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Abstract—Digital Transformation integrates information
technology across a broad spectrum of industrial sectors.
Industrial Cyber-Physical Systems (ICPS) play a vital role in
this transformation by harmonizing machinery, production,
logistics, and societal needs through innovative informa-
tion technologies. This article investigates the adoption of
industrial artificial intelligence (industrial Al) as a method-
ology for effective ICPS design, introducing Al-Augmented
ICPS (AICPS). The study conducts a survey, focusing on
the components and interactions of AICPS. We propose
design considerations for the implementation of AICPS
and investigate the application of cutting-edge industrial Al
techniques in each interaction. From the standpoint of Al
augmentation, this article offers insights by identifying key
perspectives, including uncertainty of information, safety
of Al, explainability of Al, human-societal interactive ICPS,
and standardization of industrial Al. This article aims to
enhance understanding of AICPS and lay the groundwork
for integrating independent industrial Al techniques into
ICPS.

Index Terms—Digital transformation, industrial artificial
intelligence, industrial cyber-physical systems, industry
4.0, smart agriculture, smart city, smart factory.

[. INTRODUCTION

ITH the proliferation of Internet of Things (IoT) and
W wireless network technologies, the concept of Digital
Transformation has emerged. This paradigm aims to incorporate
Information Technology (IT) across a multitude of industrial
sectors, effecting structural and operational changes. At the core
of Digital Transformation lies the emphasis on the utilization of
industry-specific Cyber-Physical Systems (CPS) [1]. CPS are
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the systems that combine physical systems comprising machin-
ery and operating environments with cyber systems consisting
of computing devices and software via networks [2]. Although
the term CPS can be applied to various domains, this article
assumes that the term CPS pertains to industrial Cyber-Physical
Systems (ICPS) within the industrial sector.

ICPS integrate diverse industrial sectors and societal require-
ments through novel information technologies to implement
IoT and Internet of Services (IoS). The application of ICPS is
accelerating in the fields of smart manufacturing, smart cities,
and smart agriculture. In smart manufacturing, ICPS optimize
complex production processes and facilitate the customization
and diversification of product offerings [3]. In smart cities,
ICPS manage resources for social, environmental, and economic
sustainability for utilities and infrastructures [4]. In smart agri-
culture, ICPS focus on adaptive monitoring and management to
boost food productivity [5].

One methodology for developing effective ICPS design is the
adoption of industrial artificial intelligence (Industrial AI). The
substantial amount of data generated within industrial systems
makes it possible to leverage the use of industrial Al. Industrial
Al is a sub-field that focuses on developing, verifying and
deploying diverse Al methods for industrial use with sustain-
able performance. This encompasses the role of providing apt
solutions customized to various industrial systems. Further-
more, it ensures that Al models developed through research
are proficiently utilized to align with the demands of industrial
practitioners [6].

Industrial Al is characterized by its focus on real-time pro-
cessing to meet stringent security and reliability criteria, and its
capacity to manage diverse, high-volume data from various in-
dustrial systems. It also integrates multiple forms of knowledge,
mandates rigorous uncertainty management, and seeks specific
value through strategic integration of industrial components [7].
The introduction of industrial Al in ICPS design can be regarded
as an intelligent approach for ICPS, and we refer to ICPS with
Industrial Al as Al-Augmented ICPS (AICPS). AICPS present
an opportunity to effectively utilize the massive amounts of data
generated in industrial environments. It primarily provides accu-
rate information and insights compared to traditional approaches
based on human intuition and experience, and it significantly
aids in real-time decision-making and automation of industrial
processes through data-driven predictive analysis.
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Fig. 1. Structure and relations of the sections.

AICPS cover a wide range of industrial sectors, and there are
diverse applications of industrial Al In the context of ICPS,
physical and cyber systems and networks that constitute ICPS
are typically developed independently. Similarly, the industrial
Al techniques applied to industrial sectors are also being studied
and developed independently. Therefore, a systematic investiga-
tion of the combination of ICPS and industrial Al is crucial to
introduce AICPS, which integrates independent industrial Al
techniques. In this context, this article presents the following
key contributions:

® We propose an integrated structure that encompasses the
components and interactions of AICPS, along with a set
of design considerations essential for the effective imple-
mentation of AICPS.

® We conduct a review of the state-of-the-art research in in-
dustrial Al and offer insights into the techniques deployed
for each interaction within AICPS to meet diverse design
considerations.

e We provide substantive guidance to researchers for the
successful deployment of AICPS. This guidance is in-
formed by insights derived from five critical perspectives
and aims to fulfill essential design considerations.

Fig. 1 illustrates the overall structure and relationships of the
sections in this article. In Section II, we analyze the components
of AICPS and their interactions to introduce the integrated
structure of AICPS. In the following Section III, we explain
the design considerations for AICPS. In Section IV, we review
the state-of-the-art industrial Al research. We provide insights
into the industrial Al techniques applied to each interaction of
AICPS. In Section V, we outline research perspectives crucial
for AICPS deployment, targeting essential design considerations

and future research milestones. Finally, in Section VI, we con-
clude the research.

[I. INTEGRATED STRUCTURE OF AI-AUGMENTED INDUSTRIAL
CYBER-PHYSICAL SYSTEMS

In this section, we describe the components of AICPS and an-
alyze their interactions. We present a schematic of the integrated
structure of AICPS. AICPS can be structured by its components
and their interactions. The integrated structure of AICPS is
shown in the following Fig. 2. AICPS are composed of phys-
ical systems, cyber systems, users, networks and data, which
interact and function together in an organic manner. Physical
systems and cyber systems communicate through the networks,
exchanging data. The data is processed by users (experts or
intelligent agents). Users monitor physical systems based on
the information obtained from the data and cyber systems, and
make control or decision for other components.

A. Components of AICPS

This section describes the components of AICPS and catego-
rizes them into physical systems, cyber systems, users, networks,
and data. Additionally, the main examples of each component
are provided and explained.

1) Physical Systems: In AICPS, physical systems refer to a
type of machine or device that operates according to physical
laws. These physical systems generate data through various
sensors and exchange data with cyber systems through networks.
Physical systems are primarily the targets of control or decision-
making by users.

1) Control systems: In industrial environments, control sys-
tems include sensors, actuators, and controllers. Sensors
gather data and interface with controllers, which regulate
actuators. These systems have modernized to incorporate
IoT and intelligent computing, becoming central to In-
dustry 4.0.

2) Infrastructures: In industrial systems, infrastructures
refer to the physical facilities that facilitate their op-
eration. Physical infrastructures include roads, elec-
tricity, telecommunications, water supply, and sewage
systems. Digital infrastructures consist of hardware such
as servers, storage, and networks. These infrastructures
must offer stability and reliability, often operating in
tandem with sensor networks.

3) Environments: In industrial contexts, environments en-
compass the external conditions in which control systems
and infrastructures operate. These may range from the
climatic and geographical factors affecting the systems,
to the specific needs of specialized applications such
as agriculture or livestock management. Environments
primarily serve as the subjects of monitoring through
sensor networks.

2) Cyber Systems: Cyber systems are composed of combi-
nations of software and hardware components within AICPS.
These cyber systems collect and analyze sensor data from phys-
ical systems as well as process and management data, provid-
ing monitoring information to users. Based on data analysis
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and user decisions, cyber systems generate appropriate control
commands and transmit them to the physical systems. Key
components of cyber systems include control servers, digital
twins, and data storage.

1) Control Servers: Control servers serve as interfaces be-
tween cyber and physical systems, monitoring the statuses
of physical systems and executing control algorithms
to transmit control commands to the physical systems.
Recently, control servers have been implemented using
cloud services, allowing for dynamic allocation of server
resources to achieve fast data processing speeds and large-
scale data processing capabilities.

2) Digital Twins: Digital twins are cyber copies of physi-
cal systems. They integrate the latest information from
both physical and digital models in real-time through bi-
directional data exchange [8]. Digital twins enable real-
time monitoring and continuous interaction with physical
systems, leading to informed decision-making [9]. They
find applications in areas like product design, process
optimization, monitoring, maintenance planning, fault
detection, and system prediction [10], [11].

3) Data Storage Systems: Data storage systems are crucial
for storing large volumes of data in AICPS. Choosing
the right data storage systems with intelligent access is
vital for effective data utilization. Data lake systems,
such as the Hadoop distributed file system, have gained
popularity recently. These data lakes store raw data, al-
lowing for diverse analyses with scalability, flexibility,
and cost-effectiveness [12].

3) Users: Users can be construed as types of either

physical systems or cyber systems. We define the term “Users” as

Integrated structure of Al-augmented industrial cyber-physical systems.

components that serve as the principal agents of interactions
within AICPS. Users are capable of furnishing the cyber systems
with pertinent information by inputting or processing applica-
tion or management data, thereby indirectly controlling both the
physical and cyber systems. Moreover, users have the ability to
monitor the entirety of the system and execute direct decision-
making and control actions based on the information relayed
via the cyber systems. Within the context of AICPS, users
are categorically bifurcated into human experts and intelligent
agents.

1) Human Experts: As elements of the physical systems,
human experts continue to hold a pivotal role in indus-
try. They employ their professional expertise to process
information and make decisions [13].

2) Intelligent Agents: Owing to the deployment of intelligent
algorithms, intelligent agents, as components of cyber
systems, are progressively assuming critical decision-
making roles in industrial processes and increasingly
supplanting human experts in key industrial decisions. In-
telligent agents constitute Al-based autonomous entities
that acquire data from sensors, execute decisions through
Al methods, and accomplish tasks to achieve objectives
efficiently, independent of human intervention [14].

4) Networks: Networks are crucial components for data ex-
change among various components within AICPS. Compared
to conventional networks, those designed for ICPS demand
elevated levels of real-time performance, safety, and decentral-
ization. The network components can be broadly categorized
into wireless and wired networks.

1) Wired networks: Wired networks are a communication

method known for their stability, security, and broad
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bandwidth. They resist radio interference, bolster unau-
thorized access prevention, and enable rapid data trans-
mission. Examples of wired networks include Ethernet
networks and fiber optic networks.

2) Wireless networks: Wireless networks offer flexibility,
low cost, and adaptability. They eliminate the need for
wired connections, allowing for easy location adjustments
and reduced maintenance costs. They are cost-effective
for communication over large areas and can operate in
diverse environments. Wireless networks are commonly
used for wireless sensor networks and communication
between loT-based industrial equipment and servers.

5) Data: In AICPS, data are important resources generated
by all components and exchanged among them. These data
are utilized for the control of physical systems, monitoring
interactions between physical and cyber systems, and the anal-
ysis and optimization of industrial processes. Data collected
within AICPS exhibit different characteristics depending on
their sources, such as physical systems, cyber systems, networks
and users. Data components can be broadly categorized into
sensor data, process data, and management data.

1) Sensor Data: Sensor data, consisting of physical mea-
surements from various environments and equipment,
are crucial across multiple sectors. In control systems,
sensors collect physical measurements from machinery.
In infrastructures, sensors collect consumption data for
efficiency assessments. In environments, sensors measure
factors such as air quality, humidity, crop growth condi-
tions, and soil moisture.

2) Process Data: Process data are derived from a range of
ICPS applications encompassing manufacturing, urban
management, and agriculture. In the manufacturing do-
main, metrics related to production volume and opera-
tional stages are collated. Within the context of urban
management, data pertaining to traffic patterns and energy
utilization are aggregated. In the agricultural sphere, in-
formation on crop growth rates and water supply metrics
are compiled.

3) Management Data: Management data are employed to
support the operations and administration across various
sectors. In manufacturing, these data include equipment
maintenance records and production line performance
metrics. In the context of urban management, the data
cover infrastructures maintenance and public facility op-
erational statistics, along with energy consumption and
management figures. In agriculture, the data encompass
crop production schedules, harvest records, and farm
inventory management metrics.

B. Interactions of AICPS

This section describes the interactions of AICPS and catego-
rizes them into data processing, monitoring, control & decision-
making.

1) Data Processing: The data generated by each component
of AICPS has different characteristics; therefore, data processing

is necessary to analyze and integrate data from each component.
Data processing involves refining, processing, and analyzing
data to transform it into meaningful information. In the field of
data processing research, studies applying intelligent approaches
are being conducted. Al techniques can be utilized to address
major challenges of industrial data, such as high dimensionality,
noise, and data loss [15]. Additionally, Al techniques can be
applied in authentication frameworks to enhance the security of
data transmission.

2) Monitoring: Monitoring encompasses the collection of
sensor data, process data, and management data from physical
systems, cyber systems, networks, and users. Subsequently, data
mining techniques are employed to address an array of chal-
lenges, including quality management, production time predic-
tion, processing time prediction, and defect identification [16].

In particular, when designing holistic monitoring systems for
industrial infrastructures, it’s crucial to emphasize not only tradi-
tional factors like organizational structure, operational methods,
and objectives but also the human and social dimension. [17]. Al
techniques enable the prediction of complex states in physical
systems and the early detection of faults or abnormal states.
Moreover, Al can be utilized to forecast quality based on data
flow and detect malicious attacks [18], [19].

3) Control & Decision-Making: Control and decision-making
aim to optimize the performance of physical systems and sup-
port decision-making in the overall process to maximize the
effectiveness of AICPS. Examples of control include schedul-
ing in allocation of resources [20], routing path of industrial
sensor networks [21]. In control and decision-making, intelli-
gent approaches enable fast decision-making that meets diverse
demands, optimization of control in complex systems, and pre-
vention of disturbance in the flow of control and materials [22].

I1l. DESIGN CONSIDERATION FOR AICPS

Several research endeavors are underway to accelerate the
adoption of AICPS. To facilitate the effective design of AICPS,
the following design considerations must be taken into account:
productivity, stability, reliability, and sustainability. In this sec-
tion, we discuss the design considerations that need to be taken
into account for AICPS.

A. Productivity

The primary objective of most industrial applications is to
generate economic benefits. From this perspective, productivity
becomes the most critical factor in AICPS design. In AICPS,
productivity refers to the reduction of economic and human costs
in industrial applications, achievable through the implementa-
tion of AICPS.

This encompasses the meaning of proactive productivity
through process optimization based on data analytics in indus-
trial environments, as well as the meaning of reactive produc-
tivity aimed at facilitating smooth process operations by fault
detection and minimization of defects in the manufacturing
process. Researchers suggest designing AICPS with the goal
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of enhancing productivity, aiming to improve product quality
while reducing development costs and time [23].

B. Stability

Due to the complexity of software and physical systems,
detecting defects in advanced industrial systems is challenging.
Late detection of defects can result in decreased overall pro-
duction and financial losses. Furthermore, incorrect monitoring
results caused by data analysis or human error can lead to un-
necessary maintenance costs, thus increasing maintenance and
management expenses. In the context of AICPS, stability refers
to ensuring continuous operability through its implementation.

This encompasses the meaning of stability in detecting, pre-
dicting, and preventing failures in industrial systems, as well
as the meaning of control stability in certain components, such
as physical systems. Moreover, it could include the meaning
of data stability by resolving issues of data incompleteness and
scarcity in industrial environments, thereby enhancing decision-
making derived from data analysis. Researchers propose design-
ing AICPS with a focus on stability to detect, predict, and prevent
system defects and malfunctions [24].

C. Reliability

AICPS face various cybersecurity and physical security
threats due to malicious access through computer nodes and
communication networks. Since CPS handle large-scale data and
have organic interconnections between components, malicious
access to some components can have hazardous consequences
on all components [25]. Therefore, it is crucial to recognize the
security vulnerabilities of CPS and implement robust security
measures. In the context of AICPS, reliability refers to enhancing
the security of industrial systems through the adoption of AICPS.

This encompasses the meaning of reliability for ensuring se-
cure and reliable data transmission against unauthorized external
access in device and network environments [26], as well as the
meaning of reliability imbued with resilience, as control systems
and dynamic systems respond to malicious external attacks.
Researchers propose that AICPS, designed with reliability in
mind, can preclude malicious access and detect and prevent
malicious attacks [27].

D. Sustainability

AICPS have received positive evaluations in the aspect of
energy sustainability by facilitating low-carbon energy supplies,
improved energy efficiency, energy storage systems, and robust
energy management frameworks [28]. Furthermore, for social
sustainability, user-centered engineering aimed at enhancing
human convenience [29], and frameworks considering social
ethical issues are proposed [30]. In the context of AICPS,
sustainability refers to involving both energy sustainability and
social sustainability.

This encompasses the meaning of sustainability for mini-
mizing environmental impact, enhancing energy efficiency, and
improving human quality of life and ethical considerations.
Researchers propose that AICPS, when designed with a focus

on sustainability, can lead to reduced environmental pollution,
improved energy efficiency, enhanced human convenience, and
contribute to genuine, long-term sustainability.

[V. INDUSTRIAL Al FOR AICPS

In this section, our aim is to investigate the forefront of indus-
trial Al techniques for AICPS. We categorize Al techniques into
data processing, monitoring, and control & decision-making.
We review the technical categories, specific applications, used
Al methods, AICPS components, and design considerations of
51 studies published between 2016 and 2023.

The “Technique” section of the table refers to the technical
category of research. The “Application” section indicates the
specific application area of research. The “Method” section
provides detailed Al techniques utilized in each study. In cases
where the research involved a comparison and investigation of
the performance of various Al techniques, the best-performing
technique is selected. The “AICPS Component” and “Design
Consideration” section provides details about AICPS compo-
nents and design considerations pursued by each research, which
are explained in Section III.

A. Industrial Al for Data Processing

Table I presents a summary of 11 recent studies on industrial
Al for data processing. We have categorized data processing
techniques into four main areas: authentication, data compres-
sion, data imputation, and soft sensing.

1) Authentication: Ensuring secure communication is a
growing concern for data privacy. Al approaches are being
utilized in the field of authentication frameworks to strengthen
the security of data transmission. In [32], a deep learning-
based framework is proposed for enhancing the security of
industrial wireless sensor networks through physical layer au-
thentication. It utilizes channel state information (CSI) values
and higher-layer protocol authentication labels like EAP and
AKA to train a deep learning model. Experimental evaluations
involving three deep learning methods show that the Prepos-
sessed Convolutional Neural Network (CNN) method exhibits
superior authentication performance. Furthermore, in [31], a
lightweight intelligent authentication approach is introduced to
address isolated IoT security design across different layers. It
employs an Support Vector Machine (SVM)-based classifier to
verify the compatibility of access time slots, access frequency
bands, and designed codes of IoT devices.

2) Data Compression: In industrial environments, data col-
lected often exhibits high dimensionality, which can hinder
real-time applications and increase substantial computational
and communication costs. Data compression refers to the tech-
niques used to reduce the size of data while preserving essential
information. Recently, Al techniques for data compression have
been under investigation, aiming to enhance the efficiency of
transmission in industrial settings.

The research by [34], [35] utilizes Variational Auto-Encoder
(VAE) and Generative Adversarial Network (GAN) techniques
for data encoding and decoding. VAE is a probabilistic gen-
erative model known for its ability to capture the underlying
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TABLE |

INDUSTRIAL Al FOR DATA PROCESSING

Data Imputation

Power consumption [37], [38]
Water quality [39]

LSTM [38], [39]
Ridge Regression [36]

Process data [37], [38]
Sensor data [36], [39]

Technique Application Method AICPS Component Design Consideration
L. Holistic authentication [31] CNN [32] Wireless networks C
Authentication | by 1o cor authentication [32] | SVM [31] (311, [32] Reliability [31], [32]
Compressed sensing [33] CAE [33] Wireless networks
Data Compression | Data encoding/decoding [34], GAN [35] [33]_[3‘5.] ; Stability [33]-[35]
[35] VAE [34]
Electric motors [36] KNN [37] Productivity [36]

Stability [36]-[39]
Sustainability [37], [38]

: CNN [40]
. Plastic process [40]
Soft Sensing Sulfur recovery unit [41] I}iIS\IrlI;M[ 4[;1]1]

Process data [40]

Sensor data [41] Productivity [40], [41]

structure of data and generate new data samples that resemble
the input data. On the other hand, GAN consists of two neural
networks, a generator and a discriminator, engaged in a game
where the generator aims to produce data that is indistinguish-
able from real data, while the discriminator tries to tell real from
fake. This adversarial training process results in the generation
of realistic data samples. In contrast, [33] applies Convolutional
Auto-Encoder (CAE) to the compressed sensing technique,
which aims to recover the original signal with fewer samples.
This approach outperforms conventional methods, demonstrat-
ing superior results with reduced data samples.

3) Data Imputation: Dataloss is acommon problem in indus-
try fields and can occur due to communication failures, malfunc-
tioning equipment, errors in data recording, or insufficient data
collection personnel. Data imputation refers to the techniques of
predicting and substituting missing data to construct a complete
dataset.

[36], [37], [38], [39] investigate data imputation for address-
ing the issue of data loss. In [37], K-Nearest Neighbors (KNN)
is used to estimate missing power data in a consumption system
by creating feature vectors from historical and missing power
data differences, considering patterns. Deep learning-based data
imputation, such as the sequence-to-sequence imputation model
(SSIM) in [39], utilizes bidirectional Long Short Term Memory
(LSTM) networks and variable-length sliding window algo-
rithms for generating training samples. LSTM networks excel
at capturing information from both past and future time indices.
Additionally, [38] proposes bidirectional imputation based on
LSTM and transfer learning, replacing missing data using mod-
els trained with data from other systems.

In [36], a comparison of machine learning-based data im-
putation methods is conducted on missing vibration and current
sensor data from electric motors. The study assesses models like
Support Vector Regression, Decision Tree Regression, Ridge
Regression, KNN, MissForest, and XGBoost Regression, with
Ridge Regression proving the most effective.

4) Soft Sensing: Data scarcity poses challenges in terms
of imbalanced data and accuracy of data-driven analysis. In
industrial processes, quantity variables are typically sampled
at a fast rate, while quality variables are measured infrequently.
Soft sensor refers to the techniques that estimates difficult-to-
measure variables using the dependency of easy-to-measure
variables.

Industrial process datasets frequently comprise time series
data underutilized by traditional soft sensors. Deep learning-
based soft sensor methods have been developed to better capture
these temporal characteristics. In [41], a soft sensor model based
on Recurrent Neural Network (RNN) and LSTM is proposed.
This model exhibits high prediction accuracy for data measured
at different time periods using transfer learning techniques.
Simulation results with sulfur recovery unit data indicate that
the RNN technique outperforms LSTM in typical situations,
but LSTM performs better for limited dataset. On the other
hand, [40] introduces the Gated Convolutional neural network-
based Transformer (GCT). GCT encodes short-term patterns in
time series data to filter important features. When applied to
industrial processes like polypropylene and purified terephthalic
acid, GCT outperforms traditional approaches combining LSTM
and CNN.

B. Industrial Al for Monitoring

Table II presents a summary of 26 recent studies on industrial
Al for Monitoring. We have categorized monitoring techniques
into six main areas: defect detection, fault detection, fault
prediction, human activity recognition, malicious attack detec-
tion, and quality prediction.

1) Defect Detection: Numerous research studies focus on the
detection of defects or faults within industrial systems. We clas-
sify these into two categories: component-level defect detection
and system-level fault detection. Defect detection pertains to the
identification of flaws occurring in specific components of the
overall system. Such defects can result in reduced productiv-
ity, increased costs, and, in severe cases, catastrophic failures
leading to potential fatalities. The application of industrial Al in
real-time defect detection is presently an active field of research.

In [42], an artificial neural network (ANN) is employed to
detect insulation failure in stator winding, a fault that contributes
to 37% of all machine failures. This early detection is crucial as
insulation failure can lead to stator inter-turn faults, resulting in
performance degradation or motor failure. Similarly, in [43], a
CNN-based defect inspection method is proposed for the early
identification of injection molding faults. Injection molding,
which uses heated polymers to form shapes, can affect the quality
of the product, making precise process control and defect in-
spection essential. Furthermore, [44] introduces a physics-based
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TABLE Il

INDUSTRIAL Al FOR MONITORING

Fault Detection

Nuclear power plant [45], [46]
Electric arc system [47]
Wastewater treatment [48]
Oil&Gas pipeline [49], [50]

CNN [46], [47], [49]
Deep Clustering [48]
LSTM [49], [50]

Control systems [45]
Infrastructures
[46]-[50]

Technique Application Method AICPS Component Design Consideration
Stator winding [42] ..
. .. . MLP [42] Control systems Productivity [42], [43]
Defect Detection Injection molding [43] B
Rolling element bearing [44] CNN [43], [44] [42]-[44] Stability [42], [44]
DNN [45]

Stability [45]-[50]

Fault Prediction

SVM [50]
Conveyor operation [51] CNN [51] Control systems [51],
Relative humidity [52] DNN [53] [53], [54] Stability [52]-[54]

Reliability of a cylinder [53]
Power outage [54]

Collaborative NN [54]
RF [52]

Environments [52],
[54]

Productivity [51], [53]

Human Activity
Recognition

Worker activity [55], [56]

CNN [55], [56]
SVM [55]

Human experts [55],
[56]

Sustainability [55], [56]

Malicious Attack
Detection

DDoS/ DoS attacks [57], [58]
Spoofing attacks [59]
Advanced persistent threat

[60]

MLP [57]
CNN [58]-[60]

Wireless networks

[571-[60]

Reliability [57]-[60]

Quality Prediction

Gas emission [61]-[63]
Product quality [64]-[66]
Water quality [67]

CNN [66]
DeepFM [65]
SVM [64], [67]
RF [61]-[63]

Control systems

Productivity [64]-[67]
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Environments [61], [ng]tal[%e%lhty (611, [62],
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CNN technique for diagnosing defect in rolling element bear-
ings. This method utilizes vibration signal data and incorporates
the physical characteristics of the bearings to effectively detect
defects.

2) Fault Detection: Fault detection is more critical than de-
tecting internal defects in products or equipment. The malfunc-
tion of physical systems poses potential risks to human life,
the environment, and property. Therefore, research is being
conducted on alarm systems for fault detection in physical
systems. In [45], an online fault monitoring system is proposed
for nuclear power plants. This system employs Deep CNN
and the sliding window technique to enhance fault monitoring
during plant operation. The sliding window technique prioritizes
current data over past data streams, allowing for dynamic error
diagnosis using faster simulators to predict the plant’s actual
status.

In [47], researchers introduce a CNN-based model for de-
tecting arc faults, known for their electrical hazards due to
high temperatures. This detection model is designed to classify
normal and abnormal states of load currents without the need for
additional transformation. On the other hand, in [48], researchers
propose a system for detecting abnormal data in wastewater
treatment using deep clustering. The method employs a self-
supervised deep clustering network capable of extracting non-
linear features and identifying normal patterns from unlabeled
data.

Researchers in [46], [49], [50] propose various methods for
pipeline leak detection. In [46], they implement a CNN-based
approach using trajectory-based image features derived from
time-series acoustic data. Similarly, in [49], effective techniques
are presented, including 2D CNN and LSTM-AE, which con-
vert time-series data into spectrograms for improved accuracy.
In [50], a semi-supervised method combines LSTM-AE with
a one-class SVM to address data scarcity challenges, enabling
precise leak detection by learning essential pipeline features.

3) Fault Prediction: Beyond fault detection, predicting and
preventing faults can reduce the time and costs associated with
maintenance. This concept is commonly referred to as predictive
maintenance. Numerous researchers employ Al techniques to
predict and prevent faults in various industries.

In [51], a predictive maintenance framework is proposed for
conveyor systems. The framework utilizes time-series imaging
and CNN for data classification, accurately predicting the three
levels of faults (integrity, minor fault, critical fault) in the con-
veyor. In [52], researchers propose a predictive maintenance
system to prevent system failures caused by high humidity.
High humidity can lead to various problems in electrical and
mechanical systems, such as metal corrosion, moisture conden-
sation, and bacterial growth. The system utilizes data collected
from IoT and applies the Random Forest (RF) to predict relative
humidity. In [53], researchers proposes a system to evaluate the
reliability of factory equipment using DNN techniques applied
to time-series equipment data collected in factories. The method
are tested on the reliability of a cylinder, a critical component
of a trolley in the automotive assembly line. The study in [54]
proposes a power outage prediction system for industrial infras-
tructures considering unpredictable weather conditions, which
can result in malfunctions and failures in power supply devices
within industrial environments. The proposed system utilizes
the Collaborative Neural Network (NN) to address the power
outage prediction problem by transforming it into two separate
sub-problems that can be simultaneously solved.

4) Human Activity Recognition: In the field of industrial
manufacturing, human activity recognition is one of the key
technologies from a social sustainability perspective. In this
context, [55] proposes a solution for activity recognition and
detection by predicting work-related features and objects in
recorded videos using CNN and SVM. The proposed solution
demonstrates its utility through the verification of task accuracy
in solid fuel boiler equipment. [56] employs a multi-modal
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approach using both Inertial Measurement Unit (IMU) data from
smart armbands and video data from thermal cameras, predicting
worker activities via CNN. In the evaluation of six common
activities in assembly work, the approach exhibits a recognition
accuracy of 97%.

5) Malicious Attack Detection: With the increasing likeli-
hood of cyber attacks, vulnerabilities in industrial communi-
cation systems can lead to critical malfunctions or system-wide
paralysis. Industrial Al research focuses on developing effective
malicious attack detection systems for industrial communica-
tions.

In industrial communication systems, Distributed Denial of
Service (DDoS) attacks can have a significant negative impact.
In [57], the authors propose an Multi-Layer Perceptron (MLP)-
based method to address IoT network intrusions caused by
DDoS/DOS attacks. They evaluate its performance by training
MLP on internet packets and successfully identifying different
attack types. In [58], the authors use ResNet, which is a type of
CNN, to detect DDoS/DoS attacks in 5G networks.

Additionally, researchers are exploring anomaly detection
systems for various malicious attacks. MAC spoofing is an
ID-based attack in wireless networks. The emergence of virtual
MAC spoofing has made detecting such attacks more challeng-
ing. [59] presents a system using CSI and deep CNN techniques
to detect virtual MAC spoofing. It extracts physical information
like amplitude and phase from CSI acquired during packet trans-
mission and trains CNN to classify devices in the same location
with high accuracy. To detect Advanced Persistent Threats,
which persistently infiltrate systems and steal information, [60]
employs CNN. They propose applying ResNet to consortium
block-chain, ensuring secure data transmission and maintenance
in industrial systems, for effective APT attack detection.

6) Quality Prediction: Al technique can be utilized to predict
information about quality that cannot be directly measured
through sensors in complex industrial processes or is not im-
mediately available. Various industrial Al research has been
conducted with the aim of quality prediction. To adhere to
regulatory guidelines and mitigate pollutant emissions, studies
such as [61], [62], [63] employ RF algorithm to predict the
concentration of specific elements in gas emissions.

The research in [61] focuses on predicting methane concen-
trations in shale gas fields for greenhouse gas emission measure-
ment. [62] monitors odor concentrations and grades at wastewa-
ter treatment plants. Similarly, [63] predicts odor concentrations
based on quantitative data from compounds emitted in urban
areas, identifying odor emission sources. Predicting pollutant
emissions is essential for both sustainability and productivity
improvement. In [67], SVM is used to predict water quality
in industrial aquaculture for systematic feed supply and water
quality management. Additionally, in [64], SVM predicts NOx
emissions in the air to classify coal combustion quality in thermal
power plants.

Traditionally, the assessment of product quality has been
dependent on offline laboratory analysis, posing challenges
for real-time impact on production processes. Hence, real-time
product quality prediction can significantly enhance production
quality. The research by [65], [66] focuses on predicting product

quality in complex manufacturing systems. [65] employs Deep
Factorization Machine (FM) to predict refined quality from min-
eral purification process data. Moreover, [66] predicts steel in-
dustry product quality using a 1D-CNN-based Multi-Objective
Ensemble Learning approach.

C. Industrial Al for Control & Decision-Making

Table I1I presents a summary of 14 recent studies on industrial
Al for control & decision-Making. We have categorized control
& decision-making techniques into four main areas: parameter
optimization, production scheduling, data-driven control, and
task & resource allocation.

1) Parameter Optimization: To maximize efficiency and
maintain stability in systems and processes, optimal parame-
ter settings are essential. Research on parameter optimization
through Al in the industrial sector has become increasingly
active. Industrial Al can tune control parameters of controllers of
industrial systems. [68] propose an Al-based optimization tech-
nique for finding optimal parameters for controlling an industrial
robot arm. The researchers use ANN to model a Genetic Algo-
rithm (GA) and apply the GA to calculate optimized parameters
for gimbal joints. Gimbal joints are joints that can be adjusted
directly by users to create fine movements of an industrial
robot arm, and are expected to replace existing rotational joints.
Simulation results demonstrate that ANN-based optimization
can improve the performance of complex robot joint control.

The research conducted by [69], [70] focuses on optimizing
the parameters of 3D printing using Al techniques. [69] utilizes
RF to enhance production efficiency while ensuring desired in-
terfacial performance. On the other hand, [70] integrates various
machine learning methods with the GUI of a 3D printer to assist
users in selecting the optimal parameters when using the printer.
A comparative study of parameter optimization performance
across eight ML algorithms revealed that the Gradient Boosting
(GB) method exhibited the best performance.

2) Production Scheduling: Recently, attempts are made to
dynamically solve scheduling problems using Al technique and
real-time data. Studies of [71], [72], [73], [74] utilize industrial
Al technology for scheduling in manufacturing systems. The
use of industrial AI enables flexible production scheduling by
effectively processing dynamic events that are difficult to predict
in real-time. In [71], an Al scheduler employing Q-learning and
composite reward functions is proposed to achieve real-time
production scheduling of manufacturing operations. Real-time
status tracking of the order system and machine processing
system is achieved through an internet-supported sensor network
in a smart factory, which is then used by the Al scheduler to ef-
ficiently schedule production schedules. In [72], the scheduling
of systems that consider various variables such as processing
time, priority, and transportation time is more accurately and
efficiently calculated using Fuzzy Inference System, an Al tech-
nique based on fuzzy logic.

In [73], an adaptive scheduling system using closed-loop
adaptive scheduling for manufacturing systems is proposed to
improve adaptability. Compared to existing dynamic scheduling,
a scheduling solution composed of offline learning through GA
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TABLE IlI
INDUSTRIAL Al FOR CONTROL & DECISION-MAKING

Technique Application Method AICPS Component Design Consideration
ANN [68], [69]
Parameter Gimbal joint controller [68] GA [68] Control systems Stability [68]
Optimization 3D-printing [69], [70] GB [70] [68]-[70] Productivity [69], [70]
RF [69]
Q-learning [71]
Production Flexible manufacturing system EIIAZZ[};B{‘]OgIC [72] Control systems Productivity [71]-[73]
Scheduling [71]-[74] KNN [73] [71]-[74] Stability [73], [74]
DDOQN [74]
Distillation column system AC [76] ..
Data-driven [75] ANN [77] Control systems gi;)gﬁictnv[l;};]ws]
Control pH control system [76] GA [75] [751-[77] Sustainﬁbilit [76]. [77]
Power system [77] RNN [75] y Lok
. ] ] DDPG [78] Wireless networks
Task & Resource g‘;ﬁﬁﬁn‘;ﬁle‘fvﬁ?[%ﬁ] so] | DN [79] (78], [81] Productivity [78]-[80]
Allocation Wireless %ensor network’ (81] A3C [80] Control servers [79], Stability [81]
o DNN [81] [80]

and online adjustment through KNN is used to autonomously
adjust scheduling rules and enable flexible production schedul-
ing. It can also adapt to various disturbance scenarios, such as
machine failures, urgent orders, and changes in uncertain pro-
cessing and delivery times. In [74], a distributed and hierarchical
approach for real-time dynamic scheduling is proposed. After
training the scheduling agent with the Double Deep Q-Network
(DDQN) technique, real-time scheduling decisions are made
by utilizing the difference between production information and
scheduling objectives.

3) Data-Driven Control: Data-driven control is a control ap-
proach that has been studied in recent years and is being used to
control complex nonlinear systems. [75] propose a data-driven
control system for a batch distillation column that uses a RNN to
design an emulator for physical systems and tunes the plant con-
troller using GA and Particle Swarm Optimization techniques,
unlike conventional PID control or human manual operation
for controlling physical plants. The system showed significant
benefits in product quality and energy consumption compared
to the conventional PID control in a closed-loop simulation.

The study by [76] proposes a data-driven autonomous pH
controller using the Actor-Critic (AC) algorithm for neutralizing
acidic pH wastewater generated in the electroplating industry.
The proposed controller outperforms conventional PID con-
trollers in stabilizing the pH of effluents within a neutral range
across various scenarios. [77] aims to reduce the computational
demand in real-time control of power converters by apply-
ing ANN. Experimental results indicate that the ANN-based
model predictive control approach maintains control perfor-
mance while significantly reducing computational complexity.

4) Task & Resource Allocation: In Industry 4.0, cloud com-
puting or edge computing is used to increase network efficiency,
but as the number of channels increases, accessibility and reli-
ability decrease in edge computing. In [78], a multi-channel
access and task offloading algorithm is proposed using multi
agent deep reinforcement learning to reduce computation la-
tency and increase channel access success rate. Experimental
results show that the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm outperforms other techniques

like DQN and AC in terms of channel access success rate and
channel utilization rate.

Resource allocation scheduling can increase the sustainability
of AICPS and improve productivity by effectively managing
resource utilization. Studies such as those by [79], [80], [81] em-
ploy Al techniques for resource allocation in sensor networks or
distributed edge systems. Given limited computing and storage
resources, efficient service placement in edge clouds is necessary
for processing large amounts of data. Especially in real situations
where service demand is uncertain, determining which service
to place on each edge node for optimal resource allocation is cru-
cial. In [79], convex optimization and DQN based algorithms are
proposed for joint optimization of service placement, workload
scheduling, and resource allocation in industrial environments.
In [80], the Asynchronous Advantage Actor-Critic (A3C) tech-
nique is employed to optimize resource allocation and minimize
waiting time in hybrid network paradigms that integrate cloud
computing with edge computing.

Furthermore, energy-efficient wireless sensor networks are
required for efficient data exchange between IoT devices. Con-
sequently, [81] proposes a resource allocation system using deep
learning that meets energy efficiency in wireless sensor net-
works. The whale-optimization-based DNN technique is utilized
for network energy efficiency, improving the performance of
power allocation optimization by reducing the amount of total
transmission power.

V. PERSPECTIVES FOR AICPS

The integration of industrial AI and ICPS can yield benefits
of productivity, stability, reliability, and sustainability to various
industrial processes. However, several challenges remain to be
addressed for the practical application of AICPS in industrial
fields. In this section, we outline the research perspectives that
must be addressed for the successful establishment of AICPS
in the industrial sector. Fig. 3 represents the perspectives for
AICPS design. We identify five main perspectives: uncertainty
of information, safety of Al, explainability of Al, human-societal
interactive ICPS, and standardization of industrial Al.
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Fig. 3. Perspectives for AICPS design.

A. Uncertainty of Information

Despite the active research on industrial Al, lack of stability
and reliability due to uncertainty of information continue to pose
research challenges. In this section, we describe the factors that
create uncertainty of information that must be overcome for the
adoption of AICPS, and investigate research aimed at resolving
this uncertainty.

Lack of reliability in data is a common problem in industrial
environments. Industrial environments sometimes face difficul-
ties due to data scarcity. The more complex the equipment, the
harder it becomes to explain the relationships through existing
knowledge, making a data-driven approach more effective [82].
However, obtaining sufficient data can be challenging for some
complex equipment due to their low digital degree and com-
plexity. Furthermore, obtaining data for fault prediction can
be difficult due to the long-term sustained normal state and
occasional occurrence of faults or defects in the system [83].
Data scarcity makes the use of Al challenging. For example,
if there are not enough samples for training DNN, it is easy
to encounter high variance and overfitting problems [84]. For
high-dimensional data with a small number of samples, machine
learning performance estimates can be biased [85]. Dropout
techniques [83] and batch normalization [86] are two well-
known regularization methods used to prevent overfitting when
training deep Al models. In addition, research is underway to
address the fundamental issue of data scarcity, such as data
augmentation and transfer learning.

Data augmentation is the process of supplementing a dataset
with generated similar data derived from the information in the
dataset itself [87]. It is used for oversampling, where minority
class data is replicated to address data imbalance when there is
a scarcity of data for all labels or a discrepancy in data balance
across labels [88]. Data augmentation includes basic approaches
such as adding noise [89], rotating [90], or cropping/flipping [91]
data (primarily for image data), as well as more complex ap-
proaches such as decomposition methods, statistical genera-
tive methods, and learning-based methods [92]. Decomposition

methods feature using decomposition techniques such as em-
pirical mode decomposition to generate new data that preserves
the information of the original data [93]. Statistical generative
methods employ modeling the dynamics of data using statistical
models based on the data [94]. Learning-based methods feature
modeling the dynamics of data, primarily through Al techniques
such as GAN [95].

The traditional machine learning methodology assumes that
the data used for training and testing are from the same domain.
However, in some industrial environments, collecting enough
data for training may be impossible or difficult for various
reasons. Transfer learning is a technique that allows the use of
models trained on data from a different but related domain to be
utilized for applications in the target domain where the data is
limited or difficult to obtain [96]. Transfer learning is commonly
used in industrial scenarios such as fault diagnosis [97], image
recognition [98], and quality prediction [99].

B. Safety of Al

The primary aim of ideal AICPS is to develop the optimal Al
model by leveraging data acquired from industrial environments
and subsequently apply it to real-world industrial processes.
However, the dynamic nature of the industrial environments and
model instability, the intrinsic characteristics of Al, can lead
to machine malfunctions or pose risks to human safety during
application process. Within this context, ensuring the stability of
Al models emerges as a critical task that needs to be addressed
to facilitate the successful establishment of AICPS [100].

The definition of stability for AI models has not yet been
firmly established; however, current research is exploring var-
ious methods ensuring the stability of AI models themselves.
In the context of the study discussed in [100], the proposal
suggests additional normalization processes or the application of
constraints to guarantee the model’s stability. During the training
process, incorporating multiplicative factors related to safety
elements or safety margins can reduce the uncertainty between
the distributions of training and testing data. Furthermore, in sit-
uations where the model encounters unpredicted circumstances,
the safe fail approach can be employed by opting for rejection or
manual review options with human intervention in the prediction
process.

If the model designer lacks expertise in regularization and
constraint domains, they may encounter difficulties in apply-
ing regularization and constraint techniques. To address this,
in [101], a new framework for constraints is proposed. When the
designer specifies the constraint conditions in the framework, the
framework designs suitable constraint algorithms. This allows
the designer to easily apply constraint algorithms that satisfy
the constraint domain, even without being an expert in constraint
domains. Recently, research has also been conducted to integrate
Al and mathematical programming in a synergistic manner to
reduce model uncertainty. By combining machine learning in
the upper stream and mathematical programming in the lower
stream through a closed-loop-based data-driven optimization
approach, stable decision-making for uncertainty models has
been made possible [102].
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Ensuring safety while not compromising efficiency is an
important issue. Even in the field of reinforcement learning,
which has focused more on cost optimization and paid relatively
less attention to stability aspects, research is underway to secure
the stability of models. In [103], the study introduces the use of
permissive schedulers to enable controller design that guarantees
both stability and optimality. Recently, the introduction of a
reactive system called “shield” has also been applied to enhance
the stability of reinforcement learning models. Shield monitors
the behavior of the model and modifies its actions only when
violating certain conditions to ensure stability [104]. Addition-
ally, a framework called “FoRShield” has been proposed for the
safety of control systems. It filters out risky choices of the model
while guiding it towards correct actions, providing feedback to
the learning system [105].

C. Human-Societal Interactive ICPS

Despite the advancement in automation achieved through
the introduction of ICPS, the role of human interaction within
industrial processes remains irreplaceable. As such, an approach
focusing on human-friendliness is essential in the design of
industrial systems. The concept of human-friendliness in ICPS
aims to enhance the user experience by prioritizing the user’s
needs during human-machine interactions. Originating from
user-centric engineering, this approach adapts the system con-
figuration based on insights gathered from extensive monitoring
of human-computer interactions. Such insights are increasingly
serving as foundational elements for the successful evolution of
ICPS [29].

Specifically, [106] discusses the advent of adaptive produc-
tion systems that extend beyond mere “collaborative work”
between humans and machines. These systems “support” the
enhancement of human physical abilities, sensing functions,
and cognitive capabilities through automation. The aim is to
optimally adjust the types and levels of automation in the system
to amplify human capacities, emphasizing and valuing the hu-
man role within industrial environments [ 106]. Here, automation
functions not as a substitute but as a facilitator for more proficient
human labor. By ameliorating human limitations and enhancing
end production objectives, automation contributes to creating a
human-friendly work environments [107].

Not only is human-friendliness pivotal, but ethical consid-
erations also remain indispensable for the effective integra-
tion of ICPS into human and societal contexts. While ICPS
efficiently augments productivity through technological inno-
vations like automation, it simultaneously poses ethical chal-
lenges. These challenges encompass risks related to large-scale
data collection—such as the potential for personal data leakage—
accountability in Al decision-making processes, and ethical
dilemmas arising from the unintended consequences of automa-
tion techniques. To address these ethical complexities engen-
dered by ICPS, a framework is proposed specifically aimed at
identifying and preempting ethical issues in the design phase of
ICPS [30].

As the complexity and autonomy of ICPS escalate, the range
of potential ethical dilemmas correspondingly expands. From

development to commercialization, ICPS involves interactions
with a diverse array of stakeholders, necessitating rigorous eth-
ical considerations throughout entire lifecycle of ICPS. Specifi-
cally within this lifecycle, it is essential to empower stakeholders
to engage in self-directed ethical questioning as a foundational
approach for mitigating ethical dilemmas. Such ethical inquiry
activities serve to reinforce awareness of ethical considera-
tions among all parties involved—ranging from designers and
researchers to engineers [108].

[109] introduces a novel approach to engineering ethics by
constructing ethical controllers designed for ethically appro-
priate decision-making in real-world scenarios. These ethical
controllers employ a phased strategy based on the strengths and
weaknesses of both deontological and consequentialist theories.
This approach enables the system to flexibly adapt to a wide
range of ethical dilemma scenarios, thereby enhancing the ethi-
cal decision-making capabilities of autonomous systems [109].

D. Explainability of Al

Al models base their decisions on probabilistic values, which
canraise trust concerns when dealing with unexpected accidents,
faults, or attacks in industrial environments. Particularly in ac-
tual systems, it is unfeasible to train models for all possible sce-
narios due to the imperfections in the training data. Furthermore,
even with comprehensive training, Al models cannot achieve a
zero-percent error rate; they can only minimize it [110].

Moreover, utilizing Al methods for controlling physical sys-
tems remains an area of uncertainty. It is also difficult to deter-
mine the degree of control stability in physical systems using
Al models. Within the spectrum of Al technologies, controllers
employing reinforcement learning excel in terms of adaptability;
however, they also remain unable to ensure unequivocal stability
in control operations [111]. Especially in industrial contexts, the
financial burden of development for technique implementation
is considerable, compounded by the difficulties of conducting
empirical tests on actual systems.

Al systems are frequently characterized as enigmatic “black
boxes”. A variety of machine learning techniques, such as SVM,
RF, RL and DL, are employed for their superior performance
attributes. However, these algorithms are largely opaque when
it comes to explainability. Consequently, unless the decision-
making processes and predictive outcomes produced by these
Al'models are rendered comprehensible to human operators, the
reliability of the system remains questionable. This contextual
landscape necessitates the introduction of Explainable Al (XAI),
a conceptual paradigm committed to elucidating Al-generated
decisions and predictions in a form that is both understandable
and explainable to humans [112].

XAl systems should be able to explain not only their functions,
but also what they have done, what they are currently doing,
and what will happen in the future [112]. XAI has two pri-
mary tasks: transparency design and post-hoc explanation [113].
Transparency design aims to make the operation of Al models
transparent from the developer’s perspective. Post-hoc explana-
tion, on the other hand, explains the reasons behind the results
inferred by an Al model from the user’s perspective.
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TABLE IV
INDUSTRIAL Al STANDARDS

Reference Abbreviation Name Institution | Design Consideration

[121] ISO/IEC TS 4213 Assessment of machine learning ISO/IEC Productivity
classification performance

[122] ISO/TEC WD TS 25058 | Guidance for quality evaluation of Al ISO/TEC Productivity
systems

[123] ISO/IEC PRF 25059 Quality model for Al systems ISO/IEC Productivity

[124] ISO/IEC CD 5259 Data quality for analytics and machine ISO/IEC Productivity
learning (ML)

[125] ISO/IEC TR 24027 Bias in Al systems and Al aided decision ISO/IEC Stability
making

[126] ISO/IEC TR 24028 Overview of trustworthiness in artificial ISO/IEC Stability
intelligence

[127] ISO/IEC CD TS 12791 | Treatment of unwanted bias in ISO/IEC Stability
classification and regression machine
learning tasks

[128] ISO/IEC CD TR 5469 | Functional safety and Al systems ISO/IEC Stability

[129] ISO/IEC AWI 27090 Guidance for addressing security threats ISO/IEC Reliability
and failures in artificial intelligence
systems

[130] NIS AI RMF NIST AI Risk Management Framework NIST Reliability

In [114], two forms of explainability for AI models are pro-
posed. Firstly, “Mathematical explainability” emphasizes pre-
dicting the model’s outcomes based on mathematical concepts.
This approach relies on mathematically analyzing the model’s
parameters or weights to provide explainability. It serves as
an aspect of transparency design by applying mathematical
concepts to enhance the explainability of the model’s workings
and decisions. Secondly, “Perceptual explainability” highlights
an approach that allows for the interpretation of the model
in a way that is intuitively understandable to humans. This
involves visualizing the key features of the model to facilitate
easy comprehension for users. It serves as an aspect of post-hoc
explanation by visualizing the model’s results to make them
interpretable. [115] discusses various explanation techniques
used to enhance explainability for models from a post-hoc
explainability perspective. Examples of such techniques include
text explanations, visual explanations, explanations by example,
and explanations by simplification. To aid in the understanding
of the model’s interpretation, text explanations feature gen-
erating text, while visual explanations visualize the behavior
of the model. Explanations by example showcase the model’s
generated results as examples to facilitate easier understanding,
and explanations by simplification involve designing simplified
models based on the trained model to enhance user understand-
ing with lower complexity [115].

While AI models offer a multitude of advantages in the
industrial sector, it is equally crucial to ensure that human ex-
perts can comprehend these models. In particular, it is essential
to explain to the workers the control stability and equipment
maintenance that the AI model is responsible for. To enhance
user’s comprehension of the Al model, simplifying the model
may result in a trade-off with performance. Striking a delicate
balance between the model’s performance and its explainability
becomes imperative.

E. Standardization of Industrial Al

A standard is a technical specification that provides detailed
requirements, specifications, rules, guidelines, and procedures
for a specific operation, product, system, or service. These spec-
ifications are developed through the consensus of industry and
market actors, approved by accredited bodies, and published as
documents [116]. Standardization of industrial Al is particularly
crucial since the integration of industrial AI and CPS is manda-
tory. To achieve standardization, multiple frameworks need to
be consolidated into a single standard, allowing developers to
utilize validated frameworks. Numerous studies investigate the
integration of industrial Al and CPS within a unified frame-
work [117], [118], [119], [120].

Standardization efforts related to industrial Al for intelligent
design are actively ongoing. Standardization of industrial Al is
crucial in ensuring the performance and reliability of products
and services that use Al, facilitating the adoption of Al tech-
nology in industries where reliability and stability are of utmost
importance. Moreover, interoperability issues may arise among
companies that develop products and services using Al tech-
nology. Therefore, standardization can resolve such problems
by unifying Al technology in industrial domains. Ultimately,
standardization can enable the more efficient use of Al tech-
nology, resulting in the development of superior products and
services. Table IV provides a summary of references, abbrevia-
tions, names, institutions and design considerations of standards
about Al technology related to AICPS design.

Standards related to AI techniques for enhancing produc-
tivity are currently being developed and published. ISO/IEC
TS 4213, ISO/IEC WD TS 25058, and ISO/IEC PRF 25059
are standards for evaluating the performance of Al techniques.
ISO/IEC TS 4213 proposes standards for Al techniques used
in classification [121]. ISO/IEC WD TS 25058 and ISO/IEC
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PRF 25059 are currently under development as standards for
guidelines and models for evaluating the performance of Al
systems [122], [123]. ISO/IEC CD 5259 is a set of standards
for data quality for machine learning, which is currently being
studied [124]. It provides terms for data quality, requirements
and guidelines for quality management, a process framework for
quality measurement, and a framework for quality visualization.

The stability of Al technology is also a crucial factor that
needs to be addressed to ensure its efficient utilization across
diverse industries. In this regard, two standards, namely ISO/IEC
TR 24027 and ISO/IEC CD TS 12791, are currently under
development to address the issue of bias in Al. Bias in Al often
arises from personal and unnecessary assumptions. These biases
may be inherent in the training data or the model itself [131].
Such biases can potentially lead to inaccurate predictions by the
Al model and incorrect decisions for some or all of the data.
ISO/IEC TR 24027 aims to provide standards pertaining to the
concept and causes of bias, types of bias, bias evaluation and
measurement, as well as bias management and mitigation [125].
On the other hand, ISO/IEC CD TS 12791 is focused on de-
veloping mitigation techniques that can be applied across the
entire life cycle of an Al system to address undesired biases in
classification and regression machine learning tasks [127].

Ensuring the reliability of AI models against cybersecurity
threats is a crucial aspect of Al technology [132]. In this regard,
ISO/IEC AWI 27090 is a standard currently being developed to
provide guidelines for organizations to address security threats
and errors in Al systems [129]. The objective of this standard
is to furnish organizations with information to better compre-
hend the consequences of security threats to Al systems and
to provide explanations on how to detect and mitigate such
threats. Moreover, NIS AI RMF proposes an approach for
organizations and individuals to enhance the reliability of Al
systems and promote sustainable and responsible design, devel-
opment, deployment, and use of Al systems [130]. It outlines the
characteristics of trustworthy Al systems, which encompass the
following attributes: validity and reliability; safety; security and
resilience; accountability and transparency; explainability and
interpretability; enhanced privacy; and fairness, with harmful
biases appropriately managed.

VI. CONCLUSION

In light of the escalating global attention on Al, there is an
increased effort to develop Al techniques tailored for industrial
processes. Accordingly, the importance of integrating ICPS and
industrial Al is being emphasized, and it is expected that efforts
to strengthen this integration will intensify in future research. In
this context, we propose the establishment of AICPS to optimize
the management of industrial processes. The adoption of AICPS
provides several technological and economic benefits, such as
real-time monitoring of machinery, efficient maintenance man-
agement, and effective scheduling planning.

In this article, we suggest a set of design considerations and
analyze the components and interactions of AICPS. In addi-
tion, we also present cutting-edge industrial Al technologies
for AICPS and identify research challenges that need to be

addressed for the successful implementation of AICPS. These
challenges, which include uncertainty of information, safety
of Al, explainability of AI, human-societal interactive ICPS,
and standardization of industrial Al suggest that there are still
issues to be resolved for the establishment of AICPS. In the
majority of the research studies we surveyed, the validation of Al
techniques was conducted within simulators and testbeds. Out
of the 51 papers examined in our paper, only five were validated
on actual industrial systems. This highlights a “lack of assur-
ance” stemming from the fact that the aforementioned research
challenges have not been fully addressed. Consequently, for the
effective utilization of industrial Al in ICPS, there needs to be
rigorous research into effective and systematic verification and
deployment processes that can ensure the safety of both users
and industrial systems.

We outline the direction of AICPS research that can address
research challenges considering five design considerations. This
serves as a foundational framework for future research, particu-
larly in the context of emerging technologies and trends. There-
fore, this article not only advocates for an intelligent approach
to industrial process management and emphasizes the criticality
of integrating industrial Al with ICPS, but it also delineates
milestones for future research trajectories that scholars ought to
consider.
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