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Abstract—The growing demand for vision tasks utiliz-
ing RGB-T (Red-Green-Blue-Thermal) imagery is attributed
to the advantageous synergistic effect of combining RGB
images with thermal (Tir) image information. Due to their
exceptional real-time inference efficacy, siamese networks
have garnered considerable attention in RGB-T object
tracking as a leading solution. However, current RGB-T
Siamese trackers still need to catch up with online training
RGB-T trackers regarding accuracy and robustness due to
ineffective utilization of valid information from both modes.
To this end, this work proposes SiamTDR, a high-speed
Siamese network-based RGB-T tracker with a disentangled
representation and deconstructed features. Firstly, we in-
troduce a single-modal feature extraction network into the
Siamese network to capture cross-level information within
unimodal features extracted from RGB or Tir images. Next,
we employ a disentangled representation multi-modal fea-
ture fusion module (DP-MF) to extract cross-modal infor-
mation between RGB and thermal features, thereby improv-
ing the information utilization of both modalities. Finally,
a dual branch fusion module (DBF) significantly enhances
the robustness of our tracker in the final bounding box
selection stage. Besides, we also employ data augmen-
tation techniques such as central random offset. Exten-
sive experiments conducted on two RGB-T tracking bench-
mark datasets demonstrate the superior performance of
our method, which achieves a tracking speed of over 127
frames per second (FPS) on the GTOT dataset.

Index Terms—Disentangled representations, informa-
tion fusion, RGB-T tracking, real-time tracking, Siamese
network.
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[. INTRODUCTION

ITH the deep integration and development of informati-
W zation and industrialization, cyber-physical systems in-
tegrating technologies such as computing, communication, and
control have emerged [1], [2], [3]. The cyber-physical systems
have been widely applied in critical infrastructure, such as the
industrial internet, smart grids, and intelligent transportation
systems [4]. Real-time monitoring and perceiving the external
environment are fundamental for achieving system autonomy
and collaboration in cyber-physical systems [5], [6]. In this
context, object tracking is crucial to enabling real-time mon-
itoring and perception in the system. Real-time information
regarding position, velocity, and motion trajectories is obtained
by using sensor data and other information to track the objects in
the system, enhancing the system’s perceptual capabilities and
decision-making accuracy [7].

Currently, significant breakthroughs have been made in
single-modal object tracking techniques [8], [9], [10], [11],
[12], [13] based on RGB or TIR imaging. However, these
algorithms still face challenges in complex scenarios or ex-
treme conditions. RGB images provide rich color information
and better differentiate and recognize different objects in aus-
tere environments. However, they struggle to provide suffi-
cient effective features for tracking in complex environments
such as low light, occlusion, and rainy conditions, resulting in
unsatisfactory tracking precision. Consequently, RGB object
tracking techniques’ accuracy fails to meet the requirements
in cyber-physical systems. On the other hand, TIR images are
imaged by thermal radiation, which is insensitive to light and
sensitive to temperature. Moreover, they exhibit excellent pen-
etration capabilities in scenarios involving smoke obstruction.
Nonetheless, TIR images are susceptible to thermal crosstalk
interference and lack detailed texture and color information.
Solely relying on TIR images for tracking in cyber-physical
systems restricts the reliability of the algorithms. Considering
the complementary nature of RGB and TIR image information,
reasonably incorporating data from both modalities during the
tracking process can achieve more robust tracking than using the
single modality alone. RGBT object tracking algorithms carry
significant research implications and practical value. Since the
introduction of the Visible Light-Thermal Infrared multimodal
dataset (OSU Color Thermal) by Davis etal. [14]in 2007, RGBT
(RGB-Thermal) object tracking algorithms have emerged as a
new research topic and have gained increasing attention from
researchers.
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Fig. 1. Comparison of the proposed Siam with other state-of-the-art
RGB-T trackers. the SiamTDR operates at twenty times the speed of
DAPNet, with comparable performance.

In the field of RGBT object tracking, early research [15],
[16], [17] relied on manual feature extraction. However, these
methods fail to combine the two modalities effectively, result-
ing in inadequate tracking accuracy. Currently, deep learning
methods have demonstrated good performance in RGBT ob-
jecting tracking, primarily based on two approaches: multi-
domain networks and Siamese networks. MDNet [18] intro-
duces the concept of multi-domain networks, which classifies
regions randomly selected from each frame and uses the region
with the highest confidence score as the object for tracking.
However, these multi-domain network-based algorithms’ sig-
nificantly slower processing speed is much lower than in real-
time. These trackers are ill-suited for performing real-time tasks
such as cyber-physical systems and autonomous driving. The
concept of Siamese networks is introduced to object tracking
by SiamFC [19]. Siamese network algorithms continuously
perform convolutional operations between the template frame
and the search region frame to determine the object’s location.
Although Siamese networks [20], [21] demonstrate favorable
real-time performance due to their fully convolutional structure,
their accuracy falls short compared to RGBT trackers based on
multi-domain networks [22], [23], as shown in Fig. 1.

To address the issue of insufficient accuracy in Siamese
tracking, RGBT tracking algorithms extract features from modal
images. Among these, simple multi-modal fusion algorithms
tend to decompose the source images into different parts to
extract features from each modality, often disregarding the vary-
ing contributions of each modality and region to the detection
process, resulting in overfitting to noisy regions in the infrared
image. In real-world scenarios, infrared imaging limitations,
such as excessive noise, low image contrast, low signal-to-noise
ratio, blurry edges, visual distortion, and limited grayscale range,
result in different contributions of RGB and TIR images. Fig. 2
illustrates several images from a public RGB-T234 dataset [24],
wherein certain target objects are lost or blurred due to imaging
methods and noise interference, particularly near the back-
ground and object boundaries. To tackle these challenges, an

(a) (b)

Fig. 2. lllustrative of complementary information for RGB images and
Tirimages. (a) and (b) are two example frames of the RGB modality and
the Tir modality, respectively. As shown in the area marked by the red
box, there is remarkable image complementary information between the
two modalities, which can improve the accuracy of object tracking.

attention-based multi-modal information fusion mechanism for
RGB-T by using feature disentanglement is proposed in this
article. This mechanism aims to mitigate the adverse effects of
TIR image noise and maximize the complementarity of multi-
modal features. Bengio et al. [25] proposed that disentangled
representation learning is an important research direction in the
next phase of deep learning, stating that the entanglement of
multiple generating factors generates data. Disentangled repre-
sentation learning aims to extract interpretable attributes from
various data variations, generating meaningful representations
that separate valuable interpretable attributes for downstream
tasks from other interfering factors. This approach ultimately
enhances the accuracy and robustness of the model.

To address the issues of algorithmic timeliness and accuracy,
we have designed an RGB-T tracking framework based on the
Siamese network, named SiamTDR. This framework achieves
high performance while maintaining real-time operation speed.
The RGB-T object tracking algorithm based on the Siamese
network significantly enhances situational awareness, thereby
optimizing cyber-physical systems’ security. As shown in Fig. 1,
our tracker achieves comparable performance to some state-of-
the-art RGB-T trackers while being more efficient in tracking
speed. We employ two identically structured feature extractors
to extract features from different modalities of the template
frame and the detection frame. The attention fusion module
prevents introducing infrared noise during fusion and fully ex-
ploits multi-modal features. Subsequently, both single-modal
and fused features are provided to the prediction module to
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enhance the network’s detection capability and noise resistance.
The main contributions of this research can be summarized as
follows:

1) A unified RGB-T tracking framework based on the
Siamese network is proposed to balance the weights
of different modal features and achieve high tracking
performance.

2) A concise and small feature extraction method is designed
to disentangle modal representations during extraction,
combined with a dual neural network to construct the
backbone network of the multi-modal object tracking
algorithm.

3) A fusion module based on dynamic convolution is de-
signed by adaptively focusing on the critical regions in
both spatial and channel dimensions of different modal-
ities, with efficient use of RGB and Tir image synergy
features.

4) A fusion prediction module is designed and applied to
track objects using RGB features and fused feature in-
spection. The tracking capability of this network is further
enhanced.

[I. RELATED WORK
A. RGB Tracking Methods

In recent years, advancements in benchmark datasets and
novel techniques have led to significant advancements in object
tracking. Deep feature representation-based trackers [13], [26],
[27], in particular, have achieved state-of-the-art performance in
key tracking benchmarks, thanks to the success of Convolutional
Neural Networks (CNNs) in various computer vision applica-
tions. These modern tracking algorithms can be broadly catego-
rized into discriminative and generative trackers. Discriminative
trackers, which require online model training, train a classifier
to differentiate the target from the background. For instance,
Object-aware Anchor-free Tracking (Ocean), a unique CNN
architecture, was proposed in [28] to learn the tracked targets
inside the predicted bounding box through the feature sampling
locations module for tracking purposes.

Additionally, specialized trackers such as ATOM [29], and
DiMP [30] have been developed to achieve even higher perfor-
mance standards. Although these discriminative trackers have
relatively lower speeds, they offer exceptional tracking perfor-
mance. On the other hand, generative trackers [21], [21], [31] es-
timate the joint probability densities between features and search
candidates to determine the best match for the target. Among
generative trackers, Siamese network-based trackers [21], [31]
have received significant attention, surpassing various bench-
marks with their real-time performance.

B. Siamese Network Based RGB Trackers

The article “SiamFC” [19] pioneered using fully convolu-
tional Siamese networks for object tracking. It framed ob-
ject tracking as a similarity learning problem. Subsequently,
“SiamRPN” [31] was developed by integrating region proposal
networks [32] into the SiamFC framework, resulting in more

accurate target bounding box predictions. Inspired by the suc-
cess of SiamFC and SiamRPN, several subsequent studies [33],
[34], [35] have further improved these models. For example,
“Zhu et al.” [33] introduced distractor-aware training into the
SiamRPN framework. “C-RPN” [34] proposed a multi-stage
tracking technique to improve localization accuracy. To improve
the performance of Siamese network-based trackers, deeper net-
works such as ResNet [36], ResNeXt [37], and MobileNet [38]
were incorporated as the backbone. The “SiamRPN++" [39]
model used these modern deep neural networks and introduced
a novel training strategy to overcome limitations by randomly
changing the placement of training items within the search area.
Another approach, “SiamDW” [40], used a residual network
for visual tracking with customizable, receptive field size and
network step, resulting in improved tracking accuracy. More
recently, various Siamese trackers [21], [31] have adopted the re-
gression of the distance between the projected target’s center and
the bounding box’s borders, drawing inspiration from anchor-
free detectors such as [41]. Additionally, some researchers [28]
have utilized adversarial techniques from CNNss to increase the
robustness of deep learning-based trackers.

C. RGB-T Tracking Methods

Various RGB-T tracking algorithms have recently been de-
veloped that leverage RGB and thermal information to improve
tracking performance. Initially, these algorithms relied on hand-
engineered features [15], [16], [17], [22], [23], [42]. With the
advancement of deep learning, more RGB-T trackers have been
introduced that are based on learned attributes [23], [24], [42].
The RGB trackers serve as the foundation for these RGB-T
trackers. For instance, Li et al. [16] proposed a network that
aggregates features from all layers and modalities before re-
moving noise and redundant information. Li et al. [23] presented
a multi-adapter architecture for learning target representations
shared across modalities, specific to each modality, and instance-
aware. Zhang et al. [43] compared different fusion techniques
using DiMP [30] as the baseline tracker and demonstrated
that their proposed fusion tracker outperforms the baseline and
achieves state-of-the-art results in unimodal tracking. However,
these discriminative RGB-T trackers have high computational
complexity, as demonstrated by the low tracking speed of the
MANET [23] tracker, which is only around two frames per
second. To address this issue, some researchers have explored
using Siamese networks in RGB-T tracking, as they have proven
effective in RGB tracking. For example, SiamFT [35] used two
Siamese networks to extract features from the RGB and thermal
inputs and manually set the modality weights. DuSiamRT [20]
improved upon this approach by using a joint modal channel
attention module and improving the regional proposal subnet-
work.

D. Disentangled Representation

The primary objective of disentangled representation learning
is to effectively capture the fundamental factors responsible for
variations in data by decomposing it into distinct and inde-
pendent components [44]. These representations hold immense
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value across diverse domains, such as machine learning, com-
puter vision, and natural language processing, as they enhance
comprehension, control, and data manipulation. Disentangled
representation learning is currently being applied in numerous
domains, including image fusion, image synthesis, and pose
estimation. For instance, Xu et al. [45] proposed a visible and
infrared image fusion network based on disentangled represen-
tation learning in the field of image fusion. This network effec-
tively disentangles the sources of information from visible and
infrared images, which can mitigate the issue of inappropriate
extraction of specific information. In the context of image syn-
thesis, Li et al. [46] introduced MixNMatch, it is a conditional
generative model that is capable of encoding object pose shape
and texture information from input images. These factors are
then combined to compose the desired image. Furthermore, Xia
et al. [47] presented a multi-domain adaptive learning model
incorporating information-theoretic stimulus constraints in pose
estimation. This algorithm improves the robustness of labeling
variable samples by enabling the neural network to learn disen-
tangled representations of multimodal sensor data.

E. Attention Mechanis

Several works [48], [49] developed attention mechanisms to
evaluate the relative significance of various areas or modalities
to circumvent these issues. The attention mechanism has been
extensively employed in various applications [50], [51] to assist
networks in extracting robust and distinguishable characteris-
tics. Google DeepMind utilized the attention mechanism for the
picture classification job and introduced a fresh recurrent neural
network model in 2014. The model can extract information from
an image or video by picking a series of areas or locations adap-
tively and analyzing just those regions at high resolution [50].
Hu et al. (2018). [52] developed the Squeeze-and-Excitation
(SE) block to concentrate on the channel connection, which
learns the reliance of each channel and adaptively recalibrates
channel-wise feature responses to enhance the representation
capability. The SE block solely analyzes the channel contribu-
tion of feature maps, ignoring the object’s spatial position in
pictures. The item’s spatial placement plays a crucial role in
object detection. Woo et al. (2018) [53] suggested the Convolu-
tional Block Attention Module for this purpose (CBAM). CBAM
successively infers attention maps in two dimensions (channel
and spatial) and then performs adaptive feature refinement by
multiplying the attention maps by the input feature maps. Chen
et al. (2020b) [54] investigated attention processes for convolu-
tion kernels, in contrast to the studies of SE block and CBAM
that address attention mechanisms for feature maps. They in-
troduced a unique multi-dimensional attention mechanism with
a concurrent technique for learning complementary attentions
for convolutional kernels. The name of the block is Dynamic
Convolution (DConv). Although these Siamese network-based
RGB-T trackers can approach real-time performance, their ac-
curacy is still lower than other state-of-the-art trackers, partly
due to the lack of a module to enhance the utilization of in-
formation from both modalities. Thus, RGB-T tracking using
Siamese networks is still room for improvement. In this article,

TABLE |
NUMBER OF SIAMTDR BACKBONE PARAMETERS COMPARED TO OTHER
MAINSTREAM BACKBONE NETWORKS

Vggll ViT Inception_v3  Resnet50  Googlenet  Ours

132.8M  86.5M 27.1M 25.5M 13M 7.2M

RGB-T multi-modal information is fused based on an attention
mechanism to limit the detrimental impact of Tir image noise
and maximize the complementary multi-modal characteristics.

[ll. METHOD

This work aims to improve object tracking accuracy by ensur-
ing real-time and effective usage of multi-modal data (RGB and
Tir). As aresult, as illustrated in Fig. 3, a high-speed multi-stage
noise-resistant feature fusion network is proposed. First, two
feature extractors with the same structure (Extractor-RGB and
Extractor-T) extract features from color and infrared images,
respectively. The multi-modal features are then decoupled and
separated, resulting in increased feature diversity and sequential
transmission to the multi-modal feature fusion module for infor-
mation fusion. This module allows the network to focus more
on the significant regions and channels of the input features,
allowing it to learn not only the standard and complementary
features between the different modalities but also to eliminate
the adverse effects of infrared image noise. The modal features
are intercorrelated with the search region features and sent to
the fusion prediction module to determine the target’s location
within the search region. Finally, the target’s position is mapped
to the original frame. Fig. 3 depicts the features extracted from
the infrared and visible images, represented by the orange and
blue lines. The orange line corresponds to the features extracted
from the infrared image after undergoing processing by the back-
bone network, revealing the inherent characteristics of infrared
radiation and transforming them into a more profound infor-
mation representation. Conversely, the blue line represents the
features extracted from the visible image after being processed
by the backbone network, reflecting the scene’s detailed texture
and color information.

A. Siamese Single-Modal Feature Extraction Network

We developed a low-complexity two-stage feature extraction
network in our tracking model proposal. The primary objective
of this network is to extract discriminative features that hold high
relevance for target tracking. Our algorithm achieves a favorable
trade-off between accuracy and speed by concentrating on es-
sential features and eliminating redundant details. Furthermore,
our feature extraction network’s parameter count is lower than
most existing networks, resulting in faster processing times,
as indicated in Table I. In the Siamese single-modal feature
extraction network, the first stage employs a Siamese network
to extract two distinct unimodal features. This network consists
of two branches that share the same structure and parameters.
One branch (the template branch) extracts features from the
template image. The other branch (called the detection branch)
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Overview of the proposed SiamTDR. The overall network consists of five main parts: Siamese network for unimodal feature extraction,

DP-MF module for multi-modal feature fusion, SiameseRPNs for region proposal generation, and DBF module for region proposal network.

extracts features from the search image. It ensures high speed,
using fewer parameters to extract unimodal features from each
input image. In the second stage, the synergetic and specific
information of the RGT and Tir features are transformed into
mode-common features and mode-specific features; because
the feature space of the neural network has some information
redundancy, and the coupling between redundant features, stan-
dard features, and unique features reduces the efficiency of
using practical information and the sensitivity of the model
to discriminative features of the target, making the model is
more unstable in inter-modal information selection. Hence, this
article introduces a network architecture designed to disentangle
the aforementioned multimodal features into two distinct rep-
resentations: mode-common and mode-specific. This approach
effectively enhances the diversity and discriminative nature
of the extracted features. In the following contents, we will dis-
cuss the construction of our template feature extraction module
using the template branch in a Siamese network as an example,
considering that both branches in a dual-stream Siamese network
have the same structure. The RGB template feature extraction
branch consists of a feature aggregation network in the first stage
and a decoupling network in the second stage.

In the first stage, we improve on AlexNet as the backbone
for feature extraction. We chose AlexNet as the baseline feature
extraction network due to its high real-time performance, which
is essential for target tracking. To make the network more
lightweight, we modify it by utilizing only the first three layers of
the AlexNet and removing the padding operation. The rationale
behind removing all padding is that during feature extraction
for tracking tasks. It is crucial to maintain the translational
invariance of the target. The padding operation, however, con-
stantly biases the model’s attention towards the center of the
image, which somewhat compromises the target’s translational
invariance.

In the second stage, considering that two modalities describ-
ing the same environment or target should exhibit common
characteristics and can be described by the same or highly

similar model to ensure consistent descriptions, we design an
inter-modal common feature extraction branch. This approach
gives the diversity of the modal feature space and the feature
selection process. Consequently, we design RGB mode-specific,
RGB mode-common, and Tir mode-common feature extraction
branches to decouple the images from the two different modal-
ities. As illustrated in Fig. 2, the Siamese single-modal feature
extraction network accepts the visible RGB image (image p )
and the infrared Tir image (image; ;) as inputs, generating
three outputs. The improved backbone network is denoted as
F pr, while the three feature extraction branches are labeled
as Frs, Frg, and F);c. Fpr independently accepts visible
and infrared images as inputs, Frs and F ;o accept visible
features, and F1g accepts infrared features independently. The
logical relationship between the input and output is represented
in (1).

Fr = Fpp (imagegrgp) . Fr = Fpp (imagep; )
Frs = Frs (Fr)
Frs = Frs (Fr)
Fue = Fuc (Fr) M

where Frs, Frs, F ﬁc denote the visible-specific features,
infrared-specific features, and common features extracted from
visible images, respectively, of the ternary network output. Frg
and Frg are completely independent to ensure that the modal
feature extraction process is differentiated; Fjsc accepts both
visible and infrared images as input, meaning that the two modal
images share the model structure and parameters, using the same
model to produce consistent feature representations for both
modal images.

B. DP-MF Module for Multi-Modal Feature Extraction
and Fusion

The RGB and thermal (Tir) features for template and detection
are acquired independently from the feature fusion branch of



172 IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 1, 2023

MLP

NI I

AvgPool MLP

1x1xCqyt

O ®

1x1xCqyt

— NananaRRRRRNAAAN]

(]

((mep | [MLLP}

\
: N\ Conv1

NRRER
N\

|l

Fig. 4.

£
E—

=
®

(o]

®

®

lllustration of our proposed DP-MF module. First, the weight generation subnetwork takes the features maps from two-stream Siamese

networks as input and produces weights that reflect how much additional information should be introduced from one modality data to another
modality data. Then the enhanced multi-modal features are obtained by using dynamic convolution. Finally, the fused features are obtained by
performing some attention mechanism operations on these enhanced multi-modal features.

the Siamese network. The following objective is to merge these
features for target tracking. The fused template features for final
tracking are obtained by combining the template branching fea-
tures from the RGB Siamese network with the template features
from the Siamese thermal network, consistent with the current
approach of the RGB-T Siamese tracker. Similarly, the RGB
detection features and their corresponding thermal detection
features are combined to generate the tracking detection features.
Successfully fusing these features to capture the complementary
information between the RGB and thermal images is a crucial
challenge the RGB-T tracking model faces.

RGB-T images possess complementary features that can en-
hance detection accuracy. However, the conventional methods
of fusing multi-modal features, such as element summation and
concatenation, do not adequately address the issue. The pres-
ence of noise and the varying contributions of different modal
features to object detection make it unjust to fuse RGB and Tir
images equally. Therefore, assigning appropriate weights when
fusing multi-modal information is crucial, considering each
modality’s characteristics. Nevertheless, most existing fusion
strategies fail to account for the feature disparities between
the input multi-modal RGB and thermal images during fusion.
In a prior study [22], a content-dependency weighting-based
fusion strategy was proposed to fuse the multi-modal RGB and
thermal features for tracking. This strategy has demonstrated
superior performance compared to simple element-wise summa-
tion or concatenation-based methods, as it considers the feature
reliability of each modality’s data. This article introduces the
dynamic perception of multi-modal features in the fusion mod-
ule to address this limitation. The dynamic perception module
adaptively selects relevant features from different modalities in
both spatial and channel dimensions. By dynamically adjusting
the convolution kernel and utilizing more appropriate convolu-
tion parameters for image features of different modalities, we
mitigate the risk of over-fitting noisy areas while leveraging
high-quality RGB images. Furthermore, in contrast to most
other feature fusion modules that perform fusion at the feature

map level, the DP-MF module focuses on optimizing memory
utilization by increasing the feature extraction power of the
convolution kernel. Moreover, the DP-MF module requires less
computing power as the feature map size is much larger than
the size of the convolutional kernel. It minimizes redundant
computations and efficiently reuses intermediate results, thereby
reducing memory footprint without compromising performance.
It is particularly beneficial for resource-limited environments or
large-scale models.

Moreover, leveraging the different dependencies on channels
allows us to effectively utilize the complementary informa-
tion from multi-modal sources, thereby aiding in the tracking
of objects in scenarios involving overlap and occlusion. The
module structure is depicted in Fig. 4. The proposed Dynamic
Perception of Multi-Modal Features (DP-MF) model takes two
inputs: the RGB feature map and the Tir feature map. It generates
a more appropriate convolution kernel specific to each track by
considering the characteristics of the respective feature maps,
thereby improving feature extraction. To elaborate, we initially
apply n filters with a kernel size of 3 x 3, dynamically adjusting
the weights of the channel dimension for each filter and the
weight assigned to each filter based on the unique input features.
Subsequently, the adjusted filters are summed and subject to
channel attention for the final refinement. Mathematically, the
dynamic filter generation can be represented by:

X = cat (Fpg, Fy, dim)

L AW
:mzz){(@j) 2

i=1 j=I

Where cat(*, dim) denotes a feature map concatenation op-
eration in the unique dimension, the weights W, generated by
using 1 are equivalent to indicating the distribution of values, or
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global information, for the c feature maps in that layer.
Sc = Few(z7 W) = U(g(Z, W))
=0 (Wc2§ (Wclwc)) 3)

The dimension of W, is (C/r) x C. This r is a scaling pa-
rameter intended to reduce the number of channels, hence the
amount of computation. The dimension of z is 1 x1 x C, so
the result of W, W, is 1 x 1 x (C/r); then it goes through
a ReLU layer, and the output dimension remains the same;
then it is multiplied by W ,, which is also fully connected
layers. The dimension of W} is K. x K. Overall, this process
establishes a channel attention mechanism for convolutional
kernels, dynamically adjusting them in response to the yield
of each feature map. Consequently, it enables the extraction of
higher-quality feature information within the feature dimension
subspace.

Si=F..(z2,W)=0(g(z, W))
=0 (Wapd (WaiW,)) 4

The dimension of W, is K, x K.. It produces a deep
attention mechanism for convolutional kernels that dynamically
adjusts the convolutional kernels in response to each feature
map yield and extracts better quality feature information in the
feature dimension subspace.

S, = Fou(z, W) = o(g(z, W))
— 0 (W8 (W W) 5)

The dimension of Wy is Ky x K. It produces a spatial
attention mechanism with convolutional kernels, as not all re-
gions in the perceptual field contribute equally to the task.

Only task-relevant regions are the information to be attended
to, so a spatial attention mechanism with convolutional kernels
enhances the extraction of valid information.

So =Feu(z, W) = 0(g(z, W))
=0 (Waz(s (Wa1WC>) (6)

The dimension of W is K, x K_. It produces an attention
mechanism for multiple convolutional kernels, as weighting is
applied to the convolutional kernels. For different inputs, we use
different convolutional kernels. Afterward, for these different
convolutional kernels, attention is weighted.

Sse = Fex(zyw) = U(g(sz))
=0 (‘RlseZ(s (Wselwc))
(7N

The dimension of W ,; is K. x K. It produces an attention
mechanism for multiple convolutional kernels, as weighting
is applied to the convolutional kernels. For different inputs,
we use different convolutional kernels. Afterward, for these
different convolutional kernels, attention is weighted. In order to
demonstrate the efficacy of our proposed approach, we present a
visual analysis of the modulated features across selected frames.
As depicted in Fig. 6, our DF-MP model exhibits a discernible
enhancement in feature representation for RGBT tracking tasks.

C. Dual Branch Fusion Module

The Region Proposal Network (RPN) plays a crucial role
in classifying foreground and background elements and per-
forming bounding box regression. In our SiamTDR framework,
we introduce two classification branches and two regression
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Fig. 6.  Maximum success rate of tracking algorithm based on attributes on RGB-T234, our method achieves SOTA or lead results in most
challenges.
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branches to enhance the capabilities of the RPN. To further
strengthen the robustness of the tracking inference phase, this
study proposes a Dual Branch Fusion module (DBF) that com-
bines the RGB and feature fusion branches to generate a final
regression feature. Specifically, the two regression branches are
integrated through feature summation, resulting in improved
localization of bounding boxes. Similarly, the two classification
branches are combined using feature summation to obtain a final
classification feature, which is subsequently processed to pro-
duce the ultimate result. Additionally, the DBF module considers
the different contributions of the RGB and TIR modalities in the
target tracking algorithm and the need for speed. The introduc-
tion of RGB features helps to balance the amount of information
input during the fusion process. Considering the information
content ratio of the RGB image to the original TIR image is
3:1, incorporating RGB features with visual details based on the
decomposition of the representation enables the fusion model
to achieve a more balanced representation, mitigating the risk
of over-reliance on the TIR modality. Furthermore, the DBF
module does not require complex computations such as fea-
ture extraction or attention mechanisms, ensuring the real-time
performance of the algorithm.

For the RGB and Tir modalities, two dedicated classification
branches exist to classify the foreground and background of
anchor boxes. Let us consider the scenario where ‘n’ anchor
boxes with varying size ratios are present at each anchor point.
Each classification branch has 2n output channels in such cases,
representing n binary classifications for positive and negative
samples. Taking the RGB modality as an example, when ’n’
boxes of different scales are present at each anchor, the corre-
sponding classification branch for this modality needs to expand
the channel count to 2n through the convolutional layer. On
the other hand, the input v (x,) requires size transformation
via the convolutional layer but does not necessitate an increase
in the number of channels. Denoting the operation through the
convolutional layer as (-)cls, we can express 1(z,-) and ¢ (x;.)
after passing through the convolutional layer as [¢)(z,)]cls and
[¢(x,)]cls, respectively. By utilizing [¢(z,.)]cls as the convolu-
tional kernels and convolving it with [¢)(x,.)] «is, we can calculate
the correlation between the two features.

Rcls = [’L/)(mr)]cls * [w(zr)]cls (8)

* stands for convolution operation. Similarly, the classification
branch of the thermal infrared mode can be obtained:

Mcls = [w(xm)]cls * [’(/}(Zm)]cls (9)

R s and M, denote the probability that each anchor frame
at the corresponding location on the original map for the two
modalities is predicted to be a background and a target, re-
spectively. We then fuse the two classification results through
a feature summarization operation so that the final classification
result L.;, can be obtained:

Lcls = Mcls + Rcls

We mark all odd channels as L/, and record the predicted
probabilities of all anchor boxes as set P. = {p} | i € [0,k)},

where p; represents the probability that a specific anchor box is

(10)

predicted as a positive sample, k represents the total number of
anchor boxes and make the bounding box whose confidence
score is smaller than a threshold ve is first removed from
the bounding box. The cross-entropy loss function used in
Faster R-CNN [32] is used when training the two classification
branches. Then, the loss classified for each anchor box is shown
in Equation

lossers (yi, pi) = —log [yips + (1 —yi) (1-)pi]

if 8¢ > v,
if s§° < v,

(1)

~_ Jpreserved
* " |negative

Among them, p; = p; + p.* combines the predictions of two

modal classification branches. The total classification loss is:

k
Leis = »_losses (yi,pi) [k 12)
i=1
Where k represents the total number of anchor boxes.

The regression branch in this subnetwork regresses the anchor
boxes to get a better bounding box. This algorithm employs
information about the RGB and Tir modalities to regress the
bounding boxes. Because dx, dy, dw, dh are required to cal-
culate the distance between the anchor boxes and the ground
truth, the number of channels of the regression branch is 4n. The
following formula can be obtained according to the classification
branch::

Rreg = W(xr)]reg * [w(zr)]reg
Mreg = [w(mm)]Teg * ['(/)(Zm>]reg
reg T R'f’eg

L4 represents the predicted offset between each anchor box
and the corresponding ground truth box. We transcribe it into the
vector ¢}, i € [0, k) according to the mathematical rules; mean-
while, the actual offset of each anchor box and the corresponding
ground truth box is recorded as ¢;, 7 € [0, k). We use the smooth
L1 loss with normalized coordinates used in Faster r-cnn [32]
to supervise the training of the regression branch:

13)

Lreg =

k
Lreg (¢}, ¢;) = Zsmoothm (¢ —c)/k

i=1

(14)

According to the content in (10) and (12), we get the total loss
function used during training as:

L= Lcls + ryLreg (15)

where y is the hyper-parameter of the balanced two parts.

IV. EXPERIMENTS
A. Datasets and Evaluation Metrics

The performance of SiamTDR is evaluated on two popular
datasets: GTOT [57] and RGB-T234, which are captured by a
visible-infrared camera. GTOT comprises 50 visible and thermal
infrared video sequences, nine object classes, and 7.8 K aligned
frame pairs. The GTOT dataset has seven challenge attributes,
as shown in Table II. There are 234 visible and thermal infrared
video sequences, 22 object classes, and 117 K aligned frame
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TABLE Il
LIST OF THE SEVEN CHALLENGE ATTRIBUTES ATTACHED TO GTOT

Attribute  Description

OoCC Occlusion - the target is partially or fully occluded.

LSV Large Scale Variation - the ratio of the first bounding box and
the current bounding box is out of the range [0.5, 1].

FM Fast Motion - the motion of the ground truth is larger than
10 pixels.

LI Low Illumination - the illumination in the target region.

TC Thermal Crossover - the target has similar temperature with
other objects or background.

SO Small Object - the number of pixels in the ground truth
bounding box is less than 400.

DEF Deformation - non-rigid object deformation.

TABLE IlI
LIST OF THE ELEVEN CHALLENGE ATTRIBUTES ATTACHED TO RGBT234

Attribute  Description

NO No Occlusion - the target is not occluded.

PO Partial Occlusion - the target object is partially occluded.

HO Heavy Occlusion - the target object is heavy occluded (over
80% percentage).

LI Low Illumination - the illumination in the target region is low.

LR Low Resolution - the resolution in the target region is low.

TC Thermal Crossover - the target has similar temperature with
other objects or background surroundings.

DEF Deformation - non-rigid object deformation.

FM Fast Motion - the motion of the ground truth between two
adjacent frames is larger than 20 pixels.

SV Scale Variation - the ratio of the first bounding box and the
current bounding box is out of the range [0.5,1].

MB Motion Blur - the target object motion results in the blur
image information.

CM Camera Moving - the target object is captured by moving
camera.

BC Background Clutter - the background information which

includes the target object is messy.

pairs in RGB-T234. The RGB-T234 dataset has eleven challenge
attributes, as shown in Table III. We use LasHeR, which consists
of 1224 visible and thermal infrared video sequences and 730 K
frame pairs for all, as a training dataset. We test it on GTOT and
RGB-T234, respectively. Specifically, PR is the percentage of
frames in which the Euclidean distance between the predicted
position and the ground truth is less than the location error
threshold. Take the PR with a location error threshold of 5 on
GTOT as the PR score (because most of the targets in GTOT
are small), and take the PR with a location error threshold of 20
on RGB-T234 as the PR score. SR is the percentage of frames
whose overlap ratio between the predicted bounding box and the
ground truth is greater than the overlap threshold, and the area
under curves (AUC) is counted as the SR score.

B. Implementation Details

For each point of the final response map, our anchor boxes
have five aspect ratios,i.e.,[0.33,0.5,1,2,3], and the anchor scale
is set to 8. We determine the correspondences between the
anchors and ground truth boxes in Siamese-RPN blocks based on
IoU. Specifically, if the IoU between the anchor and ground-truth
box is more significant than 0.6, the anchor is determined as posi-
tive. Meanwhile, if the IoU between the anchor and ground-truth

Learning rate varies with epoch
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Fig. 7. To avoid the local optimum trap, the learning rate is continu-
ously restarted as the epoch increases.

box is less than 0.3, the anchor is determined to be negative. We
collect at most 16 positive samples and 48 negative samples from
one image pair.

Our experiments use the SGD optimizer, which contains a
certain degree of stochasticity that makes SGD not always ori-
ented towards the overall optimum and not necessarily the global
optimum in every iteration. Hence, the learning rate escapes
from the local optimum using the CosineAnnealing strategy.
The learning variation is shown in Fig. 7. We set batchsize as 28
and trained our model for 50 epochs. Moreover, the momentum
is 0.9, and the weight decay is 5 x 1074,

C. Evaluation on GTOT Dataset

In this study, we sought to evaluate the efficacy of our pro-
posed SiamTDR tracker through two comparison experiments
conducted on the GTOT dataset. The experiments focused on
overall performance comparison and challenge performance
comparison and involved the inclusion of seven trackers, namely
SiamBAN [40], SiamRPN++ [39], ATOM [29], DiMP [30],
SiamFT [35], SGT [56], mfDiMP [43], and our proposed
SiamTDR. Since there are limited existing RGBT trackers, we
integrated the features of the RGB mode and the thermal infrared
mode into a tensor to expand the single-mode tracker into an
RGBT tracker for a fair comparison. Notably, the first six are
derived from RGB trackers among the seven trackers.

As depicted in Table IV, the experimental results demon-
strated that our proposed SiamTDR outperformed the other
six trackers. Specifically, our proposed SiamTDR achieved
a PR of 0.885 and an SR of 0.714, representing a 0.049
and 0.017 improvement, respectively, over the second-ranked
tracker, mfDiMP (with a PR of 0.836 and an SR of 0.697).
These outcomes provide evidence of the superior performance
of our proposed algorithm. Furthermore, compared to the base-
line tracker, SiamRPN, our proposed SiamTDR recorded a PR
increase of 0.088 and an SR increase of 0.065, further affirming
the robustness of our proposed SiamTDR tracker for tracking
applications.
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TABLE IV
PR/SR (%) REsuLTS WITH DIFFERENT RGBT TRACKERS UNDER DIFFERENT CHALLENGES ON GTOT

Method | SiamBAN [40] CMRT [54] SiamRPN++ [39] ATOM [29] DiMP [30]  SiamFT [35] SGT [55] mfDiMP [42] Ours
occC 67.2/54.9 84.7/65.2 70.3/58.7 67.4/55.1 75.7/63.8 75.3/58.6 81.0/56.7 80.7/64.3 85.2/67.7
LSV 78.3/64.2 88.7/67.8 76.5/64.3 78.9/64.2 81,4/69.0 79,7/61.4 84.2/54.7 90.5/73.9 87.1/71.4
FM 74.3/62.0 83.5/65.0 75.9/65.9 74.8/63.0 78.9/68.0 72.1/60.1 79.9/55.9 81.3/68.7 82.8/68.5
LI 66.8/56.0 86.5/61.0 68.9/58.3 68.3/58.4 69.8/61.1 78.6/63.6 88.4/65.1 83.0/70.4 88.7/76.4
TC 76.3/61.0 85.3/66.7 76.6/64.0 79,0/63.3 84.2/68.7 76,0/59.3 84,8/61.5 80,4/65.2 88.0/70.1
DEF 66.1/55.5 71.1/62.2 71.0/59.3 69.1/58.8 69.9/59.9 72.5/61.9 91.9/73.3 80.7/67.1 87.9/72.7
SO 79.3/59.3 82.5/62.6 82.2/64.7 83.7/62.9 84.2/64.0 79.3/59.3 91.7/61.8 87.4/69.1 88.7/70.0
ALL 71.7/59.3 82.7/64.3 72.5/61.7 72.6/61.2 75.7/64.9 75.8/62.3 85.1/62.8 83.6/69.7 88.5/71.4
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Fig. 8. Visual comparisons of our proposed tracker with another nine state-of-the-art trackers on six video sequences, i.e., lackSwan1, BusScale,
FastCarNig, GarageHover, occBike, and Quarreling.

D. Evaluation on RGB-T234 Dataset

We evaluate the performance of SiamTDR, our proposed
tracker, on the RGB-T234 dataset. To compare its effectiveness,
we evaluate it against fifteen other trackers, which include CSR-
DCF+RGBT [58], SOWP+RGBT [59], MEEM+RGBT [60],

CFnet+RGBT [61], KCF+RGBT [10], C-COT [13], ECO [62],
SGT [56], SOWP, DSST [11], SRDCF [12], CSR, CFnet, L1-
PF [63], JSR [64]. The initial five trackers utilize RGBT data,
while the remaining solely rely on RGB data. As illustrated
in Fig. 5, our findings reveal that SiamTDR achieves supe-
rior performance on the RGB-T234 dataset compared to other
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TABLE V
TRACKING OF THE RESULTS OBTAINED BY USING DIFFERENT MODULES

Fine-tune  Sign-model MF-DP DBF | Pr  Sr | APr ASr
v 829 659 | +45 +13
v v 860 684 | +7.6 438
v v v 869 699 | +85 453
v v v V| 885 713 | +10.1 467

algorithms. Precisely, our tracker attains a PR score of 0.772
and an SR score of 0.551, representing a 0.063 and 0.221
improvement over the second-ranked SGT and CFnet +RGBT,
respectively, demonstrating the effectiveness of SiamTDR.

Additionally, our algorithm outperforms the standard Siamese
framework that utilizes two modalities under the same training
dataset. This further validates the effectiveness of our proposed
approach, which efficiently integrates the information from both
modalities to achieve robust object tracking.

E. Ablation Study

To validate the effectiveness of different components (or mod-
ules) in our proposed model, we construct simplified versions
of our proposed tracker as the baseline.

1) In order to evaluate the effectiveness of the various com-
ponents of our proposed model, a simplified version of our
baseline tracker was first created. It involved using a feature
extractor that lacked feature decoupling and a proposed network
without feature fusion regions. Moreover, the DP-MF module
was replaced with primary convolutional layers, and both the hot
Siamese and RGB Siamese networks shared identical weights.
After that, different modules or strategies were added to the
baseline, and the performance of our tracker was evaluated using
GTOT, with the results presented in Table V. As indicated in
Table V, the baseline tracker achieved a Pr of 0.784 and Sr of
0.646. Subsequently, fine-tuning the Siamese Network feature
extraction network improved Pr/Sr by 0.045/0.013, respectively.
Further improvement was achieved by adding the feature de-
coupling mechanism module to the feature extractor, increasing
Pr/Sr. Adding the DP-MF module to the baseline tracker, Pr/Sr
improved by 0.085/0.053. Finally, adding the DBF module im-
proved Pr/Sr by 0.103/0.08, indicating that our proposed module
is highly effective and stable.

2) To establish the efficacy of our proposed DP-MF module,
we have incorporated four distinct fusion strategies into our
tracking system, allowing for multi-modal features to be fused.
In this manner, we have developed four distinct versions of our
approach, each with its unique fusion methodology, including
Elementwise summation, Concatenation, Attention fusion strat-
egy for channels, and The proposed DP-MF module. A compar-
ative analysis of these four approaches was conducted, and the
resulting experimental data, as presented in Table VI, clearly
indicates that the proposed DP-MF module exhibits superior
performance over the other fusion modules.

F. Efficiency Analysis

The proposed tracking algorithm is implemented on the
PyTorch framework, and all experimental evaluations are

TABLE VI
TRACKING OF THE RESULTS OBTAINED BY USING DIFFERENT
FUSED MODULES

Fosion model Pr Sr APr ASr
Ours-ES 85.6 69.8 0 0
Ours-CO 85.2 69.1 -0.4 -0.7
Ours-SE 86.4 70.3 +1.8 +0.5

Ours 88.5 71.3 +2.9 +1.5
TABLE VI

COMPARISON OF THE AVERAGE FPS OF DUSIAMRT AND OTHER FOUR
REPRESENTATIVE TRACKING ALGORITHMS WHEN RUNNING ON THE
GTOT DATASET

SiamTDR  RT-MDNet  CFNet+RGBT  SiamDW+RGBT  SiamFC

127 16 33 95 38

conducted on the same server configuration consisting of an
Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz and an NVIDIA
Corporation GA102 GeForce RTX 3090 with 24 GB memory.
Fig. 8 compares our algorithm’s tracking performance with
SiamFC, SGT, MEEM +RGBT, SRDCF+RGBT, CN, JSR, KCF,
L1-PF, and CSK on twelve video sequences. The experimental
results show that our algorithm outperforms the compared meth-
ods in handling challenging scenarios such as heavy occlusion,
low visibility, thermal crossover, scale variations, and defor-
mation. Before the experiments, data enhancement is carried
out using the MSRCR method on the pictures in the dataset,
enhancing image color, detail, and local contrast. The pictures
are resized to the size of 640 x 640. During training, the SGD
optimizer is used, the learning rate is warming up, the weight
decay is set to 0.0005, and the number of epochs is 300.

Furthermore, our algorithm demonstrates high computational
efficiency with an average frame per second (FPS) of 127,
sufficient for real-time object tracking applications. Table VII
presents the FPS comparison between our algorithm and four
representative methods to provide a comprehensive comparison.
These results highlight that our proposed algorithm achieves
high performance and maintains high efficiency, making it a
promising solution for practical tracking scenarios.

V. THE VALUE OF SIAMTDR ON CYBER-PHYISCAL ASPECTS

Object tracking is a fundamental task in CPS, as it enables
the system to monitor and predict the behavior of objects in
real-time [4], [5]. Object tracking algorithms use computer
vision and machine learning techniques to detect, locate, and
track objects of interest. This information is crucial for tasks
such as collision avoidance, surveillance, resource allocation,
and decision-making in CPS applications. SiamTDR combines
the advantages of RGB (color) and thermal (heat signature)
imaging to provide a more comprehensive understanding of
the environment. Combining the two modalities improves ro-
bustness and reliability, allowing more accurate and consistent
tracking results in various environmental conditions. By fusing
these modalities, it becomes possible to overcome limitations
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like lighting conditions, camouflage, and occlusions. This en-
hanced perception is essential for accurate object tracking in
CPS applications. STamTDR has Real-Time Responsiveness.
SiamTDR can provide timely and efficient updates on the lo-
cation and trajectory of objects. This responsiveness is vital
in CPS, where actions need to be taken based on the current
state of the environment. By continuously tracking objects in
real-time, the system can adapt and respond quickly to changes,
ensuring the CPS’s overall safety, efficiency, and reliability.
Overall, SiamTDR offers improved perception, accuracy, and
robustness in dynamic environments, making them highly valu-
able for cyber-physical systems. They enhance the capabilities of
CPS in various domains, including security, safety, surveillance,
and autonomous systems.Furthermore, our algorithm demon-
strates high computational efficiency with an average frame per
second (FPS) of 127, sufficient for real-time object tracking
applications. Table VII presents the FPS comparison between
our algorithm and four representative methods to provide a
comprehensive comparison. These results highlight that our
proposed algorithm achieves high performance and maintains
high efficiency, making it a promising solution for practical
tracking scenarios.

VI. CONCLUSION

In this article, we present a newly designed RGB-T Siamese
tracker that exhibits state-of-the-art performance and operates
in real-time, thanks to innovative modules’ integration. Our
proposed DP-MF enables the tracker to take full advantage of
the complementary benefits of multi-modal features, resulting
in satisfactory results in challenging scenarios such as heavy oc-
clusion and illumination variations. Furthermore, the proposed
DBF model enhances the tracker’s resilience against distractors,
such as semantic backgrounds, significantly improving overall
tracking performance. We extensively evaluated our proposed
tracker on two benchmark datasets, where it considerably out-
performed existing RGB-T Siamese trackers. Our proposed
tracker performs competitively compared to other state-of-the-
art methods, with slightly better tracking accuracy and superior
tracking speed.
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