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Abstracit—Logistics creates tremendous economic value
through supporting the trading of goods between firms and
customers, thereby improving the welfare of the society.
In order to continuously improve the quality of logistics
service, a great variety of cyber-physical techniques have
been utilized in the modern logistics systems, which help
tackle the grand challenges in multiple aspects includ-
ing time efficiency, economic cost, safety risk and cyber-
security. The fast development of artificial intelligence (Al)
has gained significant popularity and success in various
domains, and hence, it has been adopted to construct high-
quality solutions that can facilitate the monitoring, oper-
ation and decision in logistics systems. Furthermore, the
deployment of advanced sensoring and computing com-
ponents forms a cyber-physical system (CPS) infrastruc-
ture, which promotes the capability and scalability on data
acquisition, transmission, storage and processing, thereby
enabling the further penetration of Al technologies. Based
on the existing advances, this article is devoted to con-
ducting a comprehensive survey of the Al applications in
the modern logistics CPSs. In specific, we focus on the
Al-based research and industrial solutions that can improve
the time/economic efficiency, safety and cyber-security of
logistics systems. The potential applications of Al to tackle
the remaining challenges are also discussed to investigate
the way to continuously improving the quality of logistics
service.

Index Terms—Artificial intelligence, cyber-physical
systems, smart logistics, smart supply chain.

[. INTRODUCTION

OGISTICS has become critical in the modern world with
I J strong connectivity on business. It provides a networked
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platform to the firms and consumers to facilitate the tradings and
movement of goods, thereby creating grand economic value.
Therefore, the corporations in logistics industry have devoted
large efforts to improve the quality of logistics service and the
efficiency of society over the decades. A modern logistics system
usually deploys a large-scale logistics network to guarantee the
goods to be processed in a methodical fashion [1]. As a large-
scale logistic network can contain a large number of facility
nodes including warehouses, distribution centers and terminal
stations, each component, including the transportation routes
between those components, needs to be optimized to guarantee
the fast, safe and economic delivery.

Innowadays, a great variety of technical approaches have been
utilized to improve the quality of logistics service promoted by
the trend of Industry 4.0. In specific, the advanced sensoring and
computing technologies such as Internet-of-things (IoT), cloud
computing and edge computing are widely deployed to construct
cyber-physical system (CPS) infrastructures, thereby supporting
the efficient acquisition, transmission, storage and analysis of
data [2]. In the logistics CPS, the components for data acquisition
and transmission act as the cyber components and the entities
to be controlled act as physical components. For instance, the
inventory management system works in a CPS fashion such that
it achieves the market data through the information system and
make decisions on replenishment to keep a reasonable inventory
level. Based on this infrastructure, the extensive deployment of
artificial intelligence (AlI) is enabled to facilitate the monitoring,
operation and decision making in the logistics field, thereby
improving the efficiency and reliability of logistics instead of
the conventional approaches. The conventional logistics systems
rely on traditional techniques such as operations research and
human labor/experience when no Al technology is involved. The
traditional techniques in these domains usually rely on restrictive
assumptions or case-specific limitations. In contrast, the Al
techniques allow the decision making with more flexibility to
handle the dynamics in real-world scenarios, and generalize the
experience for solving a problem to other problems in the same
family to rapidly reduce the computational cost. The methods
based on human labor/experience can usually be employed to
monitor the state of resources in logistics scenarios. However,
these methods are usually labor intensive and even dangerous. In
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contrast, the Al-based solutions using computer vision provides
an alternative of feasible monitoring.

The connectivity offered by the CPS infrastructure and the
integrated Al technologies will lead to the realization of smart
logistics, which can respond to the rapid dynamics and un-
certainties of the external environment. Based on that, the
continuous development of Al will enable the further pene-
tration of automatic and data-driven solutions, which lessens
the reliance on human labor and experience, thereby generating
appropriate decisions to guarantee the quality of warehousing,
transportation, distribution and delivery under less cost and risk.
Despite these offered advantages, the logistics CPS still faces the
following grand challenges.

e Time Efficiency: Time efficiency is critically important
for logistics such that it can potentially induce severe
consequences (e.g., economic losses and degradation of
customer experience) if the promised time efficiency can-
not be met [1]. As the time efficiency can be impacted by a
large number of complex and random issues, it is usually
a challenging task to identify the impacting factors and
improve the time efficiency correspondingly.

® Cost: The operation of logistics is associated with multiple
types of costs such as the cost of energy, material and
human labor. Cost reduction is an important target of
logistics planning and scheduling in sake of economic
efficiency, which can simultaneously avoid the excessive
resource usage and greenhouse gas emission.

e Safety: The safety of logistics contains two perspectives
including the safety of goods and human. Due to the
high complexity of logistics scenarios, the inappropriate
operations can potentially induce severe consequences like
the damages of goods and injury of employees.

o Cyber-Security: The modern digitilized logistics systems
are managed by information systems such as warehouse
management system (WMS) and transportation manage-
ment system (TMS). Furthermore, the deployment of
Al techniques are enabled by the information acquisi-
tion/transmission components such as the networked sen-
sors. This poses new challenges on cyber-security such
that the weakness of these parts can be utilized by attackers
for malicious purposes.

Due to the rapid development of modern logistics systems,
a comprehensive survey of Al applications in the logistics do-
main is urgently needed as a guideline to explore the potential
solutions to tackle the aforementioned challenges. However, the
existing survey papers [2], [3], [4], [5], [6], [7], [8] focus on
either the engineering frameworks or the operations research in
modern logistics systems. Although [7] and [8] have pointed
some potential application directions of Al, they did not provide
details on the specific Al techniques that can be used to improve
the quality and efficiency of logistics, and their application
scenarios. In contrast, a survey that comprehensively reviews the
specific utilization of Al approaches to facilitate the operations
of logistics systems remains lacked in existing literature despite
its critical importance to the industry and social welfare. In
order to fill this gap, this work presents the first survey to
investigate how Al technologies can help improve the quality

of logistics service, especially under the CPS context. In this
survey, we aim to pursue the high-quality solutions to tackle
the grand challenges in the logistics domain through contin-
uously investigating the applications of Al technologies. This
survey summarizes the tasks in logistics CPSs into 5 categories
including resource allocation, planning & scheduling, measure-
ments & monitoring, autonomous driving and logistics systems
simulation. For each category, we discuss in details how the
aforementioned challenges are studied and addressed in existing
works. Furthermore, the new challenges in modern logistics
cyber-physical systems and the prospective applications of Al
technologies are explored accordingly.

In summary, the contributions of this article can be highlighted
as follows.

® This paper presents the first survey on the applications of
Al in logistics systems associated with the CPS context,
which provides a guideline to both researchers and prac-
titioners to explore the Al-based solutions to tackle the
grand challenges in the logistics domain.

e This survey summarizes the tasks of Logistics CPS into 5
categories, where the Al-based solutions are discussed in
details for each category to illustrate how the correspond-
ing challenges are resolved using Al techniques.

e Challenges for utilizing Al techniques in logistics scenar-
ios are discussed in depth and the potential solutions are
pointed to inspire future research in this domain.

The remainder of this article is organized as follows. In
Section II, a overview is provided on the architecture of the
logistics CPS. In Section III, the applications of Al for resource
allocation in logistics systems are discussed. In Section IV, the
relevant works on smart logistics planning and scheduling are
reviewed. In Section V, the Al-based solutions for automatic
monitoring and measurements in logistics scenarios are pre-
sented. In Section VI, the recent autonomous driving techniques
for logistics are investigated. In Section VII, the intelligent
approaches to facilitate the simulation of logistics systems are
studied. In Section VII the new challenges and potential ap-
plications of Al for modern logistics are explored. Finally, we
conclude in Section IX.

[I. ARCHITECTURE OF LOGISTICS CYBER-PHYSICAL SYSTEM

The architecture of a logistics system is depicted in Fig. 1,
where a huge logistics network containing up to thousands of
facility nodes and the transportation routes between them is
build to support the warehousing, distribution, transportation
and delivery operations. For instance, in the retailing scenario,
the logistics system serves the manufacturers through keeping
their products in stock based on supply chain management
methodologies to guarantee the high time efficiency. Subse-
quently, the purchased items are shipped from the corresponding
warehouses, sorted at the regional distribution center(s) and for-
warded through the transportation network to the local stations
for final delivery to the customers [9]. In order to guarantee the
high quality and low operational cost of logistics service, plenty
of efforts have been devoted to the optimization of the logistics
system in multiple aspects.
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stations, with the transportation routes between them as edges. This infrastructure benefits the trading between firms and customers through
fetching the products from the manufacturers and delivering them to the customers. In this architecture, the plan, operation and optimization of each
component rely on the specific technical approaches to guarantee the high quality of service.

In the aforementioned logistics system, the plan and operation
of each component faces the grand challenges in terms of time
efficiency, cost, safety and cyber-security, and hence, it critically
relies on the advanced technical approaches to guarantee the
high quality of service. In order to tackle these challenges, the
modern logistics systems are usually constructed in a digitalized
fashion, where the advanced sensoring and computing technolo-
gies are employed for the acquisition, transmission, storage and
analysis of data, and finally facilitate the decision making of
logistics operations. This naturally forms a CPS, such that the
information infrastructures act as the cyber components and the
entities in the logistics system act as the physical components.
The cyber and physical components collaboratively accomplish
the functionalities that are critical to the quality of logistics
service.

In the modern logistics system CPS, the information acquisi-
tion is enabled by a large variety of connectivity technologies,
which forms an IoT architecture. The IoT architecture in lo-
gistics systems can usually be divided into 4 layers including
sensing layer, network layer, processing layer and application
layer [2]. Taking advantages of this architecture, the information
of physical entities is collected by the sensing layer using sensor-
ing techniques such as video camera and LiDAR. Subsequently,
the collected information is forwarded to the processing layer
for storage and computing through the network layer, where
the communications techniques like wireless sensor network
(WSN), wireless local area network (WLAN), Wi-Fi and 5G
communications can be adopted based on the specific needs of

the application scenarios. Finally, the forwarded information is
analyzed through computing techniques in the processing layer
and the outputs are utilized for decision making in the application
layer. Since such an architecture can usually result in heavy
communication overhead, edge computing provides a reliable
alternative to move the computing tasks to the local scenarios
in contrast of the centralized cloud [10]. Another usage of edge
computing is to extract the most informative patterns from the
collected data for further transmission and storage to save the
related costs.

In the aforementioned logistics system CPS architecture, the
functionalities considered in this survey can be organized in
three ways. As we divide logistic system into four modules
including warehousing, transportation, distribution and delivery,
a natural organization is to summarize the functionalities based
on the specific modules they are applied in. Furthermore, we also
divide these functionalities into five technical categories includ-
ing resource allocation, planning & scheduling, measurement &
monitoring, autonomous driving and logistics system simulation
according to their specific targets. Finally, the functionalities
can be grouped based on the challenges they are expected to
address. For clear illustration, we summarize the considered
functionalities associated with the corresponding module and
technical categories in Fig. 1. Table I further summarizes them
associated with the specific challenges to be addressed in the
corresponding modules.

Compared with other types of CPSs, the logistics CPS features
the very large scale and high complexity. In the logistics network,
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TABLE |
THE SUMMARY OF SPECIFIC TECHNIQUES EMPLOYED IN EACH COMPONENT OF THE LOGISTICS SYSTEM

Simulation
Automatic Measurement
Automatic Monitoring

Time Efficiency Cost Safety Cyber-Security
Warehousing Demand Forecast Facility Location Selection | Automatic Monitoring | Integrity Inspection
inventory optimization Simulation Simulation

Parcel Stacking

Demand Forecast
Time Efficiency Estimation
Simulation
Automatic Measurement
Vehicle Routing

Line-Hual Transportation

Vehicle Routing
Autonomous Driving

Intelligent Loading

Automatic Monitoring
Simulation
Simulation -

Distribution Demand Forecast

Facility Location Selection

Automatic Monitoring

Vehicle Routing
Simulation
Demand Forecast

Time Efficiency Estimation Simulation Simulation -
Simulation
Delivery Time Efficiency Estimation Vehicle Routing Simulation

Intelligent Loading -

Autonomous Driving

Simulation

The intersections of component and challenge not yet covered by existing literature are filled using the symbol “-”.

each component (e.g., a warehouse, a transportation rout, a
distribution center or a delivery network) can be treated as an
individual CPS since it can make decisions independently based
on the local collected information. However, the entire logistics
network can be regarded as a CPS globally as well due to the
logical connections between the components, induced by which
the decision in a component may need the information collected
from other parts and lead to global impact. For instance, the loca-
tion selection of distribution centers will depend on the demand
of up/down stream and impact the time efficiency of the entire
logistics network. In the logistics network, different components
may share common need of functionalities, as depicted in Fig. 1
and Table I. Among the categories of functionalities, resource
allocation can be applied in all components to predict the future
demand and facilitate appropriately usage of resources, thereby
addressing the challenges on time efficiency and cost. Similar
to resource allocation, the planning and scheduling function-
alities tackle the challenges on time efficiency and cost of all
components. The major difference is that the focus of planning
and scheduling narrows down to the combinatorial optimization
problems such as vehicle routing, bin packing and facility lo-
cation selection. Automatic measurement and monitoring help
improve the time efficiency and safety through collecting the
identities, physical properties and health conditions of goods
and equipment in the warehousing, transportation and distri-
bution scenarios. Autonomous driving helps reduce the labor
cost in transportation and delivery steps. Simulation provides
a useful tool to validate the decisions in the logistics network
both globally and locally to improve the time efficiency and
safety, and reduce the cost. As cyber-security is a relatively new
challenge in the logistics CPS, the techniques to improve the
cyber-security is discussed in Section VIII.

As Alisavery broad field containing a wide variety of specific
technologies, we mainly focus on the regression, reinforcement
learning, computer vision and clustering techniques that have
great potential to be utilized to address the challenges in logistics
scenarios. It is worth noting that the reviewed Al-based solutions
are not limited to applying existing techniques to solve the
problems in logistics systems. In fact, they have made theoretic

innovations to better tackle the specific difficulties in real-world
scenarios. Among these techniques, regression has been widely
utilized for the prediction of demand value (demand forecast),
time-of-arrival (time efficiency estimation) and input/output
values of simulation systems. Based on the needs of specific
scenarios, innovative model architectures have been developed
to identify the contribution of different factors in time series [11],
[12]. Furthermore, sophisticated neural network architectures
are designed to effectively extract complex spatial-temporal
correlations trained using customized loss functions for time
efficiency estimation [13], [14], [15]. Reinforcement learning is
mainly used for inventory optimization, control of autonomous
driving systems and developing efficient solutions of combinato-
rial optimization problems (logistics planning and scheduling).
Itis worth noting that the reinforcement learning-based solutions
point the recent trends for solving combinatorial optimization,
and hence, considerable efforts have been devoted to construct
innovative model architectures to learn the characteristics of
the problems [16], [17], [18], [19], [20], [21], [22]. Computer
vision is crucial for monitoring & measurement in logistics
systems (e.g.warehouses) and perception of autonomous driv-
ing. Unlike general computer vision models, the models used
in this direction are usually customized to resolve the specific
issues in logistics scenarios, such as the large rotation angles of
vehicle license plates [23], [24]. The perception of autonomous
driving relies on both 2-dimensional (2-D) and 3-dimensional
(3-D) computer vision techniques. Thus, a recent trend is to
construct fusion frameworks to combine the advantages of both
2-D and 3-D vision techniques for accurate recognition of traffic
environment [25]. Clustering techniques are mainly employed
for facility location selection since that problem naturally in-
volve clustering patterns. In this line of research, the clustering
techniques considering constraints is investigated to accommo-
date the challenges in practical scenarios [26]. In the following
sections, the applications of Al technologies will be discussed
from the technical category perspective. In order to provide a
clear guideline, the representative works reviewed in this survey
are summarized in Table II and analyzed associated with their
specific technical contributions.
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TABLE Il
THE SUMMARY OF REPRESENTATIVE WORKS ON THE APPLICATIONS OF Al IN LOGISTICS SCENARIOS

Category Technical Domain

Approaches & Literature

Demand Forecast

Data-Driven: [27], [28], [29], [30], [31], [32]
Hybrid: [11], [12], [33]
Ensemble: [34], [35]

Resource Allocation Inventory Optimization

Deep Reinforcement Learning: [36], [37], [38], [39], [40], [41]
Forecast Free: [42], [43], [44], [45]

Time Efficiency Estimation

Travel Time Estimation: [13], [46], [14], [15], [47]
Delay Prediction: [1]
Root Cause Analysis: [48]

Vehicle Routing Problem

Pointer Network: [16]
Deep Reinforcement Learning: [49], [50], [51], [17], [18], [52]
Multi-Agent Deep Reinforcement Learning: [53], [54]

Planning & Scheduling Bin Packing Problem

Offline Bin Packing: [55], [19], [20], [56]
Online Bin Packing: [21], [22]

Facility Location Selection

Deep Learning: [57]
Clustering: [58], [59], [60], [26]

General MIP

Graph Neural Network: [61]

Measurement

Image-Based: [62], [63]
Point Cloud-Based: [64], [65], [66], [67]

Automatic Measurement & Monitoring
Monitoring

Licence Plate Detection: [68], [69], [23], [24]
Licence Plate Recognition: [70], [71], [68], [72], [73]
Conveyor Belt Monitoring: [74], [75]

Last Mile Delivery
Autonomous Driving

Perception: [76], [77], [78], [25]
Localization: [79], [80], [81], [82], [83], [84], [85]
Planning & Control: [86], [87], [88]

Warehouse Robotics

Task Prediction & Selection: [89], [90]

Logistics Simulation Simulation

Input Parameter Analysis: [9]
Surrogate Model: [91], [92]
Simulation Model Reuse: [93], [94], [95]
Digital Twin: [96], [97]
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* Replenishment

*+ Cost Minimization

* Dynamic Control

v

Time Efficiency Estimation
 Travel Time Estimation

* On-Time State Estimation
* Root Cause Recognition

Allocation Q 99 20
N 3’8‘%@3’83

Demand Forecast

* Model-Based Approaches
+ Data-Driven Approaches
* Hybrid Approaches

Fig. 2. Demand forecast, inventory management and time efficiency
estimation are important basis for resource allocation in the logistics
system that cooperate to ensure the quality of logistics service.

[ll. RESOURCE ALLOCATION

The resource allocation in a logistics system relies on the
prediction of system states, including the market demand and
quality of service. As logistics system is always closely bounded
to the supply chain, accurate estimation of the demand in supply
chain is the foundation to appropriately allocate the resources in
logistics systems in advance. Generally, the demand of logistics
service can be predicted directly or obtained through inven-
tory optimization given the prediction of sales. Furthermore,
expected time efficiency is another important basis for resource
allocation such that more resources can be invested to reduce the
anticipated delay. Thus, in this section, we discuss the intelligent
demand forecast, inventory optimization and time efficiency
estimation techniques as well as the new challenges posed by the
development of logistics industry in these fields. Refer to Fig. 2.
From technical perspective, we mainly focus on the regression

techniques for demand forecast and time efficiency estimation,
as well as the reinforcement learning techniques for inventory
optimization.

A. Demand Forecast

In practice, demand forecast in the supply chain field is usually
modeled as a time series forecasting problem, which aims to pre-
dict the future variations of a time series based on the past time-
dependent observations and available external variables [98],
[99]. While time series forecasting has been extensively studied
in both academia and industry, the existing approaches can be
generally classified into three categories including quantitative
model-based approaches, data-driven approaches and hybrid
approaches [12]. As a specific type of time series, the demand in
supply chain suffers from complex pattern due to the impact of
multiple complicated factors such as promotion, whether, market
trends, customer behavior and competition products [29], [100],
[101]. These difficulties are usually tackled through investigat-
ing the pattern of the time series itself and modeling the impact
of external variables. Thus, accuracy and explainability are two
vital issues for the forecast of time series in practice, which are
usually addressed through breaking a time series into several
components and investigating the prediction of each component
individually [12]. Great efforts have been devoted to reach this
target in existing works. The details of the representative time
series forecasting approaches are summarized as follows.

® Quantitative Model-Based Approaches: Quantitative
model-based approaches refer to the methods that predict
the future time series based on their statistical characteris-
tics. Within this range, the representative methods such as
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Exponential Smoothing [102] and Auto-Regressive Inte-
grated Moving Average (ARIMA) [103] have been widely
adopted in the industrial solutions due to the reliability.
These approaches employ various components to capture
the effects of multiple factors such as trend, seasonal-
ity and auto-regression. However, the techniques in this
category usually suffer from the limitations induced by
their restrictive assumptions, which requires deep domain
knowledge and sophisticated modeling skills of the ana-
lysts to tackle these challenges and adapt to complicated
real-world scenarios [12].

Data-Driven Approaches: Compared with the general
time series forecasting problems, the accurate demand
forecast in logistics and supply chain scenarios needs to
take into account the impact of various factors including
economic development, industrial structure, commercial
trade, residents consumption level, capital investment,
macroeconomic policies, external environment, etc., apart
from the historical records of demand [104]. The strong
capability of machine learning techniques on extracting
informative data patterns enables them to capture the
correlations between these external factors and the demand
of logistics service. In contrast to the quantitative model-
based approaches that fit predictive models of individual
sequences, the data-driven approaches allow to learn from
substantial amount of similar/related time series [27].
Hence, machine learning techniques have been widely
used for time series forecast in recent works. Among
the various types of machine learning models, recurrent
neural network (RNN) is commonly adopted due to the
auto-regressive nature of demand sequences [105]. Based
on this framework, various other mechanisms such as
attention have been incorporated to improve the accu-
racy and interpretability [106]. The recent advances of
deep learning further enhanced the capability on learning
the complicated correlations and long-term dependency,
thereby promoting the development of high-performance
models for time series forecasting such as DeepAR [27]
and Informer [28]. In addition to neural networks, other
machine learning techniques such as support vector ma-
chine and decision tree have also been utilized for time se-
ries forecasting [31], [104]. When predicting the demand
of aproduct, the information of competing products/sellers
should be considered apart from its own historical records
and features. In order to accommodate the spatial-temporal
correlations between products and time points, graph neu-
ral network (GNN) has been popularly employed to con-
struct the forecasting framework in recent research [29].
The data-driven demand forecast approaches have gained
significant popularity in recent years as the increasing
availability of data can provide sufficient information
for the training of machine learning models, especially
neural network-based models, to achieve high accuracy.
Experimental study has been conducted in [27], where the
DeepAR model outperforms the state-of-the-art baselines
including a few model-based ones taking advantages of the
strong representation capability. However, these models

often suffer from weak interpretability and strong need of
engineering skills, which can only be appropriately han-
dled by experts with both data science and domain-specific
background [12].
® Hybrid Approaches: As is known, the demand in supply
chain and logistics system usually suffers from several
issues such as the rapid increase on special holidays [98].
Although these issues have been considered in other types
of forecasting approaches by being treated individually
in the pre-pocessing steps [98], they usually require the
analysts to be proficient in both domain-specific knowl-
edge and time series modeling. In order to tackle these
challenges, Prophet, which is the precursor of hybrid
approaches, decomposes the time series into three compo-
nents to represent trend, seasonality and holidays, respec-
tively [11]. In each component, flexible models with inter-
pretable parameters are utilized to accommodate different
assumptions. It provides an automated framework such
that a domain expert can easily optimize the model with-
out deep prior knowledge on time series [11]. Based on
these advances, the neuralprophet model further strength-
ens prophet by incorporating neural network-based auto-
regression and covariate modules to adapt to non-linear
dynamics [12]. In the other line of research on hybrid ap-
proaches, the deep learning-based time series forecasting
techniques are facilitated by classic approaches (e.g., ex-
ponential smoothing) such that the classic approaches are
used in the pre-processing steps to mitigate the variations,
which allows the deep learning models to learn across
different time series more efficiently [33].
Despite these achievements for demand forecast, a single model
can hardly fully capture the characteristics of the demand trend
in all scenarios at all times [107]. This makes ensemble ap-
proaches a natural option to improve the robustness of forecast
through optimizing the weight of each individual model in the
final forecast output. Recently, reinforcement learning has been
employed to automatically explore the weighting strategies [34],
[35], [107]. In [34], the model selection action is generated
based on the demand pattern through optimizing the expected
inventory cost. In [35], the reinforcement learning framework
outputs the weights of forecast models as action based on the
prediction patterns and their historical performance.

While some existing works are devoted to the forecast of
the total demand of logistics service such as [98] and [104],
another common approach is to predict the sales/demand of
specific stock keeping units (SKU)s, thereby aiding the appropri-
ate inventory management strategies correspondingly. A major
challenge for the SKU-based forecast is the demand forecast
of new products since no explicit data of them can be drawn
from historical records. A common practice to resolve this issue
is to extract useful data pattern from existing SKUs for the
prediction of new products. This is usually implemented by
dividing the products into groups using clustering techniques
(e.g., k-means and self-organizing map) such that each group of
products share the same forecasting model and a new product can
be assigned to a cluster with the strongest similarity [30], [31],
[108]. The recent development of deep learning and multi-modal
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techniques have also been incorporated for the demand forecast
of new products through investigating their correlations with
product images and multiple other external attributes [32].

B. Inventory Optimization

Inventory optimization is a vitally important task in supply
chain, which aims to maintain a reasonable stock level through a
series of actions such as replenishment considering the estimated
market demand and various practical constraints to minimize
the expected cost induced by understocking, overstocking and
operations [41], [44]. Due to the aforementioned nature, inven-
tory optimization is usually formulated as a dynamic control
problem, the conventional solutions of which intend to gener-
ate a sequence of decisions under uncertainty using dynamic
programming, heuristics or rules [40], [41], [109], [110], [111].
The conventional solutions can usually be limited by several
issues such as generalization and scalability especially when
the variability of the demand is high or the dimension of the
problem (e.g., the number of SKUs and stores) is huge. In
contrast, the recent advances of machine learning techniques
have been employed to provide data-driven solutions to tackle
the aforementioned difficulties and multiple other constraints.

As the distributions of external attributes such as market
demand can usually be assumed to follow Markovian transi-
tions [112], [113], the optimization of inventory management
policy can naturally be modeled using Markov Decision Pro-
cess (MDP) [36], [39], [113]. Theoretically, an MDP model
can usually be solved using analytical&exact, analytical & ap-
proximate, numerical & exact and numerical & approximate
methods [113]. Recently, researchers tend to solve MDP us-
ing deep reinforcement learning, a numerical & approximation
method, due to the scalibility and the strong representation
capabilities [36], [113]. Based on these advances, a natural
option for solving a MDP is deep reinforcement learning in
modern research, which generates the replenishment actions
based on the expected reward [36], the optimal policy [37], or a
combination of both [113] computed by the model. A difficulty
of inventory optimization is the uncertain environment (e.g.,
future demand, lead time), which is induced by multiple factors
such as market changes, customers’ behavior, price fluctuations
and extreme events [38], [113], [114], [115]. Conventional
optimization-based approaches rely on the assumptions on the
distribution of uncertainty, which can hardly be available to
decision makers in real-world scenarios [43], [113]. In contrast,
the deep reinforcement learning-based approaches can directly
model the approximation of the uncertainty taking advantage of
the rich state space in a data-driven fashion [38], [113].

This framework enables learning specific policies for individ-
ual problem setups based on a generic set of features as well as
accommodating the complex combinatorial issues [41]. Hence,
the reinforcement learning-based methods have gained consid-
erable popularity in modern inventory management solutions.
In [39], the complete procedure for reinforcement learning-
based replenishment policy optimization under lost sales in-
ventory models including formulation and parameter tuning is
studied in details, where the performance of reinforcement

learning-based modeling can match the state-of-the-art heuris-
tics in three classic intractable scenarios. In [37], areinforcement
learning formulation is developed using semi-Markov decision
process to accommodate multiple types of costs such as trans-
portation cost, holding cost and stock-out penalty cost. In [40],
deep reinforcement learning with continuous action space is
applied to solve inventory optimization problems with different
configurations and earned superior results compared with the
baselines in all cases. In [41], a multi-agent reinforcement
learning approach is utilized to solve the inventory optimiza-
tion problem with multi-product constraint, where it effectively
achieved the coordination between warehouses and stores.

The prediction of market demand is the basis for inventory
optimization. However, a majority of existing methods for inven-
tory optimization usually follow a prediction-then-optimization
framework, which separate the demand forecast and inventory
policy optimization as two individual steps. This can potentially
induce the lost of information and result in sub-optimal solu-
tions [44], [45]. In order to resolve this issue, the single-step
methods have been developed in recent works to generate the
decision based on the historical demand and related features
directly. In [42], the mapping from external features to the
inventory optimization decision is learned through minimizing
the empirical risk on historical demand. In [43], a quantile
regression framework is employed to optimize the inventory
decision based on the assumed relation between the replenish
order quantity and demand forecast. While both [42] and [43]
focus on single-product newsvendor problem, [44] applied the
machine learning-based solution to multi-product scenarios.
Furthermore, an end-to-end deep learning framework is devel-
oped in [45] to generate multi-period inventory replenishment
decisions. In summary, the one-step methods can circumvent
the demand forecast step, which is usually impacted by multiple
complex factors, and can be trained in an end-to-end fashion,
thereby improving the convenience and quality of inventory
optimization.

Scalibility is a major concern for inventory optimization since
there can exist a huge number (e.g., up to millions) of SKUs to
manage in logistics warehouses, and hence, numerous historical
records and the corresponding external features need to be
processed for the computing of replenishment operations. In the
industrial data systems, the processing of huge amount of data
is usually supported by distributed computing frameworks such
Hadoop, Spark and Flink. The modern distributed computing
frameworks have been sophisticatedly optimized to support in-
memory computing and stream data, thereby enabling efficient
machine learning workflows. Apart from the employment of
advanced data processing frameworks, it is also important to
keep only informative data to avoid unnecessary computing
overhead [2].

C. Time Efficiency Estimation

Apart from the future demand, time efficiency is another
important basis to allocate the resources in the logistics sys-
tem that benefits both logistics corporations and customers.
As the end-to-end time efficiency of logistics is impacted by
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those of each processing step including packaging, sorting,
transportation and delivery, the accurate estimation can enable
better plans to allocate resources to the critical processing steps,
thereby improving both time efficiency and the satisfactory of
customers [116]. Generally, one desires to estimate the total on-
route time of goods given the complete origin-to-destination (O-
D) path, which can contain the routes for transportation/delivery
and the facilities for packaging/sorting operations, and external
attributes such as time and weather. However, the estimation of
time efficiency is usually non-trivial in practice due to multiple
challenges such as the impact of various complicated temporal
and spatial factors. This motivates the appropriate quantification
of their impacts in recent works, where the advances of modern
neural network architectures are investigated to learn the repre-
sentations of these factors. For instance, the benefits of multiple
wide linear models, deep models and recurrent networks are
combined in [13] to utilize the information from multiple sources
such as spatial information, temporal information, traffic infor-
mation and personalized information for accurate route-based
travel time estimation.

As the complete O-D path for transportation/delivery consists
of several individual segments, a natural approach to estimate the
travel time is to estimate those of each individual road segment
and sum them up to that of the whole route while considering
the inter-segment variations [13], [46]. However, a drawback of
this framework is that it can hardly take into account the impact
of transitions between the segments (e.g., road intersections,
traffic lights and direction turns), and can easily induce the
accumulation of errors for the estimation of each segment [14],
[15]. For this reason, recent works tend to estimate the travel time
of the entire route directly [13], [14], [15]. In these works, so-
phisticatedly crafted neural network architectures are designed
to extract complex spatial and temporal correlations between
data attributes and auxiliary losses are utilized to supervise the
estimation of end-to-end travel times through incorporating the
penalty for the estimation of each local path.

Another challenge for practical time efficiency estimation is
the high uncertainty due to the impact of various complicated
and random factors. In specific, there are two major difficulties
including 1) it is very hard to obtain all the detailed information
of the routs or processing steps and 2) the future dynamics cannot
be known in advance [1], [47], [116]. A common approach to
tackle these difficulties is to regard the unknown information
as missing values and implicitly learn their expected impact
using specific model architectures. For instance, [1] predicts the
on-time state of on-route parcels while considering the future
dynamic information of unreached processing steps as missing
values, which are handled simultaneously when modeling taking
advantages of the decision tree structures. Furthermore, [47]
predicts the travel time without knowing the specific routs for
transportation. In contrast, it utilizes specific neural network ar-
chitectures to extract the underlying correlations between travel
time and road network topology.

Apart from directly estimating the metrics of time efficiency,
another important task is to identify the components/steps
with critical impacts to time efficiency, thereby aiding the re-
source allocation to improve the overall performance of logistics

service. This can usually be accomplished by root cause anal-
ysis techniques. A specific solution is provided by [48], where
explainable machine learning is utilized to recognize the root
causes inducing delays in delivery through considering both
global statistics and the local characteristics of each event.

In summary, the challenges of resource allocation in logis-
tics systems lie in the dynamics of the real world, such as
the uncertainty in market trend, user interests, special events,
complex traffic/weather conditions and multiple other types of
unknowns. These challenges significantly impact a broad variety
of tasks in logistics scenarios such as the demand forecast
associated with new/long-tail products, inventory optimization
under uncertainty, which further affect the quality of logistics
service. Thus, the appropriate strategies to accommodate these
issues will remain attracting the research efforts in the future
investigation of this domain.

IV. LOGISTICS PLANNING AND SCHEDULING

Combinatorial optimization is a widely studied topic in op-
erations research that intends to find the optimal solution of a
problem defined in a discrete space, which plays a critical role
in logistics industry [117], [118]. In the real-world operations
of logistics and supply chain, many practical problems such
as vehicle routing problem (VRP) [119], [120], bin packing
problem [55] and facility location selection [26], can be for-
mulated using combinatorial optimization. As combinatorial
optimization is a typical NP-hard problem, existing techniques
can hardly find the optimal solution in a highly efficient manner.
In order to seek a reasonable tradeoff between solution quality
and efficiency, approximate algorithms, heuristic algorithms
and meta-heuristic algorithms have been adopted for industrial
applications. However, these methods suffer from their specific
shortcomings despite the advantages. Although approximate
algorithms can obtain near-optimal solutions, their applications
in practical scenarios are still limited by the high time complex-
ity [118], [121]. The meta-heuristic and heuristic algorithms
usually cannot guarantee a theoretical bound of the solution
quality despite the superior time efficiency [118]. Furthermore,
the heuristic algorithms are often task-specified such that a
high-quality heuristic algorithm usually needs to be designed
by a domain expert through leveraging the special structure of
the problem [117], [118].

In recent years, machine learning has been utilized to solve
combinatorial optimization problems due to multiple advan-
tages. The advances in its sub-domains such as deep learning
and reinforcement learning allow it to investigate the complex
problem structures through vast amount of data and adapt across
a family of problems without extra handcrafted effort [117],
[118], [122]. In order to achieve high-quality solutions for com-
binatorial optimization problems, an important task is to catch
the representative features of the problem formulation. Hence,
great efforts have been devoted to extracting appropriate repre-
sentations from the underlying structures of the problem using
sophisticatedly optimized model architectures. In this section,
we conduct the survey on the machine learning-based solutions
on VRP, bin packing and facility location selection problems due
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to their importance in the logistics domain, as depicted in Fig. 3
We will discuss the rationalities of the solutions associated with
the characteristics of each specific problem. From technical
perspective, we mainly focus on the reinforcement learning and
clustering techniques for solving the combinatorial optimization
problems in logistics scenarios.

A. Vehicle Routing Problem

In the VRP problem, a fleet of vehicles have a set of road-
networked locations to serve, where the vehicles aim to min-
imize the transportation cost subject to a set of operational
constraints while satisfying the need of customers [17], [18].
Thus, a solution of the VRP problem needs to specify a sequence
of locations to visit for each vehicle. Due to this reason, a
majority of the existing works formulate VRP as a specific
sequence-to-sequence learning problem, where the model is
trained to generate the most probable sequences of locations
to visit given the set of visited ones. However, in contrast to
the standard sequence-to-sequence learning task, each location
can only be visited once in VRP, which means that the visited
locations need to be removed from the output dictionary. In
order to achieve high-quality solutions, another challenge is to
draw appropriate representations of the problem setup, i.e., the
available locations to visit, to aid the final decision-making.

To tackle the aforementioned challenges, a precursor in this
research field is [16], which invents a pointer network archi-
tecture to solve the travelling sales man problem (TSP), a
simplified version of VRP such that only one agent (vehicle or
person) is considered. It established the model using two RNN
architectures, where the encoder network learns the embedding
of available locations and the decoder generates next location
to visit given the pre-visited ones. Furthermore, it incorporates
content-based input attention as a mask over the inputs, thereby
removing the visited locations from the output dictionary. Due
to the offered advantages, the encoder-decoder architecture and
the pointer mechanism are extensively adopted by subsequent
research. However, the pointer network in [16] relies on the
labeled data for training, which is expensive to obtain and can
potentially limit the model to explore solutions superior to the

quality of labeling. In contrast, [49] employs the deep reinforce-
ment learning framework trained using policy gradient, which
receives the reward as feedback signal to discover the best action
(a permutation of locations) proactively. This provides another
standard framework for machine learning-based solutions of
combinatorial optimization problems. In succeeding research,
significant efforts has been devoted to the further optimization
of encoder architectures in recent research to extract important
information and handle specific constraints [122]. For instance,
multi-head attention is utilized in [50] to accommodate the time
window and rejection constraints. Graph embedding techniques
are employed in [51] to learn a superior strategy for the opti-
mization problems over graphs including TSP.

As VRP is basically a generalized form of TSP, the deep re-
inforcement learning framework, encoder-decoder architecture
and pointer-network mechanism that have been successful for
solving TSP are adopted to fit VRP as well. A challenge to
adapt pointer network to the VRP scenario is that the output
dictionary needs to be updated dynamically due to the changing
of demands after a location is visited. In order to tackle this diffi-
culty, [17] replaced pointer network using RNN decoder, which
involves the visited locations as part of the input. Furthermore,
it also discards the RNN module in the encoder architecture to
improve the time efficiency since the order of visited locations
is not meaningful in the considered setup. Compared with RNN
architectures, attention-based networks are proven to be highly
effective and flexible, which are adopted in recent research to
learn representative problem embeddings across multiple con-
texts [17], [18]. Apart from model architectures, formulating the
action space of the reinforcement learning framework is another
major challenge especially for the highly complicated problems
such as capacitated VRP. A solution is proposed in [52], which
improves the policy approximation accuracy by fitting the value
function given each starting state using a neural network.

While a solution of VRP is expected to return multiple routes
beginning and ending at the depot, a broad variety of existing
works [17], [18], [52] generate each route one after another.
A major limitation of this type of approaches is that they do
not scale well in the complicated scenarios with dynamic and
stochastic events [53], [54], [123]. This motivates the succeeding
research to investigate the application of multi-agent reinforce-
ment learning techniques to improve the flexibility and ability
for generalization. Based on the characteristics of VRP, a natural
multi-agent formulation is to model each vehicle as an agent such
that each vehicle makes sequential decisions on the locations
to visit individually given the shared environment information.
Therefore, appropriate definition of state to represent the en-
vironment information is a critical issue in the multi-agent
scenario. In [53], the state is defined to enable the sharing of
remaining capacity among agencies to address the on-demand
delivery issue. In [54], the encodings of the global environment
and each vehicle are combined to obtain the intermediate state
of each vehicle in real-time for accurate decision making.

B. Bin Packing Problem

Bin packing problem is another combinatorial optimization
problem commonly encountered in the logistics scenarios such
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as box packaging, vehicle loading and warehouse stacking [56].
While there exists multiple types of bin packing problems, we fo-
cus on the 3-dimensional (3-D) bin packing problem, which has
great significance in logistics scenarios, such that the sequence,
orientation and location of each item to be loaded/packed are
determined in order to optimize various targets, thereby making
best usage of resources [124]. In abox packing scenario, one may
desire to minimize the surface area of the package bin given a
set of cuboid-shaped items to reduce the usage of material [19].
In a vehicle loading problem, one may desire to maximize the
number of cuboid boxes loaded into the container of the truck in
order to save the transportation cost [125]. Based on the specific
need of application scenarios, the bin packing problem can be
further categorized into offline and online versions, where the
formulation of each version can be quite different due to the
variations on the availability of information. The details are
discussed as follows.

e Offline Bin Packing Problem: In the offline bin packing
problems, the information of all items to be packed are
known in advance. Therefore, the approaches developed
in this line of research can determine the packing/loading
of all items at once. In this scenario, a solution aims to
generate a sequence of box IDs with the corresponding ori-
entations and locations. Hence, deep reinforcement learn-
ing with encoder-decoder architecture that is commonly
used for solving VRP is also a natural option to formulate
the offline bin packing problem. For instance, the pointer
network architecture that has been used to solve TSP is
adapted to minimize the surface area of the bin through
optimizing the sequence of items to be packed [55]. Un-
der this framework, various types of encoders such as
convolutional neural network (CNN)s and transformers
have been explored to improve the quality, flexibility and
scalability of the generated solutions [19], [20]. Apart from
the common deep reinforcement learning-based solutions,
another plausible approach is to involve machine learning
techniques in the classic bin packing frameworks to help
improve the solution quality and efficiency. This has been
investigated in [56], where the computational complexity
of the conventional tree-search method is reduced through
predicting and pruning the redundant paths using a neural
network. In contrast to these methods that search the posi-
tions and orientations of items in the entire container space,
the clustering strategy have also been adopted to decom-
pose the bin packing problem into several sub-problems,
where the stacking of a single layer is investigated in
each sub-problem. Subsequently, the individual layers are
further sorted to form the packed structure. This leads
to the development of hierarchical bin packing methods,
among which a representative is the tree-search method
that decomposes the bin packing problem into construct-
ing multiple x-layers and y-layers [125], [126], [127].

® Online Bin Packing Problem: In contrast to the offline
bin packing problem, the information of all items cannot
be known in advance in many practical scenarios. This
motivates the researches to consider the bin packing prob-
lem in the online scenarios, where the items for packing

arrive continuously and the decision for each item needs
to be made within limited time period based on the ob-
servation of limited number of items [21]. Although one
can attempt to determine the positions and orientations
of currently observable items using offline bin packing
techniques, they will usually lead to inferior performance
since they do not account the future dynamics. Thus, an
appropriate online bin packing algorithm should consider
both the current state and future uncertainties. While deep
reinforcement learning framework is still a feasible choice,
a critical issue is to appropriately represent the current
configuration of the bin and the item to be placed in
order to overcome these difficulties. The heat map and
tree-based representations have been investigated in [21]
and [22], respectively, where convolutional neural network
and graph neural network are utilized correspondingly to
extract informative features from these structures. Note
that an online bin packing algorithm is feasible in the
offline scenario as well. However, the quality of solution
will be inferior to the offline bin packing algorithms since
they cannot consider the global information of all items.
A comparison study has been conducted in [128], which
demonstrates that the solution achieved using online bin
packing algorithm results in 27% more resource consump-
tion compared with offline bin packing algorithm in the
considered problem.

C. Facility Location Selection

Facility location selection aims to select a subset of loca-
tions from a large candidate set to build facility nodes of the
logistics network, such as warehouses, distribution centers and
terminal stations, to serve the demand of other locations [26].
In the real-world applications, one intends to select appro-
priate facility locations for various targets such as improving
the quality-of-service and reducing operational cost. Similar to
VRP and bin packing problem, facility location selection can
also be formulated as a combinatorial optimization problem.
Although deep learning-based solutions have been developed
for facility location selection [57], most research in this field
tend to solve this problem using clustering techniques since the
locations served by a facility naturally forms a cluster. Although
the classic clustering algorithms such as k-means clustering
can be efficiently implemented to solve the facility location
selection problems [58], [59], strategical modifications need to
be applied to accommodate the practical challenges. In order to
avoid converging to locally optimal solutions, heuristic search
mechanisms have been combined with k-means and hierarchical
clustering in [60] and [26], respectively. Furthermore, the com-
binations of multiple practical constraints are handled through
incorporating initial conditions and dynamically updating the
measurement of clustering distances in [26].

While most of the existing works concentrate on specific
types of combinatorial optimization problems, researchers are
also dedicated to investigating the generic characteristics among
them and mitigating the domain specific limitations. As a com-
binatorial optimization problem can usually be formulated using
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Fig. 4. Multiple sensoring devices, such as video camera and LiDAR
have been adopted for the automatic measurements and monitoring in
logistics scenarios, thereby ensuring the efficiency and safety. In this
process, the data collected using sensory approaches are analyzed
using Al algorithms to generate the measurements and states of system.

mixed integer programming and solved using branch-and-bound
approach, [61] explores the graphic representation of mixed inte-
ger programming formulations to estimate a subset of variables,
which is subsequently used to restrict the regions of branch-and-
bound search for the computation of the rest variables, thereby
accelerating the problem solving. Although the Al-based solu-
tions have demonstrated great potential for efficiently solving
complicated combinatorial optimization problems, the general-
ization of the widely adopted deep reinforcement learning-based
solutions is still a challenging task [117], which requires further
efforts to develop more powerful algorithms to explore the
knowledge transfer across different distributions of problem
configurations.

V. AUTOMATIC MEASUREMENTS AND MONITORING

Keeping track of the states of goods, equipment, vehicles
and employees is always strongly desired in logistics industry
to ensure a high productivity and safety. Conventionally, these
observations are usually obtained through manual efforts, which
suffers from intensive labor cost, low efficiency and potential
safety risks. Taking advantage of the rapid development of
sensoring techniques in nowadays, Al-based solutions have been
extensively employed, which enables the automatic analysis of
the sensory data and allows the efficient management of large-
scale logistics systems. Due to the aforementioned importance
of the automatic measurement and monitoring techniques, we
review the applications of them for the management of goods,
equipment and vehicles in this section. The specific techniques
discussed in this section mainly fall in the computer vision
domain. Refer to Fig. 4 for details.

A. Automatic Measurements

The measurements of goods such as volume, weight, structure
and quantity are primary information for logistics operations,
which facilitate the resource allocation for the storing and trans-
portation of goods as well as allowing the identity verification
at different network points [62], [64]. Volume and weight are
fundamental attributes of goods in logistics industry. While the
weights of goods can be easy to obtain, the accurate and efficient

measurement of volume is still an open problem although exist-
ing solutions have been developed based on the sensoring data
collected using either camera or LiDAR [64], [66], [67], [129].
As most of those existing works focus on the truck load scenarios
and need calibration to remove the impact of the redundant parts,
generic algorithms executed on potable devices with low cost
is in urgent need since volume should be measured in a wide
variety of scenarios in logistics industry. For this purpose, a
global competition on intelligent volume measurement was hold
by Cainiao in 2019 to collect the smartphone-based volume
measurement solutions, which attracted attentions from both
academia and industry [130].

The need of volume measurement using potable devices mo-
tivates the subsequent research to establish solutions based on
2-dimensional (2-D) cameras due to the extensive availability.
Yet, as volume cannot be computed without 3-dimensional (3-D)
information, a major challenge for volume estimation using 2-D
images is the lack of depth. In order to tackle this challenge,
there are generally two types of methods in practice. A natural
method is to construct the 3-D architecture of the target object
using structure from motion (SfM) techniques and compute the
volume based on the point cloud [65]. In this type of approaches,
the 3-D structure needs to be constructed using images taken
from multiple angles facilitated by the computational intensive
matching of landmarks. The other way is to estimate the depth
information from a single image, where the relative positional
relations between planes in the image are extracted using seg-
mentation techniques and the absolute measurements are further
computed based on reference information [63]. The advances
of computer vision makes it a common option to construct the
Al-based solutions for automatic measurement even beyond
volume in recent years. The measurement of structure and
quantity of logistics packages in the transport units are presented
in [62], where instance segmentation is employed to recognize
the packages within each unit, and the segmentation results are
further refined to estimate the structure and quantity.

B. Automatic Monitoring

As efficiency and safety are crucial targets of logistics op-
eration, it is an increasing trend to employ smart monitoring
techniques in logistics industry to improve the management
efficiency and identify the potential threats [131], [132]. The
monitoring task in logistics scenarios intends to capture the
states (e.g., structure health and working condition) of equip-
ment [132]. In this survey, we focus on the identification of
vehicles and damage recognition of warehousing equipment
due to their importance to the smooth and safe management
of logistics operations.

The scheduling of vehicle loading/unloading plays a fun-
damental role due to its importance to time efficiency. This
motivates to keep track of the identifications of vehicles through
recognizing the license plate numbers since they are the most
important identification information of vehicles. The modern
license plate recognition techniques usually contain two steps
including license plate detection and character recognition. The
license plate detection step aims to localize the pixel region
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corresponding to the license plate in the input image for further
recognition, and hence, it is usually formulated as an object
detection problem [23], [24], [68], [69], [133]. A straightforward
way for this task is directly adopting the state-of-the-art ob-
jective detection algorithms with limited customerization [68],
[69]. However, the license plates may suffer from large rotation
angles, which poses challenges to the character recognition step.
In order to address this issue, the rotation angle of license plate
has been considered as an output of the detection model [23].
Furthermore, specific neural network architecture is proposed
in [24] that learns an affine transformation to project the detected
license plate to a rectangular area. The license plate detection
techniques considering rotation angles [23], [24] can return
a license plate image in an unwrapped angle to improve the
ability of generalization and reduce the character recognition
error in following steps. In terms of character recognition, the
existing approaches can be categorized into segmentation-based
ones and segmentation-free ones [70]. The segmentation-based
approaches usually employ detection or segmentation methods
to extract and recognize each single character [68], [71], which
are then sorted to generate the license plate number. In contrast,
the segmentation-free methods model this task using sequence-
to-sequence learning and solve it through RNN or CNN ar-
chitectures [72], [73]. While the sequence-to-sequence-based
approaches do not need complex post-processing, segmentation-
based ones can offer more flexibility to easily generalize to
different formats of license plates.

Conveyor belt is one of the most important equipment for
logistics operation that is massively employed in the logistics
warehouses and distribution centers to help sort and transport
the parcels [75]. Therefore, the safety and health of the conveyor
belts significantly impact the logistics efficiency, and hence,
efforts have been devoted to monitoring the states of conveyor
belts. The common problems that impact the safety and health of
conveyor belts are defects and congestion. Although surveillance
cameras can be utilized to collect the images of conveyor belts in
real time, the anomaly discovery and analysis can potentially be
limited by high computational cost considering the large number
of surveillance cameras needed to cover all the critical regions.
Therefore, the light-weighted algorithms are usually preferred
for these tasks. Examples have been shown in [74] and [75],
where clustering and Canny-based edge detection techniques
have been employed to detect the defects and congestion on
conveyor belts, respectively. In summary, the measurement and
monitoring significantly rely on computer vision (both 2-D and
3-D) techniques, a majority of which are constructed using
computation intensive deep neural networks. On the other hand,
the measurement and monitoring functionalities are massively
applied on terminal devices such as surveillance cameras and
portable devices. Thus, a great challenge in this domain is to
develop light-weighted algorithms to fit the capacity of the
terminal and edge computing components.

VI. AUTONOMOUS DRIVING

As autonomous driving is gaining popularity from a wide
variety of domains, its usage in logistics scenarios mainly

Fig. 5. The 5-th generation of autonomous LMD vehicles developed
by JD Logistics.

focuses on last-mile delivery (LMD), which refers to the logistics
activities of delivering parcels to customers’ pickup location. In
recent years, LMD grows rapidly promoted by the flourishing of
e-commerce. Despite the offered convenience, last-mile logistics
service needs large amount of workforce to support the rapidly
growing volume of parcels. The labor shortage caused by the
aging population and rising labor prices induced by the increas-
ing demands of last-mile delivery service have brought huge
operating pressure to enterprises [134]. In addition, contactless
delivery is urgently needed during the COVID-19 epidemic,
which puts forward higher requirements for last-mile delivery.
Compared with the traditional human-based logistics services,
autonomous LMD service provides a promising solution to re-
duce the delivery cost, complement human deliveries, diversify
services and fill labor shortages during busy periods and at night.
It is shown in literature that the incorporation of an autonomous
vehicle will reduce the completion time of delivery to all cus-
tomers by 0%—33% without parking scene and 30%—77% when
considering the time to find a parking space [135].

Motivated by the aforementioned advantages, autonomous
driving technologies have been extensively studied in the past
few years. Apart from the massively emerging research works in
academia, commercial products have been taken into usage by
the leading enterprises. With the development of Al technologies
such as deep learning, rapid breakthroughs have been made
in the core technologies of autonomous LMD vehicle. Refer
to Fig. 5 for the autonomous LMD vehicle developed by JD
Logistics Corporation in China. Unlike the autonomous vehicles
for passenger transportation, the autonomous LMD vehicles are
usually featured by relatively lower speed and smaller size.
Therefore, they usually need to share the lanes with bicycles
and possible pedestrians, which can be more complex compared
to the regular driveways. This motivates the development of
accurate scene perception, path planning, behavior arbitration
and motion control based on the Al architectures [76], majorly
in the domain of computer vision and reinforcement learning.
The details are summarized as follows.

® Perception: Perception refers to the recognition of
the objects including drivable area of road, vehicles,
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pedestrians and traffic light/signs that can impact the deci-
sion making of driving. In the autonomous driving system,
this is usually enabled by deep learning-based detection
and recognition techniques, which analyze the 2-D images
from video cameras and 3-D point clouds from LiDAR to
establish the estimation of complex traffic condition [76],
[77]. Recent research develops various object detection
methods, which can support the effective perception of
autonomous driving [25], [78].
® Localization: Although the localization of autonomous
LMD vehicles can be accomplished using navigation tech-
nologies, the accuracy is usually limited in the complicated
city scenarios. Therefore, simultaneous localization and
mapping (SLAM) is employed as a powerful comple-
ment to improve the accuracy of localization. The recent
advances in this domain usually employ deep learning
techniques to construct the driving scene based on LiDAR
sweeps and intensity maps [79]. A specific utilization of
Al in this line of research is to promote the performance
of visual odometry (VO) [80] through improving the ac-
curacy of key points detection using deep neural networks
such as PoseNet [81] and VLocNet++ [82].
While the conventional SLAM techniques usually ex-
plore the environment following a pre-defined strategy,
the SLAM in a large and complex unknown environment
requires more intelligent exploration for reconstruction
maps given a limited time budget, which motivates the
active SLAM research that learns an efficient exploration
policy based on current observation and historical ac-
tions [83], [85]. In this direction, deep reinforcement
learning is becoming a popular choice to construct the
model due to the strong capability on representing the
environment features for effective decision making [84],
[85], which creates an open problem for the high quality
SLAM strategies.
® Planning, decision and control: Path planning, trajectory
planning and decision for LMD vehicles were usually
developed using rule-based methods in conventional au-
tonomous driving. In nowadays, imitation learning [86]
and deep reinforcement learning [87] have been intro-
duced for the planning, decision and control of au-
tonomous LMD vehicle due to the offered advantages.
This allows the automatic optimization of policy based
on the inputs of environmental parameters, thereby of-
fering sufficient flexibility. A survey in [88] presents the
novel deep reinforcement learning techniques for motion
planning and autonomous vehicle control, which shows a
promising research trend in this domain.
Autonomous LMD vehicle has a broad market space and rich
Al-based research scenarios, which has attracted widespread
attention from large global technology companies. The global
unmanned delivery industry is mainly dominated by American
unmanned delivery vehicle startups Nuro and Starship Tech-
nologies, as well as Chinese technology companies such as Ali,
JD Logistics, and Meituan, which have invested a lot in research
and development for 2-4 years. Despite the recent advances and
achievements in autonomous driving for LMD, there still exists

open problems for better application in real-world scenarios.
As a participant of the public traffic, the interaction with other
vehicles and pedestrians is critical to guarantee the safety. Thus,
predicting the behavior of pedestrians and other vehicles is
another important task beyond merely recognizing these objects
in order to make appropriate decisions, which points the future
improvement directions of autonomous driving for LMD.

Apart from LMD, warehouse robotics is another important
application scenario of autonomous driving, where intelligent
robots, such as forklifts, six-axis robots and automatic packag-
ing robots, usually summarized as autonomous guided vehicle
(AGV)s, are commonly used in the unmanned warehouses for
the transportation, sorting and loading/unloading of goods in-
stead of human labor [136], [137]. Similar to the LMD scenario,
perception, localization and path planning/scheduling/control
are the critical tasks for AGV as well. Hence, a large number
of Al-based solutions for LMD are also applicable for AGV.
For instance, deep reinforcement learning has been investigated
for the positioning of AGV based on LiDAR sweeps and AGV
routing in [138] and [139]. As the warehouse environment is
usually semi-closed with pre-planned entrance and exit points,
the locations of AGVs can also be identified through recognizing
the fixed positioning makers [136].

In contrast to LMD, where each individual autonomous vehi-
cle prefers to make its own decision independently, the tasks of
AGVs are closely bounded to the whole manufacturing process
in the warehouse. Therefore, a decision maker usually desires
to manage a feet of AGVs in a centralized fashion for better
dispatching and coordination [136], [140], [141]. The control
of AGV fleets raises new challenges on congestion and col-
lision avoidance, especially when the distribution of tasks is
uneven [136]. To tackle these difficulties, deep learning and re-
inforcement learning solutions have been developed to optimize
the control of AGVs [141], which output the sequence of nodes
visited by an AGV given the encoded format of the environment.
Apart from the widely studied path planning techniques, control
strategies are also investigated associated with task prediction
and selection to appropriately allocate the AGV resources [89],
[90].

VIl. LOGISTICS SYSTEMS SIMULATION

While vast techniques have been utilized to facilitate the
decision making in logistics systems in every aspect, the efficacy
of the decisions can be difficult to predict due to the large
scale and high complexity of the logistics system [142]. For
this reason, the impact of an operational action usually needs to
be evaluated before applying it to the logistics system. However,
the on-site evaluation can be difficult, expensive or dangerous,
which can potentially cause irreversible consequences [143]. In
order to tackle these difficulties, simulation is a powerful tool
that defines a digital representation of the physical world and
emulates the reactions to the operational actions, thereby gaining
useful insights and provide valuable feedback to the decision
makers on optimizing the logistics systems [144], [145]. Refer
to Fig. 6. In order to manage a modern logistics system, em-
ploying simulation techniques such as discrete event simulation



14 IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 1, 2023

e
‘ Physical World '
$ Time Efficiency

Labor Cost

3

@

Decisions f

Energy Cost

Bottleneck

Wl

Machine Learning Techniques

Input Data Behavior Knowledge
Modelin Emulation Graph

Accuracy, Efficiency, Reusability

Fig. 6. The simulation system emulates the behavior of physical world
in reaction to the input policies. It helps to evaluate the impact given the
input policies instead of on-site evaluation, which may not be feasible
due to multiple difficulties. In recent research, machine learning tech-
niques have been massively employed in the logistics system simulation
to improve the accuracy, efficiency, and reusability.

to emulate the global state on how each parcel is processed is
an indispensable step. However, developing a high-quality and
efficient simulation framework is not a trivial task due to the
various challenges.

In nowadays, artificial intelligence and machine learning
have been massively adopted to enhance the simulation models
due to the wide popularity. Generally, these technologies have
mainly been incorporated to improve the accuracy, efficiency
and reusability of simulation systems. From technical perspec-
tive, these works mainly focus in regression and reinforcement
learning techniques. The accuracy of simulation highly depends
on the modeling of input data, which helps capture the character-
istics of the physical world [9]. A major challenge on input data
modeling is that some key dimensions of the input data may
suffer from process shift due to the dynamic nature, thereby
violating the previously learned model. While predicting and
adapting to future data distribution may incorporate propagative
errors, arelatively robust approach is to extract the time-invariant
features from the dynamic data for modeling [9]. In some
applications, simulation needs to be executed iteratively in a
highly-frequent fashion to help improve the quality of actions.
In this scenario, the “simulation” targeting the simulation system
is usually conducted through emulating the behavior of the
simulation system using a machine learning model, thereby
efficiently generating the simulation output without intensive
computations [91], [92]. In recent research, knowledge graph is
utilized to improve the reusability of simulation models [93].
While a simulation model for logistics system is usually non-
trivial to implement, the knowledge graph-based representations
of logistics simulation models have been investigated to ease the
adaption across application scenarios and automatic simulation
flow generation [94], [95].

In the modern logistics systems, the growing integration of
ToT techniques enhanced the two-way connectivity between the
simulation system and the physical world, such that the simula-
tion system is enabled to capture the update of the physical world
in real-time and build a virtual replica correspondingly, which
is referred to as “digital twin” [96]. Taking advantages of the

CPS architecture, the digital twin can conveniently converge to
the dynamics of the real world compared with a static simulation
model [97], [146], which allows the approximation of the future,
simulation of “what-if”” scenarios and decision making to facil-
itate the operations in the physical world [96], [97], [147]. The
nature of a digital twin model as the virtual mirror of physical
entities enables the applications of almost all Al techniques that
canbe usedinreal logistics systems, such as emulating the output
of simulation subroutines and generating intelligent decisions
(e.g., the schedules of vehicles) [96]. Furthermore, a specific
usage of Al in digital twin is to build a data-driven simulation
model through converting the un-structural data collected by
sensors and cameras into time-stamped data [97]. Despite the
offered advances, the penetration of digital twin in logistics
also poses new challenges on the efficiency and scalability of
logistics system simulation to accommodate the rapid updates
and generate simulation results in real-time.

VIIl. NEw CHALLENGES AND PERSPECTIVES

Although the Al techniques have already brought significant
advances to the logistics systems, the rapid development of
the global world is continuously posing new challenges in the
research and applications of this domain. In this section, we
discuss the new challenges that will have significant impact to
the logistics systems and the potential Al-based solutions in four
perspectives including efficiency, cost, safety, and cyber-security
of Al models.

A. Efficiency

Apart from the time efficiency have been discussed in
Section III, energy efficiency is another critical targets of Al-
based solutions in the industry. As road traffic is a major contrib-
utor to energy consumption [148], the utilization of alternative
fuel vehicles is gaining increasing popularity in the logistics
domain. In fact, large quantity of electric vehicles, a specific type
of alternative fuel vehicle, have already been adopted by the pre-
mier logistics corporations. However, alternative fuel vehicles
are often limited by the energy capacity and rely on refueling
stations to extend the driving range [149]. Hence, the routing
of alternative fuel vehicles must take the locations of refueling
stations and the refueling delay into consideration, which is
known as green vehicle routing problem (G-VRP) [149]. While
the Al techniques can provide high-quality solutions to a bench
of combinatorial optimization problems, an highly effective
approach to solve G-VRP is needed to build the green logistics
system. Furthermore, the penetration of electric vehicles also
poses grand challenges to the power grid operation since the
charging of electric vehicles can easily cause peak energy us-
age [150]. Therefore, the coordination between logistics system
and power system will become an important research topic in
the future.

It is also worth noting that handling unexpected emergencies
can usually induce extra energy consumption in the logistics
systems [151]. In order to tackle this issue, prediction of the
emergencies can be made based on the environmental data
obtained through real-time monitoring, thereby facilitating the
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management of the logistics system to make timely decisions
and reduce the uncontrollable costs [151].

B. Cost

A press of the modern Al algorithms, especially computer
vision algorithms, are based on deep learning, which are usu-
ally computational intensive. Although the high-performance
computing devices such as GPU have been deployed in both
cloud and edge sides that allow most algorithms to be exe-
cuted in a highly efficient manner during inference, they are
often associated with high economic cost, which prevents the
very large-scale utilization in practice. For instance, a logistics
warehouse can have thousands of surveillance cameras, and it
will induce huge cost if a deep learning model is applied on
each camera. A plausible approach to overcome this difficult is
to develop light-weighted models based on the specific char-
acteristics of the application scenarios. This idea is adopted
in [75], where the visual features of parcels on the conveyor belts
are extracted using edge detection techniques. Subsequently,
statistical approaches are leveraged to help recognize the conges-
tion. The recent advances of knowledge distilling has provided
another option to help deploy Al models in practical scenarios.
It transfers the experience encoded by the original model to
a light-weighted student model without excessively decreasing
the accuracy [152], which can substantially reduce the usage
of computation resources. Apart from economic cost, the envi-
ronmental cost of Al during its whole life cycle is attracting
increasing attentions from both researchers and policy mak-
ers [153]. As shown in recent research, training deep learning
models using GPU will lead to considerable amount of carbon
dioxide emission (approximately 600,000 Ib for natural lan-
guage processing) [154]. While Alis becoming an indispensable
component in the modern logistics CPS, the sustainability issue
will open up vast research opportunities on the optimizations
of data utilization, algorithm development, software/hardware
design and carbon footprint [155].

C. Safety

In order to guarantee the safety of logistics operations, proac-
tively assessment of the potential risk is preferred, such that
actions can be taken to avoid the consequential losses before their
occurrence. [t means that a safe logistics system is expected to be
predictive. Although the prediction of vehicles and pedestrians
in the public areas have already been explored to facilitate the
decision in autonomous driving [156], [157], the application in
logistics scenarios will face even more challenges posed by the
high complexity and uncertainty. Generally, the applications of
predictive recognition approaches can be categorized into two
parts including autonomous driving for LMD and the monitoring
of logistics operations. In contrast to the general autonomous
driving, the LMD vehicles usually need to share the lanes
with bicycles and pedestrians due to the small size and low
speed. Thus, the behavior prediction of the traffic participants
suffers from much higher difficulty induced by their crowd and
dynamic nature. In the logistics operation monitoring scenario,
the decision maker desires to predict the behavior of vehicles,

equipment and workers. Furthermore, the potential interaction
between these roles is an important basis for risk assessment.
As this direction has not been considered in existing literature,
it will open up vast opportunities for both academic practical
research for establishing a safer logistics system.

Another challenge of these scenarios is the distribution uncer-
tainty due to the high complexity in real world, such that a large
amount of data need to be annotated to cover the long-tail cases
and guarantee the robustness to interference. In order to alleviate
the labor cost for data annotation, a recent trend is to incorporate
the human-in-loop strategy, which involves human efforts to
mine the data with high potential to improve the modelling
accuracy for labelling [158].

D. Cyber-Security

The management of the modern logistics system significantly
relies on the information systems such as warehouse manage-
ment system (WMS) and transportation management system
(TMS). Furthermore, the monitoring and control in the logis-
tics system are enabled by the communications infrastructure.
Although these advances brought by the development of infor-
mation technology have offered considerable convenience to the
logistics operations, they also raise new security concerns in the
mean time. The weakness of those architectures can potentially
be leveraged by the malicious hackers to launch cyber-attacks
and induce losses to the logistics systems. Examples are been
shown in [159], where the malicious hacker can use jamming
and eavesdropping techniques to attack the transportation sys-
tem to impact the traffic conditions. Therefore, detecting the
cyber-attacks and mitigating their impact are critical targets for
the maintenance of logistics systems. For this target, the Al and
machine learning techniques have great potentials to examine
the anomaly through analyzing the system-state data, thereby
detecting the cyber-attacks. In [160], a real-world example in
e-commerce industry is studied, where the malicious merchants
can gain profit and induce losses to the e-commerce corpo-
rations through manipulating attacks. In specific, a malicious
merchant can manipulate the goods information on the retailing
platform to achieve a high ranking in searching result while
bringing confusion to the customers. The manipulation can also
be applied on the goods information on the logistics platform,
where the malicious merchant can store the wrong item in the
warehouse simultaneously such that it will be shipped to the
customer when an order is placed. While the manipulation attack
can significantly impact the customer experience, an inspection
architecture is proposed using deep neural network and natu-
ral language processing techniques to identify the consistency
between the goods information on different platforms, thereby
recognizing the manipulating attacks.

In fact, the Al models are targets of cyber-attacks them-
selves. As the Al models rely on the sensors and communi-
cation infrastructures for data acquisition and transmission, the
malicious hacker can launch data poisoning attacks to impact
the model outputs by injecting poisoned data [161]. While
the defense of data poisoning attacks has already been deeply
studied in the machine learning domain, the impact of them to the
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logistics systems and their corresponding defense strategies will
be important topics for research and application to guarantee the
cyber-security of logistics. In this direction, the attacking on the
license plate recognition model has been studied in [162], where
poisoning attack is applied on the feature extraction layers of
the model such that it will mis-classify a pre-selected digit to a
target one. Through this attacking strategy, a malicious hacker
can take control over the entrance and platform management of
a warehouse, such that the appointed vehicle cannot smoothly
accomplish the loading/unloading tasks. In the logistics sce-
narios, this type of cyber-attacks can potentially be detected
and conquered from data, model and system levels, which will
motivate more domain specific research on the security of Al

IX. CONCLUSION

In this article, a comprehensive survey on the application
of Al technologies in logistics cyber-physical systems is con-
ducted. We started from the high-level architecture of the lo-
gistics system and subsequently move to the critical problems
of each component, including resource allocation, logistics
planning & scheduling, automatic measurements & monitoring,
autonomous driving and logistics system simulation. For each
part, we discussed the targets to be optimized and the critical
problems to be addressed. Examples from both academia and
industry are studied in details to illustrate how Al techniques are
utilized to provide high-quality solutions and tackle the grand
challenges in the logistics systems. Finally, a prospective view
is provided on the new challenges posed by the development
of the society and industry as well as the new opportunities of
Al in logistics research and applications. Through this survey,
we intend to benefit both researchers and practitioners by pro-
viding a guideline of how Al can help improve the quality of
logistics, thereby promoting the intelligentization of logistics
industry.
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