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Abstract — Type-II generalized Feistel network (GFN) has attracted a lot of attention for its simplicity and high
parallelism. Impossible differential attack is one of the powerful cryptanalytic approaches for word-oriented block ci-
phers such as Feistel-like ciphers.  We deduce the impossible differential  of  Type-II  GFN by analyzing the Boolean
function in the middle round. The main idea is to investigate the expression with the variable representing the plain-
text (ciphertext) difference words for the internal state words. By adopting the miss-in-the-middle approach, we can
construct  the  impossible  differential  of  Type-II  GFN.  As  an  illustration,  we  apply  this  approach  to  WARP,  a
lightweight 128-bit block cipher with a 128-bit key which was presented by Banik et al. at SAC 2020. The structure
of WARP is a 32-branch Type-II GFN. Therefore, we find two 21-round truncated impossible differentials and imple-
ment a 32-round key recovery attack on WARP. For the 32-round key recovery attack on WARP, some observa-
tions are used to mount an effective attack. Taking the advantage of the early abort technique, the data, time, and
memory complexities are 2125.69 chosen plaintexts, 2126.68 32-round encryptions, and 2100-bit, repectively. To the best
of our knowledge, this is the best attack on WARP in the single-key scenario.
Keywords — WARP, Feistel cipher, Impossible differential attack.
Citation — Jiali SHI, Guoqiang LIU, Chao LI, “Constructing the Impossible Differential of Type-II GFN with
Boolean Function and Its Application to WARP,” Chinese Journal of Electronics,  vol. 33, no. 1, pp. 80–89, 2024.
doi: 10.23919/cje.2022.00.132. 

 I. Introduction

α→ β α β
r0 r1

The impossible differential attack is one of the most
effective  cryptanalytic  approaches  used  to  evaluate  the
security of block ciphers. This method was introduced by
Biham et al. [1] and Knudsen [2] independently. Its core
idea is to use (truncated) differentials with zero probabil-
ity  to  eliminate  the  wrong  keys.  Truncated  differential
focus on whether there are differences on some bytes and
do not care about the values of the differences. The most
important part  of  this  attack  is  to  find  the  longest  im-
possible differential. Generally, such differentials are con-
structed  by  the  miss-in-the-middle  method  [3],  [4]. Giv-
en  a  differential ,  it  propagates  and  in for-
wards and backwards by  and  rounds, respectively.

(r0 + r1)

Then,  we  check  whether  there  is  a  contradiction  in  the
middle round. If there is a contradiction, it is a -
round impossible differential. Based on the method, some
automated  tools  called  U-method  [5],  UID-method  [6]
and  WW-method  [7]  have  been  exploited  for  searching
impossible differentials.  These methods focus on the im-
possible differential independent with the Sboxes. In ad-
dition,  automated  models  such  as  MILP (mixed  integer
linear  programming),  CP,  SMT and SAT are  also  often
used for searching impossible differentials [8]–[11].

The Boolean function plays an important role in the
security of  block cipher.  Generally,  the output words in
each  round  of  block  cipher  can  be  regarded  as  Boolean
functions over  plaintext  and  key  words.  From  the  per- 
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SKINNY

spective  of  distinguishing  attacks,  the  cryptanalysts  try
to  construct  an  impossible  differential  which  covers  as
many rounds as possible. At EUROCRYPT 2016, Sun et
al. proved that the upper bound on the length of impos-
sible  differentials  of  substitution-permutation  network
(SPN) structure by the primitive index of the linear lay-
ers [12] without considering the details inside Sboxes. In-
spired by this  method,  Zhang et  al. evaluated the resis-
tance of SPN block cipher against impossible differential
attack  by  counting  the  occurrences  of  the  plaintext  (ci-
phertext) words appearing in the expression of the inter-
nal state words [13]. For , they found all of the 11-
round impossible differentials. Thus, we try to construct
the  impossible  differential  for  Type-II-based  ciphers  [14]
by  exploring  the  algebraic  expression  in  the  middle
round.

TWINE
WARP WARP

AES
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WARP
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2127.06 2126.06 2122.49

Type-II  GFN is  a  popular  design  for  block  ciphers.
There are many Type-II-based ciphers, e.g.,  [15] and

 [16].  is a lightweight block cipher, with a 128-
bit  block  and  a  128-bit  key.  This  cipher  submitted  by
Banik et  al. at  SAC 2020,  suits  the  small-footprint  cir-
cuit which can be used as a direct replacement for -128.
Designers of  provided the security evaluations, they
found  a  20-round  integral  distinguisher  by  utilizing  the
MILP model proposed in [17] and a 21-round impossible
differential.  In  terms  of  the  meet-in-the-middle  attack,
they  considered  that  it  is  difficult  to  amount  32-round

.  For  differential  and  linear  attacks,  they  used  the
MILP model [18] to obtain the lower bound on the num-
ber of active Sboxes for up to 19-round. Afterward, Teh
et al. [19] offered a 23-round differential attack. They also
implemented  24-round  rectangle  attack  on  with
memory/data/time  complexity / /  by
using  the  Feistel  boomerang  connectivity  table  (FBCT)
proposed in [20].

WARP

WARP

Our  contributions  In  this  paper,  we  evaluate  the
security  of  against  impossible  differential  attacks.
The output words in the middle round are represented as
Boolean  functions  over  plaintext  and  key  words.  These
algebraic  formulas  provide  precious  information  related
to impossible differentials. Therefore, we deduce the im-
possible differentials by investigating the algebraic repre-
sentation in the middle round. Further, we launch a key
recovery attack on the reduced round  based on the
impossible differential. More precisely,

• For Type-II GFN, we construct impossible differ-
entials by utilizing the Boolean functions of the internal
state words. Unlike the method provided in [13], we not
only focus on the number of  occurrences of  the variable
in the Boolean function, but also analyze the effect of the
plaintext (ciphertext)  difference  words  on  the  differen-
tial pattern of the internal state words.

WARP• Apply this  method on .  We deduce two 21-
round truncated impossible differentials by analyzing the
algebraic formulas of the internal state words. To verify
the  impossible  differential,  we  search  the  contradictions
in each round by using the SMT model proposed in [11].

WARP

2125.69

2126.68 2100

WARP 22%
WARP

• We proposed a  32-round key recovery  attack  on
.  Based  on  a  21-round  impossible  differential,  we

launch a 32-round key recovery attack by pre-appending
and appending  five  rounds  and six  rounds,  respectively.
In the process of the key recovery attack, we exploit the
key schedule and remove the redundancy in the subkeys
involved  in  the  extended  rounds.  We  also  construct  a
hash  table  and  adopt  the  early  abort  technique  [21]  to
improve  the  attack.  As  a  result,  the  data,  time,  and
memory complexities are about  chosen plaintexts,

 32-round encryptions, and  bits. This decreas-
es the security margin of  to . The cryptanalyt-
ic results for  in the single-key scenario are summa-
rized in Table 1.
 
 

WARPTable 1  Summary of cryptanalytic results on 

Approach Rounds Memory Data Time Ref.

Differential 23 2106.62 2106.62 2106.68 [19]

Rectangle 24 2127.06 2126.06 2122.49 [19]

Impossible differential 32 2100 2125.69 2126.68 Sect. IV
 
 

WARP

WARP

WARP

Outline  Section II provides the notions and the de-
scriptions  of  Type-II  GFN and .  In  Section  III,  we
introduce  how  to  construct  the  impossible  differentials
with the Boolean function of the internal state words for
the Type-II GFN, and apply this generic method to .
Based on a 21-round impossible differential, we amount a
32-round key recovery attack on  in Section IV. And
finally, Section V concludes this work.

 II. Preliminaries

 1. Notations
Mk•  : the 128-bit master key.
Xr−1

j j r•  : the th nibble input in the th round.
Y r−1
j j π

r

•  : the th nibble input of the  operation in
the th round.

Kr−1
i i r•  : the th nibble subkey in the th round.

∆Xr−1
j j r•  : the th nibble input difference in the th

round.
∆Y r−1

j j π

r

•  :  the th  nibble  input  difference  of  the 
operation in the th round.

Xr−1 Xr−1
0 ||Xr−1

1 || · · · ||Xr−1
31•  : .

 2. Type-II GFN
Zheng et al. introduced the Type-II Feistel which is

a  generalization of  the original  Feistel  construction [22].
The  Type-II  Feistel  apply  the  cyclically  right-shifted  to
achieve Shannon’s concepts of diffusion. Later, Nyberg [14]
proposed the following Type-II GFN depicted in Figure 1.

n
q = 2p X0, X1, . . . , X2p−1

Xi m
R

F r
j

Definition  1  The -bit  plaintext  is  devided  into
 subblocks denoted as . The size

of  subblock  is -bit.  The  ciphertext  of  the  Type-II
GFN is obtained by iterating  rounds of the plaintext.
Let  be  the  cryptographic  keyed  functions,  where
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0 < r ≤ R 0 ≤ j < p π 2p
r

, ,  and  be  a  permutation  over 
subblocks. The round function in the th round is
 

(Xr
0 , X

r
1 , . . . , X

r
2p−1)←π(Xr−1

0 , F r−1
0 (Xr−1

0 )⊕Xr−1
1 , . . . ,

Xr−1
2p−2, F

r−1
p−1 (X

r−1
2p−2)⊕Xr−1

2p−1)

Y r−1
i π

r Y r−1
1 = F r−1

0 (Xr−1
0 )⊕Xr−1

1

Xr−1
0 Xr−1

1 Y r−1
1

Let  be the input of  the permutation  in  the
th  round,  i.e., .  In  other

words, we say that  or  diffuses to . As in
[23], the definition of diffusion round is as follows.

2p
π X0

i X0
i

j ∈ {0, 1, . . . , 2p− 1} Xr
j r π

i ∈ {0, 1, . . . , 2p− 1} X0
i r

X0
i

Definition  2  The  permutation  over  branches  is
denoted as .  fully diffusion means that  diffuses
to all ,  after  rounds.  permu-
tation  to  reach  full  diffusion  means  full  diffusion  for  all

,  after  rounds.  The  diffusion
round is defined as the minimum number of round that
satisfies this property for the block .

π

Note  that  the  diffusion  rounds  for  encryption  and
decryption  is  not  necessarily  equal.  When  designing  the
cipher, the permutation and its inverse can reach full dif-
fusion as quickly as possible. The diffusion round of the
permutation  is as follows.

DRi(π)
r X0

i r

π

Definition  3  Let  be  the  minimum number
of rounds  which  reach fully diffusion after  rounds.
The diffusion round of  is written as
 

DRm = max
0≤i≤2p−1

{DRi(π), DRi(π
−1)}

 3. Description of WARP
WARP

WARP

 is a 128-bit lightweight block cipher with 128-
bit key [16]. It adopts a variant of Type-II GFN with 32
nibbles.  The  round  function  of  consists  of  a  4-bit
Sbox,  4-bit  XOR operation,  and  a  permutation  over  32
nibbles. There are 41 rounds. The round function can be
described as follows.
 

Y r−1
2i+1 =S(Xr−1

2i )⊕Xr−1
2i+1 ⊕Kr−1

i

Y r−1
2i =Xr−1

2i

π r

Y r−1
j

Xr
π(j) = Y r−1

j 1 ≤ r ≤ 41 0 ≤ i ≤ 15

0 ≤ j ≤ 31

Then,  the  input  nibbles  of  in  the th  round  are
denoted  as ,  and  the  corresponding  output  nibbles
are written as  where , ,
and .  There  are  four  following  operations  in
the round function.

1) MIDORI Sbox: Apply the 4-bit Sbox of  [24] which

is described in Table 2.
 
 

Table 2  The 4-bit Sbox

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 10 13 3 14 11 15 7 8 9 1 5 0 2 4 6
 
 

2) Add subkey:  The  XOR subkey  operation  is  exe-
cuted  after  the  Sbox.  This  operation  XOR  the  subkey
and the internal state.

3) π Permutation: The 32-branch permutation  is giv-
en in Table 3.
 
 

Table 3  The permutation over 32 nibbles

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(i) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10

π−1(i) 11 4 9 10 13 22 1 30 7 28 15 24 5 18 3 16

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(i) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

π−1(i) 27 20 25 26 29 6 17 14 23 12 31 8 21 2 19 0
 
 

4) Add  round  constants:  XOR the  round  constants
and the  internal  state  in  the  1st  and  3rd  branches,  re-
spectively.

πThe permutation  is  omitted in the last round. In
addition, we do not introduce the round constants, which
do not affect the feasibility of  impossible differential  at-
tacks. For more details, please refer to [16]. Next, we will
briefly describe the key schedule.

Mk = Mk0||Mk1 Mk0 =

k00||k01|| · · · ||k015 Mk1 = k10||k11|| · · · ||k115
r Mk(r−1) mod 2

Key schedule  The 128-bit master key is  represent-
ed  as  two  64-bit  keys ,  i.e., 

, . Then,  the  sub-
keys in the th round is .

 III. Constructing  the  Impossible  Differen-
tials for Type-II GFN

In this section, we construct the impossible differen-
tial  by  analyzing  the  Boolean  function  of  the  internal
state words in the middle round. First, we review how to
construct the impossible differential by using the miss-in-
the-middle approach.  Second,  we  provide  a  generic  ap-
proach for constructing the impossible differentials of the
Type-II GFN by investigating the internal  state  expres-
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2pFigure 1  One round of a Type-II GFN with  subblocks.
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WARPsion in the middle round. Finally, we take  as an ex-
ample to deduce the impossible differential by using the
new method and verify these impossible differentials with
the SMT model [11].
 1. Reviewing the miss-in-the-middle method

We focus on the truncated difference and ignore the
details inside Sboxes. Usually, the differential pattern of
the internal state is the linear combination of the follow-
ing four differential patterns.

Z•  : the difference is zero;
Nfix•  : the difference is non-zero and fixed;
Nnoz•  : the difference can take any value except zero;
U•  : the difference can be any value.

By  applying  the  miss-in-the-middle  approach,  there
are 3 types of contradictions for constructing impossible
differentials.

Z ̸= Nnoz Z ̸= Nfix

• Type-1 contradiction.  There  is  contradiction  be-
tween  the  zero  difference  and  the  non-zero  difference,
that is,  or .

Nfix,0 = α Nfix,1 = β

Nfix,0 ̸= Nfix,1 α ̸= β

• Type-2 contradiction.  There  is  contradiction  be-
tween  the  two  different  fixed  values.  For  example,  if

, ,  then  there  is  a  contradiction  in
, where ;

• Type-3 contradiction. Disjointness of the codomain
of two  differential  patterns  can  also  lead  to  contradic-
tions.

DRm

U

(2DRm−2) (2DRm−1)
(2DRm+1)

(DRm+1) DRm (DRm−1)

In the middle round, if  there is  always at least one
type  of  contradiction  for  the  differential  of  the  internal
state,  we  call  this  differential  an  impossible  differential.
Note  that  regardless  of  whether  the  cipher  is  based  on
the SPN structure or the Feistel structure, the number of
rounds of the impossible differentials is closely related to
the number of diffusion round, and so is the GFN. Some
works are devoted to the study of  the impossible differ-
entials for GFN, for example, to evaluate the security of
GFN, Suzaki et al. [24] determined the number of rounds
of  the  impossible  differential  from .  They  applied
the -method  to  search  for  the  impossible  differential,
and they pointed out that the number of rounds for the
impossible differentials is one of , 
and . Therefore, we can construct the impos-
sible differential of GFN by analyzing the Boolean func-
tions in the ,  or  round.
 2. A generic approach for constructing the

impossible differentials
r

Kr
j

F r
j Kr

j ⊕Kr
j = 0

r

For  Type-II  GFN,  the  output  nibbles  in  the th
round can be described by tweakable Boolean functions,
which contain both secret variables (key words) and pub-
lic variables (plaintext words). Assume the subkey  is
used in the keyed function . Since , thus,
the key words do not influence the value of the input dif-
ference  and  can  be  ignored.  In  other  words,  the  keyed
Sbox  has  the  same  difference  distribution  table  as  the
unkeyed  Sbox.  Hence,  the  output  subblocks  in  the th
round  are  represented  as  Boolean  functions  which  only

F r
i S ∆X

X
r

contained  the  public  variables  (the  plaintext  difference
words). Generally, the non-linear operation in the keyed
function  is called Sbox represented as . Let  de-
note the difference of the variable . The output differ-
ences of the subblocks in the th round is written as
 

(∆Xr
0 ,∆X

r
1 , . . . ,∆X

r
2p−1)←π(∆Xr−1

0 , S(∆Xr−1
0 )⊕∆Xr−1

1 ,

. . . ,∆Xr−1
2p−2, S(∆X

r−1
2p−2)⊕∆Xr−1

2p−1)

r

∆X0
j

0 ≤ j < 2p ∆X0
j

f
i ∆Xr

i

Similarly, we obtain the Boolean function of the out-
put difference nibble in the th round with the variables

 representing  the  input  difference  nibbles,  where
.  To  describe  the  effect  of  the  variables 

on the output difference, we write the Boolean function 
of the th output nibble  as follows.
 

∆Xr
i = f(∆X0

0 ,∆X0
1 , . . . ,∆X0

2p−1)

≡GCN(∆X0
I )⊕∆X0

t

(1)

0 ≤ i < 2p GCN(∆X0
I )

I ⊆ {0, 1, . . . , 2p− 1} ∆X0
t

t ∈ {0, 1, . . . , 2p− 1}

where ,  represents  a  composite
function of  nonlinear  operations  with  the  variables  in-
dexed  by  the  subset .  indi-
cates that this variable has a linear relationship with the
output function, and .

Example 1  To demonstrate these notions, let
 

f(∆X0
0 ,∆X0

1 ,∆X0
2 ,∆X0

3 ) =S(S(S(∆X0
0 )⊕∆X0

1 )

⊕∆X0
2 )⊕ S(∆X0

2 )⊕∆X0
3

I = {0, 1, 2}be a polynomial in four variables. Clearly,  is
an index subset, and
 

GCN =S(S(S(∆X0
0 )⊕∆X0

1 )⊕∆X0
2 )⊕ S(∆X0

2 )

∆X0
t =∆X0

3

∆X0
3

f(∆X0
0 ,∆X0

1 ,∆X0
2 ,∆X0

3 )

∆X0
I

f(∆X0
0 ,∆X0

1 ,∆X0
2 ,

∆X0
3 ) ∆X0

3

It  can  be  seen  that  the  difference  of  and  the
output  difference  have a  lin-
ear  relationship.  Therefore,  if  the  difference  of  is
fixed to 0, the differential pattern of 

 is consistent with the differential pattern of .
 3. Applications to WARP

WARP

r

Considering  as an example, we analyze how to
construct  the  impossible  differentials  from  the  Boolean
function point of view. Usually, we focus on the impossi-
ble  differential  with  one  active  input-output  difference
nibble.  Therefore,  by  observing  the  Boolean  function  in
equation (1), we deduce the corresponding output differ-
ential patterns in the th round.

fZ•  :  There  is  no  variable  representing  the  active
difference in the Boolean function.

fNfix ∆X0
t

Nfix

∆X0
I

•  : Only the variable  in the Boolean func-
tion denotes fixed differences , and the differences of
all other variables  are fixed to 0.

fNnoz

GCN

•  :  The  variable  with  active  difference  passes
through  the  composite  nonlinear  function  and  the
variable representing active difference appears only once
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GCN

∆X0
0 ∆X0

1 ∆X0
2

in . For instance, in Example 1, such variable could
be  or , but not .

fU

∆X0
2

•  :  The  variable  representing  active  difference
appears at least twice in the Boolean function, e.g., in Ex-
ample 1, if the difference of the variable  is active, it
can make the value of the output difference unknown.

WARP
DRm = 10

10

Since the number of full diffusion rounds of  is
10, that is, . In addition, with the help of the
MILP model given in [23], the designer found a 21-round
impossible  differential  [16] by considering the details  in-
side the Sbox. Therefore, we first investigate the output
function in the th round from the encryption and de-
cryption.

∆eX10
j

10 ∆X0
i

0 ≤ i < 31
0 ≤ j < 32

fNfix

1) For the encryption direction, we get the Boolean
function denoted as  of the output difference nib-
ble in the th round according to the variable  rep-
resenting  the  plaintext  differences,  where ,

.  By  choosing  different  input  differences,  we
find that only the following two equations can construct
a fixed differential pattern .
 

∆eX10
7 = GCN(eI0)⊕∆X0

3

∆eX10
23 = GCN(eI1)⊕∆X0

19

eI0 = {0, 1, 2, 4, . . . , 31} eI1 = {0, 1, . . . , 18, 20,
. . . , 31}
where  and 

.

∆dX10
i

10 ∆X21
j

21
∆dX10

7 ∆dX10
23

∆eX10
7

∆eX10
23

2) Similarly, for the decryption direction, we deduce
the Boolean function denoted as  of output differ-
ences  in the th round with the variables  repre-
senting the output differences in the th round. We find
that  the  output  Boolean  functions ,  also
contradict  the  corresponding  Boolean  functions ,

 in the encryption direction, that are
 

∆dX10
7 = GCN(dI0)⊕∆X21

0

∆dX10
23 = GCN(dI1)⊕∆X21

16

dI0 = dI1 = {0, 1, . . . , 31}where .
∆eX10

7

∆X0
3 = ∆X21

0 = δ δ ∈ {1, 2, . . . ,
15}

The specific expression of  is in Appendix A.
For  instance,  let ,  where 

, then
 

∆eX10
7 = δ

∆dX10
7 =S(S(S(S(δ))))⊕ δ

WARP
As  a  result,  we  get  2  following  21-round  truncated

impossible differentials for .
 

Ω0 =(0x000δ0000000000000000000000000000 ↛
0xδ0000000000000000000000000000000)

Ω1 = (0x0000000000000000000δ000000000000 ↛
0x0000000000000000δ000000000000000)

Ω1 δ = 0x8
The 21-round impossible differential  given in [16]  is

 with .
Verify the  contradiction  in  the  impossible  differen-

tial  We manually verify the impossible differential, and
the specific  contradiction  marked  in  red  of  the  impossi-

Ω0 ∗
?

Ω0

8
7 19

ble  differential  is  shown  in Table  4,  where  “ ” de-
notes the non-zero difference, and “ ” represents the un-
known  difference.  In  addition,  we  also  apply  the  SMT
model  given  in  [11]  to  check  the  contradictions  in  each
round. For the impossible differential , Table 5 shows
the one nibble contradiction positions of each intermedi-
ate round from the 1st round to the 20th round. For in-
stance,  when  the  connecting  round  is  the th  round,
there is a contradiction in the th or the th nibble.

 IV. Key Recovery Attack on the
32-Round WARP

Ω0

WARP

WARP

In this  section,  with the 21-round impossible  differ-
ential ,  we  launch  a  32-round  impossible  differential
attack on  by extending five rounds and six rounds
forward and backward the impossible differential, respec-
tively. To lower the complexity of this attack, we deploy
several techniques, such as exploiting the properties and
observations  of , constructing a  hash table  and ap-
plying the early abort method.
 1. Properties and observations on WARP

WARPWe further investigate the structure of  and the
key  schedule.  Some  properties  and  observations  can  be
used to improve the key recovery attack, where Proper-
ty 1 was used in [20]. Then we elaborate on them.

WARP
Property  1  For  the  two-branch  Feistel-subround

shown in the Figure 2 of , the XOR key operation is
executed after  the  Sbox.  Therefore,  part  of  the  encryp-
tion and  decryption  operations  can  be  performed  with-
out guessing the subkey. Specifically,

(X0
0 ||X0

1 , X
0′
0 ||X0′

1 )

∆X0
0 ||∆X0

1 ∆Y 0
1

K0
0

• For the encryption direction, given an input pair
 which  satisfies  the  input  difference

.  The  fixed  difference  can  be  used  to
check  whether  the  given  input  pair  is  valid  without
guessing the subkey .

∆X0
1

(Y 0
0 ||Y 0

1 , Y
0′
0 ||Y 0′

1 )

K0
0

• Analogously,  for  the  decryption  direction,  the
fixed  difference  can  be  utilized  to  check  whether
the  given pair  is  valid  or  not  without
guessing the subkey .

Observation 1  According to Property 1, in the key
recovery phase in Section IV, there are some nibbles with
fixed differences in the 1st and the 32nd round can be di-
rectly  used  to  filter  the  corresponding  plaintext-cipher-
text pairs  without guessing the subkey.  Such 44-bit  dif-
ferences are as follows.
 

∆Y 0
7,9,17,23,27 = 0x0

∆X31
3,11,21,25,27,29 = 0x0

WARP

Mk = Mk0||Mk1 Mk0 = k00||k01|| · · · ||k015 Mk1 =

k10||k11|| · · · ||k115

Observation 2  From the 1st to the 5th round and
the 27th to the 32nd round, we can derive the relations
among the subkeys according to the key schedule of .
The 128-bit master key is represented as two 64-bit keys

,  i.e., , 
. Thus, the relations between the subkeys

and the master key can be expressed as follows. 
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Ω0Table 4  The 21-round impossible differential 

Round Difference

Encryption

∆eX0 0x000δ 0000 0000 0000 0000 0000 0000 0000

∆eX1 0x0000 0000 0000 00δ0 0000 0000 0000 0000

∆eX2 0x0000 0000 00 ∗ 0 0000 0000 000δ 0000 0000

∆eX3 0x ∗ 00 ∗ 0000 0000 0000 0000 0000 δ000 0000

∆eX4 0x0000 00 ∗ 0 0δ00 00 ∗ 0 00 ∗ 0 0000 0000 000∗
∆eX5 0x0000 0000 ∗ 0 ∗ 0 0 ∗ 00 0000 0 ∗ 0 ∗ 0 00 ∗ 0 00 ∗ 0

∆eX6 0x ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ 0000 0000 ∗ 00 ∗ 0000 ∗ 0 ∗ ∗ ∗ 00δ

∆eX7 0x0 ∗ 00 00 ∗ 0 ? ∗ 0 ∗ ∗0?∗ ?0 ∗ ∗ ∗ ∗ ∗ 0 00δ0 0 ∗ ∗∗
∆eX8 0x ∗ 0?0 ∗ ∗ ∗ ∗ ∗ 0?0 0 ∗ 0? ∗ ∗0δ ∗ ∗?? ∗ ∗?? ?0?0

∆eX9 0x? ∗ ∗? ∗?∗? ???∗ ?0?∗ ?∗?? ?∗?0 ?0?∗ ??δ∗
∆eX10 0x?∗?? ???δ ???? ???? ???? ?∗?? ???? ?∗??

Decryption

∆dX10 0x∗??? ?? ∗ ? ???? ???? ???? ???? ???? ????

∆dX11 0x??∗? ???? δ??? ??∗? ???? ∗ ∗?? ???? ∗? ∗ ∗
∆dX12 0x∗??? ∗? ∗ ∗ ? ∗ ∗? ∗??? 0∗?? ∗? ∗ ∗ ??0δ 0∗??
∆dX13 0x0 ∗ ∗ ∗ ∗ ∗ ∗? 00∗? ∗?00 δ ∗ 00 ∗ ∗∗? 0 ∗ ∗? ∗? ∗ ∗
∆dX14 0x ∗ ∗0 ∗ 0 ∗ ∗ ∗ ∗ ∗ 00 000δ ∗ ∗ ∗ ∗ ∗ ∗00 ∗ ∗00 0 ∗ 00

∆dX15 0x0000 0000 00δ ∗ ∗ ∗ ∗ ∗ 0 ∗ 00 ∗ ∗00 000 ∗ 000∗
∆dX16 0x000δ 0000 0000 0000 ∗ ∗00 00 ∗ ∗ 0 ∗ ∗0 0000

∆dX17 0x0000 0 ∗ 00 0000 00δ ∗ 00 ∗ ∗ 0000 0000 0000

∆dX18 0x0000 0000 0000 ∗ ∗00 0000 000δ 0000 0000

∆dX19 0x0000 0000 0000 0000 0000 0000 δ ∗ 00 0000

∆dX20 0x0000 0000 000δ 0000 0000 0000 0000 0000

∆dX21 0xδ000 0000 0000 0000 0000 0000 0000 0000
 

  

Ω0Table 5  The one nibble contradiction position in each intermediate round for the 21-Round impossible differential 

Intermediate round 1-nibble contradiction position

1 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

2 0, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

3 4, 5, 8, 9, 10, 12, 14, 15, 16, 17, 18, 22, 23, 24, 28, 29, 30, 31

4 2, 3, 10, 11, 12, 13, 20, 22, 24, 25, 26, 27

5 0, 4, 5, 14, 16, 17, 18, 19

6 12, 22, 23, 30, 31

7 24, 25, 26

8 18, 19

9 30

10 7

11 8, 21

12 17, 27, 28

13 9, 15, 16, 19, 22

14 2, 5, 10, 13, 15, 23, 27, 30

15 1, 3, 4, 5, 7, 10, 12, 16, 19, 23, 24, 25, 29

16 1, 3, 5, 6, 8, 9, 11, 12, 13, 14, 15, 18, 20, 21, 24, 25, 29, 30, 31

17 0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 23, 25, 26, 27, 28, 29, 31

18 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31

19 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

20 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
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Kr−1
i =

{
k0i , if (r − 1) mod 2 = 0
k1i , otherwise

 

ΔX
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K
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ΔX
1

0

ΔY
0

0 ΔY
1

0

S

 

Figure 2  The differential propagation of the Feistel-subround.
 

 2. The 32-round key recovery attack on WARP
For  the  key  recovery  attack  shown  in Figure  3,

Xr−1
j j r

i π0 r

Y r−1
j 0 ≤ j ≤ 31 1 ≤ r ≤ 41

 denotes the th input nibble in the th round. The
th input nibble of  operation in the th round is writ-
ten  as .  Where  and .  In  the
following, we will elaborate on the attack.

2n

252

76

2103

Step  1  We  construct  structures. In  each  struc-
ture,  according  to  Observation  1,  we  select  a  set  of 
plaintexts  which  has -bit fixed  values.  These  plain-
texts  can  form  about  plaintext pairs.  These  plain-
text pairs satisfy the following differential pattern.
 

∆X0 = 0x000 ∗ 00 ∗ ∗δ ∗ 000000 ∗ ∗0000 ∗ ∗0 ∗ ∗ ∗ 0 ∗ 00

∗ δWhere  represents  unknown  difference  and  de-
 

Figure 3  Type-II generalized Feistel network.
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2n+103

∆X32 = ∆Y 31

notes  nonzero  difference.  Thus,  we  collect  about 
plaintext pairs. For each plaintext, we can get the corre-
sponding ciphertext by encrypting the plaintext. The ci-
phertext  pairs  are  required  to  conform  to  the  following
differential pattern .
 

∆X32=0x00 ∗ ∗0 ∗ 0δ00 ∗ ∗000 ∗ 0 ∗ 00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗00

60 ∆X32

2n+103−60−44 = 2n−1 = 2m

HTp

There are  inactive bits in . In addition, ac-
cording  to  Observation  1,  we  also  can  perform a  44-bit
filter  without  guessing  the  subkey  nibbles,  and  remain
about  plaintext  pairs.  In  this
step, we  simplify  the  selection  of  proper  pairs  by  con-
structing a hash table .

Step  2  To  reduce  the  time  complexity  in  the  key
recovery phase, we take the property of the key schedule
into account and utilize the early abort method. The in-
volved key bits, the number of remaining pairs, and the
time complexity in Step 2 are detailed in Table 6 (Note
that the unit of the time complexity is one Sbox opera-
tion). The detailed procedure is as follows.

K31
7

K31
7

(X31
15 , X

31
15 ) Y 30

16 = X31
15 Y 30

17 = X31
22

∆X30
17

2m−4

2 · 2m · 24 · 2 K31
8 K31

2 K31
3

K0
1 K0

12 K0
14 K0

6

∆X30
21 = 0 ∆X30

23 = 0

• Step 2.1: Guess the 4-bit subkey . For each re-
maining  pair,  we  guess  the  value  and  compute  the
pair of .  Since  and ,  we
can check whether the 4-bit difference  hold or not
according to the Property 1. Then there are about 
plaintext  pairs  remaining.  The  time  complexity  is

.  Similarly,  for these subkey , , ,
, ,  and ,  we  guess  each  4-bit  subkey  and

check the validity of the condition , ,

∆X30
31 = 0 ∆Y 1

15 = 0 ∆Y 1
19 = 0 ∆Y 1

21 = 0 ∆Y 2
13 = 0

2m−32

, , ,  and ,
respectively. At the end of this step, the expected num-
ber of the remaining pairs is about .

K31
4 K31

14

K31
11 K31

14 K0
14

k014
K31

4

K31
11 X31

9

K31
4

Y 30
28 = X31

29 Y 30
29 = X31

20

k014 X31
29

X29
23

K31
11 Y 29

3 = X30
14 = Y 30

14 =

X31
23 Y 29

3 = X30
29

∆X29
3 = 0

2m−36

2 · 2m−32 · 232 · 28 · 3
K30

7 K0
15 K1

13

K2
11 K30

4 K31
6 K30

9 K31
12 K29

9 K28
10 K0

3

∆X29
3 = 0 ∆X29

17 = 0

∆Y 2
17 = 0 ∆Y 3

25 = 0 ∆X29
29 = 0 ∆X28

9 = 0 ∆X28
27 = 0

∆X27
7 = 0 ∆y411 = 0

2m−68

• Step 2.2:  Guess  the  12-bit  subkey ,  and
. The 4-bit subkey  and  guessed in Step 2.1

share the same master key  according to the Observa-
tion  2,  so  we  only  need  to  guess  the  8-bit  subkey 
and . For each pair, we compute the value of  by
guessing  the  4-bit  subkey .  Then,  as  the  values  of

 and  are known, we use the value
of the master key  to calculate the value of . We
obtain the value of  with the enumeration of  the 4-
bit value . From the relationship 

,  between  these  values,  and  Property  1,
we verify  whether  the  condition . The expect-
ed  number  of  remaining  pairs  is  about ,  and  the
time complexity is . Analogously, we
enumerate the values of these subkey ,  and ,

, ,  and ,  and , ,  separate-
ly  and  verify  that  the  differences , ,

, , , , ,
 and  are satisfied.  Therefore,  we ex-

pect about  remaining pairs.
K30

8 K29
10 K30

13

K27
15 K31

9 K28
3

K31
9 K28

3 K1
9 K0

3

k19 k03
2m−68

• Step 2.3: Guess the 28-bit subkey , , ,
,  and .  With  the  Observation  2  of  the  key

schedule, the 8-bit subkey ,  and ,  guessed
share  the  same  8-bit  master  key  as , ,  so  this  step
only needs to guess the 20-bit subkey. For each of 

  

Table 6  Detailed computation of complexity in the key recovery phase

Step Guessed subkey Condition #Remaining pairs Time complexity

Step 2.1

K31
7 ∆x30

17 = 0 2m · 2−4 2 · 2m · 24 · 2

K31
8 ∆x30

21 = 0 2m−4 · 2−4 2 · 2m−4 · 24 · 24 · 2

K31
2 ∆x30

23 = 0 2m−8 · 2−4 2 · 2m−8 · 28 · 24 · 2

K31
3 ∆x30

31 = 0 2m−12 · 2−4 2 · 2m−12 · 212 · 24 · 2

K0
1 ∆y115 = 0 2m−16 · 2−4 2 · 2m−16 · 216 · 24 · 2

K0
12 ∆y119 = 0 2m−20 · 2−4 2 · 2m−20 · 220 · 24 · 2

K0
14 ∆y121 = 0 2m−24 · 2−4 2 · 2m−24 · 224 · 24 · 2

K0
6 ∆y213 = 0 2m−28 · 2−4 2 · 2m−28 · 228 · 24 · 2

Step 2.2

K31
4 K31

11, ∆x29
3 = 0 2m−32 · 2−4 2 · 2m−32 · 232 · 28 · 3

K30
7 ∆x29

17 = 0 2m−36 · 2−4 2 · 2m−36 · 240 · 24 · 4

K0
15 k113, ∆y217 = 0 2m−40 · 2−4 2 · 2m−40 · 244 · 28 · 2

K2
11 ∆y325 = 0 2m−44 · 2−4 2 · 2m−44 · 252 · 24 · 3

K30
4 ∆x29

29 = 0 2m−48 · 2−4 2 · 2m−48 · 256 · 24 · 3

K31
6 k309, ∆x28

9 = 0 2m−52 · 2−4 2 · 2m−52 · 260 · 28 · 4

K31
12 k299, ∆x28

27 = 0 2m−56 · 2−4 2 · 2m−56 · 268 · 28 · 4

K28
10 ∆x27

7 = 0 2m−60 · 2−4 2 · 2m−60 · 276 · 24 · 3

K0
3 ∆y411 = 0 2m−64 · 2−4 2 · 2m−64 · 280 · 24 · 5

Step 2.3 K30
8 ,K29

10 K30
13 K27

15, , ∆x26
1 = 0 ϵ 2 · 2m−68 · 284 · 220 · 7
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∆X26
1 = 0

2−4

HTp

remaining pairs,  check  whether  the  input  nibble  differ-
ence satisfies  of the 21-round impossible differ-
ential.  Hence,  the  probability  for  a  wrong  joint  subkey
surviving is about . Thus these wrong values are elim-
inated from the table .

k01,3,4,6,7,8,9,10,11,12,13,14,15 k12,3,4,6,7,8,9,10,11,12,13,15

228

Step  3  In  the  above  two  steps,  we  already  guess
the  value  of  the  100-bit  subkey.  And  with  the  Obser-
vation  2,  the  corresponding  100-bit  master  key  are

 and . We
also  guess  the  remaining  28-bit  master  key,  then  check
whether  this  key  is  correct  by  about  encryptions.  If
this  guessed  key  is  correct,  end  this  attack.  Otherwise,
return to Step 2 to continue guessing until the only cor-
rect key is recovered.

ϵ
Complexity  of  the  attack  In  the  key  recovery

phase,  we  use  to  denote  the  expected  number  of  the
wrong master keys remaining after Step 2.3, where
 

ϵ = 2100 · (1− 2−4)2
m−68

= 2100 · (1− 2−4)2
n−69

The time complexity of Step 3 is
 

2 · 2100 · (1 + (1− 2−4) + · · ·+ (1− 2−4)2
n−69

) + ϵ · 228

2n+52

(2n−1 · 4 · 128 + 2100)

2n+52

n = 73.69
ϵ · 228

As for the whole key recovery attack, the data and
memory  complexities  are  chosen  plaintexts  and

-bit.  The  time  complexity  is  about
 32-round encryptions which are dominated by col-

lecting proper pairs in Step 1. Let , with about
 encryptions, the correct master key will  be recov-

2125.69 2126.68

2100

ered. Therefore,  the  data,  time  and  memory  complexi-
ties  are  about  chosen plaintexts,  32-round
encryptions and -bit.

 V. Conclusion

WARP

WARP

WARP

WARP
WARP

In  this  paper,  from  the  Boolean  function  point  of
view, we analyze the truncated impossible differential of
Type-II  GFN.  An  application  of  this  method  to 
gives  two  21-round  truncated  impossible  differentials.
Then, with the aid of the SMT model, we recognize the
contradiction  in  the  connection  round.  Furthermore,  we
launch the key recovery attack on 32-round  based
on the  21-round impossible  differential.  To decrease  the
complexity, we adopt some techniques such as the early
abort method and the properties of . Therefore, with
a  21-round  impossible  differential,  we  amount  the  32-
round key recovery attack on . This is  the best re-
sult on  in the single-key setting.
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 Appendix A

∆eX10
7

∆X0
i 0 ≤ i < 32

After  10  rounds  of  encryption,  the  output  nibble
 can be represented by the following Boolean func-

tion with the variables denoting the input difference nib-
bles , where . 

∆eX10
7 =S(S(S(S(S(S(S(S(S(∆X0

22) + ∆X0
23) + ∆X0

12) + S(∆X0
30) + ∆X0

31) + S(S(∆X0
14) + ∆X0

15) + ∆X0
24)

+ S(S(S(∆X0
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11) + ∆X0
4 ) + S(∆X0

18) + ∆X0
19) + S(S(S(S(∆X0
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21) + ∆X0

2 ) + S(∆X0
0 )
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6 ) + ∆X0
7 ) + ∆X0

28) + S(S(S(S(S(∆X0
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19)
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