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Digital Twin Enabled Domain Adversarial Graph
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Abstract—The fault diagnosis of rolling bearings is of
utmost importance in industrial applications to ensure me-
chanical systems’ reliability, safety, and economic viabil-
ity. However, conventional data-driven fault diagnosis tech-
niques mainly depend on a pre-existing dataset with com-
plete failure modes and knowledge to serve as the training
data, which may not be available or accessible in some
crucial industrial scenarios. This can limit the practicality of
these methodologies in real-world industrial applications.
This article addresses this issue by developing a novel
digital twin-enabled domain adversarial graph network (DT-
DAGN). The main contributions of this article are as follows:
1) the development of a comprehensive and accurate digital
twin model for rolling bearings that includes a dynamic
simulation of the bearing’s operational status using only its
structural parameters and failure severity/size to obtain the
system’s vibration response, and 2) the development of a
novel graph convolutional network-based transfer learning
framework to transfer knowledge from simulated datasets
to measured datasets, enabling effective fault diagnostics
of bearings with limited knowledge. A series of experi-
ments are applied to validate the efficacy of the developed
methodology.

Index Terms—Digital twin, digital twin enabled domain
adversarial graph network (DT-DAGN), fault diagnosis, lim-
ited knowledge, rolling bearing.
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I. INTRODUCTION

A S INDUSTRIAL equipment becomes increasingly ad-
vanced and automated, implementing real-time and ef-

fective condition monitoring and health management has be-
come urgent. Rolling bearing malfunctions and failures can
have detrimental effects on the reliable operations of equipment,
and in severe cases, may even result in catastrophic accidents.
Therefore, it is crucial to prioritize the development of strategies
or methodologies to monitor and diagnose equipment operating
conditions and health status in a real-time manner [1].

Conventional diagnostic methodologies mainly utilise signal
analysis techniques that rely on expert knowledge to extract fault
characteristics and features. For example, Yan et al. [2] proposed
a multiscale dispersion entropy to measure the complexity of
mechanical signals and used it for machinery fault detection.
Xu et al. [3] introduced an adaptive signal reconstruction method
to pinpoint fault-related information in vibration signals. Chen
et al. [4] proposed a sparse multivariate model-based approach
to assess the damage degree of rotating machinery. Neverthe-
less, these methodologies are often time-consuming and labour-
intensive, with limitations in effectively identifying non-smooth
and non-linear attributes of mechanical signals, particularly in
challenging operational environments [5]. Conventional diag-
nostic methodologies mainly utilize signal analysis techniques
that rely on expert knowledge to extract fault characteristics
and features. For example,Yan et al. [2] proposed a multiscale
dispersion entropy to measure the complexity of mechanical
signals and used it for machinery fault detection. Xu et al. [3]
introduced an adaptive signal reconstruction method to pinpoint
fault-related information in vibration signals. Chen et al. [4]
proposed a sparse multivariate model-based approach to assess
the damage degree of rotating machinery. Nevertheless, these
methodologies are often time-consuming and labor-intensive,
with limitations in effectively identifying non-smooth and non-
linear attributes of mechanical signals, particularly in challeng-
ing operational environments [5], [6].

In recent times, the field of deep learning has made significant
advancements in pattern recognition, rendering it a promising
and powerful tool for diagnosing machine faults. It addresses the
shortcomings of conventional data-driven algorithms, thereby
overcoming their limitations and opening up new possibilities
for more effective fault diagnosis in bearings. By leveraging
deep learning techniques, it is possible to improve the accuracy
of fault diagnosis while reducing the amount of time and effort
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Fig. 1. Digital twin-based machinery prognostics and health management.

required for analysis. For instance, Xu et al. [7] developed a
multireceptive field CNN algorithm for machine fault diagnosis
under noisy conditions. Wang et al. [8] introduced a novel
approach that utilizes an attention-based convolutional neural
network (CNN), allowing for precise attention alignment to
specific sub-tasks. Xu et al. [9] proposed a fusion CNN al-
gorithm for effective fault recognition of machines, while the
researchers of study [10] developed a CNN model with a hierar-
chical structure for multiscale feature extraction of mechanical
signals. Han et al. [11] introduced a novel out-of-distribution
detection framework that considers the uncertainty of intelligent
diagnosis decisions, enhancing the trustworthiness of machinery
fault diagnosis. Xu et al. [12] proposed a simple yet effective
multiattention-based CNN algorithm for reliable fault diagnosis
results. In research [13], a new convolutional algorithm was
developed for reliable fault detection in transmission systems.
These approaches have significantly contributed to the advance-
ment of fault diagnosis techniques, driving the field forward.

In industrial practice, training and testing data often ex-
hibit different distributions, leading to distribution discrepan-
cies. Unsupervised domain adaptation is a promising technique
for addressing this issue [14]. Zhang et al. [15] proposed a
multisensor-based cross-domain CNN model for feature extrac-
tion in rotating machinery, while Zhao et al. [16] developed a fed-
erated cross-domain algorithm for machinery diagnosis. Chen et
al. [17] presented a domain adversarial transfer CNN algorithm
for bearing fault diagnosis, and Li et al. [18] introduced deep
generative-based domain adaptation approaches for bearing con-
dition monitoring. Shi et al. [19] developed a transferable adap-
tive cross-domain algorithm for machine fault diagnosis, and
Yang et al. [20] developed a cross-domain diagnostic framework
for fault detection under imbalanced conditions. Chen et al. [21]
proposed a feature representation alignment-based CNN ap-
proach for machine health management. Li et al. [22] introduced
a multi-classifier optimization-based cross-domain CNN model
for machine fault diagnosis. A class-weighted adversarial CNN
algorithm was developed by Li et al. [23] for cross-domain fault
diagnostics of rolling bearings. Feng et al. [24] proposed a glob-
ally localized multisource domain adaptation-based approach
for bearing fault diagnostics. However, the present cross-domain
fault diagnosis approaches require diagnostic knowledge from

source domain data, including data on condition monitoring for
all possible failure modes/types. This task can be particularly
challenging for certain types of bearings that seldom undergo
failure. As a result, conventional domain adaptation approaches
may not be effective in these situations.

The digital twin (DT) technique has emerged as a promising
tool to provide reliable diagnostic knowledge for the target
domain, as it enables seamless integration between the vir-
tual and physical realms. By generating highly accurate digi-
tal representations of physical entities, DTs simulate realistic
data that closely mimics the behaviour and performance of
actual systems. In many industrial sectors, DT technology is
being adopted as a solution to the lack of labelled data. One
area where this trend is particularly evident is in the study
of machinery health management. Digital twin-based tasks,
as illustrated in Fig. 1, allow for comprehensive monitoring
and management of machinery health throughout its entire life
cycle, thanks to creating a high-fidelity virtual replica of the
physical object. In the literature, several researchers have pro-
posed digital twin-driven methodologies for machinery health
management. For instance, Zhang et al. [25] proposed a digital
twin-driven cross-domain diagnostic framework for machinery
health management. The framework involves building a DT
model to obtain reliable source domain knowledge, followed
by utilizing a partial domain adaptation model for bearing fault
detection. Similarly, Xiao et al. [26] developed a collaborative
domain network-based diagnostic approach for bearing health
assessment that bridges the gap between simulated data and
real-world measured datasets. Wang et al. [27] introduced a
framework of diagnostics for detecting unbalance faults of rotors
using decision tree analysis. In order to improve the model’s
adaptability, the researchers also developed a strategy for con-
ducting model reliability analysis and parameter sensitivity anal-
ysis. In a series of studies, Feng et al. [28], [29], [30] conducted
comprehensive research on system degradation prediction using
digital twin-based approaches. Their work involved the use of
advanced vibration analysis techniques in combination with
modelling techniques to achieve precise and reliable degradation
prediction for complex systems. In a recent study, the practical
digital framework presented by Feng et al. [31] employs transfer
learning techniques to accurately assess gearbox transmission
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degradation. This approach combines digital twin technology
and transfer learning methods to provide a highly effective
approach to evaluating transmission system health status. The
adoption of simulation-based data-driven techniques presents a
promising avenue for diminishing the need for labeled empirical
data in machinery health management.

The digital twin technique holds promise for generating syn-
thetic data to simulate imperceptible fault scenarios, enabling
reliable unsupervised fault detection. However, certain signifi-
cant challenges hinder the widespread adoption of digital twin
techniques in machinery diagnosis. Creating a comprehensive
and accurate digital twin model that reflects various severities,
types, and operation conditions of rolling bearings is the pri-
mary challenge. Developing such a dynamic model for differ-
ent bearings can be time-consuming and demanding, requiring
significant expert knowledge. Additionally, the difference in
data distribution between the simulated and measured domains
presents another challenge in the context of rolling bearings.
Rolling bearings often exhibit multiple fault conditions, result-
ing in distinct feature distribution differences across each health
condition when comparing data from different domains.

To tackle the obstacles mentioned earlier, the current study
presents a digital twin-based domain adversarial graph network
(DT-DAGN). Firstly, a detailed and precise digital twin model
is created for rolling bearings, which incorporates a dynamic
simulation of the bearing’s operational conditions based solely
on the bearing’s structural parameters and fault size/severity to
generate the system vibration response. Next, a transfer learning
framework utilizing graph convolutional networks is utilized to
achieve knowledge transfer from the simulation to the measured
data, allowing for efficient fault detection of bearings with
limited information. The main contributions of this study can
be summarized as follows:

1) A dynamic simulation of the operational conditions of
rolling bearings has been incorporated into a comprehen-
sive and precise digital twin model.

2) A graph convolutional network-based transfer learning
framework is developed to transfer knowledge from sim-
ulated dataset to measured data, so as to realize effective
fault detection of bearings with limited knowledge.

3) Extensive experiments are conducted to validate the su-
periority of the developed DT-DAGN.

The rest of the article is organized as follows. Section II
elaborates on the construction of the digital twin model. In
Section III, a new transfer learning-based model called a do-
main adversarial graph network (DAGN) is presented in detail.
Extensive experiments are conducted in Section IV to assess the
performance of the developed approach. Finally, the conclusion
and future research directions are discussed in Section V.

II. DIGITAL TWIN MODEL

A. Construction of Digital Twin Model

To accurately capture the dynamic response of the bearing
system, a digital twin model has been developed. The model
is a nonlinear dynamic representation of the rolling bearing,
as shown in Fig. 2. It includes two degrees of freedom for

Fig. 2. Nonlinear dynamic model of rolling bearing.

both the inner and outer rings, namely horizontal translational
displacement represented byxi andxo, and vertical translational
displacement represented by zi and zo.

The rotating speed of the cage and the ball can be expressed
as:

ωc =
1
2

(
1 − d

D
cosα

)
ωr (1)

ωb =
1
2
D

d

[
1 −

(
d

D
cosα

)2
]
ωr (2)

in which the variables are defined as follows: the symbold is used
to represent the ball diameter, while D represents the diameter
of the pitch. Additionally, α denotes the corresponding contact
angle, and ωr is used to indicate the rotor rotating speed.

The angular position of the jth ball can be obtained using the
following equation:

θj = ωct+
2π(j − 1)

N
(3)

where the rolling ball’s number is represented as N .
The contact deformation between the jth ball and raceways

is given by:

δj = (xi − xo) sin θj + (zi − zo) cos θj − δc (4)

where δc represents the initial radial clearance.
The horizontal and vertical Hertzian contact force between

balls and raceways can be written as:

Fsx =
N∑
j=1

Kδ
3
2
j sin θj ·H (δj) (5)

Fsz =

N∑
j=1

Kδ
3
2
j cos θj ·H (δj) (6)

where K denotes the contact stiffness coefficient, and H(δj)
indicates the Heaviside function and is expressed as:

H(δj) =

{
0, δj ≤ 0,

1, δj > 0,
(7)

The horizontal and vertical contact damping force between balls
and raceways can be written as:

Fdx =
N∑
j=1

Cδ̇j sin θj ·H (δj) (8)
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Fig. 3. Schematic of localized faults: (a) outer race defect, (b) inner
race defect, (c) rolling ball defect.

Fdz =

N∑
j=1

Cδ̇j cos θj ·H (δj) (9)

where C represents the contact damping coefficient.
The following are the kinetic differential equations:⎧⎪⎪⎨

⎪⎪⎩
miẍi + Fdx + Fsx = 0
miz̈i + Fdz + Fsz = W +mig
moẍo + cẋo + kxo − Fdx − Fsx = 0
moz̈o + cżo + kzo − Fdz − Fsz = mog

(10)

where mi and mo are the mass of the inner ring and outer ring,
respectively, k is the stiffness coefficient of the outer ring, c is
the damping coefficient of the outer ring, and the variable W
represents the radial load which is applied on the inner ring.

The dynamic model is designed to simulate three specific fault
conditions, which are bearing outer ring fault, bearing inner ring
fault, and bearing rolling ball fault. To simulate localized defects,
circular spalls are used, as shown in Fig. 3.

Fig. 3(a) illustrates the outer race defect circumferential span
angle, which can be formulated as:

βo = arcsin
Lo

Do
(11)

the outer race defect width is denoted by Lo, and the diameter
of the outer race is represented by Do.

When the jth ball approaches the spall, their positional rela-
tionship can be described by the following expression:

mod (θOUT − θj , 2π) < βo (12)

here, θOUT represents the outer race defect angular position;
mod(·) represents the modulus operator.

The deformation experienced by the ball as it passes the defect
can be calculated using the following equation:

δo =
d

2
−
√(

d

2

)2

−
(
Lo

2

)2

(13)

The following equation can be utilized to compute the relevant
contact deformation that occurs between the ball and raceways
as the ball passes over the defect of the outer race:

δj = (xi − xo) sin θj + (zi − zo) cos θj − δc − δo (14)

Fig. 3(b) illustrates the inner race defect circumferential span
angle, which can be written as:

βi = arcsin
Li

Di
(15)

Li is the inner race defect width, and Di represents the inner
race diameter.

When the spall is situated on the inner race, it rotates with
the inner ring. The following equation expresses the positional
relationship between the jth ball and the defect as the ball
approaches:

mod (θIN − θj , 2π) < βi (16)

where θIN is the inner race defect angular position, and θIN =
ωr × t.

As the ball passes over the inner race defect, it experiences
a loss of contact deformation that can be quantified using the
following calculation:

δi =
d

2
−
√(

d

2

)2

−
(
Li

2

)2

(17)

The following equation expresses the relevant contact deforma-
tion between the ball and raceways as the ball passes over the
inner race defect:

δj = (xi − xo) sin θj + (zi − zo) cos θj − δc − δi (18)

The ball defect circumferential span angle can be seen in
Fig. 3(c), and is given by:

βb = arcsin
Lb

d
(19)

where Lb is the ball defect width.
In the event that the spall is situated on the ball, it will travel

along with the ball. As the ball defect approaches the outer race,
the following expression can be used to describe the position
relationship between the jth ball defect and the outer race:

mod
(
φj − π

2
, 2π

)
< βb (20)

The following equation provides the position relationship be-
tween the jth ball defect and the inner race as the ball defect
approaches:

mod

(
φj − 3π

2
, 2π

)
< βb (21)

where φj is the ball defect angular position, φj = ωb × t.
The contact deformation loss that occurs when the ball defect

makes contact with either the outer race or inner race can be
determined using the following calculation:

δb =
d

2
−
√(

d

2

)2

−
(
Lb

2

)2

(22)

Using the previously calculated loss of contact deformation, one
can derive the contact deformation that arises between the ball
and raceways when the ball defect makes contact with either the
outer race or inner race, as illustrated below:

δj = (xi − xo) sin θj + (zi − zo) cos θj − δc − δb (23)
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TABLE I
STRUCTURAL PARAMETERS OF BEARING HRB 6205

TABLE II
KINEMATICS EQUATIONS THAT CORRESPOND TO BEARING FAULT

FREQUENCIES

Fig. 4. Comparison of measured signal and simulated signal under
rolling ball fault: (a) waveform of the measured signal, (b) envelope
spectrum of the measured signal, (c) waveform of the simulated signal,
(d) envelope spectrum of the simulated signal.

The vibration signal/response of the bearing system can be
obtained by utilizing the fourth-order fixed-step Runge-Kutta
algorithm to solve (10), with a calculation time step of 8.33
×10−5 s.

B. Validation of the DT Model

Visual comparison of the simulated and measured vibration
signals will confirm the validity of the digital twin model. This
study aims to diagnose faults in the HRB 6205 rolling bearing
using the vertical acceleration response. Table I presents the
bearing’s structural parameters, which are used to calculate the
characteristic frequencies of the outer ring, inner ring, and rolling
ball faults (Table II). Under a rotating speed of 1005 rpm, the
measured and simulated signals for rolling element and inner
ring faults are compared in the time-domain waveform and
frequency-domain envelope spectrum, as presented in Figs. 4
and 5, respectively.

At a rotating speed of 1005 rpm, corresponding to a rotating
frequency of fr = 16.75 Hz, the theoretical fault frequencies

Fig. 5. Comparison of measured signal and simulated signal under
inner ring fault: (a) waveform of the measured signal, (b) envelope
spectrum of the measured signal, (c) waveform of the simulated signal,
(d) envelope spectrum of the simulated signal.

for the rolling element and inner ring faults are 78.95 Hz and
90.70 Hz, respectively, based on the bearing parameters shown
in Table I. The time-domain and frequency-domain envelope
spectrum comparisons of the measured and simulated signals
under the rolling element fault and inner ring fault are shown in
Figs. 4 and 5, respectively. The time-domain vibration signals
for both the measured and simulated signals exhibit periodic
impulses when rolling bearing faults are present, as shown by
the waveform graphs. Furthermore, the impulse characteristics
of the measured and simulated vibration signals for each fault are
quite similar. In the signal envelope spectrum, the fundamental
frequencies of the simulated vibration signal match the theo-
retical values, and both the measured and simulated vibration
signals exhibit the same frequency characteristics/components.
These results indicate that the proposed digital twin model is
highly effective in accurately reproducing the vibration response
for various bearing fault types.

III. DOMAIN ADVERSARIAL GRAPH CONVOLUTIONAL

NETWORK

A. Task Orientation

In the domain adaption task, labeled source domain dataset
Ds = Xs, Ys = (xs

i ), (y
s
i )

ns

i=1 can be accessed, where ns rep-
resents the number of samples and ysi corresponds the true
label of xs

i . Target domain dataset is represented by Dt = Xt =
(xt

j)
nt

j=1
, whose label cannot be accessed. Samples from two

distinct yet interconnected probability distributions, designated
as P and Q respectively, are used to gather data from both
domains. Given that P and Q are distinct, the ultimate goal is to
train a deep neural network, denoted as h : Xt → Yt, that can
effectively generalize to the target domain. A domain adversarial
graph network is developed for cross-domain fault detection of
rolling bearings, as shown in Fig. 6.

B. Multiscale Graph Convolutional Network

This section presents the development of a multiscale graph
convolutional network (MGCN) for feature extraction of me-
chanical signals, as illustrated in Fig. 7.
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Fig. 6. Overall Architecture of the developed DAGN.

1) Multilevel Feature Extraction Block: The multilevel fea-
ture extraction block (MFEB) is constructed for multilevel
learning of features, as shown in Fig. 8. Assuming K stands
for MFEB’s input, the initial step involves employing a 1 × 1
convolution for feature extraction, which can be expressed as
follows:

K1 = Conv1×1(K). (24)

Afterwards, K1 is evenly divided into four feature maps along
the channel dimension, resulting in the following division:

K1
2 ,K

2
2 ,K

3
2 ,K

4
2 = Split(K1). (25)

Subsequently, scale-correlated multi-scale learning is per-
formed, which can be described as follows:

K1
3 = Convr1

3×1

(
K1

2

)
, (26)

Ki
3 = Convri3×1

(
Ki

2 +Ki−1
3

)
, i ∈ {2, 3, 4} (27)

where Convri3×1(·) denotes a 3× 1 dilated convolution with the
dilation rate ri. Finally, the multi-scale features are combined
by concatenating them and incorporating a residual connection,
expressed as:

Y = Conv1×1
(
Concat

(
K1

3 ,K
2
3 ,K

3
3 ,K

4
3

))
+K, (28)

LetY denote the MFEB’s output. All convolutions within MFEB
are subsequently followed by batch normalization and ReLU
activation.

2) Squeeze-and-Excitation Layer: Squeeze-and-excitation
(SE) layer is adopted to guide the model to pay attention to
important features. Let I ∈ RC×W denote the input of the SE
layer. Initially, the spatial details across all channels of the
input are compressed into a single scalar through the following
process:

qs =
1
W

[
W∑
b=1

Ii(a, b)

]C

a=1

, (29)

Subsequently, a fully-connected block, consisting of two linear
layers and two activation functions, is constructed to handle
the accumulated information from the squeeze operation in the
following manner:

qe = Sigmoid (Fmlp(qs)) , (30)

where Fmlp(·) stands for a two-layer connected layer. Finally,
SE’s output can be obtained via:

qo = qe · I. (31)

3) Overall Architecture of the MGCN: The overall architec-
ture of the developed MGCN is displayed in Fig. 6. Given the
input signal L. First of all, a 15 × 1 convolution is applied for
the initial feature extraction of mechanical signals.

L1 = Conv15×1(L), (32)

where Conv15×1(·) stands for the 15 × 1 convolution, whose
output channel number is 16. Then, several MFEBs combined
with SE layers are utilized to extract more comprehensive local
information.

L1
2 = SE1 (MFEB1(L1)) , (33)

Li
2 = SEi

(
MFEBi

(
Li−1

2

))
, i ∈ {2, 3, 4} (34)

where MFEBi(·) and SEi(·) stand for MFEB operation and
SE opearation, respectively. Further, multireceptive field convo-
lutional layers are adopted to learn the structure information of
the mechanical data.

L3 = MRFConv
(
L4

2

)
, (35)

L4 = MRFConv (L3) , (36)

where MRFConv(·) represents the multireceptive field convo-
lutional operation. Finally, a classification layer is utilized for
bearing health status classification.

C. Domain Adaption Classification Loss

1) Cross Entropy Loss: In order to guarantee a favourable
prediction outcome for the label classifier, we estimate the
classification loss by employing the cross-entropy loss. This
loss serves as a measure of the dissimilarity between the true
label and the predicted label, and it can be formally defined as
follows:

LCE = E(xs
j ,y

s
j)∼Ds

L
(
C
(
xs
j

)
, ysj

)
, (37)

In the equation, C(xs
j) represents the predicted results of the

label classifier.
2) MMD Loss: To align the feature structures of the source

domain and target domain, we utilize the Maximum Mean
Discrepancy (MMD) metric as a loss function for aligning their
structural discrepancies. The MMD loss is denoted as follows:

LMMD =∣∣∣|E(xs
j∼Ds

[
Φ
(
F
(
xs
j

))]− E(xt
u∼Dt

[
Φ
(
F
(
xt
u

))]∣∣∣ |2Θ (38)

where the symbol Φ stands for a nonlinear operation; and the
distance is calculated by embedding the extracted features into
the Reproducing Kernel Hilbert Space.

3) Domain Adversarial Loss: Due to the problem of domain
covariate shift, the label classifier, when trained solely on data
from the source domain, may not perform effectively on data
from the target domain. To address this challenge, we intro-
duce a domain discriminator (D) that determines whether the
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Fig. 7. Multiscale graph convolutional network.

Fig. 8. Multilevel feature extraction block.

extracted features originate from the source domain or the target
domain. The feature extractor is trained to deceive the domain
discriminator, enabling the capture of domain-invariant features
as the two-player minimax game reaches equilibrium. In this
context, the binary cross-entropy loss is employed as the domain
alignment loss, which can be denoted as follows:

LDA = Exs
j
∼ Ds

[
log

(
1 −D

(
F
(
xs
j

)))]
+ Ext

u
∼ Dt

[
log

(
D

(
F
(
xt
u

)))]
(39)

within the equation, F (xt
u) represents the extracted features of

the uth target sample, while F (xs
j)) represents the extracted

features of the jth source sample.
4) Total Loss: By combining the three defined loss functions,

the overall objective function can be expressed as follows:

LSum = LCE + χLMMD + κLDA, (40)

in which χ and κ represent the tradeoff parameters.

IV. EXPERIMENTAL VERIFICATION

A. Experimental Settings and Data Description

The DT-DAGN code is implemented on a workstation with
a GTX3060Ti GPU. During the training phase, we employ the
Adam optimization algorithm with a learning rate of 0.005 and
a batch size of 100. All experiments are carried out ten times
to assure the fairness of the experiments. The DT-DAGN is
compared with five competitive models:

1) WDCNN: WDCNN [32] is a popular CNN algorithm
whose domain adaptation ability has been fully validated
in the previous study.

Fig. 9. ABLT-1 A bearing test bench.

Fig. 10. Diagnostic accuracy of the six approaches in Task A.

2) CNN-MMD: CNN-MMD [25] is a classic domain
adaption-based algorithm, which adopts maximum mean
discrepancy (MMD) to realize effective fault detection.

3) CNN-Coral: CNN-Coral [33] utilizes a novel term
namely the coral algorithm for cross-domain fault detec-
tion.

4) DAGCN: DAGCN [34] is a GCN-based domain adaption
algorithm, which is effective for cross-domain fault diag-
nosis.

5) DDTLN: DDTLN [35] is a recently developed algorithm,
which adopts a new joint distribution adaptation frame-
work for machine fault identification.

In this study, the bearing dataset was collected from the
ABLT-1 A bearing run-to-failure test bench, as depicted in Fig. 9.
The bearing type used was HRB6205, and the motor speed was
set to 1500 rpm. The dataset was sampled at a frequency of
12 kHz, and each sample contained 2048 data points. The dataset
included three different states of rolling bearings: normal, ball
fault, and inner ring fault, each comprising 800 samples. For
training purposes, 300 samples were selected from each state,
resulting in a total of 900 training samples. Similarly, for testing
purposes, 100 samples were allocated to each state, resulting
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Fig. 11. Feature visualization via t-SNE: (a) WDCNN; (b) CNN-MMD; (c) CNN-Coral; (d) DAGCN; (e) DDTLN; (f) DT-DAGN.

TABLE III
DIAGNOSTIC ACCURACY OF THE SIX APPROACHES IN TWO TASKS

in a total of 300 testing samples. The experiment involved two
cases, namely Case A and Case B:

1) Case A simulated data → measured data: The simulated
data at 1500 rpm was used as the source domain, and the
measured data at 1500 rpm was used as the target domain.

2) Case B measured data → simulated data: The measured
data at 1500 rpm was used as the source domain, and the
simulated data at 1500 rpm was used as the target domain.

B. Experimental Results

The experimental results regarding Case A are displayed in
Table III and Fig. 10. The DT-DAGN algorithm obtains 100%
diagnostic results in all ten trials, which shows the stability
of the DT-DAGN. Compared with WDCNN (83.96%), CNN-
MMD (70.90%), CNN-Coral (71.83%), DAGCN (94.57%) and
DDTLN (92.66%), DT-DAGN (100%) can obtain an overall
accuracy gain of 16.04%, 29.1%, 28.17%, 5.43% and 7.34%, re-
spectively, suggesting the superiority of the developed approach
over the other five approaches. Further, we use feature visualiza-
tion to gain a better understanding of the benefits of the proposed
method. To achieve this goal, we employ t-SNE [36] technology
to achieve the visualization of the features learned by the feature
extractor. Fig. 11 displays the t-SNE results of the measured
samples of all methods. Upon examining Fig. 11, it becomes

Fig. 12. Diagnostic accuracy of the six approaches in Task B.

clear that the features obtained by WDCNN are mixed together,
resulting in many misclassification samples when the source
model is used for the target domain test. Moreover, CNN-MMD,
CNN-Coral, DAGCN and DDTLN exhibit overlapping features
in different health conditions. On the contrary, the proposed
method yields a feature distribution map that is more effective in
discriminating between different classes and exhibits a distinct
decision boundary.

The experimental results regarding Case B are displayed
in Table III and Fig. 12. It is clear from Fig. 12 that the
DT-DAGN algorithm respectively obtains 87.67%, 91.67%,
91.33%, 94.33%, 92%, 90.33%, 92.67%, 87.33%, 93.67% and
91% diagnostic results in all the ten trials. Regarding the overall
average accuracy, compared with WDCNN (68.03%), CNN-
MMD (68.50%), CNN-Coral (60.14%), DAGCN (81.33%) and
DDTLN (76.80%), DT-DAGN (91.20%) can obtain an overall
accuracy gain of 16.04%, 29.1%, 28.17%, 5.43% and 7.34%, re-
spectively, suggesting the superiority of the developed approach
over the other five approaches.

V. CONCLUSION

The detection and diagnosis of rolling bearing faults are cru-
cial for the safe and efficient operation of rotating machinery, as
they can result in significant economic losses and even accidents.
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To address this issue, this article proposes a digital twin-based
approach for intelligent rolling bearing fault diagnosis, utilizing
a high-fidelity digital twin model to capture the dynamic re-
sponse of the bearing under various health conditions. A transfer
learning framework based on graph convolutional networks
is then applied to transfer knowledge from simulated data to
measured data, enabling effective fault detection of bearings
with limited knowledge. Experimental results demonstrate the
effectiveness of the proposed approach, which has the potential
for broader industrial applications.

To address the complexity of failure mechanisms and the
diversity of failure modes that can occur in real-world indus-
trial scenarios, future research should aim to explore additional
failure models and identify unknown fault modes within the
corresponding target domain. Our future work will focus on
refining the proposed digital twin model and validating the
method with more bearing data.
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