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Abstract — Low hardware cost and power consumption in information transmission, processing and storage is an
urgent demand for many big data problems, in which the high-dimensional data often be modelled as graph signals.
This paper considers the problem of recovering a smooth graph signal by using its low-resolution multi-bit quantized
observations. The underlying problem is formulated as a regularized maximum-likelihood optimization and is solved
via an expectation maximization scheme.  With this  scheme,  the  multi-bit  graph signal  recovery (MB-GSR) is  effi-
ciently implemented by using the quantized observations collected from random subsets of graph nodes. The simula-
tion results  show that  increasing  the  sampling  resolution  to  2  or  3  bits  per  sample  leads  to  a  considerable  perfor-
mance improvement, while the energy consumption and implementation costs remain much lower compared to the
implementation of high resolution sampling.
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 I. Introduction
Modern information processing frequently involves a

large  volume  of  increasingly  complex  data  generated
from various data sources. The complexity comes, in par-
ticular,  from  the  intrinsic  relationship  and  structure  of
the framework on which these data resides. For instance,
environmental monitoring  data  obtained  at  different  re-
gions are related to their geographical proximities, traffic
volumes at different locations in a transportation network
depends on the topology of  the  network,  and individual
preferences  of  a  group  of  persons  may  be  influenced  by
the  friendships  among  them.  As  powerful  mathematical
tools, graphs  offer  the  ability  to  efficiently  model  rela-
tionships  and  structures  of  such  complex  data  (denoted
as graph signals). This makes signal processing on graphs,
or  graph  signal  processing  (GSP)  [1]–[3],  become  an
emerging research field, and it has attracted growing in-
terests recently in the signal processing community.

One of  the  basic  problems  in  GSP  is  the  develop-
ment  of  graph  signal  reconstruction  [4]–[7] from inaccu-
rate  and  incomplete  data.  Typically,  the  graph  signals

are bandlimited [8] or the graph signal is smooth [9] with
respect to the graph topology, i.e., the signal changes be-
tween  neighboring  nodes  are  small.  By  exploiting  this
spatial  relationship  of  graph  signal,  the  unknown  data
associated  with  unsampled  nodes  can  be  reconstructed
from  the  sampled  data.  Over  the  past  few  years,  there
has been much work devoted to the graph signal recon-
struction  from  sampled,  noisy,  missing,  or  corrupted
measurements. The  most  approaches,  with  samples  col-
lected  from random subsets  of  graph  nodes,  solve  least-
squares  problems  penalized  with  different  regularizers.
They recovers the smooth graph signal in both the time-
static  and  time-varying  cases  [10],  [11]  by  balancing  a
trade-off between data-fitting and smoothness quantified
in terms of Tikhonov regularization (i.e, graph Laplacian
quadratic form) or  total  variation regularization.  To re-
cover a bandlimited (or approximately bandlimited) graph
signal  from  a  subset  of  its  samples,  graph  sampling
strategies [12]–[15] have been studied to optimize the se-
lection of the sampling set. In addition, the graph signal
reconstruction in a distributed manner [11], [12] also has 
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received  attention  in  order  to  process  the  large-scale
graph-structured data in lack of a central processor.

Most  of  the  graph  signal  recovery  algorithms  are
based  on  the  assumption  that  quantization  errors  are
negligible  as  a  result  of  using  high-resolution  analog-to-
digital converters (ADCs). However, using high resolution
ADCs  is  usually  expensive  and  power-hungry  [16]–[19].
In this paper, as opposed to the previous works, we aim
to  investigate  the  problem  of  recovering  smooth  graph
signals from low-resolution few-bit measurements,  which
are taken over only a partial set of nodes. In such cases,
contrary to  the  high-resolution  or  full  precise  quantiza-
tion  case,  the  available  measurements  containing  large
quantization errors can not be directly employed for the
graph  signal  recovery.  Although  there  are  many  well-
known  techniques  for  the  classical  signal  reconstruction
by using the low-bit techniques, they can not be directly
applied to the graph signal reconstruction. One reason is
that graph signals are smooth, in other words, they vary
slowly across the nodes. This feature makes it difficult to
quantify  graph  signals  without  prior  knowledge  of  their
distribution. To solve this problem, we consider to use a
random dithering  scheme which  makes  the  graph  signal
samples  vary  randomly  across  the  nodes  and  no  longer
smooth. This naturally raises a question, whether the un-
derlying smoothness can still  be used to reconstruct the
graph signals  of  the  entire  network  from the  graph  sig-
nal quantized samples of a small  number of nodes? Our
study will prove that this answer is yes. We develop reg-
ularized  maximum-likelihood  optimization  algorithms
for graph  signal  recovery.  The  proposed  algorithm  em-
ploys an  iterative  scheme  based  on  expectation  maxi-
mization  to  retrieve  the  raw  unquantized  observations
and recover the graph signals from low-bit quantized ob-
servations.  The  simulation  results  show  that  the  graph
signal  recovery  performance  can  be  greatly  improved
when increasing the sampling resolution from 1 bit to 2
or 3 bits, while the power consumption and implementa-
tion  costs  remain  much  lower  than  the  high-resolution
sampling scenario.

 II. Graph Signal Model and Problem
Formulation

 1. Graph signal model

G = (V, E ,W ) V ≜ {1, 2,
. . . ,K} E ⊆ V × V W ∈
RK×K wij = wji ≥ 0

(i, j) ∈ E wij

i j
wii = 0 i ∈ V

We consider signals on an undirected, connected and
weighted  graph  with  node  set 

,  edge  set ,  and  weight  matrix 
.  The  entries  of  the  weight  matrix

are non-zero if and only if . The weights  de-
scribe  the  strength  of  the  connection  from  node  to .
We assume  for  all ,  that  is,  the  graph has
no loops.

V
R i ∈ V
xi ∈ R

K x ≜ [x1, x2, . . . , xK ]
T ∈ RK

x

A graph signal is a mapping from the node set  to
, i.e., it associates with each node  a real number

. These  real  numbers  can  be  conveniently  ar-
ranged into a length-  vector .
It has been shown that, if  is smooth in the sense that
it varies little over strongly connected nodes, it is possi-

x M < K

ys[n]=
[
yk1n

[n], yk2n
[n], . . . , ykMn

[n]
]T∈RM

ble to recover the graph signal  from its  noisy
samples:  taken
over a random subset of nodes,
 

Vs[n] ≜ {k1n, k2n, . . . , kMn} ⊆ V (1)

n
Vs[n] Vs[n] = Vs n

ys[n] x

at time . Note that, in the fixed sampling case, the sub-
set  is constant, i.e.,  for any . Our work
in this paper covers this special case. With (1), the noisy
samples  is related to  via
 

ys[n] ≜ S[n]y[n] (2)

y[n] =
[
y1[n], y2[n], . . . , yK [n]

]T ≜ x+ v[n]

S[n]

and ,  where
 denotes a random sampling matrix defined as

 

S[n] = [ek1n , ek2n , . . . , ekMn
]T ∈ {0, 1}M×K (3)

ekmn K kmn

v[n] ≜
[
v1[n], v2[n], . . . , vK [n]

]T

C[n] ≜ diag{σ2
1 , σ

2
2 , . . . , σ

2
K}

and  is  a  length-  unit  vector  in  which  the th
entry  is  one  and  all  other  entries  are  zero.  Besides,

 is  a  zero-mean,  spatially
and temporally independent Gaussian noise with covari-
ance .
 2. Problem formulation

x M
d[n] ys[n]

k ∈ V
n

rk[n]

1 rk[n]
dk[n] =Q(zk[n])

k ∈ V

In this paper, we consider the problem of recovering
the graph signal  from  low-resolution multi-bit quan-
tized data , not directly from the noisy samples .
Assume  that  each  node  is equipped  with  a  ran-
dom  generator  (RG)  and  a  quantizer.  At  time ,  each
RG can provide a zero-mean random dithering  [20],
[21] with variance . Using , the quantizer can pro-
duce  a  low-resolution  multi-bit  output ,

, as shown in Figure 1, where
 

zk[n] = rk[n]yk and yk[n] ≜ xk + vk[n] (4)

Qand  denotes  an  element-wise  mid-tread  type  uniform
quantizer defined as
 

Q(z) = ωh if αh ≤ z < αh+1 (5)

α1<α2< · · ·<0< · · ·<α2q−2<α2q−1 2q−1
rk[n]

q = q

dk[n] = zk[n] q = +∞

and  are  the 
threshold  levels.  The  random  dithering  makes  the
quantizer’s  input  be  zero-mean  and  helps  to  set  the
quantization  thresholds.  In  this  paper,  the  low-resolu-
tion multi-bit  quantized data means that  1–4.  As 
increases,  the  resolution  gets  higher  and  higher,  and  in
particular  for  (infinite-bit quanti-
zation or full-precision).
 

xk

vk[n]

yk[n] zk[n] dk[n]=Q (zk[n])Quantizer

Random generator rk[n]

Figure 1  Low-resolution multi-bit quantized signal model.
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 III. Multi-Bit Graph Signal Recovery
(MB-GSR)

x

In this section, we formulate a maximum likelihood
problem whose solution provides  us  with an estimate of
 by using the q-bit quantized observations

 

Ds = {ds[1],ds[2], . . . ,ds[T ]} ∈ RM×T (6)

{Vs[n], n = 1, 2,

. . . , T} T ≥ 1

are  taken  over  a  random  node  subsets 
 with . Moreover,

 

ds[n] ≜
[
dk1n [n], dk2n [n], . . . , dkMn

[n]
]T

= Q(zs[n]) (7)

zs[n] ≜
[
zk1n

[n], zk2n
[n], . . . , zkMn

[n]
]Tand  defined by

 

zs[n] ≜ S[n]z[n] = S[n]Λ[n]x+ ϑ[n] (8)

with
 

z[n] ≜
[
z1[n], z2[n], . . . , zK [n]

]T (9)
 

Λ[n] ≜ diag(r1[n], r2[n], . . . , rM [n]) (10)
 

ϑ[n] ≜ S[n]Λ[n]v[n] (11)

ϑ[n]

Cs[n] ≜ diag{σ2
k1n

, σ2
k2n

, . . . , σ2
kMn

}
Moreover,  is a zero-mean Gaussian random vec-

tor with covariance .

rk[n]

k rk[n]

x

To be specific,  we assume that the center processor
can duplicate the same random variable . For exam-
ple,  each  node  generates  its  from a  random  se-
quence generator with different seeds, and these seeds are
known to the center processor, so that the corresponding
input vectors can be duplicated in the center processor [17],
[22]. In this case, we consider to recover  via maximiz-
ing a regularized maximum-likelihood function:
 

L(x) = logP (Ds|x)− γxTLx (12)

xTLx= 1
2

∑
i∈V

∑
j∈V (xj−zxi)

2

wij

L γ

logP (Ds|x)
x

logP (Ds|x)

where  the  second  term 
 is  the  regularization  that  measures  the  smoothness,

 is  the  Laplacian  matrix,  and  is  a  factor  balancing
the  trade-off  between  smoothness  and  data-fitting.  For
equation (12), it is hard to directly maximize 
with .  Hence,  we find an auxiliary  lower  bound of  the
log likelihood :
 

logP (Ds|x)

=

ˆ
logP (Ds,Zs|x)dZs

≥
⟨[

log
P (Ds,Zs|x)
P (Zs|Ds, x̂)

]⟩
P (Zs|Ds,x̂)

≜ F (x|x̂) (13)

Zs = {zs[1], zs[2], . . . , zs[T ]} ∈ RM×T

EP (Zs|Ds,x̂)[·] P (Zs|Ds, x̂)

⟨x⟩P (x)

P (x)

In  (13), ,  and
 denotes  the  expectation  over .

Moreover,  denotes an expectation over the distri-
bution .

F (x|x̂)

maxx L(x)
Y

x̂0

F (x|x̂ℓ)− γxTLx

The lower bound  is a simple consequence of
Jensen's inequality for the log function, and it paves the
way for iteratively solving the problem . Since
we have  not  access  to  the  original  noisy  samples ,  we
treat them  as  latent  variables  and  employ  the  expecta-
tion  maximization (EM) scheme.  Given an initialization

,  the  EM iteration  performs coordinate  ascent  on the
lower bound , that is,
 

x̂ℓ+1

= argmax
x

{
F (x|x̂ℓ)− γxTLx

}
= argmax

x

{⟨
logP (Zs|x)

⟩
P (Zs|Ds,x̂ℓ)

− γxTLx
}

(14)

ℓ = 0, 1, 2, . . .

x

where  denotes  the  EM-iteration  index.  In
the second line of (14), we have removed some constants
which do not depend on . From the graph signal sam-
pling model  (8),  the conditional  expectation in (14)  can
be expanded as
  ⟨

logP (Zs|x)
⟩
P (Zs|Ds,x̂ℓ)

= −
T∑

n=1

⟨∣∣ ∣∣zs[n]− S[n]Λ[n]x
∣∣ ∣∣2

C̄s[n]

⟩
P (zs[n]|ds[n],x̂ℓ)

+ const

= −
T∑

n=1

∣∣∣ ∣∣∣ηℓ[n]− S[n]Λ[n]x
∣∣∣ ∣∣∣2

C̄s[n]
+ const (15)

const x

∥x∥2C = xTCx C̄ ≜ C−1

where s  denote  constants  with  respect  to ,
, , and

 

ηℓ[n]≜⟨zs[n]⟩P (ys[n]|ds[n],x̂ℓ)=
[
ηℓ,1[n], ηℓ,2[n], . . . , ηℓ,M [n]

]T

Plugging  (15)  into  (14)  and ignoring  the  constants,
it follows that
 

x̂ℓ+1

= argmin
x

{
1

T

T∑
n=1

∣∣∣∣∣∣ηℓ[n]− S[n]Λ[n]x
∣∣∣∣∣∣2
C̄s[n]

+ γxTLx

}
.

(G+ γL) x̂ℓ+1 = hℓThis requires  where
 

G ≜ 1

T

T∑
n=1

M∑
m=1

σ−2
kmn

r2kmn
[n]ekmne

T
kmn

(16)

 

hℓ ≜
1

T

T∑
n=1

M∑
m=1

σ−2
kmn

ηℓ,m[n]rkmn [n]ekmn
(17)

It  is  readily  deduced  that  the  following  lemma  is
true, see Appendix A.

G+ γL
γ ̸= 0

Lemma  1  Matrix  is  always  invertible  for
 and any sampled subset of the graph nodes.

x̂ℓ+1 =

(G+ γL)
−1

hℓ

x̂ℓ+1 ηℓ[n]
dsm[n] ≜ dkmn

[n]

ds[n] τ−m[n]

Using  Lemma  1,  we  obtain  the  solution  as 
.  However,  our  work  is  not  finished,  the

estimate  depends on  and we have yet to com-
pute it. Since each element  of the obser-
vation vector  determines a lower bound  and
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τ+m[n] zsm[n] ≜ zkmn
[n] ∀ m ∈ M ≜

{1, 2, . . . ,M} n ∈ T ≜ {1, 2, . . . , T}
an upper bound  for ,  

 and , it holds that
 

P (zs[n]|d[n], x̂ℓ)

=

M∏
m=1

T∏
n=1

P (zsm[n]|τ−m[n]≤zsm[n]≤τ+m[n], x̂ℓ) (18)

In addition, we recall the following lemma [22].
υ
a b a > b

υ

E[υ|b < υ < a] = φ(b)−φ(a)
Φ(a)−Φ(b) φ(·) Φ(·)

Lemma 2  Given a random  with standard normal
distribution, and two constants  and  satisfying ,
it holds that for the conditional first-order moments of :

,  where  and  respec-
tively denote the probability density function and the cu-
mulative  distribution  function  of  the  standard  normal
distribution.

By this lemma and equation (18), it follows that
 

ηℓ,m[n]

= ⟨zsm[n]⟩P (zs
m[n]|τ−

m[n]≤zs
m[n]≤τ+

m[n],x̂ℓ)

= rkmn
x̂kmn,ℓ + σkmn

φ(ς−m[n])− φ(ς+m[n])

Φ(ς+m[n])− Φ(ς−m[n])
(19)

m = 1, 2, . . . ,Mfor , with
 

ς+m[n] ≜ τ+m[n] − rkmn
x̂kmn,ℓ

σkmn

ς−m[n] ≜ τ−m[n] − rkmn
x̂kmn,ℓ

σkmn

In this way, the MB-GSR algorithm can be summa-
rized as Algorithm 1.

Algorithm 1  MB-GSR Algorithm

K M L γ {α1, α2, . . . , α2q−1} {rk[n], k ∈ K} Vs[n] =
{kmn,m ∈ M} ds[n] n ∈ T {α1, α2, . . . , 0, . . . ,
α2q, α2q−1}

Input: , , , , , , 
, ,  for  all , 

.
{x̂m,m ∈ V} 1: Initialize ;

G = 1
T

∑T
n=1

∑M
m=1 σ−2

kmn
r2kmn

[n]ekmne
T
kmn

 2: ;

P = (G+ γL)−1 3: ;
n ∈ T m ∈ M kmn ∈ Vs[n] 4: Repeat ( , , )

ς+m[n] =
τ+
m[n]−rkmn x̂kmn

σkmn
 5: ;

ς−m[n] =
τ−
m[n]−rkmn x̂kmn

σkmn
 6: ;

Ωm[n] =
φ(ς−m[n])−φ(ς+m[n])

Φ(ς+m[n])−Φ(ς−m[n])
 7: ;

ηm[n] = rkmn x̂kmn + σkmnΩm[n] 8: ;

h = 1
T

∑T
n=1

∑M
m=1 σ−2

kmn
ηm[n]rkmn [n]ekmn 9: ;

x̂ = Ph10: ;
11: Until stopping criterion is satisfied

x̂ = [x̂1, x̂2, . . . , x̂K ]TOutput: .

G+ γL

K3 K

A  major  computational  complexity  here  lies  in  the
inversion  of  the  matrix ,  which  usually  is  order

 and  increases  with  the  size  of the  graph.  Fortu-

(TM +K2)N N

nately, the  matrix  inversion  can  be  performed  in  ad-
vance before the algorithm starts to run. Another major
computational  complexity  of  the  proposed  algorithm
comes  from  the  EM  iterations.  This  involves  about

 multiplications  where  is  the  number  of
the EM iterations.

In addition,  although this  paper considers  undirect-
ed graphs, the proposed MB-GSR algorithm with a small
modification  can  also  be  applied  to  the  case  of  directed
graphs. For directed graphs, it holds that
  ∑

i∈V

∑
j∈V

(xj − xi)
2 wij = xT (L̃+L)x

L̃=D̃−W T D̃=diag(
∑

i∈Vwi1,
∑

i∈Vwi2, . . . ,
∑

i∈VwiK)with , .
Therefore,  in  this  case,  the  solution  to  problem  (14)  is
given by
 

x̂ℓ+1 =
(
G+

1

4
γ(L̃+L+ L̃T +LT)

)−1
xℓ

 IV. Simulation Results

x0

q q =

1, 2, 3, 4 q = ∞

MSE = E| |x̂−x0| |2/K
SNR ≜ −20×

log
∑K

k=1 σk

x0 K = 200

In this section, numerical results are provided for as-
sessing the  performance  of  the  proposed  MB-GSR algo-
rithm for recovering a smooth graph signal  from low-
resolution  few-bit  the -bit  quantized  observations  (

). For the case of  (i.e., graph signal recov-
ery  from  unquantized  observations),  the  corresponding
algorithm  is  similar  to  some  existing  algorithms  based
on smoothness penalties [2], [10], [23]. The recovery per-
formance  is  quantified  in  terms of  the  normalized  mean
squared  reconstruction  error ,  and
the signal-to-noise ratio (SNR) is defined as 

. All  results  described  below  have  been  ob-
tained by averaging over 100 independent realizations of
the sampling set and the noise. Moreover, without loss of
generality, we use the GraSP toolbox [24] to yield a sig-
nal  over a graph with  nodes, as shown in Fig-
ure 2.
 

0.05

0

−0.05

−0.10

−0.15

−0.20
 

x0 K = 200Figure 2  Signal  over a graph with  nodes.
 

γ = 0.9 T = 800

Figure  3 presents  scattering  diagrams  of  the  graph
signal  recovery  using  the  proposed  MB-GSR  algorithm.
Here,  the  factor ,  SNR  =  20  dB,  and 
quantized/unquantized observations are  used.  Moreover,
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M/K = 10% 30%
50% M = 20 60

100

∞

three cases of the sampling ratio , , and
,  respectively,  are  considered,  that  is, , ,

and  nodes  out  of  a  total  200 nodes  respectively  are
sampled,  as  shown in Figure 3(a), (d),  and (g).  The re-
covery results using the 2-bit GSR algorithm are shown
in Figure  3(b), (e),  and  (h),  respectively,  and  those  us-
ing the -bit GSR algorithm [10] from the unquantized
observations  are  shown  in Figure  3(c), (f),  and  (i),  re-

spectively.

M/K

∞

∞

From Figure  3, we  can  observe  that,  as  the  sam-
pling  ratio  increases,  the  recovery  graph  signals
obtained by using both the 2-bit GSR algorithm and the

-bit GSR algorithm become more and more similar to
the  true  graph  signal.  This  shows  that  the  performance
of the 2-bit GSR algorithm is comparable to that of the

-bit GSR algorithm.
 

(a) M=20

(d) M=60

(g) M=100

(b) 2-bit GSR with M=20

(e) 2-bit GSR with M=60

(h) 2-bit GSR with M=100

(c) ∞-bit GSR with M=20

(f) ∞-bit GSR with M=60

(i) ∞-bit GSR with M=100
 

M/K = 10% 30% 50%Figure 3  Scattering diagrams of the graph signal recovery wth the sampling ratio  (M=20),  (M=60), and  (M=100),
respectively, where the unfilled circles in (a), (d), and (g) denote the unsampled nodes.
 

K = 2000

G = (V, E ,W )

M

We now consider a real-world dataset of the sea sur-
face  temperature  (SST)  [25],  which  is  published  by  the
Physical Sciences Laboratory. It is collected weekly from
October 1881 to December 1989, and the spatial  resolu-
tion  is  1°  latitude  ×  1°  longitude.  We  randomly  select
SSTs of  points from 0° west longitude to 360°
west longitude, and 90° south latitude to 90° north lati-
tude.  As  shown  in Figure  4,  the  SSTs  of  theses  2000
points  are  constructed as  a  graph   by us-
ing  a  4-nearest  neighbors  algorithm  with  the  weight  of
each edge inversely proportional to the square of the dis-
tance  between  its  two  nodes.  We  can  recover  the  SSTs
from their  low-resolution multi-bit quantized data to
further evaluate  the  performance  of  the  MB-GSR  algo-
rithm.

M/K = 10%, . . . , 90% T = 800

Figure  5 depicts the  MSEs  versus  the  sampling  ra-
tio  in  the  range  with 
quantized/unquantized  observations  and  SNR = 20  dB.
It  is  seen  that  the  recovery  performance  of  all  schemes
improves  with  increasing  sampling  ratio,  and  moreover,

∞

increasing the number of quantization bits from 1-bit to
2-bit and  then  to  4-bit  leads  to  a  considerable  perfor-
mance  improvement.  Further,  it  is  observed  that  the
MSE of 4-bit GSR is very close to that of the -bit GSR
from the unquantized observations.

−5 15 M/K = 0.4
Figure  6 plots  the  MSEs  versus  the  SNR  varying

from  dB to  dB with  and the number
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Figure 4  Sea  surface  temperature  dataset  over  a  graph  with
 points.
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T = 600

∞

of quantized/unquantized observations . We find
that  the  proposed  MB-GSR algorithm  using  3-bit  or  4-
bit  quantized  observations  has  almost  similar  recovery
accuracy  to  that  of  the -bit GSR  using  the  unquan-
tized observations.

T 10 10000 M/K = 0.4

2× 10−3 ∞

2× 10−3

Figure 7 plots the MSEs versus the number of obser-
vations  varying  from  to  with 
and SNR=20 dB.  This  figure  shows that,  to  achieve  an
MSE  of  for  example, -bit,  4-bit,  3-bit,  2-bit
and 1-bit  cases  need about 100,  120,  150,  300 and 1000
observations,  respectively.  This  indicates  that  the  total
number  of  bits  required  to  achieve  an  MSE of 
is, respectively, 480, 450, 600, and 1000 bits for 4-bit, 3-
bit, 2-bit, and 1-bit quantization scenarios.

∞

M/K = 0.4 T = 100 1000

4

∞

Figure  8 further  presents  the  comparison  result  of
the -bit GSR algorithm and the proposed MB-GSR al-
gorithm  versus  the  number  of  quantization  bits  with

, SNR=20 dB,  and . The figure
shows  that  the  proposed  MB-GSR algorithm with -bit
quantized observations has achieved reconstruction accu-
racy similar to the -bit GSR algorithm.

∞

103

Note  that  the -bit  GSR  requires  high-resolution
ADCs, whose implementation costs and power consump-
tion are much higher compared to 3-bit and 4-bit ADCs.
For instance, a 14-bit ADC with sampling frequency of 10
MHz consumes almost  times more power than 3-bit

and 4-bit ADCs with the same sampling frequency [16].

 V. Conclusions
In this paper, we investigated the problem of recon-

structing smooth graph signals from low-resolution multi-
bit  sampling  observations  taken  on  a  small  number  of
graph  nodes.  The  low-resolution  multi-bit  grasp  signal
sampling  model  was  established  by  using  an  random
dither quantizer, and the multi-bit graph signal recovery
algorithms were  developed.  The  simulation  results  re-
vealed that the grasp recovery performance could be sub-
stantially improved when increasing the sampling resolu-
tion from 1-bit quantization case to 2 or 4 bits per sam-
pling observations, while the power consumption and im-
plementation costs remain much lower than the high-res-
olution sampling scenario.

There  are  several  possible  extensions  to  this  work
that may be interesting lines of future research. To fur-
ther improve performance, the non-uniform quantization
(e.g.,  Lloyd-Max  quantization)  may  be  used  to  replace
the  uniform quantization  in  this  paper.  Graph  topology
identification is required for the case where the adjacen-
cy matrix or edge weight matrix is unknown. Hence, how
to implement the identification task by using the low-bit
observations is  still  open  questions  that  are  worth  fur-
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ther studying.
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 Appendix A. The Derivation of Lemma 1

G

{[G]kk ≥ 0, k = 1, 2, . . . ,K}
By definitions  is a diagonal matrix with the non-negative diago-

nal elements . There exist two cases:
[G]kk > 0 k = 1, 2, . . . ,

K

n = 1, 2, . . . , T G

H ≜ G+ γL

det(H) ≥ det(G) + det(γL) = det(G) > 0

1)  All  diagonal  elements  are  positive:  for 
, which corresponds to the case that each node of the graph is sam-

pled at  least  once  during .  In  this  case,  is  full  rank
and  hence  the  matrix  sum  is  also  full  rank  since

.
∃ k ∈ V [G]kk = 0

n = 1, 2, . . . , T 0 < Rank(G) ≤
K − 1 L[r] L

r r L

L[r] r L

K − 1 Rank(L) = Rank(L[r]) = K − 1 r = 1, 2, . . . ,K

det(H[r]) ≥ det(G[r]) + det(γL[r]) > 0

H[r] r

2) At least one diagonal element is 0:  , ,  which
corresponds to the case that there is at least one node that has never
been  sampled  during .  In  this  case, 

. Now, let  be a submatrix of  which is obtained by delet-
ing the th row and the th column of . By properties of the Lapla-
cian matrix,  is full rank for any , and the rank of  is equal to

,  i.e., ,  for  any .
Therefore, ,  that  is,  matrix

 is full rank for any .
K

[G]KK = 0 [H]KK = γ[L]KK H L

Without  loss  of  generality,  assume  that  node  has  never  been
sampled, then  and . We write  and 
in the form of block matrices:
 

H =

[
H[K] −γwK

−γwT
K γ[L]KK

]
and L =

[
L[K] −wK

−wT
K [L]KK

]

wK =[w1K , w2K , . . . , wK−1,K ]T [L]KK =wT
K1K−1where  and .  It

follows that
 

det(L) =
(
[L]KK − w⊤

K(L[K])−1wK

)
· det(L[K])

det(L) = 0 det(L[K]) ̸= 0Because of  and , we have
 

[L]KK = wT
K(L[K])−1wK (A-1)

Using this, we further get
 

det(H) = γ
(
[L]KK − γwT

K(H[K])−1wK

)
· det(H[K])

= γwT
K

(
(L[K])−1 − γ(H[K])−1

)
wK · det(H[K])

det(H[K]) > 0 H[K] ̸= γL[K]

det(H) ̸= 0

Since  and ,  we  deduce  that
.

[G]KK ̸= 0 [G]kk = 0 k = 1, 2, . . . ,K − 1

H

Again, we consider an extreme case where only one element is non-
zero,  for  example  :  and , .
We write  as
 

H =

[
γL[K] −γwK

−γwT
K [H]KK

]

Using the relation (A-1) again, we have
 

det(H) = γ
(
[H]KK − γw⊤

K(L[K])−1wK

)
· det(L[K])

= γ ([H]KK − γ[L]KK) · det(L[K]).

det(L[K]) > 0 [H]KK ̸= γ[L]KKSince  and , we also deduce that

det(H) ̸= 0 H. That is to say, matrix  is regular and reversible.
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