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Characterization of Retinal Arteries by Adaptive
Optics Ophthalmoscopy Image Analysis

F. Rossant , I. Bloch , I. Trimèche, J.-B. de Regnault de Bellescize, D. Castro Farias , V. Krivosic ,
H. Chabriat , and M. Paques

Abstract—Objective: This paper aims at quantifying
biomarkers from the segmentation of retinal arteries in
adaptive optics ophthalmoscopy images (AOO). Meth-
ods: The segmentation is based on the combination of
deep learning and knowledge-driven deformable models to
achieve a precise segmentation of the vessel walls, with
a specific attention to bifurcations. Biomarkers (junction
coefficient, branching coefficient, wall to lumen ratio (wlr))
are derived from the resulting segmentation. Results: re-
liable and accurate segmentations (mse = 1.75 ± 1.24
pixel) and measurements are obtained, with high repro-
ducibility with respect to images acquisition and users,
and without bias. Significance: In a preliminary clinical
study of patients with a genetic small vessel disease, some
of them with vascular risk factors, an increased wlr was
found in comparison to a control population. Conclusion:
The wlr estimated in AOO images with our method (AOV,
Adaptive Optics Vessel analysis) seems to be a very robust
biomarker as long as the wall is well contrasted.

Index Terms—Adaptive optics ophthalmoscopy, retina
vessel walls segmentation, biomarkers, deep learning, de-
formable models.

I. INTRODUCTION

D ISEASES such as diabetes and high blood pressure are
growing in incidence, generating new needs for microvas-

cular diagnosis. The retina, easily accessible by imaging, offers
an observation window of the human microvascular network,
giving a unique opportunity for deciphering the anatomy and
physiology of human microvessels. It has been already shown
that non-ophthalmic pathologies can be predicted by analyzing
changes in the retinal vasculature: numerous systemic diseases
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Fig. 1. Conventional SLO (left) and AOO (right) of a normal artery,
AOO showing improved details of the vessel (bar: lumen; arrowheads
bracket: wall).

Fig. 2. AOO images of retinal arteries and diameters involved in the
estimation of biomarkers; (a) artery branch with well contrasted walls;
(b) arterial bifurcation.

such as cardiovascular hypertension [1], [2], diabetes [3], [4],
ischemic heart disease and stroke [5] have reported alterations
in retinal arteries and veins. This underlines the importance
of phenotyping of retinal microvessels thanks to eye fundus
imaging.

In clinical routine, confocal scanning laser ophthalmoscopy
(cSLO) (Fig. 1, left) or optical coherence tomography angiog-
raphy (OCTA) are the common imaging modalities used to
detect retinal vascular abnormalities. However, the diagnosis
is most often based on non-quantitative scales. Moreover, the
resolution of these images is not sufficient to quantify subtle
morphometric changes or to analyze micrometric structures such
as the arterial wall. Nowadays, adaptive optics ophthalmoscopy
(AOO, Fig. 2, right) offers a much higher image resolution (about
1 to 2μm/pixel against 10 to 20μm/pixel) paving the way to
quantitative monitoring of microvascular effects of diseases [6].

In the literature, several morphometric parameters have been
explored to characterize arterial branches and bifurcations, and
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correlate biomarkers to pathologies [7]. Thickening of the arte-
rial wall may result from hypertension [1]. Coefficients derived
from diameter measurements at an arterial bifurcation (e.g.,
junction exponent, branching coefficient) may reveal vascu-
lar remodeling in diabetes [3] and, in general, inappropriate
blood flow distribution [8]. Interpretating and monitoring these
measurements require high-resolution imaging, thus AOO, as
well as robust and accurate segmentation algorithms to estimate
diameters.

However, there is a lack of software tools to automatically seg-
ment vessels in AOO images and compute derived biomarkers.
In [9], the segmentation of the arterial wall is based on a spline
interpolation from manually defined control points. Therefore,
most clinical studies in AOO do not rely on image segmentation,
but on manual [3] or semi-automatic measurements of local
features, mainly diameters and parietal thickness. In [10], the
vessel width is measured at five parallel cross-sections, the
position of the central one being manually defined. Of the three
proposed algorithms, the sliding linear regression filter (SLRF)
is selected as the most accurate approach for identifying vessel
edges and deriving diameter [11]. Local analysis of the pixel
intensities at a particular cross-section is also used in [12], [13],
[14] thanks to the semi-automated software proposed by Imagine
Eyes [15]. While manual methods do not guarantee accuracy
or reproducibility of biomarkers, semi-automated methods are
more robust but time consuming and subject to variability due to
manual selection of the measurement location. So, there is a real
need of fully automatic segmentation methods to systematize the
estimation of biomarkers on relevant and automatically defined
regions. Such an algorithm could also pave the way to a more
global analysis of the vascular tree. However, segmenting auto-
matically AOO images is very challenging. The main difficulties
are related to the great variability of these images, the high
textured background, local blur due to local defocus (typically
at arterio-venous crossings), and the poor contrast of the parietal
wall.

In this article, we propose a complete framework, AOV, to
segment vessels in flood-illumination AOO (the only commer-
cially available AOO system [16]) and compute biomarkers
characterizing arteries and arterial bifurcations.

The remainder of the article is organized as follows. In
Section II, we introduce the main biomarkers we want to cal-
culate from the images and we describe briefly our database
and the targeted clinical application. Section III is dedicated to
image segmentation, as an extension of our previous work [17],
[18], [19], relying on a convolutional neural network and active
contour models. Given the difficulty to segment the arteries
with the required accuracy, we propose several usage modes,
from the completely automatic one to semi-automatic ones,
where the user basically initializes or reinitializes manually the
deformable models to focus on a specific area or to achieve
a better segmentation. Compared to our previous work [17],
[18], [19], the novelty is threefold: (i) we present a complete
framework to process AOO images with or without supervision;
(ii) we have extended our active contour model to introduce
more coupling between the interfaces to be detected, and (iii)
we introduce an optimized strategy in the parameter setting.
All this allowed us to obtain better performances in terms
of robustness, precision, reproducibility, and, at the end, to

propose the first operational software for clinical studies. In
Section IV, we present a theoretical and experimental study
to quantify the sensitivity of the biomarkers to segmentation
imprecision, an analysis which has never been done before.
Section V summarizes our experiments to evaluate the proposed
methods in the several usage modes, in terms of reproducibility,
robustness and accuracy. All results of Sections IV and V enable
us to select relevant biomarkers and define objectively which
minimal vessel caliber is required to get reliable measurements
for clinical applications. Finally, we discuss preliminary medical
results obtained on images of control subjects and patients
with CADASIL (Cerebral Autosomal Dominant Arteriopathy
with Subcortical Infarcts and Leukoencephalopathy), a systemic
small vessel disease of genetic origin (Section VI), and conclude
(Section VII).

II. VASCULAR MORPHOMETRY IN AOO

Our study focuses on the estimation of biomarkers that char-
acterize arterial branches and bifurcations in AOO images. We
describe briefly this imaging modality, then we define the mor-
phometric parameters that will be derived from the segmenta-
tions and we introduce our database.

A. Adaptive Optics Ophthalmoscopy (AOO)

Vessel imaging was performed with a commercially available
adaptive optics system [16]. The rtx1 camera corrects wavefront
aberrations with a 750 nm super luminescent diode source and an
adaptive optics system operating in a closed loop. This camera
uses an infrared flood illumination, with a transverse resolution
of 2 microns that enables a high precision imaging of the vessel
wall. The final image covers an area of 4°x4°, which results
from stacking 40 fundus images for 2 seconds, according to the
protocol in [1].

B. Morphometry

AOO (Fig. 2) enables us to see the arteriolar walls and,
therefore, to calculate the wall-to-lumen ratio, defined as the
ratio between the wall thickness e = (dext − dint)/2 to the
inner radius dint/2, where dint and dext are the internal and
external diameters, respectively:

wlr =
e

dint/2
=
dext − dint

dint
(1)

The wlr may indicate the degree of vascular tone, that is,
contricted vessels show a higher thickness wall and a dimin-
ished lumen diameter, and is believed to represent an adaptive
mechanism to high blood pressure.

The geometry of the arteriolar arborescence, where in a bi-
furcation one single branch divides into two different daughter
branches, can help us study its energetic efficiency [20]. Based
on Murray’s law, or the minimal work principle, blood flow
should be proportional to the cube of the vessel radii. To preserve
this flow, there exists a cubic relationship between the inner
diameter of parent (d0, Fig. 2(b)) and those of daughter vessels
(d1 and d2): d30 = d31 + d32. The junction coefficient is a way
of quantifying the conformation of the microvascular network
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according to Murray’s law. It is defined as x solving:

dx0 = dx1 + dx2 (2)

and its expected value is 3. Nevertheless, solving (2) may lead to
negative values of x, which has no physiological interpretation,
since we do not consider enlargements of the vessels after the
bifurcation. In this case, we will consider that the junction
exponent cannot be calculated.

Another biomarker is the branching coefficient β:

β =
d21 + d22
d20

=
1 + λ2

(1 + λx)
2
x

(3)

where λ is the coefficient of asymmetry, defined as:

λ =
d2
d1

ε ]0, 1] (4)

Considering an ideal bifurcation with an optimal branching
coefficient x = 3 (Murray’s law), we calculate the deviation
βdev to the optimum as

βdev =
d21 + d22
d20

− 1 + λ2

(1 + λ3)
2
3

(5)

This biomarker is always calculable and provides information
on the deviation to Murray’s law optimum: a positive deviation
indicates that downstream resistances are lower than optimal,
and vice versa. This does not preclude the cause of such varia-
tions (e.g., dilation or constriction of upstream or downstream
vessel) nor which vessel is the cause.

C. Database

Patients were evaluated during their routine care in the
National Referral Centre for Rare Cerebrovascular Diseases
in France (CERVCO) from the institution APHP (Assistance
Publique des Hôpitaux de Paris). The study was an observa-
tional study and was not declared as a trial on clinicaltrials.gov.
The study was approved by an independent ethics committee
(updated agreement CEEI-IRB-17/388) from INSERM–France
and conducted in accordance with the Declaration of Helsinki
and guidelines for Good Clinical Practice and General Data
Protection Regulation (GDPR) in Europa.

Patients with a good visual fixation and clear optical structures
that allowed for a neat visualization of the retina were selected.
Pupil dilation was necessary. We determined, as the region of
interest, the supero-temporal vessel arcade of the right eye. We
followed the largest artery until its temporal localization, and
looked to image as many bifurcations as possible, until the
vessels walls were no longer discernable.

We included 31 healthy subjects without systemic or ophthal-
mological diseases and 107 patients with CADASIL, a genetic
form of small vessel disease of the brain that can be exacerbated
by vascular risk factors such as hypertension [21]. As retinal ves-
sels are related to cerebral vessels, sharing many structural, func-
tional and pathological features, we can assume that the analysis
of retinal vessel alterations observable in 2D AOO images will
enable us to define relevant biomarkers in a progressive small
vessel disease as CADASIL. The database contains 533 images
centered on an arterial bifurcation. This database was divided
into two parts, having a similar ratio of images from control

subjects and CADASIL subjects: sub-database A contains 265
images selected to train and test the convolutional neural network
(Section III-C-1)). These images were manually annotated to get
the binary mask of the vessel lumen of both arteries and veins.
The other 268 images (sub-database B) were used to analyze
biomarker behavior with realistic data (Section IV) and for the
quantitative evaluation of our algorithms (Section V).

III. AOV FRAMEWORK: USAGES MODALITIES AND

SEGMENTATION METHODS

A. State of the Art

Segmentation of blood vessels in various parts of the body and
in different image modalities has raised a lot of developments.
Methods can be roughly divided into two classes: (1) “structural”
methods, that rely on prior information on the vessels and their
appearance in the given images, and (2) learning-based methods,
where all the information is supposed to be contained in a
database of images. The methods of the first type have been
extensively described in [22]. A geometrical model of the vessel
is defined (usually a generalized cylinder, and specific models
for bifurcations), appearance information is extracted from the
image (e.g., Hessian-based measures, flow of the gradient),
and an extraction scheme is designed, formalized either as a
segmentation process (typically using deformable models), or as
a tracking process (e.g., using minimal path or particle filters).
Learning-based approaches are summarized in [23], including
unsupervised (such as automated clustering) or supervised (e.g.,
support vector machines, random forests, convolutional neural
networks), where a reference segmentation has to be provided
for each image of the training set.

As for retina vessels, where the segmentation mainly aims
at computing biomarkers, especially close to bifurcations, most
work focused on standard eye fundus images. Very little was
done on AOO images, although their better resolution allows
for more accurate estimation of vessel diameters and derived
biomarkers. Among the few existing work, a semi-automatic
method was proposed in [9] based on a spline interpolation of
the vessel walls from manually defined control points. However,
the manual steps induce a lack of reproducibility, and the spline
approximation a lack of accuracy. A deformable model was
proposed in [17] to segment automatically the contours of the
vessel walls using an approximate parallelism constraint [24].
This method is robust and accurate for vessel segments, but
not for bifurcations. These two approaches are typical exam-
ples of methods of the first type. As for the second type of
methods, convolutional neural networks (CNN) are more and
more developed, in particular with the success of U-Net [25] and
nnU-Net [26] for medical image segmentation. Several variants
of CNN architectures have been designed for the segmentation
of retina vessels in eye fundus images (e.g., [27], [28], [29]
with an additional spatial regularization based on conditional
random fields, [30] using GAN, [31] and [32] using residual
blocks, [33] handling unbalanced classes in the loss function).
All these methods should be adapted to be able to process
AOO images. They usually do not include prior information
(besides the training dataset, and sometimes a regularization
as post-processing). They may lack accuracy in some specific
cases.



3088 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 11, NOVEMBER 2024

B. AOV Framework and Usage Modalities

In this paper, we propose an original approach, which com-
bines both types of methods, “structural” and “learning-based”,
taking advantages of each of them and compensating for their
drawbacks. Given the difficulty to segment the arteries with the
required accuracy, we have developed a framework, AOV, in
which the user can keep control on the segmentation task. To
this end, we propose to apply parametric contour models as
powerful segmentation tools that are easy to initialize manually,
if necessary. In the initial model [34], a parametric curve V (s)
evolves dynamically through the minimization of a given energy
functional to reach the boundary of the object to be segmented.
However, this method is sensitive to the initial curve position.
To overcome these problems, one can first look for methods
that ensure a good initialization (close to the solution) and one
can also introduce prior knowledge in the energy functional to
better drive the minimization process, as in [24]. That is why we
propose 1/ to rely on deep learning to initialize automatically
our deformable models, since this approach allows to cope with
the high variability of the data in terms of image quality and
vessel characteristics, and 2/ new energy functionals embedding
structural constraints to make the contour evolution more robust
to noise, blur and high gradients in the background. This strategy
provides good results in a fully automatic process while allowing
the user to easily reinitialize manually the active contour models
in case of failure. It is also possible to directly initialize the
algorithm manually to focus on a specific region in the image.

Concretely, we have designed a framework with two possible
usage modes, either fully automatic or semi-automatic where
the user keeps control on the segmentation initialization (Fig. 3).
In the fully automatic mode, the segmentation is initialized as
a preliminary segmentation mask predicted by a convolutional
network, an optimized U-Net designed to be robust to various
sizes and orientations of the vessel branches. This initial result
is then refined in a second step using advanced parametric mod-
els, with specific adaptations to accurately delineate the artery
walls and handle bifurcations. In the semi-automatic mode, the
only intervention of the user is to manually define the central
reflection line of the vessel branches by a few points, the rest of
the segmentation being carried out automatically. This manual
step is easy to perform, it enables the user to focus on the
vessel or bifurcation of interest instead of processing the whole
image. It also allows complex configurations of arterio-venous
crossings to be processed by explicitly entering the branches to
be segmented. A supervision is possible in both modes: the user
can reinitialize manually the active contour model if he is not
satisfied with the final segmentation. This usage flexibility has
proved to be very efficient for processing large databases for
medical studies: most interfaces can be accurately segmented in
the fully automatic mode, and manual interventions, if needed,
are minimized and very easy to carry out. In any case, a good
reproducibility of the measurements is ensured, since the last
segmentation steps are always automatic (Section V).

C. Proposed Segmentation Methods

As previously explained, the core of our segmentation method
is based on a dedicated parametric active contour algorithm
embedding structural a priori knowledge to achieve better

Fig. 3. AOV usage modes. AOV software allows for different levels of
interactivity to reach high performances in terms of accuracy and repro-
ducibility of the measurements while minimizing the user’s intervention.

robustness and accuracy, combined with deep-learning to ini-
tialize the process. In this sub-section, we focus on the proposed
models, summarizing our previous work [17], [18], [19] and em-
phasizing the improvements. Implementation details are given
in the Appendix.

1) Extraction of a Binary Mask Based on Deep Learning:
We remind here briefly the design of our U-Net [19] to extract the
binary mask of the vessel lumen (Fig. 3(A)), the main improve-
ment coming from the extension of our annotated database to
better represent the high variability in the images. The popular
U-Net [25] was used as a base model. In order to cope with
different vessel sizes, even in one same image, we propose to
replace the convolution blocks of the original architecture by
the feature extractor from the InceptionResNetV2 network [32],
[35] (without the last dense layers), which integrates filters of
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different sizes at every level. In addition, its variety of receptive
fields and short-cut connections showed remarkable results in
both processing time and performance. Moreover, we have
added a Fire-squeeze block to the central stage of the U-Net
(bottleneck) as suggested in [27]. This block replaces 3 x 3 filters
with 1x1 filters (Squeeze layer), decreasing the number of input
channels to the next layer. Thus, we integrate a structure that
breaks up the characteristics into three convolutional layers each
applying a mask of different size (1x1, 3 x 3 and 5 x 5) and then
recombines them by a 1 x 1 convolution. This produces larger
activation maps which can lead to higher classification accuracy.
We refer the reader to [19] for the quantitative evaluation that
justifies the final proposed architecture, the residual U-Net [31]
being used as baseline model.

The network is trained to optimize the Dice score as loss
function. A pre-trained version of the U-net, on ImageNet [36],
was used. This allows fine-tuning the network on a limited
number of data and in a fast way. To do so, the sub-database
A of 265 annotated images was divided as follows: 190 images
were selected to train the network, 22 images were selected as
the validation set and 53 other images sharing the same charac-
teristics were selected for the testing set. To ensure the capability
of our model to segment precisely all types of vessels, we have
imposed the following criteria to build our learning dataset: (1)
a balanced number of arteries and veins; (2) a balanced number
of sharp images and blurred images; (3) presence of arteriove-
nous crossings; (4) presence of arterial bifurcations and venous
confluences; (5) presence of healthy and pathological vessels
(diabetic, hypertensive …). Additionally, data augmentation was
applied, using spatial transformations and intensity variations,
again to cope with the potential variability of vessel orientation
and intensity.

Training was performed according to [19], using stochastic
gradient descent with an adaptive moment estimator (Adam)
[37]. The Dice score obtained on the test set with the proposed
architecture is equal to 0.980 and the boundary F1 metric is
equal to 0.976. These results are slightly better than the ones
presented in [19], thanks to the enlargement of the training set
which now represents better the great variability of AOO images.
Our experiments also confirm that the proposed combination
of U-Net, InceptionResNetV2 and fire-squeeze leads to better
performances compared to the standard U-Net; but the benefit of
the squeeze layer decreases when the size of the training set in-
creases. Fig. 4 illustrates the obtained results. The segmentation
is generally very good, and the model is able to segment large
vessels as well as smaller ones with more blur and discontinuities
in the central reflection line. The vascular tree is most often well
detected, without splitting. However, a few local improvements
are still needed, as indicated by the red rectangles in the figures.
Moreover, this method provides only a mask of the vessel lumen,
it does not distinguish the internal and external vessel walls, and
the structure of the vascular tree has to be recovered.

2) Active Contour Model for the Segmentation of the
Arterial Branches: The approach is based on coupled active
contours, with structural constraints. Fig. 5 presents the geo-
metrical model on which the method relies. Each vessel branch
b is represented by five approximately parallel lines, the central
reflection line V (R)

b , and the inner V (i1, 2)
b and outer contours

Fig. 4. Segmentation results. (a) Original AOO images. (b) Corre-
sponding reference segmentations. (c) Vessel masks predicted by the
proposed method. The red rectangles indicate where local improvement
is needed.

Fig. 5. Branch segmentation model. b denotes the branch index in a
bifurcation.

V
(e1, 2)
b of the vessel wall, on each side of the central line. Each

point on a contour is defined as the sum of the corresponding
point on the central line and a vector along the normalN (R)

b with
norm equal to the half diameter, as expressed by (6):

{
V

(e1)
b = V

(R)
b + b

(e1)
b N

(R)
b

V
(i1)
b = V

(R)
b + b

(i1)
b N

(R)
b

{
V i2
b =V

(R)
b + b

(i2)
b N

(R)
b

V
(e2)
b =V

(R)
b + b

(e2)
b N

(R)
b

b
(i1)
b , b

(e1)
b > 0 b

(i2)
b , b

(e2)
b < 0

(6)

Subscript b in (6) denotes the branch index in a bifurcation;
we omit it in what follows as the process is the same for any
branch.

We have extended our previous model [17], [24] to introduce
more coupling between the four lines delineating the artery wall,
and thus to better drive their evolution to the solution, even in
case of textured background or local blur. Eq. (7) introduces
the general formulation of our model, considering a reference
line V (R) and three other curves V (i), V (k) and V (l), all three
defined by their distance b(i,k,l) to V (R). The active contour is
V (i) while V (R), V (k) and V (l) are known and fixed. The initial
V (i)(s) is iteratively evolved in order to minimize the following
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energy functional:

E
{
b(i)|V (R), b(k), b(l)

}
=

∫ 1

0

P
(
V (R) (s) , b(i) (s)

)

+
ϕ

2
b(i)

′2
(s) +

ρ

2

(
b(i) (s)− b(k) (s)

)2

+
δ

2

(
b(i)

′
(s)− b(l)

′
(s)

)2

ds (7)

The first term, P ( V (R)(s), b(i)(s)), is the usual image potential
at V (i)(s), defined as the gradient vector flow [38] to attract the
curve V (i)(s) to the high gradients in the image and so reach
contours. The other terms are regularization terms that express
structural constraints, namely:

-V (i)(s) and V (R)(s) should be approximately parallel (which
is expressed by the fact that the first derivative of the distance
between them is minimized),

-V (i)(s) and V (k)(s) should be close to each other,
-V (i)(s) and V (l)(s) should be almost parallel.

The parameters ϕ, ρ and δ weight the relative influence of the
structural constraints.

We rely on this model to extract the wall of each arterial
branch (V (i1), V (i2), V (e1), V (e2)) given the central reflection
line V (R) (Fig. 5). For the segmentation of the lumen (i.e., inner
contours i1 and i2, step C in Fig. 3), we exploit the symmetry of
the interfaces with respect of the central reflection line and we
minimize:

E
{
b(i1)|V (R),−b(i2),−b(i2)

}
+ E

{
b(i2)|V (R),−b(i1),−b(i1)

}
(8)

Parameter ρ > 0 forces the symmetry with respect to the center
line, while parameter δ > 0 favors similar shape for the two
opposite curves (Fig. 6(c)).

A similar process is then applied to extract the outer borders
(e1 and e2, step D in Fig. 3), minimizing this time:

E
{
b(e1)|V (R),−b(e2), b(i1)

}
+ E

{
b(e2)|V (R),−b(e1), b(i2)

}
(9)

This model imposes some symmetry of the external borders
with respect to the central reflection line and a parallelism of
the curves delineating the arterial wall (Fig. 6(d)). Note that the
model (7) would allow us to impose a symmetry of the wall
thickness with respect to V (R)(s) but it has not proved to be
beneficial in the general case.

More implementation details are given in the Appendix, espe-
cially the initialization steps (both usage modes) and the param-
eterizations at each step. Briefly, the only difference between the
automatic and semi-automatic modes is the initialization of the
inner contours (steps A/A’ and B/B’ in Fig. 3), either from the
binary mask output by the U-Net or from the central reflection
line manually defined. In Fig. 6, we illustrate the semi-automatic
case with the 3 central lines entered by the user (Fig. 6(a)), the
inner borders being initialized based on grey-level and gradient
criteria (Fig. 6(b)). For the parameterization, the following strat-
egy proved very efficient for minimizing the energy functionals

Fig. 6. Segmentation at a bifurcation. (a) Manual initialization of the
three central reflection lines (Fig. 3(A’)); (b) inner contour initialization
(B’); (c) final segmentation of the inner contours (C); (d) final segmen-
tation of the artery wall for the three branches (D); (e) initialization of
the three curves delineating the bifurcation, deduced from the branch
segmentation; (f) final segmentation of the lumen at the arterial bifur-
cation (E); (g) inscribed circle and estimation of the branch diameters;
(h) arterial wall segmentation and estimation of the inner and outer
diameters.

(8) or (9): at the beginning,ϕ,ρ, δ are set to large values to ensure
robustness and then the constraints are relaxed for refinement.

3) Active Contour Model for the Refinement at a Bifurca-
tion: Since a precise segmentation at bifurcations is crucial to
derive relevant measures, once each branch is segmented, their
crossing at bifurcations can be analyzed and refined for a more
accurate and more consistent bifurcation segmentation [18].

The method consists in detecting the intersection points
between two contours and rearranging them to obtain three
segmentation lines C(0)

i , i = 1, 2, 3, as shown in Fig. 6(e).
This new configuration is taken as the initialization of an active
contour model, evolving to minimize:

E {Ci} =

∫ 1

0

P (Ci (s)) + α (s) |C ′
i (s)|2

+ ψ (s)
∣∣∣C ′

i (s)− C
(0)′

i (s)
∣∣∣2ds (10)

so as to refine the segmentation and ensure that the contours
converge precisely to the inner wall of the vessels at the bi-
furcation without moving outside of this area, where the initial
segmentation was precise. The algorithm is applied three times,
on each line Ci independently of the other two. The energy
functional (10) is derived from [34]. The last extra term imposes
that the curve cannot move far away from its initial position. One
main feature of the proposed method is that it adapts itself to the
size and geometry of the vessel branches, without any tuning,



ROSSANT et al.: CHARACTERIZATION OF RETINAL ARTERIES BY ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGE ANALYSIS 3091

which makes its use in concrete clinical applications very easy.
Indeed, the model parameters, α(s) and ψ(s), are calculated
automatically along the curve according to local characteristics
(vessel sizes and angles between branches). ψ(s) takes low val-
ues near the bifurcation, to authorize the refinement, and higher
values otherwise, to prevent Ci to move significantly along the
branches. α(s) adjusts the strength of the first regularization
term according to the geometry of the bifurcation (angle between
branches) and the distance to the bifurcation. More details are
given in [18].

4) Biomarker Estimation: The obtained segmentations
enable us to calculate the biomarkers introduced in Section II-B.
We estimate the branch diameters in regions derived from the
largest circle inscribed in the bifurcation (i.e., tangent to the
segmentation), similarly to [39] (Fig. 6(g) and (h)). Let us denote
by R the radius of this circle. For the bifurcation biomarkers,
the measurement region starts at a distance equal to one radius
R from the intersection point between the circle and the central
reflection, up to 2R (Fig. 6(g)). The mother branch is supposed
to be the one with the highest diameter, but this decision can be
manually corrected by the user who knows the direction of the
blood flow. We calculate the median of the diameters measured
in this region (more robust to outliers than the mean value). We
also calculate the wall to lumen ratio (wlr) near the bifurcation,
for the three branches. This time, we take a larger area [R, 3R]
and the wlr is the median value of all local measurements
(Fig. 6(h)).

5) Supervision: The first level of possible supervision is
at the initialization of the semi-automatic mode, where the
user explicitly specifies which branches he want to process: as
described previously, he has only to define the central reflection
line of the three bifurcation branches by a few points, the rest
of the segmentation being carried out automatically. Once the
segmentation is completed, the user can check it visually and
reinitialize the segmentation of any inner or outer contour that
he is not satisfied with: he just defines a few points on the
interface to reprocess, which are then interpolated, and the active
contour model is re-applied with this new initialization. This is
the second level of supervision, which can also be applied in
the fully automatic mode. The flexibility in the usage modes
of our software, its modularity as well as the simplicity of the
optional manual interventions make AOV a very powerful tool
for large-scale clinical studies.

IV. BIOMARKER SENSITIVITY TO SEGMENTATION

IMPRECISION

Biomarkers are computed from diameter values derived from
the image segmentation. So, segmentation imprecision results
in errors in the estimation of biomarkers. We have studied
mathematically and numerically the sensitivity of the junction
exponent x (2), the deviation of the branching coefficient βdev
(5) and the wall to lumen ratio wlr (1) to an error of ε pixels
in the estimate of diameters. The pixel size is 0.8μm in our
AOO images. Experiments were conducted on the sub-database
B (268 bifurcations, Section II-C) for which we have reliable
segmentations made with AOV under supervision. It covers the
data variability in terms of vessel sizes (d0 ∈ [20, 130] μm,
median: 76μm), and bifurcation asymmetry (λε[0.25, 1.00[,

Fig. 7. Sensitivity of the junction exponent x to diameter estimation
errors; (a) x as a function of the normalized diameters a and b, when
a < 1; (b) slope of the function x = R(a, b) in logarithm scale and
after clipping at 10; red dots represent the normalized diameters found
in our database; (c) interval of error in the estimation of x for an ideal
bifurcation with x = 3, when errors within [−1, 1] pixel are committed
on the 3 diameters (with pixel size ∼0.8 μm).

median 0.62) and will be used to investigate the behavior of
the biomarkers and validate our mathematical models.

A. Junction Exponent

This bifurcation parameter is the value x solution of the equa-
tion ax + bx − 1 = 0, (a, b) ∈]0, 1[×]0, 1[, where a = d1

d0
, b =

d2

d0
are the daughter diameters normalized to the parent branch

diameter (2). The graphical representation of x as a function
R(a, b) (Fig. 7(a)) shows that this biomarker is very sensitive
to diameter imprecision, since the usual values of (a, b) are in a
region of high slope (Fig. 7(b)).

In the following simulation, we consider an ideal bifurcation
withx = 3 and we assume that errors εiε[−1, 1] pixel are made
simultaneously on the 3 diameters di, i = 0, 1, 2. Fig. 7(c)
shows the resulting interval of error on x as a function of the
asymmetry coefficient λ (4), for 3 different values of the mother
branch diameter d0 in AOO resolution. For an ideal bifurcation
(x = 3) with median parameters d0 = 75μm, λ = 0.6, the
error interval is [−0.38,+0.56], meaning that the measured
value is in [2.62, 3.56]. As expected, the situation is even worse
in standard retinography (pixel size = ∼ 10μm), with a much
larger error interval [−1.8,+7.1]. The error interval is greater
for lower asymmetry coefficient λ, and other experiments show
that it increases with x, which is consistent with the slope of
x = R(a, b) (Fig. 7(a) and (b)).

We conclude that the junction exponent exhibits poor prop-
erties: it is very sensitive to segmentation imprecision with
intervals of errors that depend obviously on the size of the vessels
(d0), but also on the geometry of the bifurcation (λ) and the value
to be measured (close to the optimum x = 3 or not).

B. Deviation of the Branching Coefficient βdev

As previously, we compute the biomarker βdev (5) as a func-
tion of the normalized diameters a et b (Fig. 8). We notice that
the slope of βdev(a, b) is much more constant than that of the
junction exponent (see the isolines, which are regularly spaced
over the domain of usual βdev values). So, the estimation of
errors will be much more stable and does not depend so strongly
on the bifurcation geometry.

In contrast to the junction exponent, we can express analyti-
cally βdev as a function of the three diameters (5). So, we can
calculate the combined uncertainty in the measurement of βdev,
given the measured diameters d0, d1, d2 and the uncertainty in
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Fig. 8. Graphical representation of βdev as a function of the normal-
ized diameters a and b (a) and isolines (b); the red dots: values in our
database.

each measurement. Let us denote by u(di) the uncertainty in the
measurement of di; it corresponds to the standard deviation of
the distribution of di measurements, in pixels, or equivalently to
the standard deviation of the distribution of measurement errors
εdi

[40]:

u (di) = σεdi =
√〈

ε2di

〉
(11)

According to [40], the measurement error for βdev can be
approximated by:

εβdev
=

2∑
i=0

(
∂βdev
∂di

(d0, d1, d2)

)
εdi

(12)

with βdev(d0, d1, d2) defined by (5). We estimate the combined
uncertainty u(βdev) by calculating the standard deviation σεβdev

of εβdev
. Assuming that the measurement errors εd0

, εd1
, εd2

are
independent and that the uncertainty in the measurement of every
diameter (11) is the same (u(di) = σεd ), we get:

u (βdev) = σεd u
(1) (βdev) (13)

with u(1) (βdev) =

√√√√ 2∑
i=0

(
∂βdev
∂di

(d0, d1, d2)

)2

and

⎧⎪⎪⎨
⎪⎪⎩

∂βdev

∂d0
(d0, d1, d2) =

1
d0

[−2a2(1 + λ2)]
∂βdev

∂d1
(d0, d1, d2) =

1
d0

[2a+ 2
aλ2 (1−λ)

(1+λ3)
5
3
]

∂βdev

∂d2
(d0, d1, d2) =

1
d0

[2λa− 2
aλ

(1−λ)

(1+λ3)
5
3
]

u(1)(βdev) is the combined uncertainty for error measurements
in the diameters with a standard deviation of 1 pixel. For another
distribution spread, we get the combined uncertainty u(βdev) by
just multiplying by the standard deviation σεd .

We relied on our sub-database B to validate this model and
give an experimental estimate of the interval of error for any
measurement of βdev . We considered that the diameter values
stored in the database are the exact diameter values, and we
simulated measurement errors by adding errors εdi

following a
uniform distribution in [−1,+1] (σεd =

√
1/3). So, for each

bifurcation, we got a set of experimental measurements of
βdev with measurement errors εβdev

. We compared the standard
deviation σεβdev

. of these errors with the uncertainty given by
(13). The root mean square error between both sets of values is
equal to 4.5.10−5, validating our model (Fig. 9(a)).

Fig. 9. Sensitivity of βdev to errors in diameter measurements. These
results obtained on the 268 bifurcations of the database are presented
by increasing values of the mother branch diameter. (a) Combined un-
certainty u(βdev) and (b) error interval of βdev , for measurement errors
εdi on diameters di uniformly distributed in [−1, +1].

For each bifurcation of the database, we also noted the neg-
ative εmin

βdev
and positive εmax

βdev
extrema of εβdev

in order to de-
limit the error, [βdev + εmin

βdev
, βdev + εmax

βdev
] giving the smallest

interval containing all experimental measurements. Then, we
related the obtained intervals (Fig. 9(b), blue) to the combined
uncertainty (13) by looking for the factors kn,p so that the
estimated error intervals [knu(βdev), kpu(βdev)] approximate at
best the experimental intervals [εmin

βdev
, εmax

βdev
] for all bifurcations.

We sought these factorskn andkp experimentally, through a least
square minimization over the 268 bifurcations of sub-database B.
We found this approximation: [−2.65 u(βdev), 3.14 u(βdev)].
The estimated error intervals fit then closely the experimental
ones (RMS ≈ 3.10−3, Fig. 9(b), magenta).

This study gives us an idea about the accuracy we can expect
in a measurement of βdev . Given the measurements of the
three diameters d0, d1, d2 with a precision about ±ε pixels
we can deduce that βdev is obtained at about ±3u(βdev). The
shape of the error curves in Fig. 9(b) shows that bifurcations
involving small arteries (d0 < 60 μm) are much more sensitive
to diameter estimation errors than larger ones. In fact, the error
on βdev is essentially related to d0: our experiments show that
u(βdev) ≈ 2.1

d0
(Fig. 9(a), red dots), meaning that the sensitivity

of this biomarker depends mainly on the size of the vessels and
much less on the geometry of the bifurcation or its proximity to
the theoretical optimality, which is in agreement with the slope
of the function βdev(a, b) (Fig. 8). It is also worth noting the
importance of image resolution: the same study in cSLO would
lead to a combined uncertainty multiplied by a factor 10.

C. Wall to Lumen Ratio Wrl

Following a similar methodology as for βdev, we first cal-
culate from (1) the combined uncertainty, given the standard
uncertainty σεd on diameters dint and dext:

u (wlr) =
σεd
dint

√(
dext
dint

)2

+ 1 (14)

This formula shows that the uncertainty on the wall to lu-
men ratio is essentially of the order of 1/dint since the ratio
dext/dint has a small variance (less than 0.2, experimentally
verified). We also relied on our database to verify the validity
of (14) (Fig. 10(a)) and to relate the uncertainty u(wlr) to the
error interval measured experimentally. For diameter errors εd
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Fig. 10. Sensitivity of wlr to errors in diameter measurements.
(a) Combined uncertainty u(wlr) and (b) error interval of wlr, for mea-
surement errors εdi on diameters dint, dext uniformly distributed in
[-1,+1].

uniformly distributed within [−1, 1], we obtained the follow-
ing error interval: εwlr ∈ [−2.3u(wlr), 2.5u(wlr)] (Fig. 10(b)).
In AOO images, the relative error for a normal small artery
(dint = 20 μm, wlr ≈ 0.3) is around ±30% while it is less
than ±10% for normal arteries with dint ≥ 70 μm. Again, the
importance of the image resolution and the caliber of the artery
is worth to be noted.

V. EVALUATION OF THE PROPOSED ALGORITHMS

We consider the two usage modes of AOV introduced in
Section III-B (Fig. 3) with the segmentation methods described
in Section III-C: (1) the fully automatic mode based on the active
contour models initialized from the binary segmentation mask
output by the U-Net; (2) the semi-automatic mode, where the
central reflection line of the 3 bifurcation branches is initialized
manually.

AOV was used in the semi-automatic mode under supervision
to process the 268 images of sub-database B. It means that
the medical experts checked the segmentations of the arterial
branches and could reinitialize the active contour models until
they were satisfied with the result. The refinement of the bifur-
cation segmentation is always done automatically, as well as the
estimation of the diameters and biomarkers.

Thus, considering the semi-automatic mode under supervi-
sion, we first study the reproducibility of the segmentation and
measurements with respect to image acquisition and to AOV
users (Section V-A). Then, we evaluate the robustness and the
accuracy of the automatic processing methods (Section V-B).

A. Evaluation of the Semi-Automatic Mode Under
Supervision

We study here the reproducibility of the biomarker estimations
in the semi-automatic mode under supervision. The issue is to
evaluate the variability in the measurements resulting from a
variability in the image acquisition or from variabilities in the
supervised segmentation of a given image.

1) Reproducibility With Respect to Image Acquisition:
Seven images of the same arterial bifurcation were acquired from
a control subject, at 10 minutes interval. Two different experts
segmented these images in the supervised mode. Table I presents
the obtained measurements. The second daughter branch was
too blurred to allow for wrl measurement. This experiment

TABLE I
REPRODUCIBILITY WITH RESPECT TO IMAGE ACQUISITION

TABLE II
INTER-EXPERTS ANALYSIS (34 BIFURCATIONS)

shows that the values do not undergo a significant change either
between the different acquisitions or between the two experts:
for each expert, the standard deviation of every measure is very
low and the difference between experts is very small as well. This
means that the biomarkers are robust to acquisition and that the
estimates made under AOV from the supervised segmentations
are reproducible, for the same user and among users.

2) Reproducibility With Respect to Image Segmentation:
We study here the variability in the estimation of biomarkers due
to the use of AOV by different experts, still under supervision.
34 bifurcations, randomly selected from sub-database B, were
processed by two different experts. We compare here the ob-
tained measures characterizing the bifurcation (Fig. 6(g)) and
the arterial wall (Fig. 6(h)). The inner diameters dint are similar
to di = 0, 1, 2 but estimated on a larger area; the wall thickness
is defined by e = dext−dint

2 . For the analysis of the differences,
we only take the measures deemed possible (that is, the image
quality is sufficient) by the two users simultaneously. Thus, out
of the 102 segmented branches, both experts agreed that 86 of
them have internal contours that can be segmented everywhere,
thus leading to reliable measurements of diameters d0, d1 or d2.
They had the same appreciation (can be segmented / cannot be
segmented) in 84% of cases. Out of the 34 bifurcations analyzed,
the two experts judged that 22 of them have all three branches
that can be segmented, thus leading to reliable measurements of
bifurcation parameters x and βdev (two junction exponents had
meaningless negative values (a > 1)). Both experts agreed that
they can segment the inner and outer borders on both sides for
55 branches out of the 102, thus leading to wlr estimates.

Table II summarizes the results. The statistics regarding each
parameter demonstrate that the sub-database used in this exper-
iment covers the variability of arterial bifurcations. The propor-
tion of rejected measurements, because of the poor quality of
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TABLE III
STATISTICS ABOUT THE MEASUREMENTS DEDUCED FROM THE SUPERVISED

SEGMENTATIONS MADE BY THE EXPERT (141 BIFURCATIONS)

the source image in the concerned zone, shows that blur of some
interfaces is the main limitation: difficulty to obtain reliable
measurements and potential disagreement regarding keeping or
rejecting the measure. But we observe a very good agreement
for the measurements kept by both experts: for inner diameters
(d0, 1, 2, dint), the mean bias is very low and the standard
deviation is around 1.5 pixels. This leads to small differences in
the estimation of βdev and even x. The difference for the outer
diameter is greater, which was expected given that the outer
interface is much less contrasted and much more ambiguous.
However, the agreement on the wlr is very good without bias
(0.00 +/− 0.07).

B. Evaluation of the Semi-Automatic and Automatic
Modes Without Expert Supervision on Segmentation
Results

We have just demonstrated the inter-expert reproducibility of
the measurements in the supervised mode. We can now evaluate
our processing methods by comparing the results obtained in the
automatic and semi-automatic modes with those provided by an
expert in the supervised mode.

1) Sub-Database: We extracted from sub-database B the
141 images whose quality was deemed satisfactory; that is, all
images that met the following criteria: the 3 branches have a
diameter greater than 30μm, none of them has a blurred wall on
both sides simultaneously; veins can cross arterial branches, but
not at the bifurcation (too complex topology to be recovered from
the binary mask). These 141 images cover the full variability of
arterial bifurcations (Table III) and will serve as ground truth in
this evaluation.

2) Binary Segmentation With the U-Net and Evaluation:
We applied our U-Net on the sub-database of 141 images. The
visual inspection of the results shows that our model can extract
the vascular tree, including simple arteries, simple veins, simple
bifurcations and arteriovenous crossings (Fig. 4). The automatic
segmentation provided by the neural network was evaluated by
comparing the predicted segmentation mask and the reference
segmentation using standard indices: recall, precision and Dice
scores. In this study, we consider only a region of interest
centered on the bifurcation: a disk of radius 4R where R is
the radius of the circle inscribed in the bifurcation. We excluded
31 images for which a vein crosses this region (not segmented
in the ground truth).

Table IV summarizes the results obtained on the 110 con-
sidered bifurcations. All metrics are very close to 1, with low
standard deviations, demonstrating the accuracy and the robust-
ness of the proposed method. The binary mask is especially
good for well contrasted images (Fig. 11(a)), less accurate and

TABLE IV
EVALUATION OF THE SEGMENTATION PROVIDED BY THE U-NET AT THE

BIFURCATION (110 IMAGES)

Fig. 11. Examples of binary masks with metrics. (Precision (Prec),
Recall (Rec) Dice score (Dice) and Root mean square error (mse)). The
dashed circle indicates the area of evaluation. First row: boundaries of
the binary mask superimposed on the source image. Second row: binary
mask with in white the true positives, in green the false positives and in
magenta the false negatives.

more indented for more blurred cases (Fig. 11(b)). However, the
detection of small branches is not always precise, especially
at the branching (Fig. 11(c)), and sometimes not consistent
(Fig. 11(d)). This happens when the black area between the
central reflection and the vessel lumen becomes gray because
the small vessel is not planar enough in the eye fundus. Thus, the
vessel will be classified partially as background. On the complete
database of 141 images, we obtained 128 masks (91%) with a
complete detection of the bifurcation against 13 with a partial
one.

3) Evaluation of the Automatic Processing of Arterial
Bifurcations: The automatic processing of bifurcations results
from the binary segmentation made by the U-Net followed by
the refinement with the active contour models (Section III-C,
Appendix). We first evaluate the accuracy of the fully automatic
segmentation by computing the mean square error between the
reference contours and the automatic segmentations, before and
after applying the deformable models. Again, this is achieved on
the region of interest centered on the bifurcation (Section V-B-2).
We also evaluate the accuracy in the estimation of diameters
and biomarkers. The values are estimated on 118 images of the
sub-database, for which the complete processing (U-Net and
deformable models) was successful (consistent binary mask and
bifurcation structure well recovered). The statistics concerning
the U-Net images (without refinement) relate to 110 bifurcations
(as in Section V-B-2): 8 bifurcations have an arteriovenous
crossing over a diameter estimation zone, not allowing us to esti-
mate the diameter for the three branches (unlike the deformable
models which allow for an extrapolation). Results are presented
in Table V, first and second lines.

After the refinement step with the proposed parallel de-
formable models, the mean square error between the reference
contours and the automatic segmentations is reduced from 3.00
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TABLE V
EVALUATION OF THE ESTIMATION OF DIAMETERS AND BIFURCATION

BIOMARKERS (118 OR 110 IMAGES)

TABLE VI
EVALUATION OF THE ESTIMATION OF THE WALL TO LUMEN RATIO FOR THE 3

BRANCHES INVOLVED IN A BIFURCATION (118 OR 110 IMAGES)

(+/− 2.30) pixels for the neural network prediction alone to
1.75 (+/− 1.24) pixels after the refinement step, which is a
significant gain. Diameters are also much better estimated at
the end of the process (mean error reduced by more than one
pixel for the largest branches), justifying the effort to provide
segmentations as accurate as possible. But, standard deviations
range from 2 to 4 pixels, with, on average, an overestimation
for the second daughter branch. Indeed, the smallest branches
are often more blurred with an external border very close to the
inner one. Considering all branches together, the error is equal
to 0.19 +/− 2.92 while it was 0.11 +/− 1.57 when evaluating
the inter-expert variability in the semi-automatic mode under
supervision (Table II). The last two columns in Table V concern
the errors committed on x and β_dev. Again, we can see the
positive impact of improving segmentation accuracy, which is
consistent with our study in Section IV. There is no significant
bias, but the standard deviations remain too high with respect to
the required accuracy. This is not surprising since very accurate
values for all three diameters are required to achieve a good
estimate of those biomarkers (Section IV-A, B). So, the expert
remains mandatory to check the automatic segmentation and,
if needed, refine it thanks to the possible reinitialization of the
active contour models. However, it is worth noting that accurate
diameters can now be obtained without any supervision for most
branches: 70.3% of the 354 tested branches have an error less
than 1 pixel, so that the proposed processing flow alleviates
dramatically the expert’s task. The difficulties remain at the level
of the smallest branches, in case of blur.

We now introduce the segmentation of the outer border of
the arterial wall of the three branches at a bifurcation and the
wall to lumen ratio (Fig. 6(h)). The wlr is calculated in a region
situated between 2R and 4R as the median value of all local
wlr. Table VI shows the results (first line): the estimates are
very accurate given the usual values of the wlr (around 0.3,
Table III), which confirms that the wlr is a robust biomarker.

Fig. 12. Box plot of the biomarker measurements obtained with AOV.

4) Evaluation of the Semi-Automatic Processing of Arte-
rial Bifurcations: In this mode, the user initializes the central
reflection lines of the three branches, and the rest of the seg-
mentation is fully automatic, as described in Section III-C and
Appendix. The results are presented in Tables V and VI (last
line). The segmentation is more accurate in the fully-automatic
mode, with a mse equal to 1.75 pixels against 1.87, and with
also a lower standard deviation. The diameter estimations of the
biggest and well contrasted branches are slightly better in the
semi-automatic mode, but significantly less good for the smaller
ones. This again shows the ability of the U-Net to handle small
and low contrast vessels. At the end, the bifurcation biomarkers
are better evaluated in the fully automatic mode. Concerning the
wall to lumen ratio, the results are slightly better for the fully
automatic mode, but again, the most contrasted walls are better
processed in the semi-automatic mode.

VI. MEDICAL APPLICATION

Medical experts of the Quinze-Vingts and Lariboisiere hospi-
tals have processed hundreds images of control and CADASIL
cases (Section II-C) with AOV used in the semi-automatic mode
under supervision. The purpose is to statistically compare the
two populations (no individual diagnosis is envisaged given the
conclusions of our study in Section IV). The quality of the image
at each segmented interface was annotated by the expert (correct
vs. insufficient) in order to only compute relevant biomarkers.
We restricted the analysis to the bifurcations with d2 > 30μm.
According to Section V-A-2) and Section IV-B, C, we can
estimate that the standard uncertainty of diameters is around
1.5 pixel, the combined uncertainty for βdev around 0.06 and
the combined uncertainty for wlr around 0.031. Fig. 12 shows
the distribution of the measurements for the two populations.

We did not find a statistically significant difference between
healthy subjects and CADASIL patients forβdev (0.006± 0.168
versus 0.005± 0.121). A two-sample t-test does not reject the
null-hypothesis that the two samples come from normal distribu-
tions with equal means (p-value = 0.96 at the 5% significance
level). By contrast, we found that CADASIL subjects exhibit
in average an increased wlr: wlr = 0.327± 0.090 against
0.284± 0.078 (p-value< 10−3). A more in-depth clinical study
was carried out by our medical partners and their results pub-
lished in [41] are fully consistent with Fig. 12.

VII. CONCLUSION

We have presented a complete framework (AOV) for the seg-
mentation of retinal vessels in AOO images and the computation
of derived biomarkers characterizing an arterial network. Our
approach relies on an optimized U-Net architecture to retrieve
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the vascular network and new active contour models to refine the
lumen contour and segment the arterial walls. This combination
takes advantage of both segmentation approaches: the ability
of a CNN to learn the wide variability of images and vascular
topologies, and the ability of deformable models to explicitly
integrate prior knowledge (here approximate parallelism, sym-
metry properties) and reach high accuracy when well initialized.
Our experiments demonstrate that our software tool provides
reliable and accurate segmentations and measurements, with
high reproducibility with respect to image acquisition and users.
In the supervised mode, the average error on diameter estimates
is around 0.11 +/− 1.57 pixel (0.09 +/− 1.2μm), and the
resulting βdev and wlr are without bias. The fully automatic
mode leads to good segmentations (mse = 1.75± 1.24 pixel),
with an overall error of 0.19 +/− 2.92 pixel in the diameter
estimation, close to the inter-expert variability.

To our knowledge, AOV is the only framework that allows
large-scale analysis of AOO images, with good accuracy and
acceptable user involvement. Biomarkers are provided with
the corresponding interval of error, which is another important
contribution. In a preliminary clinical study, we found that the
CADASIL population has statistically an increased wlr with
respect of the control population (causes to be further explored).

We will now focus on the automatic recovery of the vascular
network, to better handle arterio-venous crossing and classify
vessels into veins or arteries. All these tools will pave the way for
AOO image montage processing to address the whole vascular
tree in both wide-field and high-resolution imaging, offering new
avenues for medical diagnosis and clinical studies.

APPENDIX

IMPLEMENTATION DETAILS

We now detail how the active contour models are initialized
in both usage modes and how the parameterization has been
optimized. We review the stages A to D in Fig. 3.

A. Initialization of the Segmentation Process (Step A/A’)

In the fully automatic mode, we first apply the U-Net to
compute the binary mask whose borders match approximately
the inner contour of the vessels (veins and arteries).

In the semi-automatic mode, the user sequentially defines the
three branches involved in the bifurcation by clicking for each
on a few points on its central reflection line.

B. Initialization of the Inner Contours (Step B/B’)

The segmentation of the internal contours of each branch
bε{0, 1, 2} requires computing, at each position s, the distances
bikb (s), k = 1, 2 to the reference line V (R)

b (6).
In the fully automatic mode, we first need to recover the

vascular tree structure (i.e., V (R)
b ). This is achieved from the

morphological skeleton of the binary mask (Fig. 13(a)). The
branching points are analyzed to recover the main branches and
the vascular structure (bifurcations and arteriovenous crossings).
A classical active contour [34] is applied on the top-hat image
to refine the position of each line toward the central reflection

Fig. 13. Main steps to recover the vascular tree from the binary mask
and initialize the active contour models. (a) Binary mask output by the U-
Net (grey) and corresponding skeleton (red); (b) skeleton after analysis
of the branching points and refinement based on the application of a
classical snake [34]; (c) initialization of the active contour model.

(Fig. 13(b)). Then, the distances b(i1, 2)
b (s) toV (R)

b (s) are initial-
ized from the boundaries of the binary mask, based on a minimal
distance criterion (Fig. 13(c)).

In the semi-automatic mode, we initialize each central reflec-
tion line V (R)

b from the points entered by the expert and we
also refine it on the top-hat image. Then, we estimate the local
distances b(i1, 2)

b (s) by optimizing local criteria on a window
(of size 80μm) sliding along the central reflection (Fig. 6(b)).
At each position, we test several radii, each one defining two
segments delimiting the lumen on either side of V (R)

b , and we
retain the radius that minimizes the mean gray level between both
segments. Finally, we refine this first estimate by maximizing the
mean gradient module calculated on both segments.

C. Segmentation of the Inner Contours (Lumen, Step C)

We will omit subscript b in what follows as the process is the
same for all three branches. We first apply the active contour
model (7) (Section III-C-2) without the two last regularizations,
considering only the approximate parallelism with respect to the
central reflection line V (R). So, the contours are first evolved in
order to minimizeE{ b(ik)|V (R),−,−}, on both sidesk = 1, 2
independently, with ϕ = 1000, for a maximum of 5 iterations,
which leads to a refined and smoother contour in comparison
to the initialization (Fig. 6(b)). Then, the parallelism constraint
with respect to V (R) is relaxed (ϕ = 150) for further very
local refinement, and coupling is introduced by minimizing (8)
(Fig. 6(c)). Experimentally, the following strategy proved very
efficient: at the beginning, ρ, δ are set to large values to ensure
robustness (ρ = 0.1, δ = 1000), and then the constraints are
relaxed for refinement with values ρ = 0.1, δ = 500, then
ρ = 0.1, δ = 0, and finally ρ = 0, δ = 0. Each step is
iterated until a steady solution is obtained.

D. Segmentation of External Contours (Vessel Wall,
Step D)

We initialize the external curves locally on a sliding window,
by maximization of the mean local gradient module, given
the inner borders. Then, the contours are evolved in order to
minimize { b(ek)|V (R),−,−}, k = 1, 2, with ϕ = 1000, for
a maximum of 10 iterations. Again, a refinement is obtained
by relaxing the parallelism constraint with respect to V (R),
introducing coupling, and minimizing (9).
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