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Abstract — To solve the problems of redundant logic resources and poor scalability in protocol controller circuits
among  communication  networks,  we  propose  a  traffic-driven  software  defined  interconnection  (TSDI)  mechanism.
The  unified  software  defined  interconnection  interface  standards  and  the  normalized  interconnection  topology  are
designed to implement the architecture of TSDI-based protocol controller. The key indicators of power, performance
and area (PPA) can be realized while resolving the flexible interconnection of the controller. We designed a TSDI-based
RapidIO controller as an example. Compared to traditional designs, the design could achieve more protocol scalability,
and RapidIO protocol standards of Gen4 could be supported directly. The key PPA indicators, such as a lower delay
of 56.1 ns and more than twice throughput of 98.1 Gbps, were achieved at the cost of a 23.4% area increase.
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 I. Introduction
To meet the increasing demand for shorter applica-

tion  development  cycles  and  higher  network  scalability
brought by protocol upgrades, the architecture of protocol
controllers must be full-dimensional defined [1], [2]. Many
researches [3]–[5], trying to solve protocol controller per-
formance  and scalability  issues,  mainly  focus  on  mature
IP  cores  [6]–[8].  These  designs  were  based  on  dedicated
architecture, a hierarchical hardware processing architec-
ture  in  which  corresponding  parallel  hardware  circuits
must be designed when requirements expand and protocol
upgrades. The dedicated architecture resulted in resource
redundancy and lower scalability. It is vital for the archi-
tecture that the protocol controller can provide new func-
tionality  without  redesign.  The  overarching  goal  of  the
architectural  revolution  is  to  deliver  high-performance,
low-power, and efficient area solutions.

Many  reconfigurable  architectures  have  been  pres-
ented based on FPGA (field-programmable gate arrays),
state machine, microcontroller, or eFPGA (i.e., embedded

FPGA). In [9], a vendor-independent structure based on
software defined network (SDN) was proposed for disag-
gregating the control  and data planes.  A Programmable
logic controller (PLC) [10] architecture was dedicated to
implementing a programmable controller based on FPGA.
However, the SDN and FPGA architectures were signifi-
cantly  worse  than  application  specific  integrated  circuit
(ASIC)  design  in  power,  performance,  and  area  (PPA).
In order  to  meet  these  factors,  a  dynamically  reconfig-
urable  packet  distribution  unit  [11]  is  used  to  solve  the
traffic  distribution  in  the  embedded  system.  Moreover,
an  approach  to  developing  a  dynamically  reconfigurable
transport layer controller  architecture in ASIC was pre-
sented  by  Suvorova  [12].  These  designs  were  based  on
dynamically  reconfigurable  automata  and  finite  state
machine [13], [14] with DataPath [15], [16]. For more effi-
ciency,  Suvorova  [17] proposed  an  approach  to  develop-
ing a  dynamically  reconfigurable  transport  layer  con-
troller based  on  a  processor  core  with  reduced  instruc-
tion set computer V (RISC-V) architecture. Based on an 
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eFPGA-augmented RISC-V SoC, Arnold in [18] was de-
signed to achieve more flexibility and lower power. How-
ever,  existing  work  should  pay  more  attention  to  fully
defined protocol  controllers,  which  have  stream process-
ing  characteristics.  They  lack  versatility,  require  more
time  to  reconfigure,  and  are  not  enough  to  implement
the more flexible hardware structure with better PPA. In
[1],  [19],  a  new  software-defined  architecture  combines
the software  defined  interconnection  (SDI)  with  the  re-
configurable coarse-grained units. SDI can provide a new
technology for the design of protocol controllers.

According to the stream processing characteristics of
protocol controllers, this paper introduces a traffic-driven
software  defined  interconnection  (TSDI)  structure  to
break  traditional  controllers’ hierarchical hardware  pro-
cessing architecture. The main contributions of this work
is as follows:

1)  Flexible  architecture.  A  new  architecture  and  a
general network structure for realizing the flexible inter-
connection  and  reconfiguration  among  software-defined
elements designed in protocol controllers: a) independent
input address, b) independent output addressing, and c)
a software-defined network.

2)  Unified  hardware  structure.  A  new  template  for
supporting the combination and recombining of the com-
plex topologies based on protocol traffic stream process-
ing:  a)  normalized  software-defined  elements  model  and
topologies, and b) software-defined interconnection inter-
face based on stream addressing.

3) Use case. We demonstrate the TSDI architecture
on  a  RapidIO controller,  achieving  excellent  application
flexibility  and  protocol  scalability  performance  with  the
cost of a certain increase in resources compared to tradi-
tional controllers.

The remainder of this paper is organized as follows.
Section II  introduces  the  characters  of  the  TSDI  net-
work. In Section III,  we describe the architecture of the
protocol controller based on TSDI. The software-defined
interface  standard,  software-defined  interconnection
topology,  and an implementation example are presented
in Section III.  Experimental  results  are  reported in Sec-
tion  IV,  and  Section  V  summarizes  the  main  points  of
this paper.

 II. The TSDI Network
TSDI is mainly composed of three types of software-

defined  grains  (SDGs),  the  calculating  element  C,  the
memory element M and the interconnecting element I, in
the  reconfigurable  resource  pool  [2],  [19].  SDGs  include
software-defined processing  grains  (SDPGs)  and  inter-
connection  grains  (SDIGs).  SDPGs,  implementing  the
calculate  and  memory  function,  can  be  extracted  into
private  and  public  reconfigurable  elements  by  using  the
hardware reconfigurable  technology  and  the  mathemati-
cal model of software-defined protocol controllers. SDIGs,
special  SDPGs,  can  connect  different  SDPGs  according
to AI, the input address of the last hop, and AO, the ad-

dressing  output  of  the  next  hop.  A TSDI model  can be
abstracted as below:
 

TSDIout = Flown(SDPGnm , SDIGnm) (1)

TSDIout
Flown(SDPGnm

, SDIGnm
) n

Flown(SDPGnm
, SDIGnm

)
n− 1

where  is  the  final  stream output  of  the  traffic,
 is the -th level stream out-

put  and  can  be  defined  as
the stream processing output of the  level output:
 

Flown(SDPGnm , SDIGnm)

= Flown(Flown−1(SDPGn−1m1
, SDIGn−1m1

)) (2)

SDPGnm
m nwhere  are  SDPGs in -th level stream pro-

cessing elements selected from the reconfigurable resource
pool:
 

SDPGnm = FC,M,I(0), FC,M,I(1), . . . , FC,M,I(m) (3)

SDIGnm
m nAnd  are  all  SDIGs’ functions  in -th

level  stream processing  elements,  which  mainly  describe
the interconnection relationship among SDGs:
 

SDIGnm =FC,M,I(0)(AI,AO), FC,M,I(1)(AI,AO),

. . . , FC,M,I(m)(AI,AO) (4)

When processing  protocol  traffics  in  the  TSDI  net-
work, related  SDPGs  are  interconnected  through  corre-
sponding  topologies  according  to  different  traffic  types
(such as idle sequences, control symbols (CS), messages,
and protocol messages).

Figure 1 shows a typical service processing schemat-
ic  diagram  of  TSDI,  which  can  optimize  the  topology
structure  according  to  being  processed  traffics.  When
dealing  with  the  idle  sequence  analyzing  traffic,  where
the  streaming  characteristic  is  presented  from  decoding
and descrambling to error detection, TSDI optimizes the
topology  into  a  pipe  processing  model.  When  message
parsing  traffic  is  handled,  which  shows  the  branches  of
parallel  processing  characteristics,  TSDI  optimizes  the
topology into a mixed processing form of serial and par-
allel.

 III. The Architecture of Protocol
Controller Based on TSDI

The  traffic  processing  flow  of  the  communication
protocol  complies  with  the  protocol  stack’s  multi-layer
network  architecture  and  has  the  characteristics  of
stream processing. Figure 2 shows the architecture of the
traffic processing in the traditional protocol controller.

In Figure  2,  the  received  data  from  a  channel  are
pipeline processed by serial-to-parallel conversion and bit
synchronization  in  the  transceiver  module,  then  handed
over to the physical layer for symbol decoding (descram-
bling,  decoding,  error  correction  and  error  detection,
etc.) and data identifying.  The data reformed by physi-
cal layer are de-stripped into packets, which will be ana-
lyzed in transport layer and then stored to or read from
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the inside memory according to the traffic types. The un-
packaged load data will be operated at logical layer, and
transport layer will respond to the patterner and send it
to physical layer.

The  whole  traffic  processing  flow  of  the  protocol
controller  shows  the  stream  characteristics  such  as
branching, reversible processing, storage, and computing.

The downstream  logic  and  upstream  logic  can  be  ab-
stracted  as  a  simple  model  which  is  set  as  the  input  of
the  previous  stage  and  output  of  the  subsequent  stage.
As  shown in Figure  3, the  traffic  processing  flow is  ab-
stracted  as  a  stream  process  of  multiple  Functions,  in
which  SDPGs  and  SDIGs  are  interconnected  through
stream processing mode.

 
The stream description of traffic I
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Figure 3  The diagram of traffic process flow abstracted as SDIGs and SDPGs.
 

The basic structure of SDPGs based on C or M and
SDIGs based on Function can be summarized in the form
of both input and output. In order to achieve flexible in-
terconnection  among  SDPGs  and  SDIGs,  TSDI  uses  a

software-defined interconnection  interface,  which  re-
stricts not only the interfaces of the controller and each
protocol  layer  but  also  the  interfaces  of  SDPGs  and
SDIGs.  The  interface  is  based  on  stream  address,  in
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Figure 1  Schematic diagram of TSDI typical service processing.
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Figure 2  The architecture of traffic processing in the traditional protocol controller.
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which  the  next  hop  can  be  calculated  by  input  address
mapping  result.  The  output  of  previous  SDPGs  acts  as
the input of the next SDPGs. Therefore, the whole busi-
ness will be interconnected by SDIGs and SDPGs.

T (Ti, n, To)
Definition 1  The stream processing of traffic is de-

fined as .
Ti

To

n

Ti To

In  Definition  1,  is  the  function  of  traffic  input,
named as source traffic interconnection grain (STIG), 
is  the  function  of  traffic  output,  named  as  destination
traffic  interconnection  grain  (DTIG),  and  is  the  hop
counts from  to .

F (Fi,m, Fo)
Definition  2  The  stream  processing  of  function  is

defined as .
Fi

Fo

m

Fi Fo

In Definition 2,  is the input of the first SDPGs in
interconnect function, named as source function input of
process grain (SFPG),  is the output of the last SDGs
in  interconnect  function,  named  as  destination  function
output  of  process  grain  (DFPG),  and  is  the  hop
counts from  to .

Pi,o

Definition  3  The function  of  process  grain  is  de-
fined as .

i oIn Definition 3,  is the input of the SDPG, and  is
the output of the SDPG.

T (Pi(i, o), n,
Pmi+n−1

)

The stream  processing  model  of  the  protocol  con-
troller  based  on  TSDI  can  be  described  as 

.
 1. Software-defined interconnection interface

based on stream address
The SDIGs  and  SDPGs  used  in  TSDI  can  be  nor-

malized for the abstracted model described as the stream
interconnection  among  SDGs.  The  interface  standard
must  define  the  input  and output  feature  of  the  stream
address since the grain is interconnected according to the
mapping result  of  the  stream  address.  And  a  reconfig-
urable data width feature of the input and output inter-
face  should  also  be  supported  because  of  the  grains’
stream  aggregation  and  redistribution  characteristics.
The  interface  should  be  bidirectional  simultaneously  to
balance the flexibility of the interconnection and the fea-
sibility of the physical realization of each grain in TSDI.
The  interface  should  include  the  clock  signal  to  realize
the redefinable bandwidth. The entire interface standard
can be defined in Deinition 4.

I(Sclk, Srst, Dclk, Drst, Di, Do, Pdir, Sa, Da)
Definition  4  The  interface  of  SDGs  is  defined  as

.
Sclk Srst

Dclk

Drst Di

Do

Pdir

Di Do

Sa

In Definition 4,  is the input clock of grains, 
is the input reset signal of grains,  is the output clock
of grains, and  is the output reset signal of grains. 
and  are the input and output data signals, which can
be software-defined to match the bandwidth, allocate the
meaning of  each  bit,  and  change  the  direction  on  de-
mand,  is the description primitives for the location of
the data signal describing the  or  as horizontal or
vertical  when  physical  implementation.  is  the  input
address of the current grain, and also the output of the

Daprevious.  is the addressing output of the current grain
and also the input of the next.

To simplify the interconnection network and reduce
the  difficulty  of  physical  implementation,  the  TSDI  can
be implemented as an array of SDGs. The interface stan-
dard of SDGs in TSDI is a software-defined one based on
stream addresses,  in which the bandwidth and direction
can be redefined. The interconnection between two SDGs
is based on the mapping result  of  flow addresses,  deter-
mined by the input of the last hop and the output of the
next hop. So, when matching a type of traffic, the inter-
connection  topology  of  the  controller  will  be  generated,
which makes the critical features of the traffic be predict-
ed in advance.
 2. Software-defined interconnection topologies

based on TSDI
Each SDG has a two-input and two-output intercon-

nection topology.  Howerver,  the  topology  must  be  sim-
pler  to  achieve  normalization.  In  the  interconnection
structure  of  SDGs as  shown in Figure  3,  the  input  and
output  interfaces  are  the  main  features.  The  abstract
model  can  be  described  in Figure  4,  including  single-in-
single-out  (SISO),  multiple-in-single-out  (MISO),  single-
in-multiple-out  (SIMO),  and  self-in-self-out  (SIO).  It  is
necessary to  analyze  the  structure  of  the  forms  to  nor-
malize the topologies.
 

SDG SDG SDG SDG

 

Figure 4  The abstract model of SDGs.
 

Sa Da

Di

For MISO, the  of the SDG is the same as the 
of  all  the  last  SDGs.  It  is  the  aggregation  of  multiple
traffic  with  the  same  destination  stream address.  When
the aggregation exceeds the maximum bit width defined
by  the  interface  standard,  the  MISO  topology  will  be
transformed into multi  parallel  channels until  the band-
width meets the sum of SDGs’ multi-inputs or until the
processing  frequency of  SDGs is  increased to  match the
required  bandwidth.  Each  of  the  channels  has  a  serial
processing  topology.  The  bandwidth  of  will  be
changed, and the width of the interface will be redefined.
Therefore, MISO can be simplified as SISO topology, as
shown in Figure 5.

SaFor SIMO, it is easy to understand that the  is si-
multaneously mapped to multiple SDGs of the next hop,
which  means  that  multiple  copies  of  the  SDG  will  be
generated,  and  the  same  input  will  drive  all  the  copies
while  each  output  drives  the  next  corresponding  SDG.
SIMO can be simplified, as shown in Figure 6.

Sa DaSIO  is  a  self-loop  with  the  same  and .  The
structure still  follows  the  SISO  and  can  be  easily  re-
placed by a SDG and a SDIG, shown in Figure 7.
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All the topologies can be normalized to SISO struc-
ture  because  of  the  interface’s redefinable  and  bidirec-

tional  characteristics.  The  traffic  processing  flow  shown
in Figure  3 can  be  represented  by  the  combination  of
stream topology, tree topology, ring topology, star topol-
ogy, etc., and the topology’s internal function can be de-
fined by software. The SDGs in Function, no matter the
SDPGs or SDIGs, are designed based on the SISO struc-
ture,  whose  interface  meets  the  SDI  interface  based  on
the  stream  address,  the  physical  direction  (horizontal/
vertical), and the defined effective bit widths. The struc-
ture  is  shown  in Figure  8.  A  traffic  described  in  TSDI
can be stripped to several functions. Every function can
be  realized  by  the  effective  combination  and connection
of  SDGs.  Furthermore,  the SDGs,  comply with the SDI
interface and  interconnection  topology,  can  be  decom-
posed into  the  simplest  topology  using  the  interconnec-
tion of SISO structure.
 3. A use case of RapidIO controller based on

TSDI
As a protocol controller, the RapidIO controller has

the characteristics of stream processing. As shown in Fig-
ure 9, the maintenance traffic processing flow can be sim-
plified  to  five  stream  processing  functions.  Function1
mainly  realizes  data  synchronization  and  decoding.  The
package parsing and error  detection are  implemented in
Function2. Function3 mainly processes message forward-
ing. Function4 implements the routing table lookup and
detection. Function5 is abstracted to parse the message.

The  processing  flow  of  maintenance  package  traffic
can be set as the stream processing queue of Function1,
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Function5, Function2, Function3, and Function4, shown
in Figure  10.  The  main  SDGs  of  Function1  include  bit
synchronization,  decoding,  and  descrambling.  Function2
has  the  SDGs  of  message  parsing  and  error  detection.
The SDGs of error detection, routing table lookup, pack-
age  storage  and  congestion  control  are  implemented  if

Function3.  The  SDGs  of  error  detection  and  routing
lookup  table  are  realized  in  Function4.  And  the  SDGs
such  as  descrambling,  package  parsing,  control  symbol
parsing  and  IDLE  sequence  parsing  are  designed  in
Function5.

Based on the normalized SDGs and interconnection
topology, the flow of maintenance packet processing can
be implemented by TSDI architecture, as shown in Fig-
ure 11.

The RapidIO controller can be implemented by nor-
malized  SDGs  and  the  interconnection  topology.  TSDI-
based  RapidIO  controller  first  generates  the  optimized
configuration execution file at the software level accord-
ing to the traffic type and flow, then defines or redefines
the interconnection topology of  SDGs by static  configu-
ration files or dynamically sensing real-time traffics.

 IV. Evaluation and Comparison of
Achievable Parameters

A  RapidIO  controller  compatible  with  Gen4/3/2/1
protocol  is  implemented  based  on  TSDI  as  a  use  case.
Table 1 gives the main features of this design compared
with  the  traditional  controllers  [7]–[9].  The  TSDI-based
RapidIO  controller  has  excellent  application  flexibility
and  protocol  scalability  performance.  It  can  support
more  protocol  versions  than  the  dedicated  architecture
and achieve more than twice the throughput than IDT’s
design.

PPA is the best criterion for verifying the quality of
the proposed architecture. This design takes the compati-
bility, delay, and logic resources as the key parameters of
PPA to evaluate the TSDI-based RapidIO controller. An
environment  connecting  with  the  standard  commercial
Candence VIP is set up to test the protocol compatibili-
ty  and  latency  performance.  And  the  Synopsys  Design
Compiler  is  used  to  synthesize  the  design  for  resource
calculation.
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1) Protocol compatibility test
Take  IDLE3  traffic  processing  as  an  example.  The

input of  the  data  sync  SDPG in  IDLE3  traffic  process-
ing flow is the received parallel data, while the output is
the synchronized data. The synchronized data can be ad-
dressed to the input of the data decoder SDPG, and the
decoded data will be routed to the input of the data de-
scramble SDPG based on the stream address. The simu-
lation  waveforms  of  different  IDLE  sequence  processing
are  shown  in Figure  12.  The  stream  processing  flow
among SDPGs in  the  TSDI-based  RapidIO controller  is
designed to meet RapidIO Gen4/3/2/1 protocol compati-
bility.
 

(a) RapidIO Gen4/3 IDLE3 traffic

(b) RapidIO Gen2 IDLE2 traffic

(c) RapidIO Gen1 IDLE1 traffic

Input of data sync SDPG

Output of data sync SDPG Polarity reversal of data codeword CSEB control codeword

Input of data descrambles SDPG

Output of data descrambles SDPG CS field marker

Input of data decoder SDPG

Output of data decoder SDPG K characters

 

Figure 12  Different traffic in TSDI-based RapidIO controller.

2) Latency performance test
The latency  performance  tests  the  respective  trans-

mission  and  reception  delays  with  different  packet
lengths. The test environment connecting with the stan-
dard commercial VIP collects the test results. This arti-
cle  mainly  compares  IDT’s  RapidIO  controller  design.
The path modes of both controllers are configured as 1x
mode  at  12.5  Gbps.  And  two  sets  of  latency  tests  are
performed.  One  is  the  latency  test  with  a  processing
package of different lengths, where the final value is the
average  value  of  the  measured  latency  repeated  for  5
times. The other tests the latency curve when processing
different  loads  with  small  packages (64-byte  length),
where the final value is the average value of measured la-
tency repeated for 5 times. The result is plotted in Fig-
ure 13.

Because the bit width of SDGs in TSDI can be soft-
ware-defined  automatically,  the  TSDI-based  controller
has a stable latency value when processing packages with
different lengths. When the package length changes, the
bandwidth  can  be  optimized  by  redefining  the  interface
to reduce the processing cycles. The TSDI-based RapidIO
controller  performs  better  at  the  latency  characteristics
when processing  different  loads  because  the  TSDI-based
RapidIO  controller  supports  acknowledging  a  maximum
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Table 1  Comparison of main features

Main feature Xilinx Mobiveil IDT TSDI

Supported protocol V2.2/1.3 V3.1/2.2/1.3 V3.2/2.2/1.3 V4.0/3.2/2.2/1.3

Path mode 1x/2x/4x 1x/2x/4x

1x/2x/4x
2x+2x
2x+1x
1x+1x

1x/2x/4x
2x+2x

2x+1x+1x
1x+1x+1x+1x

IDLE sequence IDLE2/1 IDLE3/2/1 IDLE3/2/1 IDLE3/2/1

Parallel data width (bits) 20 10/20/40/64/67 10/16/20/32/40 10/16/20/32/40

User data width (bits) 128 256 256 64/128/256

DevID (bits) 16 8/16 8/16/32 8/16/32

Address width (bits) 34 34/50 34/50/66 34/50/66

Link training IDLE2 IDLE2/CW/DME IDLE2/CW/DME IDLE2/CW/DME

Throughput (Gbps) 20 39.4 47.1 98.1

Maximum unacknowledge packets 32 4096 128 1024 configurable

V4.0 scalability Not Not Not Support
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of 1024 unacceptable  packages.  Moreover,  based  on  the
SDI protocol, the controller can dynamically perceive the
traffic load to adapt to the number of unacceptable pack-
ages.  But  when  it  exceeds  the  limit,  the  latency  of  the
TSDI-based  RapidIO  controller  is  close  to  the  IDT,
showing a linear growth curve.

3) Controller resource comparison
This design is synthesized on the 28 nm process, and

the target frequency is 400 MHz. The comparison results
between this design and IDT’s 10xN RapidIO controller
are shown in Table 2. The number of Std Cell Instances
has  increased  by  8.33%,  which  is  mainly  determined  by
the resource increase for the designing of SDGs and the
resource  decrease  for  the  extraction  of  common  SDGs.
The storage  size  has  been  doubled  to  match  the  maxi-
mum  bit  width  of  the  SDGs’ interface. Overall,  com-
pared to the IDT controller, this design has a 23.4% in-
crement in area.
  
Table 2  Resource area comparison

Items IDT TSDI Comp. (%)

Std cell instances 600K 610K 1.67%

Std cell area (mm2) 0.56 0.569 1.61%
Memory (bits) 214144 428288 100%

Memory area (mm2) 0.16 0.32 100%

Total area (mm2) 0.72 0.889 23.4%
 
 

Furthermore, the advantage of a 23.4% increment in
area  cost  should  be  verified.  We  compared  the  area
growth  rate  to  the  dynamic  reconfigurable  architecture
and the switching on/off scheme in [12]. The comparison
results are shown in Table 3.

 V. Conclusions
In this paper, we propose a protocol controller archi-

tecture based on the traffic-driven software-defined inter-
connection, define an SDI interface of SDGs and normal-
ize  the  interconnection  topology.  Given  that  the  stream
processing characteristic, the architecture of the protocol
controller can be implemented as the interconnection of a
series  of  SDGs.  A  RapidIO  controller  is  designed  based
on  TSDI.  According  to  the  results  of  evaluation,  it  can
be concluded  that  the  TSDI-based  controller  can  ex-
change the limited resources for flexibility and scalabili-
ty. In the future, the low-power design of SDGs and the
software design for more flexible interconnection control
will be further considered to get more efficient.
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