamics of the network is the 
solution to the QP. Note that to accelerate the convergence, 
QP problems are often first preconditioned. We choose the 
Ruiz preconditioner, which is known to work well for block-
diagonal problems like the ones we deal with in this article. 
The preconditioning procedure is carried out on the host CPU 
in our experiments.

For QPs arising in MPC, the neuromorphic architecture 
of Loihi 2 already offers advantages over conventional archi-
tectures and artificial neural network accelerators because of 
the compute and memory colocation, which will be further 
discussed in the “QP for MPC” section. However, first-order 
type algorithms like those in (4) to (8) can be made more suit-
able for neuromorphic hardware by employing -TR  coding, 
which can be implemented in Loihi 2 [8]. Doing so sparsifies 
the spiking activity at the cost of solution accuracy. This, in 
turn, improves the time and energy to solution (ETS) because 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     6

Lo
ca

l S
pa

rs
e 

M
at

rix
-V

ec
to

r
M

ul
tip

lic
at

io
n

v 1
>

0
x 1

>
0

x n
>

0
v m

>
0

x 1
>

0
Q

1,
A

T 1
x 1

,α

N
eu

ro
n 

C
or

e 
A

1

Buffer

In
S

yn
ap

se
s

D
en

dr
iti

c
A

cc
um

ul
at

io
n

A
xo

ns
O

ut
G

ra
di

en
t D

es
ce

nt
N

eu
ro

n

x n
>

0
Q

n,
A

T n
x n

,α

N
eu

ro
n 

C
or

e 
A

n

Buffer

In
S

yn
ap

se
s

D
en

dr
iti

c
A

cc
um

ul
at

io
n

A
xo

ns
O

ut
G

ra
di

en
t D

es
ce

nt
N

eu
ro

n

v 1
>

0

v m
>

0

v 1
>

0
A

1
v 1

, β

N
eu

ro
n 

C
or

e 
B

1

Buffer

In
S

yn
ap

se
s

D
en

dr
iti

c
A

cc
um

ul
at

io
n

A
xo

ns
O

ut
C

on
st

ra
in

t C
he

ck
N

eu
ro

n

v m
>

0
A

m
v m

, β

N
eu

ro
n 

C
or

e 
B

m

E
ve

nt
-B

as
ed

 C
om

m
un

ic
at

io
n

Lo
ih

i 2

Buffer

In
S

yn
ap

se
s

D
en

dr
iti

c
A

cc
um

ul
at

io
n

A
xo

ns
O

ut
C

on
st

ra
in

t C
he

ck
N

eu
ro

n

P
ro

gr
am

m
ab

le
 N

eu
ra

l S
ta

te
U

pd
at

es
 a

nd
 S

pi
ki

ng
A

nn
ea

lin
g-

B
as

ed
H

yp
er

pa
ra

m
et

er
 U

pd
at

es

0
20

0
40

0
60

0
t

80
0

1,
00

0

ϕ
α

β

La
va

 α
O

G
 α

La
va

 α
O

G
 α

FI
GU

RE
 3

. T
he

 m
ap

pi
ng

 o
f t

he
 Q

P
/L

P
 s

ol
ve

r 
to

 a
 n

eu
ro

m
or

ph
ic

 s
ub

st
ra

te
; a

n 
In

te
l L

oi
hi

 2
 c

hi
p 

is
 s

ho
w

n 
he

re
. E

ac
h 

Lo
ih

i 2
 c

hi
p 

su
pp

or
ts

 u
p 

to
 1

 m
ill

io
n 

ne
ur

on
s 

an
d 

up
 to

 1
20

 m
ill

io
n 

sy
na

ps
es

 
de

pe
nd

in
g 

on
 th

e 
m

od
el

 c
om

pl
ex

ity
, s

pr
ea

d 
ac

ro
ss

 1
28

 c
om

pu
tin

g 
co

re
s.

 E
ac

h 
ne

ur
on

 in
te

gr
at

es
 s

yn
ap

tic
-w

ei
gh

te
d 

in
pu

t s
pi

ke
s 

fro
m

 p
re

sy
na

pt
ic

 n
eu

ro
ns

, c
an

 u
pd

at
e 

lo
ca

l s
ta

te
 v

ar
ia

bl
es

 v
ia

 
m

ic
ro

co
de

 p
ro

gr
am

m
ab

le
 o

pe
ra

tio
ns

, 
an

d 
ca

n 
se

nd
 in

te
ge

r-v
al

ue
d 

m
es

sa
ge

 p
ay

lo
ad

s 
to

 o
th

er
 p

os
ts

yn
ap

tic
 n

eu
ro

ns
. E

ac
h 

co
re

 c
an

 h
ou

se
 m

ul
tip

le
 n

eu
ro

ns
, 

an
d 

al
l t

he
se

 g
ro

up
s 

of
 n

eu
ro

ns
 

(a
nd

 t
he

 s
yn

ap
tic

 c
on

ne
ct

io
ns

 c
or

re
sp

on
di

ng
 to

 t
he

m
) 

ar
e 

sp
re

ad
 a

cr
os

s 
m

ul
tip

le
 c

or
es

. T
he

 r
ec

ur
re

nt
 d

yn
am

ic
s 

(
)

x
h

x
1

t
t

=
+

 d
es

cr
ib

ed
 b

y 
(6

) 
to

 (
8)

 c
om

bi
ne

 g
ra

di
en

t 
de

sc
en

t 
an

d 
co

ns
tra

in
t 

co
rr

ec
tio

ns
 a

nd
 a

re
 m

ap
pe

d 
to

 t
he

 c
ol

or
fu

l a
nd

 b
la

ck
 n

eu
ro

ns
 il

lu
st

ra
te

d 
in

 F
ig

ur
e 

2(
b)

, 
re

sp
ec

tiv
el

y. 
A

ll 
of

 t
he

se
 n

eu
ro

ns
 a

re
 u

pd
at

ed
 in

 p
ar

al
le

l b
y 

di
ffe

re
nt

 c
or

es
 o

n 
th

e 
ch

ip
, 

sh
ow

n 
he

re
 a

s 
ye

llo
w

 b
lo

ck
s.

 M
ul

tip
le

 c
or

es
 A

1 
to

 A
n 

up
da

te
 th

e 
gr

ad
ie

nt
 d

es
ce

nt
 n

eu
ro

ns
 d

es
cr

ib
ed

 b
y 

(6
), 

w
hi

le
 m

ul
tip

le
 c

or
es

 B
1 

to
 B

m
 u

pd
at

e 
th

e 
co

ns
tra

in
t c

or
re

ct
io

n 
ne

ur
on

s 
de

sc
rib

ed
 b

y 
(7

) 
an

d 
(8

). 
T

he
 

ne
tw

or
k 

st
at

e 
ev

ol
ve

s 
to

w
ar

d 
th

e 
m

in
im

um
 in

 th
e 

en
er

gy
 la

nd
sc

ap
e 

[F
ig

ur
e 

2(
a)

] b
y 

ex
ch

an
gi

ng
 s

pi
ke

s 
(b

ot
to

m
 r

ig
ht

 z
oo

m
-in

). 
T

he
 fi

na
l s

ol
ut

io
n 

is
 th

en
 p

os
tp

ro
ce

ss
ed

 to
 g

et
 th

e 
so

lu
tio

n 
fo

r 
th

e 
or

ig
in

al
 n

on
pr

ec
on

di
tio

ne
d 

pr
ob

le
m

, w
hi

ch
 is

 th
en

 u
se

d 
in

 th
e 

ne
xt

 s
ta

ge
 o

f t
he

 A
N

Y
m

al
 c

on
tro

l p
ip

el
in

e.
 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



7     IEEE ROBOTICS & AUTOMATION MAGAZINE

of fewer messages/spikes being moved around and, as a con-
sequence, fewer operations in general. However, this reduces 
operations within acceptable solution degradation only when 
the data types on chip are more precise (16-/32-b data types), 
which is currently not the case in Loihi 2. Therefore, in this 
article, we focus on results obtained without employing sigma-
delta coding.

PROGRAMMING LOIHI 2 WITH LAVA
The QP solver is implemented on Loihi 2 using the open 
source software framework Lava for neuromorphic comput-
ing in the lava-optimization library. At its core, programming 
in Lava is based on asynchronous processes that communi-
cate with each other via message passing over channels. Lava 
provides a cross-platform runtime and compiler to execute 
algorithms on different back ends, such as CPU/GPU and 
Loihi 2, but is also open to extension to other neuromorphic 
platforms. Lava optimization is one of several high-level 
algorithm libraries that build on top of Lava. [Lava is an open 
source software licensed under BSD 3-Clause and LGPL 2.1, 
and only proprietary modules required to run code on Loihi 2 
are confidential to members of Intel’s Neuromorphic 
Research Community (INRC). The proprietary code required 
to execute the solver with high performance on Loihi 2 can 
be accessed after joining the INRC.] 

QP FOR MPC
To demonstrate the value of our neuromorphic QP solver, we 
apply it to solving the QPs arising in the MPC of a state-of-
the-art quadrupedal ANYmal robot [9].

THE ANYmal ROBOT
The ANYmal platform comprises a series of quadrupedal 
robots designed for different kinds of tasks, like inspection, 
surveillance, and search and rescue missions. The robots 
are equipped with a suite of sensors enabling autonomous 
navigation and perception of their surroundings as well as a 
comprehensive software ecosystem. The robot is commer-
cially available and deployed in a range of industrial and 
commercial settings. However, the MPC for this robot has 
on the order of 103  variables. Due to this high dimensional-
ity, each robot requires a separate Intel Core i7 processor to 
solve the MPC within acceptable time budgets. Further, as a 
mobile platform, bringing down power utilization would 
contribute to longer uptimes. Loihi could be used as a 
coprocessor to solve the MPC with very little additional 
burden on the battery. We therefore use data acquired from 
a physical ANYmal robot performing tasks provided by the 
ANYmal team.

PROBLEM DEFINITION
At the core of an MPC iteration is the mathematical optimi-
zation problem of minimizing the error between actual and 
goal trajectories, i.e., the tracking error. The optimization is 
subject to constraints, such as the limits posed by the rigid-
body dynamics, joints, actuators, and environment. As such, 

the optimization problem is computationally expensive and 
nonlinear (and perhaps nonconvex). However, it is typically 
“linearized and quadratized” using techniques akin to Taylor 
series expansion, resulting in a convex QP problem from (1) 
and (2). MPC is a computationally intensive control scheme 
that must be executed under strict time budgets in real-time 
control loops. Solving the QP accounts for a major chunk of 
computational time in the MPC of ANYmal. The QP further 
increases in complexity with the larger time horizons covered 
by the MPC or more degrees of freedom of the robot. To 
meet these requirements, the MPC is solved on a dedicated 
laptop-class CPU. Running the QP in the MPC on Loihi 
would be the first step toward making computation for con-
trol more suitable for SWaP systems.

MPC uses a mathematical model of ANYmal to predict the 
temporal evolution of its state over a time horizon in the future. 
The prediction is based on the optimization of a task-specific 
objective function and the robot’s current measured state (its 
position, orientation, linear and angular momenta, and joint 
angles [1]). From the predicted time series of the control vari-
ables, only a fraction in the beginning is used for actuating the 
locomotion of ANYmal. For example, a typical MPC horizon 
in the control loop of ANYmal of about 1 s is split into 100 
time steps of 10 ms each, and only the first 20–30 ms worth 
of predictions are used to issue control commands. Once the 
robot moves, a new state measurement and sensory data are 
fed back to the model to generate the next set of predictions, 
thus completing an MPC iteration.

NEURAL AND SYNAPTIC SCALING
For an MPC horizon of N = 100, we require 7,248 neurons 
connected through 405, 504 weights at most. These resources 
are well within a single Loihi 2 chip’s capacity of at least  
64 kB of memory synaptic connections and 8 kB for neural 
programs per neuron core. Assuming 8-B neurons and 1-B 
weights, we get ~1 million neurons and ~15 million 8-b syn-
apses for a single chip with ~123 cores. Note that the com-
plexity of the neuron program can lead to higher memory 
requirements for it. For this article, we implemented pro-
grams that require 2 B per neuron, resulting in 500,000 avail-
able neurons in a single chip. This is well above the 
requirements for the QPs covered here.

To understand the scaling of neurons and synapses on Loihi 
for our QP formulation, we first calculate the number variables 
and weights involved in the QP problem for MPC. ANYmal’s 
locomotion is captured by the temporal evolution of a 48-dimen-
sional attribute vector formed by concatenating a 24-dimen-
sional control vector (12 joint velocities and 12 contact forces) 
and a 24-dimensional state vector (six base poses, six momenta, 
and 12 joint angles). When we formulate the QP problem for an 
MPC iteration of the horizon with N time steps, we treat all N 
values of the attribute vector at every time step as a flattened 
vector. The causal dependence between the attribute vectors at 
successive time steps is captured in constructing the cost, Q, 
and constraints, A, matrices of the QP problem from (1) and (2). 
We need one neuron for each decision variable and one for each 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     8

constraint variable. Therefore, the number of neurons required 
to map QPs of this type onto Loihi is given by

 ( )n N n N n1neurons states controls) )= + +  (9)

where nstates  is the size of the state vector (24 for ANYmal), 
and ncontrol  is the size of the control vector (24 for ANYmal). 
Further, the maximum number of synapses required to map 
this QP onto Loihi is given by

 
( )

( ) .

n n n n N

n n N n

2
2 2

synapses states states controls

states controls states

) ) )

)

= +

+ + +
 (10)

BENCHMARKING PROCEDURE AND DATASET
The efficiency, scalability, and speed of the Loihi QP solver 
were benchmarked against 1) CVXOPT, 2) a SCS solver run-
ning on a laptop CPU, and OSQP running on 3) a standard 
CPU, 4) an embedded CPU, and 5) against the CUDA-opti-
mized version of it, cuOSQP, running on a GPU. The require-
ments are as follows: 

 ■ Loihi 2: This required an Oheo Gulch board running Lava 
v0.7.0 and Lava-Optimization v0.2.4 with an Intel Core 
i7-9700K CPU host with 32-GB RAM running Ubuntu 
20.04.5 LTS. 

 ■ OSQP: OSQP v0.6.2.post9 ran on an Intel Core i7-9700K 
CPU @ 3.6GHz with 32-GB dynamic RAM (DRAM) run-
ning Ubuntu 20.04.5 LTS and an Nvidia Jetson Orin six-core 
Arm Cortex-A78AE v8.2 64-b CPU 1.5-MB L2 + 4-MB L3 
CPU with 6 GB of shared RAM running Ubuntu 20.04.6 LTS. 

 ■ cuOSQP: cuOSQP ran on an Intel Core i7-9700K CPU @ 
3.6GHz with 32-GB DRAM running Ubuntu 20.04.5 LTS 
with an Nvidia GeForce RTX 2070 Super GPU with 8 GB 
of RAM and cuda 10.2.

The evaluation metrics were TTS, ETS, and EDP for differ-
ent problem sizes. OSQP is a CPU-based state-of-the-art 
solver for convex QP problems with linear inequality con-
straints [16]. We ultimately use the OSQP solver as a refer-
ence for our Loihi-based solver since it was the 
best-performing CPU solver.

The dataset used in this article consists of data from 2,173 
individual time steps of the MPC of an ANYmal robot [25]. 
The dataset consists of the matrices obtained after the linear-
ization and quadratization of a nonlinear objective function 
and penalizes deviation from a reference trajectory as well as 
the ANYmal dynamics. We tile these matrices in an appropri-
ate manner to construct the Q matrix of the QP objective func-
tion from (1) and the A matrix of the constraints from (2). This 
tiling is demonstrated in Figure 4. The derivation and explana-
tion of this tiling have been omitted here since they are beyond 
the scope of this article. It can be seen that these matrices 
are mostly block-diagonally populated and very sparse. This 
entails sparse matrix-vector multiplication, making a suitable 
candidate for Loihi 2. The vectors p and k from the cost and 
constraints, respectively, are constructed by stacking the vec-
tors associated with the tracking cost and the dynamics in each 
stage of the MPC. 

We investigate how well the performance of the solver 
scales with problem size by varying the number of variables. 
In general, the problem size is determined by the time hori-
zon and the degrees of freedom of the robot. Here, we choose 
six horizon lengths, , , , , ,N 5 50 75 100 150 175=  time steps, 
resulting in problems with , , , , ,264 2424 3624 4824 7224 8424 
variables, respectively. We use this as a proxy for a robot with 
higher degrees of freedom. Most QPs in the dataset are similar 
in difficulty (similar condition numbers). Therefore, for each 
horizon length, we have chosen 10 different QPs of varying 
difficulty that best represent all the problems in the dataset. 
In summary, we have a dataset containing a total of 60 repre-
sentative QP problems of six different sizes from the ANYmal 
dataset, spanning from ~250 to ~8,500 variables.

CONVERGENCE, POWER, AND PERFORMANCE 
ANALYSIS
In the context of solving a type of QP problem, i.e., LASSO 
problems, on Loihi [7], [26], Loihi-based solvers rapidly 
 converge to approximate solutions, but limited precision avail-
able on the chip, as explained in the “Neuromorphic Hardware 
Implementation” section, limits the convergence to a finite 

Dynamics

–I 0

(a) (b)

Stage Cost

G(j) = Q =

H (1)

E(1) F (1)

H (2)

H (N)

E (N – 1) F(N – 1)

S(N + 1)

0
0

0
0 0

0 0
0

0

0

0
0

0
0

0
0

0 0
0

0
0

0
0

00–I

–I

–I

0
0

0
0

A =

E (j)

S(j)

K (j)

K (j)T

T (j)

F (j)

H (j) =

FIGURE 4. In (a), the matrices pertaining to stage costs, H( j ), and dynamics, G( j ), of ANYmal are associated with every time step of 
the MPC. E( j ) and F( j ) represent the dynamics of the robot at time step j. S( j ), K( j ), and T( j ) are the stage costs at time step j. In (b), it 
is seen how these matrices are concatenated together to form large Q and A matrices for cost and constraints of the QP [(1) and (2)], 
respectively. Note that the matrices in (b) are sparsely populated, making these types of problems well-suited for Loihi. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



9     IEEE ROBOTICS & AUTOMATION MAGAZINE

optimality gap. The same applies to Loihi 2 as well. However, 
the CPU solver operates with 64-b floating-point precision. To 
make a fair comparison across all platforms, we run all solvers 
until they have converged up to the same accuracy of 8% from 
the true solution. This accuracy was chosen in alignment with 
the precision needed to make MPC robust for various control 
applications [27]. For MPC applications that need higher accu-
racy, we can in general increase the precision of the Loihi 2 
solution. For this, Loihi 2 could represent each 64-b variable 
by allocating several of its 24-b states and represent each 64-b 
matrix weight by combining several of its 8-b synaptic weights. 
To verify that successive MPC iterations converge stably even 
with limited precision, we randomly perturbed Q and A matri-
ces for each successive iteration and verified that the cost and 
constraint satisfaction keep converging with the warm starting 
of the QP solver. This suggests that approximate solutions are 
sufficient in closed-loop control applications.

Figure 5 demonstrates that the Loihi QP solver rapidly con-
verges within ~55 iterations on average, where a solution is 
considered to have converged when the solver reaches within 
8% or less of the OSQP reference solver. The solver contin-
ues to converge further, closer to optimality but with a slower 
convergence rate. Similar to the cost, constraint satisfaction 
continues to improve beyond our definition of convergence. In 
the subsequent performance comparison results, we have used 
the fact that the Loihi QP solver converges at 55 iterations and 
compared its performance with that of OSQP.

Figure 6(a) shows the TTS for the same set of QP prob-
lems of increasing problem size. As the MPC time horizon 
N—and thus the number of QP variables—increases, TTS 

increases roughly linearly for both OSQP and the Loihi QP 
solver. While the OSQP solver solves small problems faster 
than Loihi 2 in the submillisecond regime, the time it takes 
OSQP to find the optimal solution (black dashed line) grows 
rapidly beyond Loihi’s TTS. Let us consider approximate solu-
tions from Loihi for usage in iterative MPC with warm starts. 
In this case, OSQP’s TTS grows less rapidly but still exceeds 
Loihi toward the largest problem size. We see that the solution 
time for a standard GPU is orders of magnitude higher than 
even a CPU for problems of this scale for reasons mentioned 
in the “Introduction” section. For the embedded CPU, the TTS 
follows the same trend as the laptop CPU albeit even slower.

Figure 6(b) shows the corresponding ETS for increasing 
problem complexity. The ETSs for both OSQP and the Loihi 
QP increase with problem size as more cores on Loihi are 
utilized. Loihi achieves a significant advantage compared to 
laptop-class CPUs in energy of more than 200× for all prob-
lem sizes. Energy consumption of the Loihi QP solver is 
composed of static and dynamic energy: E E Estatic dyn= + . 
Static energy is mostly governed by chip leakage power on 
Loihi · · / ,E P TTS c cstatic static active total=  where c is the number 
of active and total cores, respectively. Measurements for this 
analysis have been obtained from early silicon samples that 
still have highly variable leakage characteristics, leading to a 
high .P 1 4 Wstatic =  per chip at the lowest operating voltage, 
and thus are less relevant for this analysis. Dynamic energy is 
governed by the number of operations within Loihi cores to 
update neurons and route traffic between cores.

Further, Figure 6(c) shows a 520× EDP advantage for the 
largest problem size when using Loihi 2 in place of a laptop 

0

1
0.25

0.50

1

2

4 Problem Size

1.1

1.2

1.3

1.4

1.5

1.6

20 40 60
Iterations

N
or

m
al

iz
ed

 C
os

t
(x

T
 Q

x
/2

 +
 p

T
x)

/O
pt

im
al

 C
os

t

N
or

m
al

iz
ed

 C
on

st
ra

in
t S

at
is

fa
ct

io
n

A
x 

– 
k

2
/

x
2

(a)

Optimal

1.08 × Optimal

0

50

75

100

125

150

1,0002,0003,0004,000
Problem Size

Ite
ra

tio
n 

fo
r 

(1
.0

8 
×

 O
pt

im
al

)

5,0006,0007,0008,000

80 100 120 140 0 20 40 60
Iterations

(b)

80 100 120 140

264
2,424
3,624
4,824
7,224
8,424

FIGURE 5. A convergence analysis of the Lava QP solver for 60 QPs in the MPC loops of ANYmal as measured by (a) the cost [(1)] 
normalized by OSQP’s optimal cost and (b) the number of constraint violations [(2)] normalized by the L2-norm of the final solution is 
shown here. Solid lines represent the mean for cost and constraints respectively for 60 different problem sizes N = 5, 50, 75, 100, 150, 
175, translating into 264–8,424 QP variables, as indicated by the legend. Shaded regions represent one standard deviation from the 
mean. The horizontal black lines correspond to the optimal cost. The inset in (a) depicts the number of iterations required for different 
problem sizes to reach an optimality gap of 8% with respect to OSQP. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     10

CPU. It can be seen in Figure 6(c) that the EDP curves for 
CPUs (embedded and laptop) closely resemble each other. 
The laptop and embedded CPU thus trade the TTS against 
the ETS, but the combined EDP is characteristic of CPUs. 
For a GPU, both the ETS and EDP are orders of magnitude 
higher mainly.

By increasing Loihi’s operating voltage from VDD =

. . ,0 6 0 8 V-  Loihi’s TTS improves by about 47%. At the 
same time, dynamic energy increases by a factor of 1.9× 
for increasing the operating voltage for a problem of 4,824 
variables. The total energy remains largely unchanged since 
the dominating leakage energy drops with lower TTS in this 

example. Figure 6(d) and (e) further illustrates how the level 
of multicore parallelism allows one to trade performance 
(TTS) for chip resources. As the number of neurons per core 
decreases and the number of cores increases proportionately, 
TTS improves from 17.5 to 2.6 ms for a problem size of 4,824 
variables. The slightly less than linear decrease in TTS results 
from additional multicore synchronization and data traffic 
between parallel Loihi cores. Loihi’s highly configurable 
nature allows users to trade off energy consumption (ETS), 
speed (TTS), and chip resource utilization, which can be use-
ful in SWaP applications to select the optimal task-specific 
operating point.

100

100

102

104

106

10–2

10–3

100

103

106

109

1012

0 2,000 4,000
Number of Variables

E
ne

rg
y 

D
el

ay
 P

ro
du

ct
(m

J.
m

s)

6,000 8,000 250 500 750
Neurons per Core

1,000 1,250 1,500

10–2

100

102

10–2

100

102

(a)

(b) (e)

(c) (f)

E
ne

rg
y 

(m
J)

(d)

~2.5 ×

~203 ×

~520 ×

T
im

e 
(m

s)

102

104

2

4

6

Loihi 2 Total Power@vdd = 0.8 V
Loihi 2 Dynamic Power@vdd = 0.8 V
i7 9th-Gen. CPU OSQP Accurate
i7 9th-Gen. CPU OSQP Approximate

RTX 2070 SUPER GPU OSQP Approximate
Jetson Orin Arm CPU OSQP Approximate

i7 9th-Gen. CPU CVXOPT Accurate
i7 9th-Gen. CPU SCS Accurate

4,824 QP Variables Total Power
4,824 QP Variables Dynamic Power
Accurate OSQP CPU Solution for 4,824
QP Variables
Approximate OSQP CPU Solution for 4,824
QP Variables

FIGURE 6. (a)–(c) Demonstrate the advantages of the Loihi 2-based solver over the CPU solver on a laptop-class (black, dark slate 
gray, and brown) and edge-level CPU (gray) and also over its GPU-based implementation (lime green) for increasing problems size 
on different metrics. OSQP was the best-performing solver and was therefore chosen as the reference. As seen from (d)–(f), there 
exists a parallelization-solution time tradeoff, but a slow solver beyond a certain point could lead to increased EDP. Note that the 
speed of execution can be increased by operating at higher voltages. (a) TTS. (b) ETS. (c) EDP to solution. (d) TTS on Loihi 2 versus 
parallelization. (e) ETS on Loihi 2 versus parallelization. (f) EDP to solution on Loihi 2 versus parallelization. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



11     IEEE ROBOTICS & AUTOMATION MAGAZINE

CONCLUSION
We have developed an efficient and scalable approach for 
solving convex quadratic constraint optimization problems 
with neuromorphic chips. The benefits of neuromorphic sys-
tems can be exploited for optimization algorithms by inter-
preting the structure of many iterative optimization 
approaches—such as gradient descent and primal-dual 
updates—as the dynamics of recurrent neural networks. To 
demonstrate the benefits of this framework, we implemented 
a QP solver on Intel’s Loihi 2 research chip and made it pub-
licly available as part of the Lava software framework. To 
illustrate its benefits, we applied the QP solver to tackle 
workloads that arose in the MPC pipeline of ANYmal dur-
ing its normal operation. Our Loihi solver solved the work-
loads with a similar speed as the state-of-the-art solver 
OSQP on a modern CPU [28], which was the best von Neu-
mann-based candidate for comparison, for approximate solu-
tions while consuming about two orders of magnitude less 
energy. Most notably, the time and energy to a solution on 
the Loihi scale are better with increasing problem complexi-
ty than OSQP on CPU.

The performance, energy, and scaling advantages on Loihi 
result primarily from its massively parallel, event-based, and 
memory-integrated hardware architecture. Multicore parallel-
ism allows one to quickly and independently update a large 
number of variables. The hardware is further optimized for 
arithmetic on sparse matrices, as present in most large real-
world QP workloads [29]. Its event-based computation and 
communication further eliminate redundant data traffic rout-
ing and computation. Together, these features support scaling 
to large problem sizes with less overhead than on conventional 
computer architectures. In addition, the memory-integrated 
compute architecture minimizes the energy and latency 
required to access data for algorithmic iterations. With the 
observed gains in computational efficiency, interpretable 
model-based controllers could see increased adoption over 
more opaque model-free controllers like reinforcement learn-
ing, thus increasing the safety of applications.

The most significant limitation of the current approach 
is the limited bit precision of state variables and synaptic 
connections on neuromorphic architectures like Loihi. This 
can lead to lower solution optimality than solvers on conven-
tional floating-point architectures. Nevertheless, our solver 
consistently achieved solutions that deviated by fewer than 
8% from the true optimal solution for QPs extracted dur-
ing a real-world operation of a physical ANYmal robot. For 
applications that require higher precision, the limited preci-
sion of the Loihi solver can be circumvented by allocating 
multiple low-bit variables to effectively achieve higher pre-
cision arithmetic or enabling higher precision arithmetic in 
general in future chip generations. Nonetheless, preliminary 
observations in closed-loop control simulations of ANYmal 
hint that fast approximate solutions are sufficient for iterative 
scenarios like MPC with sequential warm starts. We hypoth-
esize that this is partly because the result of each MPC cycle 
is used only to determine motor commands for the next few 

time steps despite optimizing over time horizons of more 
than 100 time steps. 

After controlling the next few steps, new sensory recordings 
are taken, and the next MPC cycle can iteratively correct any 
errors resulting from, e.g., the linearized mechanical robotic 
model, environmental perturbations, and limited bit precision. 
We invite robotics labs interested in assessing the performance 
of our fixed-point QP solver on their cyberphysical systems to 
become part of the INRC. By joining the INRC, labs will gain 
access to the proprietary code for running the solver on Loihi 2. 
They can then apply for borrowing a Loihi 2 board for closed-
loop testing in their MPC applications. The implementation of 
our solver in Lava, a software framework built to support asyn-
chronous message passing, bodes well for integration with the 
asynchronous publish and subscribe system of ROS. Further, 
with floating-point support, the current gains observed with 
compute-memory colocation can be bolstered by employing 
sigma-delta coding, which would reduce spiking activity in the 
chip and, consequently, the TTS and ETS.

In applications where faster solves are required, the massive 
energy advantage of neuromorphic architectures can be traded 
for additional speed by executing multiple solver instances in 
parallel with different initial conditions and selecting the best 
and fastest solution. In general, the customizability of neuro-
morphic architectures like Intel’s Loihi 2 allows one to trade 
solution optimality, energy, speed, and chip resource utiliza-
tion seamlessly against each other to achieve optimal operat-
ing conditions depending on the requirements of the task.

ACKNOWLEDGMENT
We would like to thank Farbod Farshidian, a former member 
of the Robotics Systems Lab, ETH Zürich, for providing the 
data used in this article and for his inputs on ANYmal. We 
appreciate the valuable feedback on the manuscript from 
Prof. Alin Albu-Schäffer from the German Aerospace Center 
(DLR) and TU Munich. We thank Yulia Sandamirskaya 
(ZHAW, Zurich) and Akshit Saradagi (Luleå University of 
Technology), who participated in discussions and also provid-
ed some useful suggestions for our work. Sumit Shrestha 
Bam and Leobardo E. Campos Macias from the Neuromor-
phic Computing Lab, Intel Labs provided support with the 
Loihi and Orin platforms. We also thank all the members of 
the Neuromorphic Computing Lab, Intel Labs in general for 
their support in developing features for Lava and for assis-
tance with hardware-related issues. Ashish Rao Mangalore is 
the corresponding author. 

AUTHORS
Ashish Rao Mangalore, School of Computation, 
Information, and Technology, Technische Universität 
München, 80333 Munich, Germany, and Neuromorphic 
Computing Lab, Intel Labs, 85579 Neubiberg, Germany. 
E-mail: ashish.rao.mangalore@intel.com.

Gabriel Andres Fonseca, Neuromorphic Computing Lab, 
Intel Labs, 85579 Neubiberg, Germany. E-mail: gabriel.fonse 
ca.guerra@intel.com.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://ashish.rao.mangalore@intel.com
http://gabriel.fonseca.guerra@intel.com
http://gabriel.fonseca.guerra@intel.com


IEEE ROBOTICS & AUTOMATION MAGAZINE     12

Sumedh R. Risbud, Neuromorphic Computing Lab, Intel 
Labs, Santa Clara, CA 95052 USA. E-mail: sumedh.risbud@
intel.com.

Philipp Stratmann, Neuromorphic Computing Lab, Intel 
Labs, 85579 Neubiberg, Germany. E-mail: philipp.strat-
mann@intel.com.

Andreas Wild, Neuromorphic Computing Lab, Intel Labs, 
Hillsboro, OR 97124 USA. E-mail: andreas.wild@intel.com.

REFERENCES
[1] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified MPC 
framework for whole-body dynamic locomotion and manipulation,” IEEE Robot. 
Autom. Lett ., vol. 6, no. 3, pp. 4688–4695, Jul. 2021, doi: 10.1109/
LRA.2021.3068908.

[2] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay, 
“Opportunities for neuromorphic computing algorithms and applications,” Nature 
Comput. Sci., vol. 2, no. 1, pp. 10–19, Jan. 2022, doi: 10.1038/s43588-021-00184-y.

[3] G. A. Fonseca Guerra and S. B. Furber, “Using stochastic spiking neural net-
works on spinnaker to solve constraint satisfaction problems,” Frontiers 
Neurosci., vol. 11, Dec. 2017, Art. no. 714, doi: 10.3389/fnins.2017.00714.

[4] M. Z. Alom, B. Van Essen, A. T. Moody, D. P. Widemann, and T. M. Taha, 
“Quadratic unconstrained binary optimization (QUBO) on neuromorphic comput-
ing system,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2017, pp. 3922–3929, 
doi: 10.1109/IJCNN.2017.7966350.

[5] S. M. Mniszewski, “Graph partitioning as quadratic unconstrained binary 
optimization (QUBO) on spiking neuromorphic hardware,” in Proc. Int. Conf. 
Neuromorphic Syst. (ICONS), New York, NY, USA: ACM, 2019, pp. 1–5, doi: 
10.1145/3354265.3354269.

[6] P. T. P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural net-
works: Convergence theory and computational results,” 2017, arXiv:1705.05475.

[7] M. Davies et al., “Advancing neuromorphic computing with Loihi: A survey of 
results and outlook,” Proc. IEEE, vol. 109, no. 5, pp. 911–934, May 2021, doi: 
10.1109/JPROC.2021.3067593.

[8] G. Orchard et al., “Efficient neuromorphic signal processing with Loihi 2,” in 
Proc. IEEE Workshop Signal Process. Syst. (SiPS), 2021, pp. 254–259, doi: 
10.1109/SiPS52927.2021.00053.

[9] M. Hutter et al., “Anymal-a highly mobile and dynamic quadrupedal robot,” in 
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Piscataway, NJ, USA: 
IEEE Press, 2016, pp. 38–44, doi: 10.1109/IROS.2016.7758092.

[10] “Gurobi optimizer reference manual.” Gurobi Optimization, LLC. [Online]. 
Available: https://www.gurobi.com 

[11] “The MOSEK optimization toolbox. Version 10.0.” Mosek ApS. [Online]. 
Available: https://www.mosek.com/documentation/ 

[12] B. O’Donoghue, “Operator splitting for a homogeneous embedding of the linear 
complementarity problem,” SIAM J. Optim., vol. 31, pp. 1999–2023, Aug. 2021.

[13] M. S. Andersen, J. Dahl, and L. Vandenberghe. “CVXOPT: A Python pack-
age for convex optimization.” CVX Research. Accessed: May 24, 2024. [Online]. 
Available: https://cvxopt.org/ 

[14] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOA-
SES: A parametric active-set algorithm for quadratic programming,” Math. 

Program. Comput., vol. 6, no. 4, pp. 327–363, Dec. 2014, doi: 10.1007/s12532-
014-0071-1.

[15] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An OSCP solver for embedded 
systems,” in Proc. Eur. Control Conf. (ECC), 2013, pp. 3071–3076, doi: 10.23919/
ECC.2013.6669541.

[16] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An 
operator splitting solver for quadratic programs,” Math. Program. Comput., vol. 
12, no. 4, pp. 637–672, Dec. 2020, doi: 10.1007/s12532-020-00179-2.

[17] L. Yu, A. Goldsmith, and S. Di Cairano, “Efficient convex optimization on 
GPUs for embedded model predictive control,” in Proc. Gener. Purpose GPUs 
(GPGPU-10),  New York, NY, USA: ACM, 2017, pp. 12–21, doi: 
10.1145/3038228.3038234.

[18] M. Schubiger, G. Banjac, and J. Lygeros, “GPU acceleration of ADMM for 
large-scale quadratic programming,” J. Parallel Distrib. Comput., vol. 144, pp. 
55–67, Oct. 2020, doi: 10.1016/j.jpdc.2020.05.021. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0743731520303063

[19] I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A survey of the 
implementation of linear model predictive control on FPGAs,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018, doi: 10.1016/j.ifa-
col.2018.11.063.

[20] S. Lucia, D. Navarro, Lucía, P. Zometa, and R. Findeisen, “Optimized FPGA 
implementation of model predictive control for embedded systems using high-lev-
el synthesis tool,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 137–145, Jan. 
2018, doi: 10.1109/TII.2017.2719940.

[21] T. Skibik and A. A. Adegbege, “An architecture for analog VLSI implementa-
tion of embedded model predictive control,” in Proc. Annu. Amer. Control Conf. 
(ACC), 2018, pp. 4676–4681, doi: 10.23919/ACC.2018.8431320.

[22] A. Mancoo, S. Keemink, and C. K. Machens, “Understanding spiking net-
works through convex optimization,” in Proc. Adv. Neural Inform. Process. Syst., 
2020, vol. 33, pp. 8824–8835.

[23] Y. Yu, P. Elango, and B. Aç Ikmeşe, “Proportional-integral projected gradient 
method for model predictive control,” IEEE Control Syst. Lett., vol. 5, no. 6, pp. 
2174–2179, Dec. 2021, doi: 10.1109/LCSYS.2020.3044977.

[24] A. Shrestha, H. Fang, Z. Mei, D. P. Rider, Q. Wu, and Q. Qiu, “A survey on 
neuromorphic computing: Models and hardware,” IEEE Circuits Syst. Mag., vol. 
22, no. 2, pp. 6–35, 2nd Quart. 2022, doi: 10.1109/MCAS.2022.3166331.

[25] F. Farshidian et al., “OCS2: An open source library for optimal control of 
switched systems.” GitHub. [Online]. Available: https://github.com/leggedrobot 
ics/ocs2 

[26] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip 
learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018, doi: 10.1109/
MM.2018.112130359.

[27] M. Diehl, R. Findeisen, and F. Allgöwer, “A stabilizing real-time implemen-
tation of nonlinear model predictive control,” in Proc. Real-Time PDE-
Constrained Optim., Philadelphia, PA, USA: SIAM, 2007, pp. 25–52.

[28] Y. de Viragh, M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter, 
“Trajectory optimization for wheeled-legged quadrupedal robots using linearized 
ZMP constraints,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1633–1640, Apr. 
2019, doi: 10.1109/LRA.2019.2896721.

[29] K. Cheshmi, D. M. Kaufman, S. Kamil, and M. M. Dehnavi, “NASOQ: 
Numerically accurate sparsity-oriented QP solver,” ACM Trans. Graph, vol. 39, 
no. 4, Aug. 2020, doi: 10.1145/3386569.3392486.

 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

mailto:sumedh.risbud@intel.com
mailto:sumedh.risbud@intel.com
mailto:philipp.stratmann@intel.com
mailto:philipp.stratmann@intel.com
mailto:andreas.wild@intel.com
http://dx.doi.org/10.1109/LRA.2021.3068908
http://dx.doi.org/10.1109/LRA.2021.3068908
http://dx.doi.org/10.1038/s43588-021-00184-y
http://dx.doi.org/10.3389/fnins.2017.00714
http://dx.doi.org/10.1109/IJCNN.2017.7966350
http://dx.doi.org/10.1145/3354265.3354269
http://dx.doi.org/10.1109/JPROC.2021.3067593
http://dx.doi.org/10.1109/SiPS52927.2021.00053
http://dx.doi.org/10.1109/IROS.2016.7758092
https://www.gurobi.com
https://www.mosek.com/documentation/
http://dx.doi.org/10.1007/s12532-014-0071-1
http://dx.doi.org/10.1007/s12532-014-0071-1
http://dx.doi.org/10.23919/ECC.2013.6669541
http://dx.doi.org/10.23919/ECC.2013.6669541
http://dx.doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1016/j.jpdc.2020.05.021
https://www.sciencedirect.com/science/article/pii/S0743731520303063
https://www.sciencedirect.com/science/article/pii/S0743731520303063
http://dx.doi.org/10.1016/j.ifacol.2018.11.063
http://dx.doi.org/10.1016/j.ifacol.2018.11.063
http://dx.doi.org/10.1109/TII.2017.2719940
http://dx.doi.org/10.23919/ACC.2018.8431320
http://dx.doi.org/10.1109/LCSYS.2020.3044977
http://dx.doi.org/10.1109/MCAS.2022.3166331
https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/LRA.2019.2896721
http://dx.doi.org/10.1145/3386569.3392486



