

RESEARCH ARTICLE

Architecture Design of Protocol Controller
Based on Traffic-Driven Software Defined
Interconnection

Peijie LI, Jianliang SHEN, Ping LYU, Chunlei DONG, and Ting CHEN

Information Engineering University, Zhengzhou 450002, China

Corresponding author: Peijie LI, Email: lpj@ndsc.com.cn
Manuscript Received April 19, 2022; Accepted March 21, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — To solve the problems of redundant logic resources and poor scalability in protocol controller circuits
among communication networks, we propose a traffic-driven software defined interconnection (TSDI) mechanism.
The unified software defined interconnection interface standards and the normalized interconnection topology are
designed to implement the architecture of TSDI-based protocol controller. The key indicators of power, performance
and area (PPA) can be realized while resolving the flexible interconnection of the controller. We designed a TSDI-based
RapidIO controller as an example. Compared to traditional designs, the design could achieve more protocol scalability,
and RapidIO protocol standards of Gen4 could be supported directly. The key PPA indicators, such as a lower delay
of 56.1 ns and more than twice throughput of 98.1 Gbps, were achieved at the cost of a 23.4% area increase.
Keywords — Software defined interconnection, Traffic-driven, Protocol controller, Embedded interconnects, In-
terface standards, Interconnection topology.
Citation — Peijie LI, Jianliang SHEN, Ping LYU, et al., “Architecture Design of Protocol Controller Based on
Traffic-Driven Software Defined Interconnection,” Chinese Journal of Electronics, vol. 33, no. 2, pp. 362–370, 2024.
doi: 10.23919/cje.2022.00.094.

 I. Introduction
To meet the increasing demand for shorter applica-

tion development cycles and higher network scalability
brought by protocol upgrades, the architecture of protocol
controllers must be full-dimensional defined [1], [2]. Many
researches [3]–[5], trying to solve protocol controller per-
formance and scalability issues, mainly focus on mature
IP cores [6]–[8]. These designs were based on dedicated
architecture, a hierarchical hardware processing architec-
ture in which corresponding parallel hardware circuits
must be designed when requirements expand and protocol
upgrades. The dedicated architecture resulted in resource
redundancy and lower scalability. It is vital for the archi-
tecture that the protocol controller can provide new func-
tionality without redesign. The overarching goal of the
architectural revolution is to deliver high-performance,
low-power, and efficient area solutions.

Many reconfigurable architectures have been pres-
ented based on FPGA (field-programmable gate arrays),
state machine, microcontroller, or eFPGA (i.e., embedded

FPGA). In [9], a vendor-independent structure based on
software defined network (SDN) was proposed for disag-
gregating the control and data planes. A Programmable
logic controller (PLC) [10] architecture was dedicated to
implementing a programmable controller based on FPGA.
However, the SDN and FPGA architectures were signifi-
cantly worse than application specific integrated circuit
(ASIC) design in power, performance, and area (PPA).
In order to meet these factors, a dynamically reconfig-
urable packet distribution unit [11] is used to solve the
traffic distribution in the embedded system. Moreover,
an approach to developing a dynamically reconfigurable
transport layer controller architecture in ASIC was pre-
sented by Suvorova [12]. These designs were based on
dynamically reconfigurable automata and finite state
machine [13], [14] with DataPath [15], [16]. For more effi-
ciency, Suvorova [17] proposed an approach to develop-
ing a dynamically reconfigurable transport layer con-
troller based on a processor core with reduced instruc-
tion set computer V (RISC-V) architecture. Based on an

Associate Editor: Prof. Shaojun WEI, Tsinghua University.

Chinese Journal of Electronics
vol. 33, no. 2, pp. 362–370, March 2024
https://doi.org/10.23919/cje.2022.00.094

eFPGA-augmented RISC-V SoC, Arnold in [18] was de-
signed to achieve more flexibility and lower power. How-
ever, existing work should pay more attention to fully
defined protocol controllers, which have stream process-
ing characteristics. They lack versatility, require more
time to reconfigure, and are not enough to implement
the more flexible hardware structure with better PPA. In
[1], [19], a new software-defined architecture combines
the software defined interconnection (SDI) with the re-
configurable coarse-grained units. SDI can provide a new
technology for the design of protocol controllers.

According to the stream processing characteristics of
protocol controllers, this paper introduces a traffic-driven
software defined interconnection (TSDI) structure to
break traditional controllers’ hierarchical hardware pro-
cessing architecture. The main contributions of this work
is as follows:

1) Flexible architecture. A new architecture and a
general network structure for realizing the flexible inter-
connection and reconfiguration among software-defined
elements designed in protocol controllers: a) independent
input address, b) independent output addressing, and c)
a software-defined network.

2) Unified hardware structure. A new template for
supporting the combination and recombining of the com-
plex topologies based on protocol traffic stream process-
ing: a) normalized software-defined elements model and
topologies, and b) software-defined interconnection inter-
face based on stream addressing.

3) Use case. We demonstrate the TSDI architecture
on a RapidIO controller, achieving excellent application
flexibility and protocol scalability performance with the
cost of a certain increase in resources compared to tradi-
tional controllers.

The remainder of this paper is organized as follows.
Section II introduces the characters of the TSDI net-
work. In Section III, we describe the architecture of the
protocol controller based on TSDI. The software-defined
interface standard, software-defined interconnection
topology, and an implementation example are presented
in Section III. Experimental results are reported in Sec-
tion IV, and Section V summarizes the main points of
this paper.

 II. The TSDI Network
TSDI is mainly composed of three types of software-

defined grains (SDGs), the calculating element C, the
memory element M and the interconnecting element I, in
the reconfigurable resource pool [2], [19]. SDGs include
software-defined processing grains (SDPGs) and inter-
connection grains (SDIGs). SDPGs, implementing the
calculate and memory function, can be extracted into
private and public reconfigurable elements by using the
hardware reconfigurable technology and the mathemati-
cal model of software-defined protocol controllers. SDIGs,
special SDPGs, can connect different SDPGs according
to AI, the input address of the last hop, and AO, the ad-

dressing output of the next hop. A TSDI model can be
abstracted as below:

TSDIout = Flown(SDPGnm , SDIGnm) (1)

TSDIout
Flown(SDPGnm

, SDIGnm
) n

Flown(SDPGnm
, SDIGnm

)
n− 1

where is the final stream output of the traffic,
 is the -th level stream out-

put and can be defined as
the stream processing output of the level output:

Flown(SDPGnm , SDIGnm)

= Flown(Flown−1(SDPGn−1m1
, SDIGn−1m1

)) (2)

SDPGnm
m nwhere are SDPGs in -th level stream pro-

cessing elements selected from the reconfigurable resource
pool:

SDPGnm = FC,M,I(0), FC,M,I(1), . . . , FC,M,I(m) (3)

SDIGnm
m nAnd are all SDIGs’ functions in -th

level stream processing elements, which mainly describe
the interconnection relationship among SDGs:

SDIGnm =FC,M,I(0)(AI,AO), FC,M,I(1)(AI,AO),

. . . , FC,M,I(m)(AI,AO) (4)

When processing protocol traffics in the TSDI net-
work, related SDPGs are interconnected through corre-
sponding topologies according to different traffic types
(such as idle sequences, control symbols (CS), messages,
and protocol messages).

Figure 1 shows a typical service processing schemat-
ic diagram of TSDI, which can optimize the topology
structure according to being processed traffics. When
dealing with the idle sequence analyzing traffic, where
the streaming characteristic is presented from decoding
and descrambling to error detection, TSDI optimizes the
topology into a pipe processing model. When message
parsing traffic is handled, which shows the branches of
parallel processing characteristics, TSDI optimizes the
topology into a mixed processing form of serial and par-
allel.

 III. The Architecture of Protocol
Controller Based on TSDI

The traffic processing flow of the communication
protocol complies with the protocol stack’s multi-layer
network architecture and has the characteristics of
stream processing. Figure 2 shows the architecture of the
traffic processing in the traditional protocol controller.

In Figure 2, the received data from a channel are
pipeline processed by serial-to-parallel conversion and bit
synchronization in the transceiver module, then handed
over to the physical layer for symbol decoding (descram-
bling, decoding, error correction and error detection,
etc.) and data identifying. The data reformed by physi-
cal layer are de-stripped into packets, which will be ana-
lyzed in transport layer and then stored to or read from

Architecture Design of Protocol Controller Based on Traffic-Driven Software Defined Interconnection 363

the inside memory according to the traffic types. The un-
packaged load data will be operated at logical layer, and
transport layer will respond to the patterner and send it
to physical layer.

The whole traffic processing flow of the protocol
controller shows the stream characteristics such as
branching, reversible processing, storage, and computing.

The downstream logic and upstream logic can be ab-
stracted as a simple model which is set as the input of
the previous stage and output of the subsequent stage.
As shown in Figure 3, the traffic processing flow is ab-
stracted as a stream process of multiple Functions, in
which SDPGs and SDIGs are interconnected through
stream processing mode.

The stream description of traffic I

Function1 Function2 Function3 Function4

A B A

D

E

B

F

D

H

B

G

D

H

B

Interconnection of SDPGs

SDIGs

Figure 3 The diagram of traffic process flow abstracted as SDIGs and SDPGs.

The basic structure of SDPGs based on C or M and
SDIGs based on Function can be summarized in the form
of both input and output. In order to achieve flexible in-
terconnection among SDPGs and SDIGs, TSDI uses a

software-defined interconnection interface, which re-
stricts not only the interfaces of the controller and each
protocol layer but also the interfaces of SDPGs and
SDIGs. The interface is based on stream address, in

SDIGs

Decoder
Descream-

bler
IDLE

decoder

Training
CRC

Calc

Packet
unpackaged

Flow
control

Width
change

Error
detect

Package
ACK

BERT
check

IDLE
monitor

New add
logic

New add
logic...

...

Traffic input

?

Traffic output

Flow

Flow

SDPGs

Figure 1 Schematic diagram of TSDI typical service processing.

Logical
layer

Transport
layer

Physical
layer

Protocol controller

Configuration network

Transceiver

P
h
y
si

ca
l

in
te

rf
ac

e

L
in

k
 i

n
te

rf
ac

e

L
in

k
 i

n
te

rf
ac

e

T
ra

n
sp

o
rt

 i
n
te

rf
ac

e

T
ra

n
sp

o
rt

 i
n
te

rf
ac

e

U
se

r
in

te
rf

ac
e

S
er

ia
l

in
te

rf
ac

e

P
h
y
si

ca
l

in
te

rf
ac

e

Figure 2 The architecture of traffic processing in the traditional protocol controller.

 364 Chinese Journal of Electronics, vol. 33, no. 2

which the next hop can be calculated by input address
mapping result. The output of previous SDPGs acts as
the input of the next SDPGs. Therefore, the whole busi-
ness will be interconnected by SDIGs and SDPGs.

T (Ti, n, To)
Definition 1 The stream processing of traffic is de-

fined as .
Ti

To

n

Ti To

In Definition 1, is the function of traffic input,
named as source traffic interconnection grain (STIG),
is the function of traffic output, named as destination
traffic interconnection grain (DTIG), and is the hop
counts from to .

F (Fi,m, Fo)
Definition 2 The stream processing of function is

defined as .
Fi

Fo

m

Fi Fo

In Definition 2, is the input of the first SDPGs in
interconnect function, named as source function input of
process grain (SFPG), is the output of the last SDGs
in interconnect function, named as destination function
output of process grain (DFPG), and is the hop
counts from to .

Pi,o

Definition 3 The function of process grain is de-
fined as .

i oIn Definition 3, is the input of the SDPG, and is
the output of the SDPG.

T (Pi(i, o), n,
Pmi+n−1

)

The stream processing model of the protocol con-
troller based on TSDI can be described as

.
 1. Software-defined interconnection interface

based on stream address
The SDIGs and SDPGs used in TSDI can be nor-

malized for the abstracted model described as the stream
interconnection among SDGs. The interface standard
must define the input and output feature of the stream
address since the grain is interconnected according to the
mapping result of the stream address. And a reconfig-
urable data width feature of the input and output inter-
face should also be supported because of the grains’
stream aggregation and redistribution characteristics.
The interface should be bidirectional simultaneously to
balance the flexibility of the interconnection and the fea-
sibility of the physical realization of each grain in TSDI.
The interface should include the clock signal to realize
the redefinable bandwidth. The entire interface standard
can be defined in Deinition 4.

I(Sclk, Srst, Dclk, Drst, Di, Do, Pdir, Sa, Da)
Definition 4 The interface of SDGs is defined as

.
Sclk Srst

Dclk

Drst Di

Do

Pdir

Di Do

Sa

In Definition 4, is the input clock of grains,
is the input reset signal of grains, is the output clock
of grains, and is the output reset signal of grains.
and are the input and output data signals, which can
be software-defined to match the bandwidth, allocate the
meaning of each bit, and change the direction on de-
mand, is the description primitives for the location of
the data signal describing the or as horizontal or
vertical when physical implementation. is the input
address of the current grain, and also the output of the

Daprevious. is the addressing output of the current grain
and also the input of the next.

To simplify the interconnection network and reduce
the difficulty of physical implementation, the TSDI can
be implemented as an array of SDGs. The interface stan-
dard of SDGs in TSDI is a software-defined one based on
stream addresses, in which the bandwidth and direction
can be redefined. The interconnection between two SDGs
is based on the mapping result of flow addresses, deter-
mined by the input of the last hop and the output of the
next hop. So, when matching a type of traffic, the inter-
connection topology of the controller will be generated,
which makes the critical features of the traffic be predict-
ed in advance.
 2. Software-defined interconnection topologies

based on TSDI
Each SDG has a two-input and two-output intercon-

nection topology. Howerver, the topology must be sim-
pler to achieve normalization. In the interconnection
structure of SDGs as shown in Figure 3, the input and
output interfaces are the main features. The abstract
model can be described in Figure 4, including single-in-
single-out (SISO), multiple-in-single-out (MISO), single-
in-multiple-out (SIMO), and self-in-self-out (SIO). It is
necessary to analyze the structure of the forms to nor-
malize the topologies.

SDG SDG SDG SDG

Figure 4 The abstract model of SDGs.

Sa Da

Di

For MISO, the of the SDG is the same as the
of all the last SDGs. It is the aggregation of multiple
traffic with the same destination stream address. When
the aggregation exceeds the maximum bit width defined
by the interface standard, the MISO topology will be
transformed into multi parallel channels until the band-
width meets the sum of SDGs’ multi-inputs or until the
processing frequency of SDGs is increased to match the
required bandwidth. Each of the channels has a serial
processing topology. The bandwidth of will be
changed, and the width of the interface will be redefined.
Therefore, MISO can be simplified as SISO topology, as
shown in Figure 5.

SaFor SIMO, it is easy to understand that the is si-
multaneously mapped to multiple SDGs of the next hop,
which means that multiple copies of the SDG will be
generated, and the same input will drive all the copies
while each output drives the next corresponding SDG.
SIMO can be simplified, as shown in Figure 6.

Sa DaSIO is a self-loop with the same and . The
structure still follows the SISO and can be easily re-
placed by a SDG and a SDIG, shown in Figure 7.

Architecture Design of Protocol Controller Based on Traffic-Driven Software Defined Interconnection 365

All the topologies can be normalized to SISO struc-
ture because of the interface’s redefinable and bidirec-

tional characteristics. The traffic processing flow shown
in Figure 3 can be represented by the combination of
stream topology, tree topology, ring topology, star topol-
ogy, etc., and the topology’s internal function can be de-
fined by software. The SDGs in Function, no matter the
SDPGs or SDIGs, are designed based on the SISO struc-
ture, whose interface meets the SDI interface based on
the stream address, the physical direction (horizontal/
vertical), and the defined effective bit widths. The struc-
ture is shown in Figure 8. A traffic described in TSDI
can be stripped to several functions. Every function can
be realized by the effective combination and connection
of SDGs. Furthermore, the SDGs, comply with the SDI
interface and interconnection topology, can be decom-
posed into the simplest topology using the interconnec-
tion of SISO structure.
 3. A use case of RapidIO controller based on

TSDI
As a protocol controller, the RapidIO controller has

the characteristics of stream processing. As shown in Fig-
ure 9, the maintenance traffic processing flow can be sim-
plified to five stream processing functions. Function1
mainly realizes data synchronization and decoding. The
package parsing and error detection are implemented in
Function2. Function3 mainly processes message forward-
ing. Function4 implements the routing table lookup and
detection. Function5 is abstracted to parse the message.

The processing flow of maintenance package traffic
can be set as the stream processing queue of Function1,

SDG

SDG

SDG

SDG

Data is combined and the

clock frequency is

adjusted at the same time

SDG

SDG

SDG

SDG

Data combine at the SDG

that the processing

bandwidth satisfies

Figure 5 Equivalent structure of MISO SDG.

SDG

SDG

SDG

SDG

Figure 6 Equivalent structure of SIMO SDG.

SDG SDG SDIG

Figure 7 Equivalent structure of SIO SDG.

The stream description of Traffic I

Function1 Function2 Function3 Function4

A B A

D

E

B

F

D

H

B

G

D

H

B

Interconnection of SDPGs

SDIGs

The interconnect topology of SDGs

Figure 8 The interconnect topology based on SISO SDGs.

 366 Chinese Journal of Electronics, vol. 33, no. 2

Function5, Function2, Function3, and Function4, shown
in Figure 10. The main SDGs of Function1 include bit
synchronization, decoding, and descrambling. Function2
has the SDGs of message parsing and error detection.
The SDGs of error detection, routing table lookup, pack-
age storage and congestion control are implemented if

Function3. The SDGs of error detection and routing
lookup table are realized in Function4. And the SDGs
such as descrambling, package parsing, control symbol
parsing and IDLE sequence parsing are designed in
Function5.

Based on the normalized SDGs and interconnection
topology, the flow of maintenance packet processing can
be implemented by TSDI architecture, as shown in Fig-
ure 11.

The RapidIO controller can be implemented by nor-
malized SDGs and the interconnection topology. TSDI-
based RapidIO controller first generates the optimized
configuration execution file at the software level accord-
ing to the traffic type and flow, then defines or redefines
the interconnection topology of SDGs by static configu-
ration files or dynamically sensing real-time traffics.

 IV. Evaluation and Comparison of
Achievable Parameters

A RapidIO controller compatible with Gen4/3/2/1
protocol is implemented based on TSDI as a use case.
Table 1 gives the main features of this design compared
with the traditional controllers [7]–[9]. The TSDI-based
RapidIO controller has excellent application flexibility
and protocol scalability performance. It can support
more protocol versions than the dedicated architecture
and achieve more than twice the throughput than IDT’s
design.

PPA is the best criterion for verifying the quality of
the proposed architecture. This design takes the compati-
bility, delay, and logic resources as the key parameters of
PPA to evaluate the TSDI-based RapidIO controller. An
environment connecting with the standard commercial
Candence VIP is set up to test the protocol compatibili-
ty and latency performance. And the Synopsys Design
Compiler is used to synthesize the design for resource
calculation.

Data sync
and decode

Parising

packet

LUTs

Error

detecte

Package

memory

Congestion

and

backpressure

Traffic in

Traffic out

Parising CS
Parising

IDLE

Error?

Error?

Y

Y

N

N

Figure 9 Processing flow of maintenance package traffic.

The interconnection topology of SDGs

Decoding
Descram-

bling

Package

parsing

Error

detection

Descrambling

Error

detection

Control
symbol

parsing

Package

parsing

IDLE

parsing

Routing
table

lookup

Package

storage

Error

detection

Routing
table

lookup
Function1

Function2

Congestion

control

Function3
Function5 Function4

Bit

synchronize

Figure 10 Function topology of maintenance package processing.

Architecture Design of Protocol Controller Based on Traffic-Driven Software Defined Interconnection 367

1) Protocol compatibility test
Take IDLE3 traffic processing as an example. The

input of the data sync SDPG in IDLE3 traffic process-
ing flow is the received parallel data, while the output is
the synchronized data. The synchronized data can be ad-
dressed to the input of the data decoder SDPG, and the
decoded data will be routed to the input of the data de-
scramble SDPG based on the stream address. The simu-
lation waveforms of different IDLE sequence processing
are shown in Figure 12. The stream processing flow
among SDPGs in the TSDI-based RapidIO controller is
designed to meet RapidIO Gen4/3/2/1 protocol compati-
bility.

(a) RapidIO Gen4/3 IDLE3 traffic

(b) RapidIO Gen2 IDLE2 traffic

(c) RapidIO Gen1 IDLE1 traffic

Input of data sync SDPG

Output of data sync SDPG Polarity reversal of data codeword CSEB control codeword

Input of data descrambles SDPG

Output of data descrambles SDPG CS field marker

Input of data decoder SDPG

Output of data decoder SDPG K characters

Figure 12 Different traffic in TSDI-based RapidIO controller.

2) Latency performance test
The latency performance tests the respective trans-

mission and reception delays with different packet
lengths. The test environment connecting with the stan-
dard commercial VIP collects the test results. This arti-
cle mainly compares IDT’s RapidIO controller design.
The path modes of both controllers are configured as 1x
mode at 12.5 Gbps. And two sets of latency tests are
performed. One is the latency test with a processing
package of different lengths, where the final value is the
average value of the measured latency repeated for 5
times. The other tests the latency curve when processing
different loads with small packages (64-byte length),
where the final value is the average value of measured la-
tency repeated for 5 times. The result is plotted in Fig-
ure 13.

Because the bit width of SDGs in TSDI can be soft-
ware-defined automatically, the TSDI-based controller
has a stable latency value when processing packages with
different lengths. When the package length changes, the
bandwidth can be optimized by redefining the interface
to reduce the processing cycles. The TSDI-based RapidIO
controller performs better at the latency characteristics
when processing different loads because the TSDI-based
RapidIO controller supports acknowledging a maximum

Function1

Function5

Function2

Function3Function4

Traffic
input

Traffic
output

Figure 11 TSDI-based RapidIO controller topology driven by maintenance package traffic.

Table 1 Comparison of main features

Main feature Xilinx Mobiveil IDT TSDI

Supported protocol V2.2/1.3 V3.1/2.2/1.3 V3.2/2.2/1.3 V4.0/3.2/2.2/1.3

Path mode 1x/2x/4x 1x/2x/4x

1x/2x/4x
2x+2x
2x+1x
1x+1x

1x/2x/4x
2x+2x

2x+1x+1x
1x+1x+1x+1x

IDLE sequence IDLE2/1 IDLE3/2/1 IDLE3/2/1 IDLE3/2/1

Parallel data width (bits) 20 10/20/40/64/67 10/16/20/32/40 10/16/20/32/40

User data width (bits) 128 256 256 64/128/256

DevID (bits) 16 8/16 8/16/32 8/16/32

Address width (bits) 34 34/50 34/50/66 34/50/66

Link training IDLE2 IDLE2/CW/DME IDLE2/CW/DME IDLE2/CW/DME

Throughput (Gbps) 20 39.4 47.1 98.1

Maximum unacknowledge packets 32 4096 128 1024 configurable

V4.0 scalability Not Not Not Support

 368 Chinese Journal of Electronics, vol. 33, no. 2

of 1024 unacceptable packages. Moreover, based on the
SDI protocol, the controller can dynamically perceive the
traffic load to adapt to the number of unacceptable pack-
ages. But when it exceeds the limit, the latency of the
TSDI-based RapidIO controller is close to the IDT,
showing a linear growth curve.

3) Controller resource comparison
This design is synthesized on the 28 nm process, and

the target frequency is 400 MHz. The comparison results
between this design and IDT’s 10xN RapidIO controller
are shown in Table 2. The number of Std Cell Instances
has increased by 8.33%, which is mainly determined by
the resource increase for the designing of SDGs and the
resource decrease for the extraction of common SDGs.
The storage size has been doubled to match the maxi-
mum bit width of the SDGs’ interface. Overall, com-
pared to the IDT controller, this design has a 23.4% in-
crement in area.

Table 2 Resource area comparison

Items IDT TSDI Comp. (%)

Std cell instances 600K 610K 1.67%

Std cell area (mm2) 0.56 0.569 1.61%
Memory (bits) 214144 428288 100%

Memory area (mm2) 0.16 0.32 100%

Total area (mm2) 0.72 0.889 23.4%

Furthermore, the advantage of a 23.4% increment in
area cost should be verified. We compared the area
growth rate to the dynamic reconfigurable architecture
and the switching on/off scheme in [12]. The comparison
results are shown in Table 3.

 V. Conclusions
In this paper, we propose a protocol controller archi-

tecture based on the traffic-driven software-defined inter-
connection, define an SDI interface of SDGs and normal-
ize the interconnection topology. Given that the stream
processing characteristic, the architecture of the protocol
controller can be implemented as the interconnection of a
series of SDGs. A RapidIO controller is designed based
on TSDI. According to the results of evaluation, it can
be concluded that the TSDI-based controller can ex-
change the limited resources for flexibility and scalabili-
ty. In the future, the low-power design of SDGs and the
software design for more flexible interconnection control
will be further considered to get more efficient.

 Acknowledgement
This work was supported by the National Science

and Technology Major Project (Grant No. 2016ZX010
12101).

References
 P. Lv, Q. R. Liu, J. X. Wu, et al., “New generation software-
defined architecture,” Scientia Sinica Informationis, vol. 48,
no. 3, pp. 315–328, 2018. (in Chinese)

[1]

 J. X. Wu, “Thoughts on the development of novel network
technology,” Science China Information Sciences, vol. 61,
no. 10, article no. 101301, 2018.

[2]

 X. T. Guo, Y. W. Lei, and Y. Guo, “Design and implementa-
tion of dual-channel serial RapidIO for multiple transmission
modes,” Computer Engineering & Science, vol. 41, no. 2, pp.
233–239, 2019. (in Chinese)

[3]

 C. F. Dan, J. Li, S. L. Jing, et al., “Design of RapidIO bus
system based on software configuration,” Microcontrollers &
Embedded Systems, vol. 20, no. 7, pp. 11–14, 2020. (in Chi-
nese)

[4]

 J. C. Shen, “Design of DMA high-speed transmission scheme
based on general RapidIO controller,” Microcontrollers &
Embedded Systems, vol. 20, no. 7, pp. 20–24, 2020. (in Chi-
nese)

[5]

 Xilinx, “Serial RapidIO endpoint LogiCORE IP product
guide 7,” Xilinx, 2017.

[6]

 Mobiveil, “Mobiveil RapidIO controller (GRIO),” Mobiveil,
2016.

[7]

 IDT, “RapidIO-IP-10xN user manual,” IDT, 2017.[8]
 M. Cicioğlu and A. Çalhan, “A multiprotocol controller de-
ployment in SDN-based IoMT architecture,” IEEE Internet
of Things Journal, vol. 9, no. 21, pp. 20833–20840, 2022.

[9]

 E. Hrynkiewicz and M. Chmiel, “Programmable logic con-
troller-basic structure and idea of programming,” Electrical
Review, vol. 88, no. 11b, pp. 98–101, 2012.

[10]

 E. A. Suvorova and V. V. Rozanov, “Dynamic reconfig-
urable packet distribution unit for embedded systems,” in

[11]

Table 3 Area growth comparison

Items
The dynamic
reconfigurable
architechure

The switching
on/off scheme TSDI

Area growth (%) 33.3 55.8 23.4

64
0

100

200

300

400

500

600

700

128 256 512

(a) The latency for processing different length of package

1024

Package length (Bytes)

The latency for processing package of different

length
L

at
en

cy
 (

n
s)

2048

IDT TSDI

643216
0

100

200

300

400

500

128 256 512

(b) The latency for processing different number of package

1024

Number of acknowledge packages

The latency for processing different numbers of

packages

L
at

en
cy

 (
n
s)

2048

IDT TSDI

Figure 13 Transmission delay comparison.

Architecture Design of Protocol Controller Based on Traffic-Driven Software Defined Interconnection 369

2019 Wave Electronics and its Application in Information
and Telecommunication Systems (WECONF), St. Peters-
burg, Russia, pp.1–9, 2019.
 E. Suvorova, “An approach to dynamic reconfigurable trans-
port protocol controller unit development,” in 2020 26th
Conference of Open Innovations Association (FRUCT),
Yaroslavl, Russia, pp.429–437, 2020.

[12]

 A. Karatkevich, A. Bukowiec, M. Doligalski, et al., Design of
Reconfigurable Logic Controllers. Springer, Cham, Switzer-
land, 2016, doi: 10.1007/978-3-319-26725-8.

[13]

 M. Tsavos, N. Sklavos, and G. P. Alexiou, “Lightweight secu-
rity data streaming, based on reconfigurable logic, for FPGA
platform,” in 2020 23rd Euromicro Conference on Digital
System Design (DSD), Kranj, Slovenia, pp.277–280, 2020.

[14]

 S. Xydis, G. Economakos, D. Soudris, et al., “High perfor-
mance and area efficient flexible DSP datapath synthesis,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 3, pp. 429–442, 2011.

[15]

 S. Xydis, G. Palermo, and C. Silvano, “Thermal-aware data-
path merging for coarse-grained reconfigurable processors,” in
2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Grenoble, France, pp.1649–1654, 2013.

[16]

 E. A. Suvorova, “An approach for development of RISC- V
based transport layer controller,” in 2021 Wave Electronics
and its Application in Information and Telecommunication
Systems (WECONF), St. Petersburg, Russia, pp.1–9, 2021.

[17]

 P. D. Schiavone, D. Rossi, A. Di Mauro, et al., “Arnold: An
eFPGA-augmented RISC-V SoC for flexible and low-power
IoT end nodes,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 29, no. 4, pp. 677–690, 2021.

[18]

 P. Lv, Q. R. Liu, H. C. Chen, et al., “Domain-oriented soft-
ware defined computing architecture,” China Communica-
tions, vol. 16, no. 6, pp. 162–172, 2019.

[19]

Peijie LI received the M.S. degree in commu-
nication engineering from Information Engin-
eering University in 2014. Since September 2014,
he has been working as a Research Assistant
at the Institute of Information Technology in
Information Engineering University. He is cur-
rently working towards the Ph.D. degree in
Information Engineering University. His re-
search interests include software defined hard-

ware, SerDes, and System on Wafer. (Email: lpj@ndsc.com.cn)

Jianliang SHEN received the Ph.D degree in
National University of Defense Technology.
He is currently an Associate Professor of In-
formation Engineering University. His re-
search interests include software defined inter-
connection, system architecture design and
SoC technology. (Email: sjl@ndsc.com.cn)

Ping LYU received the Ph.D degree in com-
munication engineering from Information En-
gineering University in 2019. Currently, she is
a Professor and M.S. supervisor. Her research
interests include new generation network in-
formation system architecture, and she is en-
gaged in Large scale integrated circuit design.
(Email: lp@ndsc.com.cn)

Chunlei DONG received the M.S. degree in
microelectronics from University of Chinese
Academy of Sciences in 2014. Since Septem-
ber 2014, he has been working as a Research
Assistant at the Institute of Information Tech-
nology in Information Engineering University.
His research interests include software defined
Interconnection, switching fabric, and system
on wafer. (Email: dcl@ndsc.com.cn)

Ting CHEN received the B.S. degree in mi-
croelectronics from University of Electronic
and Scientific Technology of China in 2008,
M.S. and Ph.D degrees in electrical science
and technology from the National University
of Defense Technology, China, in 2010 and 2014,
respectively. He is currently working as a Re-
search Assistant at the Institute of Informa-
tion Technology in Information Engineering

University. His research interests include high performance in-
terconnection structure, parallel processing architectures, and
circuits. (Email: ct@ndsc.com.cn)

 370 Chinese Journal of Electronics, vol. 33, no. 2

