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Abstract— Objectives: Elevated heterogeneity in ventricular
repolarization can promote malignant ventricular arrhythmias.
During exercise, distinct ventricular cells may present different
repolarization adaptation to heart-rate (HR) changes potentially
increasing ventricular repolarization dispersion. An electrocar-
diographic descriptor of the temporal adaptation of action
potential duration to HR changes is the time delay the QT
interval takes in accommodating to abrupt acceleration and
deceleration in HR. Previous investigations have been performed
on standard electrocardiograms acquired during stress tests. The
present work aims to characterize the time delay of QT-interval
accommodation to HR changes for a healthy trained population
during real training. Methods: The time delay was estimated
through an optimally derived, model-based time-delay estimator
as the lag between the actual QT series and an HR-derived
expected memoryless QT series. The last one was obtained by
fitting a logarithmic regression model to the instantaneous QT
and HR measurements in assumed stationary time windows.
The QT lag was estimated separately in HR acceleration, and
HR deceleration, of single-lead ECG acquired through a chest
strap while practicing sport. Results: The QT-adaptation time
lag estimated during HR deceleration is longer than during
HR acceleration, especially after intense physical exertion of
athletes when they have overcome their theoretical maximal HR
14.5[2.4;28.0] s or they have been involved in dynamic sports
9.9[5.8;24.9] s. Conclusion: Higher repolarization dispersion can
be captured by the proposed time delay biomarker in a distinctive
way to the HR acceleration. Significance: Eventually the time
lag is a biomarker for exacerbated increase of ventricular
repolarization dispersion while exercising.

Index Terms—Electrocardiogram, QT-RR delay, Sport, Sudden
Cardiac Death, Wearable sensor

I. INTRODUCTION

Sudden cardiac death (SCD) is defined as death presumed
to be of a cardiac cause that occurs within 1 hour of the onset
of cardiac symptoms or 24 hours of last being seen healthy
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and alive. SCD may be the first presentation of cardiovascular
diseases and it accounts for half of cardiovascular deaths [1].
Intense exercise may impact the risk of suffering SCD in in-
dividuals with underlying unknown cardiac abnormalities [2],
[3]. Sport-related SCD is an unexpected death occurring while
practicing a sport activity, after exercise at rest within one hour
from its cessation or during sleep [2], [3]. When occurring in
athletes under 35 years old, it is considered independent from
other age-influenced cardiovascular complications [2], [3].

Prevention remains the major weapon to reduce the oc-
currence of sport-related SCD [4]. A large variety of non-
invasive electrocardiographic biomarkers for arrhythmic risk
stratification was proposed to prevent malignant ventricular
arrhythmias.

The initiation and maintenance of ventricular arrhythmias
depend on three main factors: substrate, triggers, and modu-
lators. A vulnerable myocardium is the substrate for arrhyth-
mogenesis, meaning that when triggering factors appear, they
can lead to malignant arrhythmias potentially ending in SCD
[5]. Elevated repolarization heterogeneity in the ventricular
myocardium among different ventricular myocardial cells or
regions has been identified as a characteristic of a vulnera-
ble substrate [6]. During exercise, ventricular repolarization
dispersion can be exacerbated in response to changes in
heart rate (HR) due to the different repolarization adapta-
tion to HR changes presented by distinct ventricular cells
[7]. An important modulator of arrhythmogenic substrate is
the autonomic nervous system (ANS). Sympathetic nervous
system hyperactivity has been shown to increase triggered
activity and enhance dispersion of ventricular repolarization
thus enhancing vulnerability to ventricular arrhythmias [8],
[9]. In addition to spatial heterogeneities, increased tempo-
ral repolarization heterogeneities, associated to the abnormal
adaptation of action potential duration to HR changes, have
been linked to vulnerable substrate [5].

Multiple studies have challenged the identification of de-
scriptors of the temporal heterogeneity in repolarization mea-
sured from the surface electrocardiogram (ECG) as potential
biomarkers of arrhythmic risk. Among those, one seemingly
promising repolarization descriptor is the time of accommo-
dation of the QT interval to HR changes, referred to as
QT/RR hysteresis[9], [10], [11], [12], [13], [14]. Hysteresis
in the electrical cardiac activity is given by the time delay in
the adaptation of action potential morphology to RR-interval
changes [15]. The hysteresis is actually understood to increase
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electrical stability by facilitating ventricular filling/emptying
and the coronary perfusion [16]. Thus, the QT/RR hysteresis
represents how fast the QT interval attains its steady-state
following a sustained variation in RR interval. Instead, in
a steady-state condition, the dynamic QT/RR relationship is
represented by the QT on RR parametric dependency, which
characterizes how much the steady-state QT interval varies in
function of the steady-state RR intervals. Thus, the relation
between HR changes and their induced QT changes has been
modelled with a memoryless transformation (typically non-
linear), representing the stationary relation between QT with
RR, followed by a first order linear system representing the
system memory [11], [13], [14].

The QT/RR hysteresis can be invasively induced by atrial
and ventricular pacing using varying protocols, e.g., atropine
injection [16]. Although, the most obvious manifestation of
QT/RR hysteresis is the differential response of the QT
interval during sequential HR acceleration and deceleration
during exercise and recovery. Abrupt HR changes can be
induced during exercise stress tests, where QT-time lag can
be measured. HR presents a linear-trend variation in stress
tests, and the QT series should then follow the HR changes
with another similar trend delayed by the time lag under
estimation [13]. The time delay of QT-interval values in
following changes in the HR values was computed as the
time lag between the observed QT series and an expected
instantaneous memoryless HR-dependent QT series, derived
from the HR and a patient-specific model of the QT on
RR dependency [13]. This method was clinically evaluated
in stress tests from patients with suspected cardiovascular
disease, to characterize arrhythmias and SCD risk focusing on
the standard ECG acquired in clinical setting during stress tests
[13]. Moreover, a validation of QT time-lag estimation has
also been performed in a controlled simulated experiment[17].
Longer QT-hysteresis lags have been associated with abnormal
temporal repolarization heterogeneities [13].

The application of this method to monitor the cardiac
activity during real exercise is also potentially important
because it can shed light on what happens with cardiac
electrophysiology during physical activity when malignant
arrhythmogenic events may occur, especially in subjects with
congenital or structural heart diseases. Although, ECGs during
physical activity are characterized by a low signal to noise
ratio (SNR), making the analysis of RR and QT intervals
challenging. Thus, the primary aim of the present work is to
adapt this method for computation of the QT-interval time
lag in accommodating to HR changes to single-lead ECG
recordings acquired during free exercise in a real-life scenario,
and evaluate its potential to estimate the QT-adaptation time
both during HR acceleration and HR deceleration of the
sport. This will allow to estimate the QT-adaptation time
from wearable-derived ECG acquired while practicing sports,
allowing continuous cardiac monitoring of athletes. The study
is performed on a healthy trained population. A preliminary
methodological version of this work has been reported [18].

TABLE I: Database numerousness: number of athletes in-
volved in the study together with the practiced sports and
number of cardiorespiratory sets composing each database.
Numbers in parenthesis indicate the numbers of analysed
ECGs after exclusions described in sections III-B and III-H.

Database Sport # Athletes # Signal sets
available usable

SPDB

Aerial silk
Basketball
Crossfit
Fitness
Jogging
Middle distance race
Running
Soccer
Tennis
Zumba

3
9
19
8
5
10
10
2
9
6

3
9
28
8
19
10
10
14
19
6

(2)
(5)
(10)
(5)
(1)
(5)
(8)
(0)
(2)
(0)

All sports 81 126 (38)

SPDB2
Running
Cycling

10
12

10
12

(10)
(2)

All sports 22 22 (12)

II. MATERIALS

Analysed ECGs are part of two databases belonging to Car-
diovascular Bioengineering Lab of Università Politecnica delle
Marche: Sport DB (SPDB) and Sport DB 2.0 (SPDB2) [19],
[20]. Cardiorespiratory recordings contained in the databases
were acquired through the wearable sensor BioHarness 3.0
by Zephyr (https://www.zephyranywhere.com/). Each subject
may have been recorded at more than one training session,
each training constituting a set of signals. In these cases,
only the datasets with the highest SNR (refer to section
III-B) is analysed. Each set of analysed cardiorespiratory
signals contains a single-lead ECG sampled at a sampling rate
Fs = 250 Hz. All cardiorespiratory recordings are continuous
recordings acquired in real-life uncontrolled condition on the
training field. The acquisition protocol includes three phases:
pre-exercise resting, exercise and post-exercise resting. The
pre-exercise resting consists in lying or sitting courtside for
at least 5 minutes; the exercise phase has free duration and
athletes are following their own training protocol; the recovery
phase usually coincides with stretching or sitting courtside for
at least 5 minutes.

The 20 datasets belonging to subjects practicing soccer and
Zumba do not contain the ECG. Furthermore, one subject prac-
ticing tennis with paroxysmal atrial fibrillation (11 datasets)
presented episodes of no sinus rhythm during the recording
and it was excluded from the analysis. A subject practicing
jogging has short QT syndrome (SQTS). The 5 datasets
belonging to this subject were analysed and reported separately
as a case report. Thus, from the 148 available cardiorespiratory
signal sets, only 50 ECG belonging to 50 healthy athletes are
analysed. The numerousness of the databases before and after
application of ECGs exclusion criteria (refer to sections III-B
and III-H) is reported in Table I.

III. METHODS

The main methodological steps needed to estimate the time
delay of QT series in following HR changes are displayed in
Fig. 1. Delineation of electrocardiographic waves and ECG
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Fig. 1: Block scheme of the methodological steps to estimate
the time delay between QT-interval series and the RR series.τ̂a
denotes the time delay estimated during HR acceleration, and
τ̂d denotes the time delay estimated during HR deceleration.

processing are the first steps. After rejection of noisy areas
based on signal to noise ratio (SNR) rules, RR (dRR(n))
and QT (dQT(n)) series are generated. An instantaneous
memoryless, HR dependent, QT series (diQT(n)) is estimated.
This step is followed by the identification of HR acceleration
and HR deceleration where the QT-adaptation time lag is
estimated as the delay between dQT(n) and diQT(n) series.

A. ECG waves delineation

QRS detection and ECG-waves delineation was done
through a single-lead wavelet-based algorithm [21]. De-
lineation of ECG waves was performed using a wavelet-
transform-based delineator [21], which identifies local max-
ima, minima and zero-crossings in the signal derivatives at
different scales. The T-wave end is assigned to the sample
where the signal derivative falls below a threshold relative to
the maximum derivative of the T-wave final slope.

ECG recordings from wearable recorders have large inter-
sport disparity in amplitude ranges which were not originally
contemplated in the design of the detector. To circumvent that
limitation each ECG was first segmented in excerpt lasting 60
s and scaled in amplitude to have interquartile amplitude range
of 1 mV. The annotations of wave delineation were visually
inspected. In areas with large number of false negative wave
detection due to artifacts represented by high amplitude spikes,
the ECG excerpts were further segmented in smaller windows
excluding artifacts. Those ECG windows were analysed again
through the single-lead detector [21] and the newly delineated
waves were the marks used in subsequent steps.

B. Signal to noise ratio estimation and ECG excerpt selection

In practice, the quality of ECG recordings during exercise
is negatively affected by exercise-related artifacts which make
electrocardiographic measures unreliable in signal excerpts
having very large noise contamination. Two different noise
types are common in exercise ECGs: high-frequency (HF)
noise, mainly due to muscle activity, and low-frequency (LF)
noise due to baseline wander. To identify, and discard from
the analysis, those areas highly contaminated by these types
of noise, a high-frequency SNR, (SNRHF) and a low-frequency
SNR (SNRLF) are defined and estimated to determine the
quality of ECG [22].

First, ECG signal excerpts of 60 s are taken and their
cardiac beats are segmented. The length of each cardiac beat
segmentation window is taken HR-dependent. The onset (no)
and end (ne) time instants of the HR-dependent beat interval,
referred to the k-th QRS-complex mark (nr) provided by the
QRS detector, are computed as in [23]:

no(k) = nr(k)− 0.240Fs, (1)

representing 240 ms ahead of the QRS mark, and

ne(k) =

{
nr(k) +

2
3RRFs RR < 0.720 s

nr(k) + min{0.684,RR−0.240}Fs RR ≥ 0.720 s
, (2)

where RR is the mean of RR intervals (in seconds) in ECG
excerpt of 60 s.

The SNRHF of the k-th beat is defined as the ratio of the
peak-to-peak amplitude of the cardiac beat, and the root-mean-
square (RMS) value of its HF noise, computed after Butter-
worth high-pass filtering with cut-off frequency Fc = 20 Hz,
in an HR-dependent interval with onset at nr(k) + 0.148Fs

(148 ms after the k-th QRS mark) and end at ne(k) [22].
The SNRLF at each beat is defined as the ratio of the peak-

to-peak amplitude of the average beat over the 60 s excerpt
ECG and the RMS value of the residual ECG after average
beat subtraction and low-pass filtering using a Butterworth
filter with Fc = 20 Hz [22]. Beats were aligned before aver-
aging by maximizing cross-correlation between each beat and
a median reference beat computed from those with correlation
coefficient ≥ 0.8 within the excerpt.

For each ECG excerpt, median SNRHF (SNRm
HF) and SNRLF

(SNRm
LF) across beats were computed. If SNRm

HF > 40 and
SNRm

LF > 3, the ECG excerpt was considered of sufficient
quality for further processing. If the percentage of excerpts
in the recording, labeled as of sufficient quality is >65%,
the ECG is considered for RR and QT-series computation.
Otherwise, the entire recording is discarded. Furthermore, even
if the ECG is considered acceptable, the QT changes episodes
that belongs to ECG excepts with SNRm

HF < 40 or SNRm
LF < 3

were discarded from further analysis.

C. Estimation of RR and QT series

The RR-interval series dRR(k), is computed from the k-th
QRS-complex mark as

dRR(k) =
nr(k)–nr(k–1)

Fs
. (3)
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Analogously, the QT-interval series dQT(k), [10] is computed
as

dQT(k) =
nTe

(k)–nQRSo
(k)

Fs
, (4)

where nTe(k) and nQRSo
(k) are the T-wave end and QRS-

complex onset samples of the k-th cardiac beat respectively.
Missing values in the series were linearly interpolated [13].
Outlier values of both dRR(k) and dQT(k) series, identified
as those deviating by more than ±10% or ±5%, respectively,
from the running median of each series computed over 40
beats were replaced with the corresponding median value.
Subsequently, dRR(k) and dQT(k) series were piecewise cu-
bic Hermite interpolated to 4 Hz with, becoming uniformly
sampled time series, dRR(n) and dQT(n) [13].

D. Expected instantaneous memoryless HR-dependent QT

To estimate the time lag of the dQT(n) series following
the dRR(n) series, the expected instantaneous memoryless
HR-dependent QT-interval series diQT(n) was estimated. The
diQT(n) series contains the QT values that would correspond
to each dRR(n) if the HR at that point was stationary. A log-
arithmic regression model was used to compute diQT(n)[11].

diQT(n) = β + α ln(dRR(n)). (5)

The values of the parameters β and α for the logarithmic
regression model in (5) were obtained by fitting [dQT(n),
dRR(n)] data pairs taken from different HR-stationary ECG
signal excerpts, simultaneously. Stationarity of dRR(n) was
continuously evaluated through the ratio (R) between the
standard deviation, σRR, and the mean, RR, of dRR(n) series,

R =
σRR

RR
, (6)

in a moving window of 30 s with 15 s overlap. If R < 0.05
the last 15 s of the window is considered as eligible stationary
signal excerpt for model parameter estimation. To be sure
that representative data from the maximum possible amplitude
excursion of dRR(n) is considered, six stationary excerpts
which RR is closest to the maximum, minimum and mean
(two windows from each condition) value of dRR(n) in the
complete record, were considered as data segments for model
parameter estimation.

The values of dRR(n) and dQT(n) are assumed to be
stationary in these windows and representative of the subject
instantaneous QT on RR dependency. Model parameters were
estimated using least squares minimization with these data. A
least-squares fit of the [dQT(n), dRR(n)] data pairs was per-
formed and patient-specific values of α̂ and β̂ were obtained.
The resulting minimum root mean square error,

ϵ =

√√√√ 1

6× 15× 4

∑
n∈{Wj}

j∈{1,2,3,4,5,6}

(
dQT(n)− diQT(n)

)2
, (7)

of the goodness of fit of the QT-to-RR relationship in the six
fitting windows Wj , j∈ {1, 2, 3, 4, 5, 6}, was used to evaluate
model fitting.

The expected instantaneous, memoryless, HR-dependent
QT-interval series diQT(n), was then calculated all along the
recording (not just at the selected windows) following the
model in (5) with the estimated α̂ and β̂.

E. Detection of HR acceleration and deceleration episodes by
a GLRT-based detector

HR changes during ambulatory recordings, and even more
during exercise, generally include acceleration and decelera-
tion transitions, having a ramp-like pattern, representative of
episodes of exercising and recovery, respectively. To identify
these episodes, characterized by large RR excursion where
the QT to RR accommodations is aimed to be estimated, we
designed a hypothesis test detector, based on a Generalized
Likelihood Ratio Test (GLRT). This detector assumes a linear
transition of the RR series between an initial and a final value,
which resembles the one described in [24] in the context
of ischemia detection based on QRS angle variations, which
serves as the basis for the detector here presented.

In the signal model, hypothesis H1 corresponds to an
observed signal where an HR change of length D samples
is present, while hypothesis H0 assumes that the window
contains just stationary fluctuations of HR, considered as
“noise”. The detector models the HR changes as a unitary RR
transition in the middle of the window, h(n), n = 0, ..., D − 1,
following a linear trend in an interval of T samples, and
then scaled by an amplitude factor a > 0 and distorted by
noise w(n) with Laplacian distribution (with mean value b
and variance σ). For the window starting at n = n0, the signal
model is:

H0 : dRR(n)=w(n)
H1 : dRR(n)=ah(n−n0)+w(n)

}
n=n0, ..., n0+D−1.

(8)

When the level of exercise increases (transitioning from rest
to exercise), dRR(n) decreases having a negative transient
slope r(n) during T even samples corresponding to 30 s,
T = 30× 4, h(n) = r(n). When the level of exercise de-
creases the change occurs in the opposite direction and
h(n) = −r(n). The transient slope model r(n) can be ex-
pressed (Fig. 2) as:

r(n) =


1, n = 0, ..., D−T

2 − 1
1− 2

T+1

(
n− D−T−2

2

)
n = D−T

2 , ..., D+T
2 − 1

−1, n = D+T
2 , ..., D − 1

. (9)

The Laplacian noise w(n) probability density function
(PDF) is:

p(w(n)) =
1√
2σ

exp

[
−
√
2

σ
|w(n)− b|

]
(10)

with mean b and variance σ2. The σ value can be estimated
based on dRR(n) PDF in the initial Nσ samples of the
recording where exercise has not yet started, obtaining a ML
estimate σ̂ regardless of the hypothesis H0 or H1,

σ̂ =

√
2

Nσ

Nσ∑
n=1

∣∣∣dRR(n)− b̂σ

∣∣∣ . (11)
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Fig. 2: Ramp-like change ah(n) with a transition of duration
T and amplitude factor a, upper panel for HR accelerations,
h(n) = r(n), and lower panel for deceleration, h(n) = −r(n).

Fig. 3: Block diagram of the method for detection of heart rate
acceleration and deceleration using a GLRT-based method.

where b̂σ = med
{
dRR(n)

}
, n ∈ {1, · · · , Nσ},

The Laplacian model in (10) is adopted in the present
study because the HR variations, dRR(n), in recordings ac-
quired during sport activities, can contain large number of
outliers. These are typically a consequence of false positive
and negative QRS detection in low signal-to-noise ratio ECG
recordings, even in stationary situations. Consequently better
characterized by a Laplacian than a Gaussian PDF, see his-
tograms in Sec.IV-B.

Since the parameters of the above signal model are un-
known, the GLRT was used as the basis for HR acceleration
and deceleration episodes detection Fig. 3.

The GLRT is the likelihood ratio test between the probabil-
ities associated with the two hypotheses, where the unknown
parameter of the signal model, under both hypothesis, are
replaced with their maximum likelihood (ML) estimates. Thus,
using the Laplacian distribution, the GLRT decides H1 if:

Λn0(dRR) =
p(dRR; âH1 , b̂H1 ,H1)

p(dRR; b̂H0
,H0)

=

exp

[
−

√
2

σ̂

n0+D−1∑
n=n0

∣∣∣dRR(n)−b̂H1
−âH1

h(n−n0)
∣∣∣]

exp

[
−

√
2

σ̂

n0+D−1∑
n=n0

∣∣∣dRR(n)− b̂H0

∣∣∣] > γ,

(12)

where âHi and b̂Hi denote the ML estimates of a and b under
hypothesis Hi, i ∈ {0, 1}. Taking the logarithm of both sides

the detector output becomes

Υ(n0) = ln(Λn0 (dRR)) =
√
2

σ̂

n0+D−1∑
n=n0

∣∣∣dRR(n)−b̂H0

∣∣∣−∣∣∣dRR(n)−b̂H1
−âH1

h(n−n0)
∣∣∣>γ′,

(13)

with γ′ = ln γ. The ML estimates of b̂H0
, b̂H1

and âH1
,

derived in [24], [25], can be computed as:

b̂H0 =med
{
dRR(n)

}
(14)

b̂H1 =med
{
dRR(n)− âH1h(n− n0)

}
(15)

âH1
=max

{
0,med

{
|h(n− n0)|♢

(
dRR(n)− b̂H1

h(n− n0)

)}}
,

(16)
all medians computed from values at time interval spanning
the complete window under analysis, n∈{n0, ..., n0+D−1}.
As both ML estimates b̂H1 and âH1 need to be estimated
together, an iterative optimization was applied [25] where an
initial estimate of b̂H1

is taken as the median of dRR(n).
Typically the estimation of b̂H1

and âH1
converges to stable

values in less than 10 iterations.
A test series, Υ(n), can be generated by computing the

test Υ(n0) for each possible value of n0 in the signal. The
threshold γ′ is computed as the 75th percentile of the ampli-
tude of Υ[n] in each recording. In order to avoid detection of
noise bursts as episodes, a lower limit of 10 s to the width of
detected peak in Υ[n] was imposed.

The location of each j-th HR change episodes is then
assigned to sample positions, nj , where Υ(n) test has a
maximum which crosses the γ′ threshold. Distinction can be
made between acceleration and deceleration HR episodes, by
applying the detector twice, with h(n) = r(n) for accel-
erations, and with h(n) = −r(n) for decelerations. Fig. 4
shows Υ(n) example of the GLRT-based detector output for
significant accelerations and decelerations episodes.

F. Estimators of QT-adaptation time

The estimation of time delay τj between dQT(n) and
diQT(n) series during j-th HR changes can be formulated as
a two-channel time delay estimation [26]. To derive the ML
time delay estimator we depart from the signal model of the
two series as

x1(n) = s(n) + v1(n)
x2(n) = s(n− τ) + v2(n)

}
n = 0, ..., N − 1, (17)

where x1(n) and x2(n) correspond to diQT(n) and dQT(n),
respectively. The observed signal x1(n) is assumed to be
composed of an unknown signal s(n), representing the QT
change trend, and additive stationary white noise v1(n) with
variance σ2

v (modelled either as Gaussian or as Laplacian).
The same assumption applies for the second channel except
that the QT trend is delayed by an unknown time τ . It is
assumed that the QT trend s(n) has flat (constant) behaviour
at the onset and end extremes of the observation window in
a duration which guarantees that delaying by τ the series, it
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Fig. 4: Example of dRR(n) series (top panel) together with
its GLRT detector Υ(n) series for HR accelerations-induced
negative transitions (h(n) = r(n), middle panel), and for
HR decelerations-induced positive transitions (h(n) = −r(n),
bottom panel). The red line denotes thresholds γ′ values.

still has the same flat value at onset and end samples (step
transition much shorter than the observation interval).

Thus, the ML time delay estimate of τ will depend on the
assumed distribution of the series. The PDF which charac-
terizes the available observation xi =

[
xi(0) · · ·xi(N − 1)

]T
i ∈ {1, 2}, with s =

[
s(0) · · · s(N − 1)

]T
, and assuming

v1(n) and v2(n) uncorrelated and with Gaussian PDF, results
in [26]:

pv(x1,x2; τ, s) =
N−1∏
n=0

1

2πσ2
v

exp

[
−
(
x1(n)−s(n)

)2
+
(
x2(n)−s(n−τ)

)2
2σ2

v

]
.

(18)

Taking the logarithm and grouping factors independent of τ
or s, we obtain

ln pv(x1,x2; τ, s) = Constant+

− 1
2σ2

v

N−1∑
n=0

((
x1(n)−s(n)

)2
+
(
x2(n)−s(n−τ)

)2)
.

(19)

Maximization of the log-likelihood function in (19) is done
by first differentiating with respect to s(n) for a given τ ,

∂ ln pv(x1,x2; τ, s)

∂s(n)
=

1

σ2
v

(
x1(n)+x2(n+ τ)−2s(n)

)
, (20)

which when set to zero, results in the following estimator for
s(n)

ŝ(n; τ) =
x1(n) + x2(n+ τ)

2
. (21)

Inserting ŝ(n; τ) into the log-likelihood function in (19) and
maximizing with respect to the other parameter τ , we obtain

τ̂=argmin
τ

(
N−1∑
n=0

(
x1(n)−x2(n+τ)

)2
+
(
x2(n)−x1(n−τ)

)2)

=argmax
τ

(
1

2

N−1∑
n=0

(
x1(n)x2(n+τ)+x2(n)x1(n−τ)

)
−Ex(τ)

4

)
(22)

with

Ex(τ)=

N−1∑
n=0

(
x2
1(n) + x2

2(n) + x2
1(n−τ) + x2

2(n+τ)
)
. (23)

Since the signal s(n) is supposed to have a constant value in
intervals larger than τ at the observation window extremes, the
estimator in (22), from first equality, is just the least square
estimate varying τ ,

τ̂ LS =argmin
τ

N−1∑
n=0

(
x1(n)− x2(n+τ)

)2
. (24)

Alternatively, we know that if s(n) is of finite support (the
signal has a finite number of non-zero values) and contained
in the observation interval, Ex becomes independent of τ
and the ML estimate, from second equality in (22), results
in maximizing in τ the cross-correlation between x1(n) and
x2(n + τ) [26]. However, since here s(n) is not zero at
the interval extremes, and in addition its values can differ
from one extreme to the other, Ex(τ) does depend on τ
making the ML estimate resulting from (22) noninterpretable
as a cross-correlation maximization. If we rather modify the
signals x1(n), and x2(n) by adding a constant value b, such
that the mean values at the extremes of the new signals,
x̃i(n) = xi(n)− bi, i ∈ {1, 2}, becomes symmetric with same
module and reverted sign, we have Ex̃ independent of τ and
we will obtain the cross-correlation ML estimate but based on
the modified signal x̃i(n). We can estimate bi as

b̂i =
med

{
xi(0), ..., xi(I−1)

}
+med

{
xi(N−I), ..., xi(N−1)

}
2

(25)
with I the number of samples at the observation interval onset
and end where we have guarantees that the HR is stationary.

The ML estimate is then the one that maximizes the cross-
correlation function between the available modified observa-
tions,

τ̂ CC = argmax
τ

(
N−1∑
n=0

x̃1(n)x̃2(n− τ)

)
; τ ∈ {−I, ..., I},

(26)
which, when expressed in terms of the QT series at each j-th
HR changes becomes the estimator

τ̂ CC
j = argmax

τ

 nj,e∑
n=nj,o

d̃iQT(n)d̃QT(n− τ)

 ; τ ∈ {−I, ..., I},

(27)
with nj,o and nj,e the onset and end samples, respectively, of
the j-th detected HR change episode. nj,o is estimated as the
first sample when Υ(n) test crosses threshold γ′ backwards
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from nj , and retracting backwards an extra of I samples.
Similarly is done for nj,e by searching the crossing forward
from nj and adding an extra I samples forward.

The ML estimators τ̂ CC
j and τ̂ LS

j are derived from the as-
sumption of Gaussian noise. However, features derived from
the ECG use to be better represented by Laplacian rather than
Gaussian distributions, as is the case of QRS angles [24] or
Karhunen-Loève transform coefficients from the T wave [25].
The QT interval is a measure based on QRS onset and T
end identifications, largely subject to outliers, suggesting the
consideration of Laplacian models when estimating the delay
between the QT series.

To derive the ML time delay estimation under Laplacian
noise distribution we depart from the same signal model in
(IV), but now with the Laplacian noise PDF as in (10),
resulting in the following observation signals PDF:

pv(x1,x2; τ, s) =
N−1∏
n=0

1

2σ2
v

exp

[
−
√
2

σv

(∣∣x1(n)−s(n)
∣∣+∣∣x2(n)−s(n−τ)

∣∣)] .
(28)

Taking the logarithm and grouping factors independent of τ
or s, we obtain

ln pv(x1,x2; τ, s) = Constant+

−
√
2

σv

N−1∑
n=0

(
|x1(n)−s(n)|+|x2(n)−s(n−τ)|

)
.

(29)

Maximization of the log-likelihood function in (29) is done
by first differentiating with respect to s(n) for a given τ ,

∂ ln pv(x1,x2;τ,s)
∂s(n) = −

√
2

σv

(
x1(n)−s(n)
|x1(n)−s(n)|+

x2(n+τ)−s(n)
|x2(n+τ)−s(n)|

)
= −

√
2

σv

[
sgn
(
x1(n)−s(n)

)
+ sgn

(
x2(n+ τ)−s(n)

)]
,

(30)

which when set to zero, results in the following estimator

ŝ(n; τ) = med
{
x1(n), x2(n+ τ)

}
=

x1(n) + x2(n+ τ)

2
.

(31)
Inserting ŝ(n; τ) into the log-likelihood function in (29) and
maximizing with respect to the other parameter τ , we obtain

τ̂=argmin
τ

N−1∑
n=0

(
|x1(n)−x2(n + τ)|

2
+
|x2(n)−x1(n− τ)|

2

)
.

(32)
Making use of the assumption that s(n) has constant value at
the extremes of the observation interval for a period larger than
τ , the ML estimator of τ for Laplacian noise can be written
as

τ̂ L =argmin
τ

N−1∑
n=0

∣∣x1(n)−x2(n+ τ)
∣∣, (33)

which does not need any correction as in the Gaussian case.
Expressing it in terms of the QT series, it becomes the
following estimator at each j-th HR change

τ̂ L
j =argmin

τ

nj,e∑
n=nj,o

∣∣diQT(n)− dQT(n+ τ)
∣∣ ; τ ∈ {−I, ..., I}.

(34)

G. Evaluation in simulation of QT-adaptation time estimators

To assess the time delay estimators in simulation, we gener-
ated a QT slope corresponding to HR accelerations including
a gradual ramp-like transition defined as:

s(n)=


a+ b, n=0, ..., D−T

2 − 1

a
(
1− 2

T+1

(
n−D−T−2

2

))
+b n= D−T

2 , ..., D+T
2 −1

−a+ b, n= D+T
2 , ..., D − 1

(35)
where T takes values from a uniform random distribution
between values corresponding to 10 and 70 s. The amplitude
of the step is 2a, the value at the middle of the transition
step is b implying b + a indicates the departing level of
the step and b− a the arrival one (Fig.5). In case of HR
deceleration (positive slope transition in dQT(n)) the step like
transition has the form −s(n). The observation signal length
in samples D is taken as corresponding to 1000 s. Added
white noise vi(n) was scaled to better match the variability
of the real series with a factor taken randomly between 0.010
s and 0.50 s. The transition ramp 2a amplitude was chosen
to match the amplitude range of real QT transitions. The
mean stationary QT value at higher HR, b− a, was generated
randomly between 0.23 s and 0.30 s, and at lower HR, b+ a,
between 0.33 s and 0.40 s. The simulated time lag τ was
also randomly selected and ranged between 0 s and 70 s. In
total, 800 series realizations, sampled at 4 Hz, were generated,
which were the result of adding Gaussian/Laplacian noise to
200 realizations from each combination of negative/positive
slope transition. Ranges of parameters were chosen based on
real observed QT changes in stress test [13].

To evaluate the time-delay estimator’s performance, the
error, ε, between the true τ introduced at the simulation and
the estimated one, τ̂ , was computed as ε = τ̂ − τ , including
superindexes to denote each particular detector, see Table II.

H. QT-adaptation-time lag in athletes

Time delay was estimated from HR accelerations when the
athlete is exercising and identified with τa, and from HR
decelerations when the athlete is recovering and identified
with τd. A extra of 10 s, I = 40 samples, were added at
the observation interval extremes to guarantee the presence
of stationary HR samples as required by the assumptions of
time-delay estimators.

The presence of an observable HR transition does not
guarantee the presence of an observable transition in dQT and
diQT series. The dQT series is characterized by a lower range
of variations and higher variability than dRR, which could
mask the low-amplitude transitions in dQT and consequently
bias the estimation of transitions in diQT. Thus, once HR
transitions are identified, the analyzable transitions in dQT

and diQT series were selected based on their variability. The
transition is eligible for time delay computation if the global
variance along the entire transition is more than three times
the local variance, computed over the consecutive 10s-long
windows composing the transition.

Each recording could be characterized by a total of Ja HR
accelerations and Jd HR decelerations with each correspond-
ing set of τ̂j,a, j ∈ {1, . . . , Ja}, and τ̂j,d, j ∈ {1, . . . , Jd}, de-
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lay estimates. Thus a median value of τ̂j,a, τ̂ma = med{τ̂j,a},
and of τ̂j,d, τ̂md = med{τ̂j,d}, were computed to characterize
the time delay at each training session.

I. Statistical analysis

The estimated time delay τ in athletes was categorized
based on sex, sports type, maximum HR reached during exer-
cise and exercise intensity. Sports type is defined depending on
the prevalence of dynamic (cycling, jogging, middle distance
race, running) or static components (aerial silks, basketball,
CrossFit, fitness, tennis) based on the Task force for sport
classification [27]. Maximum HR (HRm) is categorized as
overcoming/no overcoming the theoretical maximal (HRT

m),
defined as HRT

m = 220− age in bpm [28]. Another way to
estimate exercise intensity is to compute the percentage of
HR reserve (HRR). The HRR is the theoretical maximal HR
(or the highest observed HR reached during physical activity
when it is higher than the theoretical maximal HR) minus
the HR at baseline. The percentage of HRR (%HRR) used
during physical activity, or exercise intensity, is the ratio of
the observed maximal HR minus the basal relative to HRR.
Sport intensity was considered submaximal if %HRR<90%
and maximal/near to maximal if %HRR≥90%.

Normality of distributions was tested with Lilliefors test and
then classes of median delays estimated from HR acelerations
(τma ) and HR decelerations (τmd ) were compared with a
Wilcoxon ranksum test.

The correlation between the delays estimated from each HR
accelerations (τ̂a) and HR decelerations (τ̂d) and the charac-
teristics of the corresponding HR transition was computed.
Each HR acceleration/deceleration was characterized in terms
of duration (Da/Dd), amplitude (Aa/Ad) computed as the
difference between the minimum and maximum values of the
HR transition, and slope (Sa/Sd) which is the ratio Aa to Da

and Ad to Dd.

IV. RESULTS

A. Evaluation in simulation of QT-adaptation time estimators

An example of simulated QT transitions is shown in Fig
5. Table II contains the distribution, mean±standard deviation
(SD), of τ̂ and relative errors ε in simulation for the different
estimators under test.

Fig. 5: Simulated QT series with linearly gradual transitions.

TABLE II: Simulation results: mean ± SD of the estimated
delays τ̂ and errors ε distributions, reported in s.

Noise PDF Gaussian Laplacian
τ 21.47 ± 16.27

τ̂CC 21.53 ± 16.21 21.50 ± 16.21

εCC 0.06 ± 1.34 0.03 ± 1.22

τ̂LS 21.54 ± 16.26 21.50 ± 16.29

εLS 0.07 ± 1.20 0.02 ± 1.01

τ̂L 21.55 ± 16.18 21.48 ± 16.29

εL 0.08 ± 1.20 0.01 ± 0.90

B. QT-adaptation-time lag in athletes

Starting from the 112 ECG-signal sets belonging to healthy
athletes, 62 of them were excluded due to low SNR or
because belonging to the same subject, resulting in a total
of 50 ECG signal sets included in the analysis, see number
distribution across sports in Table I. The 50 healthy subjects
are competitive or not competitive athletes with an average
training rate of 4 times per week for their main sport activity.
The main information of databases before and after ECGs
exclusion is reported in Table III. None of the 50 subjects
had previous history of cardiorespiratory diseases neither were
taking drugs at the time of ECG acquisition.

A subject practicing jogging with asymptomatic SQTS was
reported as case study. The subject has 2 analyzable ECGs
following the exclusion criteria (refer to III-B and III-H) [19].
The subject is male and 56 years old [19].

TABLE III: Demographic and anthropocentric information of
the databases SPDB and SPDB2, and of the included athletes.
Missing information is reported into parenthesis. The baseline
HR (HRr), the maximal HR during physical activity (HRm),
the theoretical maximal HR (HRT

m) and the percentage of
HR reserve (%HRR) were computed and reported only for
the athletes included in the analysis.

Parameter SPDB SPDB2 Included athletes
Sex
M/F

53 / 28
(0)

19 / 3
(0)

42 / 8
(0)

Age
y

30 ± 13

(1)
27 ± 13

(0)
26 ± 8

(0)
Weight
kg

71 ± 21

(8)
69 ± 6

(12)
69 ± 9

(5)
Height
cm

170 ± 30

(8)
177 ± 6

(12)
177 ± 7

(5)
BMI
kg/m2

22.3 ± 3.5

(8)
21.7 ± 1.4

(12)
22.1 ± 2.2

(5)
Smoking
NO/Y ES

39 / 29
(13)

18 / 4
(0)

31 / 17
(2)

HRr

(bpm)
- - 70

[63-86]
HRm

(bpm)
- - 190

[179-200]
HRT

m

(bpm)
- - 197

[193-199]
%HRR
(%)

- - 95
[89-100]

The percentage, median[range] across subjects, of missing
values that were linearly interpolated in the RR series is
1.8[0.6-3.7]% and in the QT series is 14.1[10.8-21.4]%.

The hypothesis of a better suitability of the Laplacian
over the Gaussian time delay estimator between dQT(n)
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Fig. 6: The histograms of ∆dQT(k) and ∆dRR(k), displayed
together with the best fit of the Gaussian and Laplacian PDFs
obtained by maximizing the respective likelihood functions.
Fitting errors ϱ are overprinted.

and diQT(n) was evaluated analyzing the actual QT-interval
variability which lead to v2(n), in (17). The median value d̄QT

of consecutive five beat sets is subtracted and the resulting
∆QT(k) = dQT(k)− d̄QT values are plotted in a histogram
(Fig. 6(a)) as an estimate of the probability distribution
of v2(n). This distribution is fitted with its best Laplacian
and Gaussian PDF, overprinted in Fig. 6(a). Goodness of
fit is quantified by the root mean squared errors, ϱ, of
the PDF fitting. The Laplacian error, ϱL = 0.008, results a
33% lower than the Gaussian, ϱG = 0.012. When repeating
the analysis for the outlier rejected plus interpolated QT
series, ∆QT(n) = dQT(n)− d̄QT same conclusion is reached,
ϱL = 0.012 and ϱG = 0.020, corroborating the better adequacy
of Laplacian distribution in the model in (17).

Analogously, the hypothesis that the RR intervals follows
a Laplacian distribution, as assumed in (8), is tested and the
results are displayed in Fig. 6(b) where it is evident that the
Laplacian distribution provides a more accurate fit for the RR
intervals compared with the Gaussian distribution.

Table IV presents the distributions of the estimated model
parameters α and β in (5), error ϵ for the healthy subjects
and for the SQTS subject. Table V contains the distribution of
HR-transition duration (Da and Dd), HR-transition amplitude
(Aa and Ad), HR-transition slope (Sa and Sd) plus the delays
τ̂a and τ̂d, and τ̂ma and τ̂md , for each HR acceleration and
deceleration. The Table VI contains the correlation coefficient
between HR-transition characteristics and delays τa and τd for
the healthy subjects. The SQTS subject has two analyzable
signals. The τ̂ma is 2.8 and 19.3; the τ̂md is 11.8 and 19.1.

An example of estimated diQT (n) series for a subject
practicing running is shown in Fig. 7.

TABLE IV: Distribution (median [25th-75th]) of α̂, β̂, ϵ for
healthy athletes (H) and the subject with SQTS.

Subject α̂ β̂ ϵ (ms)

H 0.14 0.39 11
[0.11-0.16] [0.37-0.42] [9-16]

SQTS 0.13 0.44 11
[0.08-0.22] [0.40-0.46] [8-15]

Fig. 8 shows the distributions of τ̂ma and τ̂md for healthy sub-
jects categorized based on sex, sport type, HRm, and exercise
intensity along with the statistical differences from Wilcoxon
ranksum test. As a result of the inclusion criteria for ramp
selection presented in section III-H, the number of QT series
with analyzable HR-acceleration ramp is 48 distributed as
follows: 8 female, 40 male; 24 dynamic sport, 24 static sport;
31 HRm ≤ HRT

m, 17 HRm > HRT
m; 6 submaximal exercise

intensity, 42 maximal/ near to maximal exercise intensity. The
number of QT series with analyzable HR-deceleration ramp
is 39 distributed as follows: 8 female, 31 male; 19 dynamic
sport, 20 static sport; 26 HRm ≤ HRT

m, 13 HRm > HRT
m; 5

submaximal exercise intensity, 34 maximal/ near to maximal
exercise intensity.

V. DISCUSSION

The present work aims to characterize the time delay of QT-
interval accommodation to HR accelerations and decelerations
for a healthy trained population during training.

This analysis requires the computation of RR series and
QT series from ECGs acquired during sports practice through
wearable devices. The delineation of the ECG, and in par-
ticular of the T-wave end is negatively affected by the sport-
related noise and artifacts. Eventually, T wave and P wave can
overlap at very high HR. In order to improve the delineation
of ECG-waves fiducial points and consequently the QT series,
ECGs were only considered for analysis if 65% of the signal
has acceptable values of SNRHF and SNRLF. In addition
the identification of ECG-wave onsets and ends was visually
checked and segments with large false negative detection were
further subsegmented for artifact exclusion and reannotated.
Further, even if the ECG is acceptable, the dynamics of the
QT interval was not studied in windows where SNRHF and
SNRLF are under the threshold. Possible sources of artifacts
and data loss are that the conductive sensor pads were not
humidified enough to increase conductivity or the chest band
was not tight enough to maximize the contact with the body
and minimize its movement. Furthermore, we can imagine
that athletes who made extreme efforts may have ECG signals
corrupted by high baseline wandering due to heavy respiration
and body movement. Even if the ECG selection based on the
SNR may have excluded a high number of recordings, the
number of analysed ECGs is necessarily reduced to guarantee
a reliable analysis, especially for the computation of the QT
interval. The accuracy of QT measurements directly depends
on the ability to accurately determine the QRS onset and
T end. The T-end determination is challenging, especially
in the presence of high levels of noise. The localization of
wave onsets and ends is much more difficult, as the signal
amplitude is low at the wave boundaries and the noise level
can be higher than the signal itself. Of note, there is not
any universally acknowledged rule to locate the end of the
T wave. In literature, very different delineation approaches
are present based on mathematical models, derivative curve,
ECG slope criteria, the wavelet transform, adaptive filtering,
artificial neural networks, hidden Markov models, support vec-
tor machine, partially collapsed Gibbs sample and Bayesian,
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TABLE V: Distribution (median [25th-75th]) of HR-transition duration (D), HR-transition amplitude (A), HR-transition slope
(S), τ̂ , τ̂m in HR accelerations (sub-index “a”) and decelerations (sub-index “d”) for healthy athletes (H).

Subject Da (s) Aa (s) Sa (%) τ̂a (s) τ̂ma (s) Dd (s) Ad (s) Sd (%) τ̂d (s) τ̂md (s)

H 36.3 1.5 0.4 4.3 6.8 37.3 1.3 0.4 8.3 8.8
[27.0-45.3] [1.0-2.6] [0.3-0.7] [0-11.3] [2.1-15.0] [24.8-53.8] [0.9-1.9] [0.2-0.5] [1.3-16.0] [5.3-16.9]

Fig. 7: Estimation of expected instantaneous memoryless, HR-dependent, QT-interval series diQT(n) through a logarithmic
regression model from an ECG recording acquired during running. On the left side, the first row shows dRR(n) and its
selected stationary windows marked in black. The second row shows the estimated diQT(n) overlapped with dQT(n) where a
delay between them can be appreciated at the large HR transitions (zoom presented in panel a) and b)). The third row shows
the logarithmic model fitting data pairs of dRR(n) and dQT(n) in stationary windows.

Fig. 8: Boxplot of distribution of τma and τmd for healthy athletes when categorized for sex, sport type, HRm reached during
exercise and exercise intensity.

TABLE VI: Correlation coefficient between HR-transition
characteristics and estimated delays τ̂a and τ̂d for the healthy
subjects. * significance of correlation p < 0.05

τ /HR-transition Da Aa Sa Dd Ad Sd

τ̂a 0.10 -0.11 -0.24* - - -
τ̂d - - - 0.30* 0.10 -0.17*

“wings” function, TU complex analyses, correlation analysis,
and k-nearest neighbor [29]. Among them, the wavelet-based
delineator used here is one of the commonly applied for
T-end detection [21]. Furthermore, the QT interval is lead
dependent, as all ECG parameters are. This is caused by the
varying projections on different lead vector axes. Historically,
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measurement of QT intervals has been preferably performed
in lead II. When the T wave is not easily identified in lead II,
lead V5, V6 or I can be alternatively used [30]. Other authors
suggest to derive the QT interval by computing the median of
QT intervals from a total of 6 leads with 3 leads taken from
peripheral leads (avoiding III and aVR because of frequent low
voltages and inverted polarity, respectively) and 3 precordial
leads (preferably V2, V4, and V6) [31]. Alternatively, the QT
interval can be computed in a lead derived from the Principal
Component Analysis (PCA), losing the dependency of ECG
measurements on the specific ECG lead. The latest approach
was used to compute the QT/RR hysteresis during stress tests
from patients with suspected cardiovascular disease [13]. The
present work computes the QT interval in a single-lead ECG
acquired from a chest band, whose conductive ECG sensor
pads are located at the centre of the thorax and the midaxillary
line, resulting in a pseudo-V6 lead, typically used to compute
the QT interval. Due to only having a single lead available,
the spatial dispersion over leads of the length and hysteresis
of the QT interval could not be evaluated in this work.

In the computation of RR and QT series, a piecewise cubic
Hermite polynomial is used to uniformly interpolate the RR
and QT series, since piecewise cubic Hermite polynomial
avoids the generation of high amplitude spikes and series
overestimation when there are longer portion of data loss or
artifacts [32]. This enables a more reliable signal processing
than classical cubic spline interpolation [32].

The relation between HR acceleration/deceleration and their
induced QT changes has been modelled with a transformation
part (typically non-linear), representing the stationary relation
of QT with RR, plus a first order linear system representing the
system memory [33]. First of all, the transformation relation
was applied to obtain the instantaneous memoryless HR-
dependent QT-interval series, because the time delay between
dQT(n) and dRR(n) cannot be estimated directly due to the
different range of amplitudes [13]. In order to estimate the
model parameters of the transformation relation between QT
and RR, six stationary windows of which mean RR is closest
to the maximum, minimum and mean (two windows from
each condition) value of dRR(n) were considered. Stationary
windows guarantee that the dominant dependency between
RR and QT is mostly the transformation part, so excluding
the first order linear system part representing the system
memory, and favoring a proper estimation of parameters α
and β representative of the instantaneous transformation part.
However, the stationarity of those windows can not be really
guaranteed during real-case training, mainly due to movement
and concurring artifacts. Thus, athletes may be advised to
have complementary standard ECGs acquired during clinical
stress tests with better stationary conditions to estimate the
model parameters α and β. This is possible since QT-RR
relationship pattern exhibits intra-subject stability (refer to Fig.
4 of Supplementary Materials) [34]. Conversely, the QT/RR
relation is different between different subjects (refer to Fig. 1,
2, 3 of Supplementary material). However, the SQTS subject
presents less stability in the QT/RR relation (refer to Fig. 5 in
the Supplementary Material).

Abrupt acceleration and deceleration in dRR(n) were auto-

matically detected by a GLRT-based algorithm. In the GLRT-
based algorithm, the parameter T, representing the duration of
the HR change, was taken corresponding to 30s because it is
the average transition length observed in our dataset. Abrupt
changes in RR series could alternatively had been identified
by visual inspection and manual annotation, based on the
evident change in RR series slope and variability. However,
these manual annotations would be highly subjective, time-
consuming and laborious [35]. Therefore, the automatic iden-
tification here presented is preferred, which if desired can be
afterwards manually supervised.

The superior adequacy of the Laplacian modeling of QT
variability was already shown true in a study where delay was
estimated both in simulation and in clinical stress tests for
coronary artery disease stratification [18]. The present study
confirmed that variability in the features derived from the ECG
as the RR interval dRR(k) and QT interval dQT(k) is better
represented by Laplacian distribution than Gaussian (Fig. 6).
Indeed, electrocardiographic measures as the QT interval,
based on QRS-onset and T-end identifications, are largely
subjected to outliers when ECGs are acquired in highly noisy
conditions during training [18]. The same study is repeated
for RR-interval and QT-interval characterization after outlier
rejection plus interpolation, dRR(n) dQT(n) respectively, ob-
taining similar results and confirming that Laplacian distribu-
tion assumption in (17) is more adequate than Gaussian.

Maximum likelihood detectors of the QT-adaptation-time
lag have been derived based on Gaussian and Laplacian noise
assumptions. The simulation results show that both Gaussian
and Laplacian noise distribution based estimators slightly
overestimate τ in case both of Gaussian noise and of Laplacian
noise (Table II). In the case of Gaussian noise, the best-
performing estimator is τ LS, with an error SD of εLS of 1.20
s while τ CC gives the highest SD of εCC of 1.34 s. The lower
performance of τ CC could be a result of the extra variance
added by the estimation of the extra parameter and b. In case
of Laplacian noise, the best-performing estimator is τ L with
SD of εL of 0.90 s [18]. The estimators εLS and εL were
clinically tested estimating the time delay in stress test of
patients with coronary artery diseases. During this evaluation,
the εL shows superior adequacy for time-lag estimation [18].
Given the previous results and the fact that the distribution
of the QT series has shown to be closer to Laplacian PDF
distribution, the τ L appears as the detector of choice, and is
the one used in the actual data analysis.

The time-lag estimates in the athletes population showed
that τ̂ma is on average lower than τ̂md , which is compati-
ble with an increment of repolarization dispersion after the
large increase in sympathetic activity reported in exercise and
emotions [15]. This difference between the QT-interval delay
during HR acceleration versus deceleration had been already
shown during incremental pacing manoeuvres[9], which are
representative for the QT/RR relation during physical activity,
and when provoked by atropine bolus injection [16].

Female athletes have slightly but not significantly lower
time delays than male athletes. This is compatible with a
previous study, in which the speed of QT/RR hysteresis was
found to be faster in females than in males [36]. However,
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results could be biased by the unbalanced population. Cat-
egorizing by sport type, dynamic sports present higher τ̂ma
and τ̂md than static activities. Categorizing by HRm, τ̂ma and
τ̂md are higher when HRm > HRT

m than when HRm ≤ HRT
m.

Dynamic activities and HRm > HRT
m are eventually linked

with higher physical exertion which may be linked to increased
repolarization dispersion. Another way to characterize exercise
intensity is the percentage of HRR used. The number of
subjects that are at the maximal or near to maximal exertion
increases with this metric with respect to the classification
based on the HRT

m. Nonetheless, the conclusions do not
change and those subjects that are in the maximal zone exhibit
a higher time delay on average than the subjects who trained
in the submaximal zone of HR.

However, a direct relationship between prolonged QT mem-
ory with arrhythmias can not be established. The cardiac
electrical activity and the development of arrhythmias can
depend on several elements after exercise. Firstly, there are
several metabolic alterations that last after cessation of phys-
ical activity and might contribute to arrhythmia development,
e.g. excessive catecholamines release [37]. Another factor can
be the exercise-related adaptations in the cardiac autonomic
modulation as well as the other structural, electrical and
functional adaptations of the athlete’s heart [38].

The estimated delay does not correlate (in three cases
significantly) with the duration, the amplitude and the slope
of the HR acceleration and deceleration.

For completeness, the time delay of the pathological subject
with SQTS and practicing jogging was analysed. In short QT
syndrome, the repolarization heterogeneity as well as the ab-
normal QT-RR relationship is more pronounced at lower HR,
and QT intervals characteristically show lack of adaptation
to HR changes [39]. τ̂md is greater than the corresponding
delays for the healthy population. This result could be justified
by the shorter QT interval in SQTS subjects as compared
to healthy people at corresponding RR. Remarkably greater
τ̂md could be explained by the phenomenon of deceleration-
dependent shortening of QT interval (shortening of QT in-
terval associated with a decrease in HR) caused by strong
parasympathetic stimuli [39]. The SQTS subject seems to have
greater variability in the estimation of model parameter α than
healthy subjects. Although, this is only one subject and the
inferred observations remain subject of debate, studies with
a considerable population of SQTS subjects still involved in
sports practice are needed to confirm them.

The QT-adaptation time values obtained for sport athletes,
and reported in Table V, are remarkably lower in mean than
those reported in other populations during stress tests as in
[13], [40]. This can be due to age populations differences
across studies. However, it can also be that the methodology
here presented to estimate the τ result in negatively biased
estimates when the HR excursion of the transition are low, as
it is in our data [15].

Finally, is worth to mention that QT hysteresis is a phys-
iological adaptation mechanism which may also reflect the
timing differences of this process in various regions of the
ventricles. However, it is still unclear how this contributes to
the risk of arrhythmias.

VI. LIMITATION AND FUTURE IMPROVEMENT

The athletic population used in this study is unbalanced
in terms of sex and age, future works should aim to collect
ECGs during training in female and old athletes to further
investigate the relation of QT/RR hysteresis with sex and age.
Despite the current database has served for the development
of the algorithm, future databases are needed for performance
evaluation of the presented algorithm.

The delineation of the T-wave end is challenging and
less accurate than the detection of the T-wave peak. Future
studies can be designed to separately evaluate the adaptation
of the early and late parts of the repolarization, in order to
understand if the QTpeak interval is not only more robust, but
also equivalent to characterize the repolarization adaptation in
pathological scenario.

Further, as required by the formulation of the time delay
estimator, an interval of length I (in this work 10s) at the
observation interval onset and end was added to guarantee
the presence of stationary HR samples. However, changes in
sympatho-vagal activation occur as approaching the extremes
of abrupt HR changes as well as during the different phases of
exercise. These changes in sympatho-vagal activation affects
the time delay resulting in the fact that it is not constant
along the duration of the ramp [41]. Furthermore, the ramp-
like transition may not represent accurately the extremes of
an HR acceleration or deceleration. A specific study on the
relation of time delay and HR-transition duration/phases may
be designed to explore this effect.

In addition, the QT-adaptation time lag, is known to be
composed of two phases: one initial fast adaptation phase
lasting a few seconds followed by a slow adaptation phase
with a time constant of more than 30 seconds [7], [14].
These two phases have not been considered separately, so
the estimated time delay is expected to be the one of a
single exponential fitting the two phases. Future works should
explore the possibility to obtain independent estimators for
each phase time constant.

On the clinical applications side, the study does not allow to
establish the clinical value of the biomarker in a sports prac-
titioner population. To study this potential value, studies need
to be conducted where knowledge exists, or can be derived by
other techniques, about the SCD risk of the involved subjects,
and then threshold values on τ for triggering risk alarm could
be inferred from them. One possible approach can be to in-
volve a matching population of SCD survivors with implanted
ICD still engaged in sports. The comparison between SCD
survivors and the healthy subjects can elucidate whether their
QT-RR dynamics can discriminate between different level of
arrhythmic risk. This approach should be implemented with
a standard clinical exercise tests that can guarantee better
acquisition conditions and delete the spontaneous behaviours
introduced by many different types of sport.

VII. CONCLUSION

A method to compute the QT lag in response to HR
changes from ECGs acquired through wearable sensors while
practicing sports has been proposed. The method includes
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identification of HR changes episodes, done with a GLRT
detector of linear transition HR ramps, and a Maximum
Likelihood QT time delay estimator based on Laplacian noise
distribution. The Laplacian estimator has been proven to be
superior to those based on Gaussian distributions.

As expected, the QT-adaptation time-lag estimated during
HR deceleration, especially after intense physical exertion of
athletes, is characterized by longer time delays than during
HR acceleration. The difference between the hysteresis/delay
of QT adaptation to HR deceleration versus acceleration is of
smaller magnitude than at supine rest, which is what would be
expected as a result of higher sympathetic activation at sport.

The proposed method to measure the QT memory time lag
opens an opportunity to monitor the cardiac activity during
real exercise and consequently to understand what happens
in cardiac electrophysiology during physical activity when
malignant arrhythmogenic events may occur, especially in
subjects with congenital or structural heart disease.
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