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Abstract—It is projected that plug-in electric vehicles
(PEVs) would steadily increase as household appliances.
However, PEVs’ high power consumption, stochastic usage
patterns, and storage capacity will surely result in a rise
in the elasticity of demand response and pose significant
difficulties for price-based residential demand response
management (PRDRM). This artcle aims to optimize a two-
tier globally shared nonconvex PRDRM problem with local
constraints and PEVs, known as social welfare: maximiz-
ing retailer profits and minimizing the combined residential
costs. This is done by balancing residential electricity use
with retail electricity prices in an unknown market environ-
ment. The proposed online/offline model-free reinforcement
learning-based economic dispatch (MFRL-ED) methods can
adaptively decide on the ideal retail price sequence by inte-
grating the daily residential-retailer behavior model with the
agent-environment interaction method, providing a basic
MFRL-ED solution for PRDRM without a system identifica-
tion step and an accurate load-retail model. Experiments
show that MFRL-ED methods provide an effective class of
PRDRM solutions.

Index Terms—Economic dispatch, model -free reinforce-
ment learning (MFRL), plug -in electric vehicles (PEVs),
price-based residential demand response management
(PRDRM).

I. INTRODUCTION

A LONG with the rapid development of smart grids as a
class of typical cyber-physical systems (CPSs) in the

information era, home energy management systems (HEMS) are
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among the key technologies in the deployment of energy demand
response [1]. The main goal of RDRM, which is a key component
of HEMS, is to leverage changes in the energy use of loads to
react to time-varying tariffs or “reward and penalty” incentives
to achieve cost savings or other advantages [2]. However, devel-
oping effective RDRM strategies for households is extremely
challenging due to stochasticity and elasticity of residential
power consumption. Specifically, the timing and frequency of
appliance turn-on and turn-off are uncertain and hard to be
predicted due to residents’ lifestyle routines. The complexity of
RDRM is increased when the appliances are further classified
as dispatchable and non-dispatchable on account of the trans-
ferability of their energy consumption. These make it difficult
for RDRM to efficiently plan the timing of power demand in
response to dynamic tariffs. In addition, for an efficient load
operation, accurate appliance models and parameters need to
be determined in time to model the power characteristics and
operating dynamics of these appliances. However, expertise is
not always available to the average household.

To solve the above-mentioned difficulties regarding RDRM,
scholars have proposed a series of economic dispatch (ED)
approaches. The earlier RDRM works mainly focus on mini-
mizing the household’s electricity cost. For example, [3] and [4]
combine mixed-integer linear programming models with the
demand response of appliances to reduce daily household energy
consumption, but elasticity of appliance usage and dynamic elec-
tricity prices are not considered. Then, [5] proposes a robust op-
timization method to minimize the worst-case daily bill payment
by considering the uncertainty of consumer behavior. To ensure
the probabilistic satisfaction of appliance operating constraints,
an opportunity constrained optimization model is developed
in [6]. A Lyapunov optimization algorithm is applied to loads
with heating, ventilation and air conditioning (HVAC) in [7].
Currently, there are two branches of RDRM: price-based RDRM
(PRDRM) encourages loads to adjust their energy consump-
tion according to time-based pricing mechanisms with common
strategies such as real-time pricing [8] and time-of-use pricing
(TOU) [9], while incentive-based RDRM (IB-RDRM) [10] pro-
vides incentives/penalties for loads to contribute/fail to reduce
demand during peak periods [11]. PRDRM is more in line with
residential electricity consumption habits and has been widely
adopted in many countries [12], thus this article concentrates on
PRDRM.
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From the perspective of benefits, the current ED research on
PRDRM is divided into three parts. For the individual benefits,
there is a preference for reducing electricity costs or other
benefits to customers by choosing an appropriate pricing mech-
anism. For example, the work in [13] investigates the distributed
generation scheduling problem considering the uncertainty of
renewable energy sources and the different personality types of
consumers. For the interest of the energy company, maximizing
the company’s benefits or minimizing the cost of generation
is the pursuit [14]. And to meet the reasonable demands of
social development, it becomes a trend to integrate the relative
interests of the both, so maximizing social benefits becomes a
new research hotspot. A distributed dual decomposition-based
(DDB) approach [15] and its fast version [16] are proposed to
maximize social welfare. From the perspective of more diverse
energy options and management, the optimization and control
of HVAC systems are considered in [17], [18]. However, there
remain unsolved problems in the aforementioned efforts. 1)
Requiring system identification steps, i.e., explicitly optimizing
the model, predictor, and solver. Developing a model-based
demand response strategy requires constructing a model and
identifying parameters, and performance may degrade due to
the inaccuracy of models. 2) The existing PRDRM works rely
heavily on deterministic pricing models (e.g., TOU, real-time
pricing) that do not reflect the uncertainty and flexibility of
dynamic electricity markets. 3) The short-sightedness of the grid
leads to a focus on the immediate response of loads to the current
pricing strategy and an inability to predict the impact of all
subsequent responses. Therefore, it is of significance to develop
an approach based on the unknown residential environment
model to solve the PRDRM problem in smart grids.

Deep reinforcement learning (DRL) has been widely used
in the industry in recent years. It can overcome the above-
mentioned problems by exploiting the end-to-end learning ca-
pability of neural networks (NN) and has achieved remarkable
success in many complex decision-making applications such as
distributed economic dispatch (DED) in smart grids [19]. As one
of the energy scheduling problems, such model-free reinforce-
ment learning (MFRL) algorithms have inspired researchers to
investigate DRL-based PRDRM [20], [21]. In [22], a group
smart home energy management scheme to minimize the energy
cost and thermal discomfort of users is developed. Ref. [23]
proposes a deep Q-network (DQN)-based demand response
scheduling method for indoor air temperature control and ther-
mal comfort management. The authors in [24] and [25] develop
a DQN-based approach to optimize the charging scheduling of
electric vehicles (EVs) in smart homes to minimize charging
costs. In [26], an online building energy optimization method
for scheduling timescales and time-shifted loads using the DQN
method is proposed. As can be observed, the Q−framework
is used by the majority of the aforementioned DRL-ED ef-
forts to address demand response issues. However, due to the
overestimation and the curse of dimensionality brought on by
the structural defects of the Q−learning framework, they lack
further modeling extensions and cross-sectional comparisons of
convergence and performance of DRL.

We utilize MFRL-ED to plan the best retail price (RPs) in
an ambiguous electricity market setting, drawing inspiration

Fig. 1. Basic framework of RDRM.

from the use of RL in energy scheduling. The contributions are
summarized as follows.

1) Despite the highly stochastic usage patterns of PEVs,
we effectively solve the optimization issue of globally
shared nonconvex PRDRM with local constraints and
nonsmooth terms. Additionally, in contrast to previous
researches [24], [25] that just take into account charging,
the load model with charging and discharging character-
istics and complicated restrictions is well integrated in
our PRDRM problem, and a detailed workflow of the
DRL-ED-based charging and discharging mechanism is
proposed.

2) The Q−learning framework is used for the majority of
the existing researches of MFRL-ED algorithms [19],
[20], [23], [24], [25], their overestimation is likely to
lead to local solutions that are unable to resolve the
dimensional disaster problem in continuous RP intervals.
In order to address the aforementioned issues and provide
the underlying MFRL-ED framework for the PRDRM
problem, we propose the offline double DQN-based ED
(DDQN-ED) algorithm and the online Actor-Critic-based
ED (AC-ED) algorithm, respectively, and compare the su-
periority and inferiority among them. Simulation experi-
ments verify their effectiveness and scenario applicability.

3) This study unifies both interests, in contrast to the RDRM
problem in [13], [14], which exclusively focuses on busi-
ness or personal interests. Taking into account a large
number of residences sharing a single electricity retailer,
we build a two-level optimization model and focus on
only the social welfare goal through relative social value
weighting, i.e., seeking a balance between the business
interests of energy retailers and the individual benefits
of users, which is consistent with the ideal pursuit of a
harmonious economic community.

The rest of this article is organized as follows. Section II
formulates the PRDRM problem. Section III presents a series
of MFRL algorithms and the coupling model with PRDRM.
Section IV demonstrates the effectiveness and advancement of
the designed algorithms through simulation experiments.

II. FORMULATION OF PRDRM

The fundamental framework of RDRM is depicted in Fig. 1,
which features residences, electricity retailers (ERs), energy
markets (EMs), and independent system operators (ISO). While
EMs supply ERs with wholesale power, ERs are in charge of
supplying retail electricity to homes in specific regions. ISO
oversees the market’s commercial functioning. We explore the
PRDRM issue between retailers and residents by coordinating



LI et al.: MODEL-FREE REINFORCEMENT LEARNING ECONOMIC DISPATCH ALGORITHMS FOR PRDRM SYSTEM 125

Fig. 2. Residences-retailer electricity transaction model for PRDRM.

RPs with residential daily electricity consumption using a vari-
ety of MFRL techniques, supposing that there is only one-way
energy transfer between ERs and EMs.

A. Modeling of Residential Appliances

According to the transferable and abridged characteristics
of the energy consumed by the loads, residential appliances
can generally be divided into dispatchable (e.g., washing ma-
chines, dishwashers, etc.) and non-dispatchable ones (e.g., elec-
tric lights, refrigerators, etc.) [27]. As a class of dispatchable
appliances with charging and discharging characteristics, PEVs
are specifically considered in the PRDRM problem.

Fig. 2 depicts a model of power transmission and communica-
tion between the residences and the electricity retailer. The red
solid lines indicate electrical wiring infrastructure, the retailer
delivers electricity to a region of residences. PEV charging is
managed by a smart but simple device installed in the user’s
home. The blue dotted line indicates the underlying commu-
nication and information system, a two-way information flow
exists between the retailer and the residences. The ER receives
the actual energy consumption of residents in the previous time
slot and the expected energy demand in the current time slot,
and then dynamically adjusts the RP strategy with business
interests in mind, while customers actively change their energy
consumption in line with the change in RP in the current time
slot. Therefore, it can be assumed that the set of dispatchable
appliances is Nd = {1, . . ., D} (excluding PEVs), the set of
non-dispatchable appliances is Nn = {1, . . ., N}, the set of
PEVs is Np = {1, . . ., P}, and the set of all appliances can be
expressed as N = Nd ∪Nn ∪Np = {1, . . .,N}.

Remark 1: Considering a region with the same electricity
retailer, the star topology is naturally applied. However, it is
more realistic that residences in different areas are free to choose
multiple retailers at the same time, so PRDRM based on a
network structure with multiple retailers and multiple residential
areas needs to be developed using the distributed MFRL-ED
technique, which is our later effort. And the set consisting of
retailers should satisfy the minimum point coverage.

1) Dispatchable Appliances: Motivated by [29], the actual
energy consumption of the dispatchable appliance d ∈ Nd is
formulated as

Ed,t = Rd,t

(
1 + δt

(
ρd,t
θt

− 1

))
(1)

where T = {t|t = 1, . . ., T}, T indicates the total time slots,
Rd,t (kWh) is the expected energy demand, Ed,t (kWh) is
the actual electricity consumption, ρd,t ($/kWh) is the RP of
electricity for the retailer’s decision, and θt ($/kWh) is the
wholesale price (WP) bought by the ER from EMs. Considering
the profit of ER, there is ρd,t ≥ θt. δt < 0 is the price elasticity
coefficient, which shows the interrelationship between energy
demand and RP.

In this day-based electricity trading model, the user sends
signals (Rd,t, Ed,t) to the ER at time slot t, and the retailer
gets the corresponding profit estimate from the feedback signals
and makes an adjustment decision about the RP ρd,t+1. The
essence of (1) shows thatRd,t meets the maximum consumption
of the residence, and that customers are willing to consume more
electricity when WP θt is close to RP ρd,t, but they cannot accept
the high retail price and thus consume less, this is in accordance
with human intuitive thinking. Therefore, the demand error
(Rd,t − Ed,t) can represent the happiness index of residents’
electricity consumption. We denote this happiness characteristic
by a quadratic function as follows:

Cd,t =
1
2
hd1(Rd,t − Ed,t)

2 + hd2(Rd,t − Ed,t) (2)

where hd1 ($/kWh2) and hd2 ($/kWh) are happiness coeffi-
cients related to the appliance, respectively. The electric happi-
ness error function Cd,t describes a quadratic error between the
actual energy consumption Ed,t and expected energy demand
Rd,t. Therefore, the closer Ed,t is to Rd,t (i.e., the smaller the
error Cd,t) under a reasonable RP at time slot t, the higher the
happiness of the residents.

However, when residents are limited in their incentive to con-
sume energy by high RP, their happiness becomes lower. Then,
the available range of the electrical happiness error function is
constrained to

(Rd,t − Ed,t) ∈ [DEmin
d , DEmax

d ] (3)

where DEmin
d and DEmax

d are the minimum and maximum
demand error bounds, respectively.

2) Non-Dispatchable Appliances: Non-dispatchable appli-
ances satisfy the identity relation between energy demand Rn,t

and actual consumption En,t in all time slots, i.e.,

Rn,t = En,t (4)

3) PEVs: PEVs have all the characteristics of dispatchable
appliances, and the actual energy consumptionEp,t, p ∈ Np can
be formulated as

Ep,t = Rp,t

(
1 + δt

(
ρp,t
θt

− 1

))
, t ∈ T (5)

Note that Ep,t < 0 means discharging, while Ep,t > 0 denotes
charging. Then the electrical happiness error function Cp,t of
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PEVs can be expressed as

Cp,t =
1
2
hp1(Rp,t − Ep,t)

2 + hp2(Rp,t − Ep,t) (6)

where the parameters are interpreted similarly to (1). Cp,t in-
dicates that the ERs cannot fully satisfy the PEV owners’ will-
ingness to charge. In addition, vehicles with on-board batteries
require the corresponding limit of rated power for safety at every
time slot, which satisfy that

Ep,t ∈ [−Er
p , E

r
p ] (7)

where Er
p denotes the rated power of the PEV p. Considering

the charging/discharging characteristics of PEVs and the battery
capacity, PEV p is subject to the following limitation:

Bmin
p � ESOC

p,t � Bmax
p (8)

where ESOC
p,t = E0

p +
∑t

σ=1 epEp,σ denotes the state-of-
charge (SOC) of PEVs, Bmin

p and Bmax
p represent the minimum

and maximum electric quantity, respectively. E0
p denotes the

initial energy level. ep indicates the charging or discharging
efficiency, which is associated with Ep,t. If Ep,t > 0, ep = ecp,
else ep = edp. We also consider the effect of frequent charg-
ing/discharging on the battery life and therefore quantify the
cost of battery degradation [30]:

Degp,t = υ |Ep,t| (9)

where υ ($/kWh) is the degradation coefficient. Due to ISO
regulation, the RPs of electricity are subject to

ρmin ≤ ρn,t, ρp,t, ρd,t ≤ ρmax (10)

with n ∈ Nn, p ∈ Np, d ∈ Nd, where ρmin and ρmax are the
bounds of RP.

Remark 2: Significant progress has been made in research
on the monitoring and measurement of household load classifi-
cations [31]. For non-invasive methods, the load classification
metering is based on the installation of meters at the entrance of
the power line, so that the total characteristics of the appliances
in the circuit can be collected and analyzed, and then the classes
of appliances can be identified through complex processing
methods such as signal processing, pattern recognition, and
artificial neural networks, and then the classification metering
of each type of load can be implemented [32], [33]. With the in-
creasing maturity of smart grid technology and users’ awareness
of energy conservation, the implementation of the classification
monitoring and metering of household appliances with different
load types is promising to be popularized in the future.

B. Social Welfare

PRDRM is a two-level optimization problem in this article,
where a minimized residential integrated cost to obtain the
optimal actual energy consumption is expected from the user’s
point of view. From the perspective of the ER, maximizing
the company’s profit is the core business objective. These two
wishes are considered together to show the relative social value
of commercial profit and integrated cost of customers by maxi-
mizing social welfare [34].

The optimization problem of minimizing the comprehensive
electricity cost of residents can be expressed as

EC = min
Et

T∑
t=1

ECt

= min
Et

T∑
t=1

[∑
n∈Nn

En,tρn,t +
∑
d∈Nd

(Ed,tρd,t + Cd,t)

+
∑
p∈Np

(Ep,tρp,t + Cp,t +Degp,t)

⎤
⎦ (11)

whereECt ($) indicates the integrated cost at time slot t, and the
energy consumption vector Et contains all dispatchable, non-
dispatchable appliances and PEVs.

For the benefit of the retailer, its profit maximization problem
can be formulated as

EP = max
P

T∑
t=1

EPt

=max
P

T∑
t=1

[(∑
n∈Nn

En,t(ρn,t−θt)

)
+

(∑
d∈Nd

Ed,t(ρd,t−θt)

)

+

⎛
⎝∑

p∈Np

Ep,t(ρp,t − θt)

⎞
⎠
⎤
⎦ (12)

whereEPt ($) represents the retailer profit at time slot t.P is the
vector of electricity RPs consisting of three types of appliances
{ρn,t, ρp,t, ρd,t}, n ∈ Nn, p ∈ Np, d ∈ Nd.

Based on (1), (4) and (5), the actual energy consumption Et

can be determined by P, the two-tier optimization problem (11)
and (12) can represent social welfare by parameter trade-offs,
i.e., the PRDRM nonconvex optimization problem can be written
as

max

T∑
t=1

Ft(P) =
T∑
t=1

ωEPt − (1 − ω)ECt

s.t. (3), (7)− (8), (10)

n, d, p ∈ N, t ∈ T (13)

where ω is the relative social value weight that balances com-
mercial profits against residential energy consumption. When
setting the weight ω to 0, we takes the residents’ interests into
account completely. And when ω is set to 1, only the interests
of ER are considered.

Remark 3: The peak rebound problem (peak may shift to
another time of the day [35]) may occur when the penetration
of dwellings benefiting from PRDRM is high for a given social
value weight ω. The reason behind load accumulation is the
intuitive human behavior of using more appliances at the lowest
RP [36], [37]. This causes ER to buy more power from EM to
manage the load demand, which may not only result in financial
loss to ER but also increase power imbalance, power loss in the
network and grid instability leading to voltage violations and
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overloading of transformers and distribution lines, etc. There-
fore, considering the properties of the weight ω, we can bias
the weights ω towards ER in time slots with low RP to ensure
that the profits obtained by ER are stable, while the intuitive
behavior of residents will autonomously reduce the use of more
appliances in that time slot.

Problem (13) is a nonconvex optimization problem with
globally shared objective function Ft(P), local constraints and
nonsmooth terms. However, the associated optimization algo-
rithms, such as forward–backward splitting method [38], require
not only regularity assumptions on the objective function, but
also an accurate load-retail model. Considering the complex
grid environment, this article proposes two types of MFRL-ED
algorithms to optimize the objective (13).

III. MFRL-ED ALGORITHMS FOR PRDRM

In this section, we introduce a class of MFRL-ED algorithms
to address problem (13). Instead of concerning the complexity
of objective functions and constraints with the construction of
appliance models and accurate parameter predictions, the pro-
posed online/offline RL algorithms exploit the transmission data
from the grid to make RP-decisions based on policy exploration.
The basic RL element consists of a five-tuple 〈S,A,R,Tt, γ〉,
corresponding to the retailer-resident electricity trading model
as follows:

1) State (S = {si,1, . . ., si,T }): The energy demandRi,t and
the actual electricity consumption Ei,t−1, i ∈ N;

2) Action (A = {ai,1, . . ., ai,M}): RPs ρi,t, i ∈ N deter-
mined by electricity retailer, M denotes the number of
set after discretizing the RP interval [ρmin, ρmax];

3) Reward (R = {ri,1, . . ., ri,T }): The social welfareFt(P);
4) State transition function (Ti,t): The formulations (1), (4)

and (5) related to RPs;
5) Discount factor (γ ∈ [0, 1]): The importance weight for

future social welfare, associated with the convergence of
cumulative rewards.

The historical observations {(si,t−1, ai,t−1, ri,t−1, si,t)} with
t = 1, . . ., T are obtained from each episode, where (si,t−1,
ai,t−1, ri,t−1, si,t) is called a transition. Additionally, there ought
to be a greatest lower bound for the difference Δρi,t in actual
transactions, which is another reason for discretizing the RP
interval. We advise the readers to refer to [28] for the remaining
concepts.

A. Q-Table-Based ED

The Q−Table-Based ED algorithm for the PRDRM is given
in [29]. In general, the Q−table stores the q−values mapped
by ρi,t and (Ri,t, Ei,t−1). Its horizontal row represents a finite
number of RPs generated after discretizing in the RP interval
[ρmin, ρmax], and the vertical row represents the time slots
{1, . . ., T}.

Remark 4: Q−table is not the only potential one for PRDRM,
for example, the representation of the state space can be uniquely
determined by the RPs {ρd,t, ρp,t, ρn,t} and the energy demand
{Rd,t, Rp,t, Rn,t} instead of the time slots.

Based on the Bellman equation and the greedy strategy, the
update formula for q−values can be expressed as

Qk
si,tai,t

= Qk−1
si,tai,t

+ lr · (Ft(P)

+ γ max
ai,t+1

Qk−1
si,t+1ai,t+1

−Qk−1
si,tai,t

) (14)

with ai,t ∈ A, si,t ∈ S, i ∈ N, where k denotes the episode
index, and lr indicates the learning rate. When the Q−table
converges, the optimal RP sequence can be obtained using the
following target policy:

π∗
si,t

= argmax
ai,t

Q∗
si,tai,t

(15)

where π∗
si,t

is also called greedy strategy. This Q−learning ED
algorithm requires the creation of corresponding Q−table for
each appliance in advance, and the growth in the number of
appliances, discrete RPs and time slots all impose a significant
burden on the storage and computation. Hence, Q−Table-Based
ED algorithm has to take into account the appropriate discrete
action space and residential area scale when solving the RDRM
problem.

B. DQN-ED

We substitute the Q−value function approximation for the
Q−table in order to address the dimensionality issue brought
on by too many appliances and continuous RP intervals, which
is usually constructed using deep neural networks (DNNs), i.e.,

Q̂si,tai,tαi,t
≈ Qsi,tai,tπsi,t

(16)

where αi,t denotes the weight of the ith Q−network, si,t =
(Ri,t, Ei,t−1), ai,t = ρi,t, i ∈ N, t ∈ T. We simply need to
concentrate on the convergence of the weights αi,t, much as
the convergence of q−value in the Q−table. Ref. [39] uses
the simplified DNN with three-layers to represent the linear
approximation of the q−function. The q−function is an eval-
uation function for the pair (Ri,t, Ei,t−1) and ρi,t based on
the prediction of future social welfare Ft(P). Then the target
q−value can be indicated as

Qk
si,tai,tπsi,t

= Ft(P) + γmax Q̂k
si,t+1ai,t+1αk

i,t
(17)

The quadratic loss function of the Q−network can be expressed
as

QLk
i,t =

1
2

(
Qk

si,tai,tπsi,t
− Q̂k

si,tai,tαk
i,t

)2
(18)

Thus the weightαi,t can be updated iteratively using the gradient
descent method. Based on (17)–(18), we present the online
DQN-ED algorithm for PRDRM shown in Algorithm 1. The
historical observation {ρi,t, Ft(P), Ri,t, Ei,t−1} after exploring
is directly exploited by the Q−network, in which data corre-
lation easily leads to obtaining local solutions. In addition, the
max operation, although it can quickly bring the q−values closer
to the possible optimization objectives, can easily be overdone
and lead to overestimation problems.

Here, DDQN-ED is employed to achieve the elimination
of the overestimation problem by decoupling the two steps
of RP selection and calculation of target q−value. The social
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Algorithm 1: Online DQN-ED for PRDRM.
Input: Learning rates lr, discount factor γ, maximum

episodes index K, total time slots T , convergence
threshold ξ.

Output: Convergent RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T },
i ∈ N.
1: Initialize: Q−network’s weight α0

i,t = rand(·), time
slot t = 0, episodes index k = 0.

2: for all k = 1 : K or |Qk
si,tai,tπsi,t

− Q̂k
si,tai,tαk

i,t
| > ξ do

3: for all t = 1 : T do
4: Choose RPs {ρi,1, . . ., ρi,T } by using ε−greedy

strategy as the behavioral policy;
5: Calculate the actual electricity consumption Ei,t

by Ti,t;
6: Identify the estimated q−value Q̂k

si,tai,tαk
i,t

;

7: Calculate social welfare Ft(P) by (13);
8: if t < T then
9: Calculate the current q−value Qk

si,tai,tπsi,t
by

(17);
10: else
11: Identify the current q−value

Qk
si,tai,tπsi,t

= Ft(P);
12: end if
13: end for
14: Update the weight αk

i,t by the gradient descent:

αk+1
i,t = αk

i,t − lr · ∇αk
i,t
QLk

i,t;
15: end for
16: Obtain the convergent RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T }

by (15).

welfare expectation of DDQN is demonstrated to be unbiased
estimation [40]. In the following, we will briefly construct the
coupling of DDQN-ED with PRDRM.

DDQN-ED adopts two identical Q−network structures for
each appliance: the current Q−network αk

i,t and the target
Q−network α̃k

i,t, which are responsible for the RP-decision and
the RP estimation based on q−function, respectively. Based on
(17), the target q−value can be expressed as{

Qk
si,tai,tπsi,t

= Ft(P) + γmax Q̂tsi,t+1,a′
i,t+1,α̃

k
i,t

a′i,t+1 = argmaxQ̂csi,t+1,ai,t+1,αk
i,t

(19)

where Q̂tsi,t,a′
i,t+1,α̃

k
i,t

denotes the q−value of the target

Q−network, and Q̂csi,t+1,at+1,αk
i,t

represents the estimated
q−value of the current Q−network. Then the loss function of
DDQN can be represented as

QLk
i,t =

1
2

∣∣∣Qk
si,tai,tπsi,t

− Q̂cksi,tai,tαk
i,t

∣∣∣2
=

1
2

∣∣∣Ft(P) + γmax Q̂tsi,t,a′
i,t+1,α̃

k
i,t

− Q̂csi,t+1,ai,t+1,αk
i,t

∣∣∣2
(20)

Using (19) and (20), the offline DDQN-ED algorithm with
experience replay for PRDRM is presented in Algorithm 2.

Fig. 3. Block diagram of DDQN with experience replay for PRDRM.

It can be seen that the ER interacts with the residences for
storing the transitions in the experience replay buffer D with
maximum buffer F based on the current Q−network αk

i,t. Then
M transitions are sampled and removed from D to train the
current Q−network, while the target Q−network weight α̃k

i,t is
updated at the fixed update period C. This delayed update re-
duces the parameter dependency between the targetQ−network
and the currentQ−network. Therefore, DDQN-ED achieves the
elimination of the overestimation problem by decoupling the two
steps of the selection of the current action and the calculation of
the target q−value. The detailed structures in Algorithm 2, such
as the replay buffer and network models, are shown in Fig. 3.
The experience replay buffer isD = {Tf

i }, f = 1, . . ., F where
the f th transition Tf

i can be denoted as

Tf
i =

⎛
⎜⎜⎜⎝

sfi,0 · · · sfi,t · · · sfi,T−1

afi,0 · · · afi,t · · · afi,T−1

F f
i,0 · · · F f

i,t · · · F f
i,T−1

sfi,1 · · · sfi,t+1 · · · sfi,T

⎞
⎟⎟⎟⎠

Noting that, when the capacity of replay buffer D is set to
1, Algorithm 2 changes to an online DDQN-ED. Moreover, we
should make sure that each appliance has the same maximum
buffer capacity F and update period C in order to maintain the
algorithm iterating synchronously.

Remark 5: Since the target q−value is calculated through the
target Q−network, the RP that maximizes the target q−value
is originally selected according to the parameters of the target
Q−networkQk

si,tai,tπsi,t
in DQN, while the q−value calculated

after selecting the optimal RP with the current Q−network
Q̂csi,t+1,at+1,αk

i,t
of DDQN must be less than or equal to the

original q−value. This approach reduces the overestimation to
a certain extent and makes the q−value closer to the real value.

Remark 6: The iterative formulation (14) is derived from the
Bellman equation and the greedy strategy. For the sake of clarity,
we assume that the q−value is optimal, then we have the ideal
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Algorithm 2: Offline DDQN-ED With Experience Replay
for PRDRM.
Input: The predefined parameters similar to Algorithm 1 for

the target Q−networks and the current Q−networks.
Output: Convergent RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T },
i ∈ N.
1: Initialize: The current Q−network’s weight

α0
i,t = rand(·), the target Q−network’s weight

α̃0
i,t = α0

i,t, replay bufferD, maximum buffer capacity
F , update period C, time slot t = 0, episodes index
k = 0.

2: for all k = 1 : K or |Qk
si,tai,tπsi,t

− Q̂ck
si,tai,tαk

i,t
| > ξ

do
3: for all f = 1 : F do
4: for all t = 1 : T do
5: Identify the estimated q−value Q̂ck

si,tai,tαk
i,t

;

6: Choose the best RPs {ρi,1, . . ., ρi,T } by (15)
with probability 1 − ε, and select the random
RPs with probability ε;

7: Calculate the actual electricity consumption Ei,t

by Ti,t;
8: Calculate social welfare Ft(P) by (13);
9: Identify the energy demand Ri,t+1;

10: end for
11: Store the f -th transition into the experience replay

bufferD;
12: end for
13: Sample and remove M(M ≤ F ) transitions from

the replay bufferD;
14: for all m = 1 : M do
15: for all t = 1 : T do
16: if t < T then
17: Calculate the optimal action and the target

q−value Qk
si,tai,tπsi,t

by (19);
18: else
19: Identify Qk

si,tai,tπsi,t
= Ft(P);

20: end if
21: Update the current Q−network’s weight:

αk+1
i,t = αk

i,t − lr · ∇αk
i,t
QLk

i,t;
22: end for
23: if mod(m,C) = 0 then
24: Update the target Q−network’s weight

α̃k
i,t = αk

i,t;
25: end if
26: end for
27: end for
28: Obtain the convergent RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T }

by (15).

optimal q−functionQ∗
st,at

= maxπ E(rt|st, at, π), whereE(·)
denotes the expectation. However, the optimal q−function
should satisfy the Bellman equation: Q∗

st,at
= Eπ(Ft(P) +

γmaxat+1 Q
k−1
st+1at+1

|st, at). Hence, the overestimation problem
can be attributed simply to the inequality: E(max(Qs1,a1 ,

Qs2,a2 , . . ., QsT ,aT
)) ≥ max(E(Qs1,a1 , Qs2,a2 , . . ., QsT ,aT

)).
The result shows that fitting the q−function using the gradient
descent yields larger estimated expectation. In summary, the
overestimation problem is unavoidable for RL algorithms
based on the Q−learning framework due to the adoption of
greedy strategy to maximize cumulative rewards in unknown
environments for maintaining efficient exploratory.

C. AC-ED

DQN-ED algorithms, which are a type of value-based learning
algorithm, maximize social welfare expectations by selecting
the best RPs based on a deterministic strategy. It is crucial to
use stochastic policies for the PRDRM optimization problem
to handle the continuous RP space and obtain more precise
energy ED. Additionally, when compared to offline DDQN-ED
algorithm, ER using online learning algorithms can maximize
social welfare by adaptively and in real-time adjusting prices for
real-time dispatch consideration. Therefore, this article proposes
a policy-value-based learning algorithm for PRDRM, namely
the Actor-Critic method, which approximates the policy distri-
bution by adding a policy network to the Q−network

π
βi,t
si,t,ai,t = Pr(ai,t|si,t, βi,t) ≈ πsi,t , t ∈ T (21)

which can be described by the parameter βi,t, where Pr(·)
indicates the probability distribution. We formulate the policy
network as the Actor network and the Critic network corresponds
to theQ−network. In general, the input of the Actor network is a
state vector and the output is an estimated action. The structure
of the critic NN remains the same as that of the Q−network.
Here, the outputs of the Actor-Critic network are represented as

ηi,t = φa (si,t, βi,t) (22)

and

Ji,t = φc (si,t, ai,t, αi,t) (23)

with i ∈ N, t ∈ T, where βi,t andαi,t are the Actor NN’s weight
and Critic NN’s weight, respectively,φa andφc are the activation
functions, the estimated action ηi,t is the output of the Actor
network, and the action-value function Ji,t is the output of the
Critic network at the time slot t.

The temporal difference (TD) error for each appliance is given
by

Ei,t = Ft(P) + γJi,t+1 − Ji,t (24)

The discount factor γ = 0 implies that a short-sighted learning
algorithm focuses on immediate rewards and ignores the future
state value. On the other extreme, γ = 1 indicates that the learn-
ing algorithm gives fair weight to the rewards of all time slots.
Then the quadratic loss function for the Critic NN is defined as

PLi,t =
1
2
E2
i,t (25)

For the Actor network, we utilize TD error as the evaluation
function. Then based on back propagation, the update formulas
for Actor-Critic are represented as

αk+1
i,t = αk

i,t − lc · ∇PLi,t(J
k
i,t) · ∇Jk

i,t(α
k
i,t) (26)
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Fig. 4. Block diagram of Actor-Critic for PRDRM.

and

βk+1
i,t = βk

i,t − la · ∇Eki,t(ai,t) · ∇ai,t(β
k
i,t) (27)

where la and lc denote the learning rate of Actor and Critic,
respectively. The details of which are illustrated in Fig. 4.
Because we consider a discrete set of RPs, the Actor network
adopts the softmax function to approximate the optimal policy.
For details of the AC-ED algorithm, see Algorithm 3.

Remark 7: Algorithm 3 can be divided into three steps: 1)
Calculate the pair (si,t, ai,t) of the current time slot and the next
time slot, respectively; 2) Identify the evaluation function Ei,t
from the calculated action-value functions Ji,t and Ji,t+1; 3)
Update the AC-ED parameters αi,t and βi,t using Ei,t.

D. Charging-Discharging Mechanism in DRL-ED

The procedure of the battery charging and discharging mech-
anism is introduced here. The charging and discharging char-
acteristics of the battery characterize the increase or decrease
of the cumulative variable Ep,t presenting the current battery
capacity. We use the actual power consumption of each iteration,
positive or negative, to represent charging or discharging, while
the change in power consumption satisfies the corresponding
rated power and capacity constraints (7)–(8). The highly random
usage pattern of PEVs means that the SOC of the battery cannot
be known in advance of each iteration, which greatly increases
the challenge of studying PRDRMs with PEVs. Therefore the
literature [24], [25] considers only charging.

In the designed DRL-ED programs, PEVs’ RP ρk−1
p,t−1 at the

ER end, the current power demandRp,t and a stochastic strategy
(e.g., ε-greedy strategy) jointly decide and drive the PEVs’
charging and discharging. The process is shown in Algorithm 4.
It should be noted that we ignore the effect of battery degradation
on battery capacity during charging and discharging.

Remark 8: It should be noted that PEVs’ batteries are only
used to supply electricity to households to ensure maximum

Algorithm 3: Online AC-ED for PRDRM.
Input: Learning rates lc and la, discount factor γ, maximum

episodes index K, total time slots T , convergence
threshold ξ.

Output: Convergent RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T },
i ∈ N.
1: Initialize: The Actor network’s weight β0

i,t = rand(·),
the Critic network’s weight α0

i,t = rand(·), time slot
t = 0, episodes index k = 0.

2: for all k = 1 : K or
∑T

t=1

∑N
n=1 |Ei,t| > ξ do

3: for all t = 1 : T do
4: Calculate the actual energy consumption Ei,t by

Ti,t;
5: Calculate the RPs {ρi,1, . . ., ρi,T } by (22);
6: Obtain the action-value function Ji,t by (23);
7: Identify the social welfare Ft(P) by (13);
8: if t < T then
9: Calculate the action-value function Ji,t+1 by (23);

10: Calculate the TD error Ei,t by (24);
11: else
12: Identify the action-value function Ji,t+1 = 0 by

(23);
13: Calculate the TD error Ei,t by (24);
14: end if
15: end for
16: Update the Critic network’s weight αi,t by (26);
17: Update the Actor network’s weight βi,t by (27);
18: end for
19: Obtain the optimal RP sequence {ρ∗i,1, ρ∗i,2, . . ., ρ∗i,T }.

social welfare (13). Residences can access not only the electric-
ity provided by the ER, but also the PEV batteries to supplement
the household electricity. When the households consume too
much electricity, they may not necessarily get the maximum
social welfare (affected by the user’s electrical happiness error
function (6)). Instead, supplementing electricity through PEV
batteries may acquire higher social welfare.

IV. SIMULATIONS AND NUMERICAL ANALYSES

In this section, the effectiveness of the proposed MFRL
algorithms is verified by several experiments. The algorithms
are implemented by MATLAB R2014a on a desktop PC with
i5-12400F CPU@2.50 GHz, 16 GB of RAM, and a 64-bit
Windows 11 operating system.

A. Experimental Setup

We consider the energy demand response management
problem for 6 dispatchable appliances {d1, d2, d3, d4, d5, d6},
4 PEVs {p1, p2, p3, p4} and 5 non-dispatchable appliances
{n1, n2, n3, n4, n5} in a whole day (24 time slots). The energy
demand distribution for PEVs, non-dispatchable and dispatch-
able appliances (see Fig. 5) is referenced from San Diego Gas
& Electric [8], and wholesale prices are set by the EM, with
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Algorithm 4: Charging-Discharging Mechanism.

Input: RP ρk−1
p,t−1, current power demand Rp,t.

Output: Current charging or discharging status Ep,t and
PEVs’ SOC ESOC

p,t .
1: Initialize battery parameter: estimated power Ep,t, rated

power Er
p , minimum and maximum electric quantity

Bmin
p and Bmax

p , initial energy level E0
p, charging or

discharging efficiency ep ∈ {ecp, edp}, ε-greedy strategy
(if increasing the exploration rate is necessary).

2: Identify RP ρk−1
p,t−1 based on deterministic or stochastic

strategies.
3: Obtain the actual consumption Ek

p,t by (5) at the
iteration k.

4: Projecting Ek
p,t onto the rated power interval, i.e.,

Ek
p,t = ProjRrp(E

k
p,t),Rrp = [−Er

p , E
r
p ].

5: if Ek
p,t > 0 then

6: Calculate the estimated battery capacity
Ep,t = E0

p +
∑t−1

σ=1 e
c
pEp,σ + Ep,t, t > 1;

7: if Ep,t > Bmax
p then

8: Ep,t = Ep,t − (Ep,t −Bmax
p )/ecp;

9: ESOC
p,t = Bmax

p ;
10: else
11: ESOC

p,t = Ep,t;
12: end if
13: else
14: Calculate the estimated battery capacity

Ep,t = E0
p +

∑t−1
σ=1 e

d
pEp,σ + Ep,t, t > 1;

15: if Ep,t < Bmin
p then

16: Ep,t = Ep,t − (Ep,t −Bmin
p )/edp;

17: ESOC
p,t = Bmin

p ;
18: else
19: ESOC

p,t = Ep,t;
20: end if
21: end if
22: Obtain current actual consumption Ep,t and current

power Ep,t.

data from Commonwealth Edison Company [42]. It can be
seen that the energy demand of non-dispatchable appliances
is significantly higher than that of dispatchable appliances and
PEVs, and that the peak demand occurs in 12 : 00 − 16 : 00
and 18 : 00 − 24 : 00. In addition, PEVs have no demand for
electricity at certain times of the day due to their stochastic
usage patterns that increase energy demand elasticity. In order to
ensure the proper functioning of the electricity market economy
and to protect the reasonable demands of residents for normal
electricity consumption, we must coordinate the retail pricing
strategies of electricity retailers with the electricity consumption
strategies of customers in an effort to maximize social welfare.
The time-varying parameters and appliance-related parameters
are listed in Tables I and Table II, respectively. Note that the
discrete RPs have a gap of 0.1, and according to the price
parameters in Table II, the RP interval is [2.4, 6.7]. Therefore
the number of discrete actions is 44 (i.e.,M = 44).

Fig. 5. Energy demands of all appliances over 24 Time slots.

Fig. 6. Energy consumption for dispatchable appliances.

Fig. 7. Energy consumption for PEVs.

B. Validity Check

1) Q−Table-Based ED Results: We analyze the effective-
ness of Q−learning methods based on Q−tables. Figs. 6 and
Fig. 7 show the comparison of the energy demand and consump-
tion of dispatchable appliances and PEVs for one day. Table III
shows the specific daily RPs planning obtained by Algorithm 1.
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TABLE I
TIME-VARYING PARAMETERS

TABLE II
PARAMETERS OF APPLIANCES

TABLE III
OPTIMAL RPS PLANNING FOR ALL APPLIANCES

It can be seen that the RPs strictly satisfy the price constraints.
The overall trend of the RPs planning fluctuates over the 24 time
slots, which is affected by social welfare and WPs. When the RP
is too high, it is detrimental to the social welfare relative to the
users. For example, d1 has been reducing energy consumption
(from 8.9 (kWh) to 5.3 (kWh)) due to the increasing retail
price (from 3 ($) to 6.6 ($)) in time slots 10−13, and the
retail price decreases rapidly (from 6.6 ($) to 4.2 ($)) under
the influence of factors that favor the customer’s interest such
as the electrical happiness error function and the PEV cost, and
subsequently the residence will tend to consume more electricity
in the next time slot. Out of commercial interest to the retailer,
this also affects relative social welfare. For example, when the
RP is too small at time slot 9, and the retailer increases the

RP significantly at time slot 10 for {d2, p4, n1}, while PEVs
in time slots 2−6 and 20−24 actively discharge in response to
excessive electricity prices. Combining Table III and Fig. 5, it
can be observed that the RPs peak does not occur during demand
peak hours (12:00-16:00 and 18:00-24:00, and the average retail
price (77.24($)) at demand peak is smaller than the average
price (79.62($)) at other time slots. This is because the goal of
maximizing social welfare ensures that prices are set to benefit
both retailers and customers, creating a virtuous circle between
retail prices and actual electricity consumption to maintain a
relatively balanced social welfare.

Fig. 8 depicts the convergence effect of q−values in the
Q−table for the four PEVs over 24 time slots. The q−values
are described by different color lines, which indicate stable
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Fig. 8. Q−values of Q−tables from PEVs.

Fig. 9. Weights and convergence threshold of DQN for p3.

convergence of the algorithm. In order to maximize social wel-
fare, the retailer constantly changes its electricity pricing strate-
gies to gradually make q−values converge to their maximization,
considering the stochastic electricity consumption patterns and
storage capacity limitations of the PEVs.

2) DQN-ED Results: We combine deep learning with
Q−learning to construct Q−networks instead of the evaluation
role of Q−tables, and propose two algorithms: online DQN-ED
and offline DDQN-ED, where the capacity of the experience
bufferD is set to F = 20, and M = 15 transitions are sampled
and removed fromD at each iteration.

Fig. 9 represents the weights of hidden/output layers and the
convergence of (Qk

si,tai,tπsi,t
− Q̂k

si,tai,tαk
i,t
) over 24 time slots

for p3, which demonstrates the effectiveness of the DQN-ED
algorithms. Fig. 10 shows the evolution of the q−values of DQN
and DDQN over 24 time slots, respectively. The DQN-ED al-
gorithms coordinate the energy consumption of each appliance,
and based on the RPs with instant feedback, make decisions
on the expected actual energy consumption through the greedy
strategy that eventually converges to the optimal.

Due to the complexity of the RDRM problem (e.g., the non-
convexity of the optimization problem, the setting of parameters
unique to the algorithm), the scheduling policies obtained by

Fig. 10. Q−values over 24 time slots for DQN and DDQN.

Fig. 11. Actual electricity consumption and RPs over 24 time slots for
DDQN and DQN.

different learning algorithms are often distinct. Fig. 11 shows
the actual energy consumption and retail price planning dur-
ing 24 time slots for the four PEVs under both DDQN-ED
and DQN-ED algorithms. As can be seen, although the two
algorithms obtain different RPs and actual consumptions, the
relative actual consumptions of the two algorithms determine
the relative retail prices. In particular, when the two algorithms
perform discharging (Ep,t < 0) and charging (Ep,t > 0) at a
certain time slot, respectively, the RP of discharging tends to be
smaller than the RP of charging. In addition, although the RPs
are not identical under different algorithms, the variation trend
of RP is similar at 24 time slots. We believe is due to the fact
that both use the same behavioral policy (ε−greedy strategy)
and target policy (greedy strategy).

3) AC-ED Results: For the discrete action space, the Actor
policy network utilizes the softmax function to select the op-
timal action with the maximum probability principle for each
appliance as follows:

Pr(aji,t|si,t, βi,t) =
eφ

j
a(si,t,βi,t)∑M

τ=1 e
φτ
a(si,t,βi,t)

, j ∈M, i ∈ N

Fig. 12 represents the action probability output of the Actor
network with 4 PEVs before and after training. Each component
φj
a(si,t, βi,t) of the feature vector corresponds to the probability
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Fig. 12. Action probability of Actor NNs for PEVs.

Fig. 13. Action-values of Actor networks.

distribution of 44 actions through the softmax function. All
action probabilities are randomly initialized before training, and
the evaluation function Ei,t is used to maximize the objective
function to select the optimal action during training, and the
proportion of that action probability in the action set is continu-
ously increased while the probability of other actions is reduced,
which will eventually converge to 1.

Fig. 13 represents the evolution of action values (23) for
d3 and p2, respectively, where the different colors represent
different time slots. The Critic networks finally converge due
to the stability of the action values, demonstrating that the
algorithm’s efficacy is assured.

4) Comparisons: Fig. 14 shows the average level of social
welfare for the proposed four algorithms after 10 trials. The fol-
lowing features can be observed. Since the Q−learning method
is a class of value-based (q−value) algorithms, which tend to
fall into overestimation by maximizing the q−value, the curves
of the algorithms are characterized by large amplitude, high
frequency, and fast convergence. The disadvantage is that it
may not converge to optimality against nonconvex optimization
objectives, so more potential solutions have to be explored and
learned through ε−greedy strategies. In contrast, the online
AC-ED method is capable of both learning policy function
(23) and evaluating current value function (22), as well as
continuously optimizing policy network by TD error (24), so
it has better stability and practicality. However, the high data

Fig. 14. Comparison of social welfare.

TABLE IV
COMPARISONS BETWEEN AVERAGE RP AND SOCIAL WELFARE

correlation caused by the online learning method directly affects
the learning ability of the Actor-Critic network (some of the
action values are updated slowly as can be seen in Fig. 13),
resulting in the difficulty in obtaining the optimal social welfare
quickly in Fig. 14. To decouple data correlation and fully explore
policy distribution, we expect to study the offline learning based
Actor-Critic framework and its variants applied to the PRDRM
problem.

Table IV shows the comparison between total social welfare
(
∑T

t=1

∑N
i=1 ρi,t)/(N× T ) of the algorithms for all time slots.

The AC-ED algorithm gets the highest social welfare, 13.04%
higher than that obtained by DQN-ED, but its average daily RP
is indeed 34.47% lower than that of DQN-ED. This shows that
high social welfare combines corporate profits and user benefits,
which characterizes the social well-being in electricity usage.
In addition, as shown in the experiment, the disadvantage of
Q−table-based ED method for discrete action space is only
the calculation and storage of q−values, while the experimen-
tal results of social welfare do not show significant drawback
compared with the DQN-ED algorithms.

V. CONCLUSION

In this article, we studied the PRDRM problem based on
MFRL, which takes fully into account the charged and dis-
charged PEV model that is gradually becoming popular among
users. Firstly, three types of appliances (including dispatch-
able appliances, non-dispatchable appliances and PEVs) were
mathematically modeled, and then, PRDRM was coupled with
MFRL to reconcile the actual power consumption of appliances
on the environment side with the retail price of electricity on
the agent side through a series of MFRL algorithms (including
Q-table-based framework, DQN framework and Actor-Critic
framework). A systematic solution with long-view decision
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capability was provided for real-time demand response in smart
grids. Finally, simulation experiments validated the effective-
ness of the proposed approach. Future work will apply the
MFRL-based energy dispatching scheme to multi-carrier energy
supply (i.e., gas and electricity) to achieve higher efficiency and
lower operating costs.
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