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Abstract—Recent studies have shown that lung 
adenocarcinoma (LUAD) patients have a higher risk and 
worse prognosis of COVID-19 caused by SARS-CoV-2 
compared to normal samples. Whereas, in addition to the 
receptor for SARS-CoV-2, other genes also deserve attention. 
In our study, we identified 19 differentially methylated genes 
(DMGs) that were co-upregulated in LUAD and COVID-19 
samples. These 19 DMGs mainly regulated the immune-
related and multiple viral infection signaling pathways. Gene 
Ontology and pathway enrichment analysis were applied with 
these genes. Then, 6 key DMGs (MTOR, ACE, IGF1, PTPRC, 
C3, and PTGS2) were identified by constructing and 
analyzing the protein-protein interaction (PPI) network. 
Besides, MTOR was significantly associated with 5 prognostic 
markers (CDO1, NEURL4, SMAP1, NPEPPS, IQCK) 
identified by survival analysis based on machine learning. In 
total, MTOR hypermethylation may be related to the 
susceptibility of LUAD patients to SARS-CoV-2 and the 
prognosis of LUAD patients suffering from COVID-19. 

Keywords—MTOR, LUAD, SARS-CoV-2, multi-omics, 
machine learning 

I. INTRODUCTION 

Since December 2019, Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) has broken out 
worldwide [1]. SARS-CoV-2 is a highly infectious and 
pathogenic coronavirus. There were 616,427,419 people 
suffering from COVID-19, as of 5 October 2022, reported 
as WHO (https://covid19.who.int/). Patients with 
malignant tumors have low immune function and 
suppression of the systemic immune system caused by anti-
tumor treatments such as radiotherapy and chemotherapy 
or surgery, which makes tumor patients more susceptible to 
SARS-CoV-2 than non-tumor patients [2], especially Lung 
cancer [3]. Among COVID-19 patients, lung cancer 
patients are the most common type of cancer [4]. Lung 
cancer is the cancer with the highest mortality rate in the 
world, among which more than 40% of cases are lung 

adenocarcinoma (LUAD) [5]. Additionally, COVID-19 
patients with cancer are more likely to have acute 
complications than COVID-19 without cancer [6]. The 
underlying lung and immune dysfunction of LUAD 
patients will lead to a worse prognosis and higher mortality 
after being infected with SARS-CoV-2 [7]. So, it is 
significant to investigate the factors associated with the 
susceptibility and prognosis affecting SARS-CoV-2 
infection in LUAD patients at molecular levels. 

In our study, we applied multi-omics data of LUAD 
and COVID-19 downloaded from public database to 
discover the influence of MTOR methylation level on the 
survival and susceptibility of LUAD patients to SARS-
Cov-2 infection. After preprocessing COVID-19 and 
LUAD DNA methylation datasets, we identified the co-
upregulated or the co-downregulated common DMGs 
corresponding to DMPs. Based on these DMGs for further 
analysis, we applied Gene Ontology (GO) and KEGG 
pathway enrichment analysis to have an understanding of 
biological processes and functions. In order to detect key 
common genes, we utilized the construction and analysis of 
PPI network to extract hub genes and explore modules from 
common DMGs. Further, to explore the susceptibility 
factors of LUAD patients, we assessed the expression of 
MTOR in multi-omics data. Finally, we detected prognostic 
markers by survival analysis using machine learning. 

II. METHOD

A. Data collection
Covid-19 dataset (GSE174818) illustrates infections of

SARS-CoV-2 in DNA methylation level. It was 
downloaded from Gene Expression Omnibus database 
(GEO, https://www.ncbi.nlm.nih.gov/geo/). The DNA 
methylation data and RNA-seq data of Lung 
adenocarcinoma (LUAD) were downloaded from The 
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Cancer Genome Atlas (TCGA, 
http://cancergenome.nih.gov/). The RNA-seq data of covid-
19 were obtained from GEO, whose accession number is 
GSE152641. Illumina human MethylationEPIC data 
preprocessing 

Illumina MethylationEPRIC microarray platform covers 
over 850,000 methylation sites. We downloaded raw.idat 
data from GEO. First, removed the probes with detection p 
value greater than 0.01. Second, filtered out probes with < 
3 beads in at least 5% of samples per probe. Finally, filtered 
out all non-CpG probes, SNP-related probes, multi-hit 
probes and the probes located in sex chromosomes. After 
filtering probes, SWAN method was used to normalize the 
data. R package ChAMP was used to preprocess 
methylation microarray data in R version 4.1.1. 

B. Identification of specific and common DMGs between 
LUAD and COVID-19 samples 

Identification of DMGs in LUAD DNA methylation 
dataset and GSE174818 was the primary task of the 
research. To identify DMPs in both datasets, ChAMP 
package of R programming language was implemented. 
Cutoff criteria (P-value < 0.05) were applied to detect 
significant DMPs in these two datasets. We regarded a gene 
as DMG when there are at least one DMPs on this gene. 
The 𝛽𝛽-value of a gene is the mean value of the probes on 
the gene. In order to get genes most related to COVID-19, 
we downloaded the gene list which is the top 200 most 
searched genes associated with COVID-19 from 
DisGeNET (https://www.disgenet.org/home/) [8]. 
Furthermore, we regarded the intersect of the gene list and 
the DMGs as the COVID-19-associated genes. LUAD-
associated genes were the DMGs in TCGA LUAD DNA 
methylation dataset. The common DMGs are the co-
upregulated or co-downregulated DMGs between LUAD 
and COVID-19.  

C. Gene ontology and pathway enrichment analysis 
The gene ontology (GO) project provides an ontology of 
defined terms that represent the properties of gene products. 
GO covers three domains: cellular component, molecular 

function, and biological process. GO and pathway 
enrichment studies were conducted using the common 
DMGs between LUAD and COVID-19 by EnrichR 
(https://maayanlab.cloud/Enrichr/), which is a 
comprehensive gene set enrichment webtool [9]. Adjusted 
P-value < 0.05 was considered as a standard metric for 
quantifying the top ten listed Go terms and pathways, 
respectively. 

D. Network construction and analysis 
Proteins perform various important biological functions in 
organisms, but proteins usually do not function alone. They 
always function as team members in a dynamic network. 
There is growing evidence that protein-protein interactions 
are critical in many biological processes in cells. Protein-
protein interaction (PPI) network of common DMGs was 
constructed by NetworkAnalyst 
(https://www.networkanalyst.ca/) [10], a visual analytics 
platform for comprehensive gene expression profiling and 
meta-analysis results, based on STRING database [11]. 
Next, the generated file was reintroduced into Cytoscape 
(version 3.8.2) to visualize and analyze the PPI networks. 
For PPIs network analysis, Hub genes in PPI network were 
detected by CytoHubba plugin in Cytoscape. Besides, 
highly dense modules were designed from the PPI network 
using MCODE plugin in Cytoscape. 

E. DNA methylation prognostic analysis for LUAD 
We downloaded the clinical information from TCGA. Then, 
we randomly split the 410 LUAD patents with complete 
survival information into training and validation data sets 
with an allocation of 3:1, corresponding to 274 and 136, 
respectively. Next, in the training dataset, we applied 
Univariate Cox and LASSO-Cox to screen markers for 
predicting survival outcome. A gene with adjusted P-value 
< 0.05 from Univariate Cox was retained in the dataset. 
Then, we used LASSO-Cox method to shrink the marker 
numbers to a reasonable range. Lambda was set as 
0.1033725. The above analysis generated 5 final markers 
to construct a prognostic signature. By fitting a multi-
variable Cox proportional hazards model on these 5 
markers, we determined the coefficients of each marker and 
obtained a prognostic score for each individual. To validate 
our predictive model, we calculated the prognostic score 
for each individual in the validation dataset using 
coefficient estimates from the training dataset. By dividing 
the prognostic score according to its median, we formed 
high and low prognostic score groups with a roughly equal 
number of observations. We investigated if the median 

 

 
Fig. 1. Flowchart of LUAD and COVID-19 data processing. 

 
 
 
 

 
Fig. 2. Go and pathway enrichment analysis of 19 common DMGs. The 
top ten significant terms of (A) GO BP. (B) GO CC. (C) GO MF. (D) 

KEGG pathway. 
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survival time was significantly different between these two 
groups using a Kaplan-Meier estimator and log-rank test. 

The analysis above was performed by the following R 
packages: glmnet, survival, survminer, ggplot2. 

III. RESULTS 

A. Identification of specific and common DMGs between 
LUAD and COVID-19 patients 

After preprocessing procedure, we identified 61,429 
COVID-19-associated DMPs and 134,039 LUAD-
associated DMPs, respectively, in GSE174818 and LUAD 
DNA methylation dataset (Fig. 1). In total, there are 7,976 
common DMPs, of which 2,773 co-upregulated and 245 
co-downregulated common DMPs. These 3,018 common 
DMPs mapped to 1,742 genes. Further, 964 co-upregulated 
DMGs and 89 co-downregulated DMGs were obtained. 
After intersecting with the gene list related to COVID-19, 
a total of 19 DMGs were obtained. These 19 DMGs were 
all co-upregulated significantly in both LUAD and 
COVID-19 patients, which may explain why LUAD 
patients are susceptible to SARS-CoV-2. This gene set of 
19 common DMGs (AGER, MTOR, NEU1, EPHB2, 
TWIST1, SLC3A2, ABCB1, IGF1, ACE, NFE2L2, SH2D3C, 
CALCA, KRT12, HLA-C, C3, PTPRC, HLA-B, PTGS2, 
JAK1) was employed to accomplish further experiments. 

B. Gene ontology and pathway enrichment analysis 
The 19 common DMGs were used as the input gene set for 
Gene ontology and pathway enrichment analysis. GO 
analysis was acquired within three categories: biological 
process (BP), cellular component (CC), and molecular 
function (MF). The ongoing study illustrates the top 10 
terms of Go for each of the subsections and pathway, which 
is depicted in Fig. 2.  

C. PPI network to identify hub genes and module analysis 
Recently, the construction of PPI networks has become an 
essential method in systems biology research. The PPI 
network (Fig. 3A) contains 14 nodes and 26 edges, of 
which 5 genes were deleted as the single nodes. The hub 
genes were sorted by their degree value, which indicates 
the number of interactions of the genes in the PPI network. 
Fig. 3B shows the top 3 identified hub genes: MTOR, ACE 

and PTGS2. The hub genes are important to the stability of 
the biological system and form a central part of the PPI 
network. Likewise, the module consists of 4 genes (ACE, 
IGF1, PTPRC, and C3) was depicted in Fig. 3C. Almost 
module genes showed prominent positions in the network, 
implying that these genes may play critical and similar 
roles. The hub gene MTOR is the gene encodes the protein 
belongs to a family of phosphatidylinositol kinase-related 
kinases. There are two primary mTOR inhibitors used in 
the treatment of human cancers, temsirolimus and 
everolimus. Besides, some studies have shown that mTOR 
inhibition might be the therapy against pandemic COVID-
19 [12, 13].  

D. The correlation between DNA methylation and gene 
expression in LUAD and COVID-19 samples 

There is a large amount of evidence that DNA methylation 
plays a role in gene regulation. Importantly, DNA 
methylation in different genomic regions may have 
different effects on gene activities and it may influence the 
expression of genes and proteins. Here, we conduct further 
analysis on the six key genes (MTOR, ACE, IGF1, PTPRC, 
PTGS2, and C3) to detect the relationship of gene 
expression and DNA methylation. The DNA methylation 
levels of all key genes are negatively correlated with gene 
expression levels in LUAD samples, except for MTOR (Fig. 
4).  

E. Survival analysis for LUAD-associated DNA 
methylation markers 

To explore whether the markers associated with LUAD 
likely to be of prognostic value, the predictive effect of 
each marker regarding overall survival (OS) for LUAD was 
subsequently assessed by performing survival analysis. The 
DNA methylation and clinical data of LUAD were 
downloaded from TCGA. Notably, we identified 5 
prognosis methylation markers in LUAD using Univariate 
Cox and LASSO-Cox. We randomly assigned 410 LUAD 
samples to a training set (n = 274) and a testing set (n = 136) 
with the ratio 3:1. We implemented Univariate Cox and 
LASSO-Cox methods to reduce the dimensionality and 

 

 
Fig. 3. The visualization of PPI network and its analysis results. (A) PPI 
network for 19 common DMGs. (B) 3 hub genes of the PPI network. (C) 

The module of the PPI network.  
 
 
 
 
 

 
Fig. 4. The correlation between gene expression and the methylation 
level of the six genes associated with LUAD and SARS-CoV-2. (A) 

ACE (B) C3 (C) IGF1 (D) PTPRC. (E) PTGS2 (F) MTOR 
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constructed a Cox-model to predict prognosis with 5 
markers. We generated Kaplan-Meier curves in training 
and validation data sets using a combined prognosis score, 
it shows as follow: 
𝑃𝑃𝑃𝑃 = 0.8916463 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶1 − 0.9477901 ∗ 𝑁𝑁𝑃𝑃𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 −
           0.2625149 ∗ 𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼 − 1.0761822 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁4 +
           0.4096752 ∗ 𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃1  
The threshold value for the mean of PS was -1.006183. 
Patients in the training set were divided into high-risk and 
low-risk groups based on their PS values. Consequently, 
patients with high-risk PS values exhibited a poorer 
prognosis compared with those with low-risk PS values in 
both training set and testing set (Fig. 5A-B). The DNA 
methylation level of MTOR has a significant correlation 
with CDO1, NEURL4, SMAP1 (Fig. 5C). It reveals that 
MTOR may be associated with the prognosis of LUAD 
patients.  

IV. DISCUSSION 
The global outbreak of COVID-19 caused by SARS-CoV-
2 has become the most serious health threat worldwide, and 
has brought an unprecedented burden to the global medical 
system. COVID-19 is extremely contagious and has placed 
an unprecedented burden on the global medical system [14]. 
On the one hand, Lung cancer patients infected with SARS-
CoV-2 have a significant increase in mortality [15]. On the 
other hand, lung cancer patients are more prone to 
respiratory tract infections, and often use 
immunosuppressive therapy. Additionally, the immune 
environment is disordered in LUAD, which is one of the 

reasons why LUAD patients are susceptible to SARS-CoV-
2 [16, 17]. Despite most of the current researches focus on 
ACE2 and TMPRSS2, other genes and pathways also 
worthy of attention and investigation. 

In our study, we identified 19 co-upregulated DMGs 
in COVID-19 and LUAD dataset. These DMGs were 
mainly enriched in “antigen processing and presentation of 
peptide antigen via MHC class I”, “mTOR signaling 
pathway” and multiple viral infections. This result was 
consistent with existing researches mentioned above. It 
showed that the 19 co-upregulated DMGs we identified that 
were associated to both covid and LUAD were credible. 
Subsequently, 6 key co-upregulated DMGs (MTOR, ACE, 
IGF1, PTPRC, C3, and PTGS2) were identified by PPI 
network construction and analysis. These 6 key co-
upregulated DMGs in both datasets may indicate why 
LUAD patients were susceptible to SARS-CoV-2. 

The multi-omics analysis results showed that the 
methylation level of MTOR was not significantly 
associated with its mRNA expression. However, there was 
no proteomic data of samples with paired mRNA or 
methylation data. We cannot explore the relationship of 
MTOR in multi-omics expression. We only showed the 
protein levels of MTOR were significantly in LUAD and 
normal samples. The effect of MTOR on protein expression 
and the relationship of multi-omics data still need to be 
further explored in COVID-19 and LUAD patients [18-20]. 

In total, this study has some limitations. Firstly, for 
multi-omics analysis, multi-omics data of the same samples 
should be used, strictly. Secondly, despite MTOR 

 
Fig. 5. Survival analysis for LUAD. Overall survival curves of LUAD patients with low or high risk, according to the combined prognosis 

score (PS) in the (A) training set and (B) testing set. (C) The correlation between MTOR and the five prognostic methylation markers.  
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participates in PI3K/AKT/ mTOR pathway, we didn’t 
investigate the upstream and downstream of MTOR in this 
critical pathway[12]. The influence of MTOR on the 
upstream and downstream of the pathway deserves further 
discussions. Thirdly, immune infiltration analysis based on 
DNA methylation levels has been widely developed. It may 
provide more interesting conclusions [21, 22]. Finally, the 
above results were based on bioinformatics analysis and 
systems biology, which may need further experimental 
verifications.  
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