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Abstract — The modern university computer lab and kindergarden through 12th grade classrooms require a cen-
tralized solution to efficiently manage a large number of desktops. The existing solutions either bring virtualization
overhead in runtime or requires loading a large image over 30 GB leading to an unacceptable network latency. In this
work, we propose Troy which takes advantage of the differencing virtual hard disk techniques in Windows systems.
As such, Troy only loads the modifications made on one machine to all other machines. Troy consists of two mod-
ules that are responsible to generate an initial image and merge a differencing image with its parent image, respec-
tively. Specifically, we identify the key fields in the virtual hard disk image that links the differencing image and the
parent image and find the modified blocks in the differencing images that should be used to replace the blocks in the
parent image. We further design a lazy copy solution to reduce the I/O burden in image merging. We have imple-
mented Troy on bare metal machines. The evaluation results show that the performance of Troy is comparable to the
native implementation in Windows, without requiring the Windows environment.
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 I. Introduction
Efficient service deployment serves as the key to en-

abling easy system management on a large number of ho-
mogeneous  desktops.  This  is  especially  important  in  a
scenario  where  one  administrator  manages  all  desktops,
such as kindergarden through 12th grade classrooms and
university  computing  labs  [1].  It  calls  for  a  centralized
management solution,  such  that  one  operation  on  a  de-
vice  can  be  automatically  applied  to  other  devices.  The
operations include changing system settings, software in-
stallations, and uninstallations, etc. [2]–[4].

Currently, the solutions for centralized management
of large-scale desktops are mainly cloud-based: 1) Virtu-
al desktop  infrastructure  (VDI).  It  runs  all  user  desk-
tops on a centralized server.  In this  case,  instead of  de-
ploying services on individual PCs, all users connect to a
virtual machine hosted on the server [5]. 2) Virtual oper-
ating system infrastructure (VOI). It works in a diskless
mode. The cloud server stores the image of a whole oper-

ating system and software. The server sends the image to
the  desktops  upon  request.  Since  all  desktops  use  the
same image, the deployment of new services can be real-
ized by updating the image on the server.  3) Intelligent
desktop virtualization (IDV) [6]. The server provision the
virtual  machines.  The virtual  desktops  run on high-per-
formance desktops in the same physical location as users.
Given that  VDI relies  on  the  connectivity  to  the  server
to function, IDV requires server connectivity for only the
initial setup and image loading. In such a sense, it can be
deemed as an updated version of VDI. The existing VDI
and IDV solutions use a virtual machine to support the
deployment  of  new  services.  It  brings  the  virtualization
overhead in runtime, lowering the user experience. More
importantly, they can hardly support virtualizing a spe-
cific  hardware,  such  as  graphic  processing  unit  (GPU),
due to the limitation of nested virtual machine (VM) [7].
Although VOI brings native performance, the loading of
a large  image,  typically  over  30  GB,  leads  to  unaccept-
able loading latency limited by the network bandwidth. 
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To  obtain  efficient  service  deployment  for  a  large
number of  homogeneous  devices,  we  expect  native  run-
time  performance  while  avoiding  loading  the  over-large
image. In such a way, the operations on one desktop can
be  applied  to  other  ones  by  renewing  the  storage.  The
overlay file system provides a viable solution toward this
goal.  Existing  works  include  BAOverlay  and  DADI.
BAOverlay  [8]  exploits  an  asynchronous  copy-on-write
(CoW)  mechanism  for  fast  file  updates  and  designs  a
new file format to compress the storage space. In DADI
[9], the authors use a block-based layer where each layer
corresponds to a set of file changes, which allows the im-
age  to  be  file  system  and  platform  agnostic.  However,
they  are  mainly  designed  for  cloud  servers,  which  only
work for Linux systems. For desktop and laptop comput-
ers, Windows OSs are still mainstream which takes over
74% market share. Although Windows supports the vir-
tual  disk  format  virtual  hard  disk  v2  (VHDX) to  enjoy
the overlay file-system functionality. The generation and

merging of differencing images can only be achieved by a
command Diskpart  that  demands  a  Windows  environ-
ment. It heavily limits the scope of use of VHDX in ser-
vice deployment,  i.e.,  it  requires  another  Windows  sys-
tem for image management. Even the smallest Windows
PE system takes over 200 MB of disk space.

In  this  work,  we  design  two  techniques  in  Troy  to
efficiently generate  and  merge  differencing  VHDX  im-
ages  without  relying  on  a  Windows  environment.  For
creation,  Troy  generates  appropriate  attributes,  i.e.,
metadata, and  writes  them  into  a  new  differencing  im-
age.  For  merging,  Troy  loads  and  parses  the  necessary
metadata and calculates the correspondence between the
differencing and  parent  images.  According  to  the  corre-
spondence,  it  reads  the  payload  blocks  or  sectors  and
writes them to the appropriate location in the parent im-
age. As such, the differencing image generated on the ad-
ministrator can be applied to all other users, as shown in
Figure 1.
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Figure 1  System architecture.
 

The contributions of this work are three-fold: 1) In-
depth  analysis  on  the  rules  for  image  generation  and
merging;  2)  Propose  the  image  generation  and  merging
techniques to enable efficient service deployment; 3) Im-
plement Troy and demonstrate that it achieves state-of-
the-art performance  on  different  hardware  settings,  in-
cluding  both  hard  disk  drives  (HDD)  and  solid  state
drives (SSD).

The rest  of  the  paper  is  organized  as  follows.  Sec-
tion  II  reviews  the  related  works  in  the  efficient  service
deployment.  Section  III  provides  the  background  about
the VHDX file format, especially the differencing images.
Section IV and V give the design and implementation of
Troy, respectively. In Section VI, we evaluate the perfor-
mance of Troy on different hardware settings, in compar-
ison to  the  native  implementation  in  the  Windows  sys-
tem. Section VII concludes the work.

 II. Related Works
Numerous works study the overlay file system-based

and virtual disk-based service deployment and migration
[10]–[14]. To lower the maintenance cost in data centers,
Oliveier et  al.  [10]  proposed  migrating  the  high-perfor-
mance computing  workloads  from  the  x86  server  ma-
chine to a few connected ARM embedded boards. To this
end,  they  find  the  migration  point  to  ensure  a  state  of

equivalence and  translate  the  state  between  ISAs.  Fur-
thermore, they design a semantic migration scheme to al-
low the guest OS to extract the entire application state
from the x86 server and a minimal architecture-indepen-
dent subset of the kernel state. To enable live migration
of containers, Ma et al. [11] synchronize the data in both
storage and run-time memory to find the identical layers
in the file system and reduce the memory image size, re-
spectively. They  also  design  parallel  and  pipelined  pro-
cessing to improve the process efficiency. Gotanda et al.
[12] design a lazy layer pull scheme to reduce the start-
up of a new or updated container. They modify the exist-
ing overlay file  system to trace file  accesses  during con-
tainer startup,  such  that  the  lazy  pull  of  layers  is  al-
lowed. Selfie [13] finds that the efficiency of virtual disks
is  largely  compromised  by  random  writing  and  keeping
the  data  consistent.  To  address  this  issue,  Selfie  refines
the  format  for  storing  data  and  metadata.  It  translates
the block address to map a virtual disk space to the da-
ta  space.  Wu et  al.  [14]  proposed  a  virtual  computing
and storage approach EVCS to execute the software for
near-to-native performance based on an incremental vir-
tual  storage  mechanism.  Given  that  the  works  [10]–[13]
are viable  for  efficient  service  deployment,  they  are  de-
signed  for  Linux-based  containers,  while  for  desktops,
Window  OSs  are  the  mainstream.  Although  [14]  claims
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that EVCS can be used for Windows systems, it does not
propose any  technical  detail  regarding  image  manage-
ment, which is the key to efficient service deployment.

There are  extensive  works  that  optimize  the  re-
sources  scheduling  and  allocation  in  service  deployment
[15]–[22]. Wang et al. [15] design both offline and online
optimal  microservice  coordination  algorithms  to  reduce
the  overall  service  delay.  The  offline  algorithm achieves
the globally optimal performance but requires prior infor-
mation  such  as  computation  request  arrival  and  time-
varying  channel  conditions.  For  online  scheduling,  they
reformulate the problem using the markov decision pro-
cess  and  solve  it  by  reinforcement  learning  to  achieve
near-optimal  performance.  Akahoshi et  al. [16]  consider
the deployment of virtual network services. They design
an algorithm to minimize the deployment cost with VM
merging  and  priority  queuing.  The  cost  includes  both
fixed and proportional  costs.  Hazra et  al. [17]  share  the
computing resources at edges to maximize the revenue of
edge  service  providers  and  minimize  the  service  delay
and price.  They first  formulate a mixed integer non-lin-
ear  programming  problem,  then  transform the  objective
function into  a  Stackelberg  game problem to  coordinate
the competition between servers. Xiang et al. [18] parti-
tion the  applications  into  pieces  and  model  the  depen-
dency  between  the  pieces  by  a  directed  acyclic  graph.
Based on the model, they translate the energy consump-
tion  and  application  performance  into  a  multi-objective
optimization problem, which is  solved by a heuristic  al-
gorithm.  In  [19],  Bozorgchenani et  al. exploit  different
service  deployment  models,  such  as  SaaS,  PaaS,  and
IaaS, among edge servers to serve end users. They mod-
el  the  problem  as  a  size-constrained  weighted  set  cover
problem  aiming  at  maximizing  the  number  of  satisfied
end users  while  minimizing the service  completion time.
These works are orthogonal to the design in Troy in the
sense that they can be used to optimize the performance
based on image generation and merging in Troy.

 III. Background
We  design  the  efficient  service  deployment  scheme

designed based on the virtual disk format VHDX, which
supports the Deployment of Windows OSs. Especially, it
supports  the  differencing  VHDX image  type  storing  the
blocks that have been modified compared to a parent vir-
tual  hard  disk  image.  In  this  section,  we  introduce  the
mechanism  of  differencing  VHDX  in  runtime  and  the
layout of a VHDX image.
 1. Differencing VHDX image

In  case  differencing  VHDX is  used  in  runtime,  any
modification to the file system, i.e., a new write, is cap-
tured in the differencing VHDX image instead of its par-
ent VHDX image through CoW. In CoW, if a unit of da-
ta is copied but not modified, the copy operation can be
implemented by setting a reference to the original data.
The copy is created only when the copied data is modi-

fied. By using CoW in the runtime of Windows systems
based on differencing VHDXs image, it creates point-in-
time  snapshots  of  virtual  disks  for  service  deployment
and  backups.  For  a  read  operation  to  the  virtual  disk,
the  Windows  system  first  check  if  the  content  can  be
found in the differencing VHDX image.  If  not,  the read
operation will be traversed toward the parent VHDX im-
age.  As  such,  a  differencing  VHDX  image  cannot  work
independently. It has to link to the parent VHDX image
which  stores  the  whole  payload.  The  upper  bound  of  a
differencing image in size is that of its parent VHDX im-
age. In case a parent image has a size 10 GB, the size of
a  differencing  image  created from the  parent  image  will
be constrained at 10 GB. It helps to determine the con-
figuration of the hard disks.

The  parent  VHDX  image  has  two  types, i.e., the
fixed and dynamic types. The size of the VHDX image in
fixed type does not change during runtime.  For the dy-
namic type,  as more write operations,  the image file  in-
creases in size by allocating more space. To ease the con-
figuration  of  the  hard  disk,  we  consider  only  the  fixed-
type VHDX image in this work.
 2. Layout of a VHDX image

The layout of a VHDX image is shown in Figure 2.
Overall,  a  VHDX  image  consists  of  two  kinds  of  data,
i.e., the metadata, and payload. The metadata stores the
features that are necessary to manage a VHDX file and
the  properties  of  the  payload,  while  the  payload  stores
the data  of  the  file  systems.  Since  we  focus  on  the  cre-
ation and merging of VHDX images, the core issue is to
generate and modify the metadata according to the spec-
ification of  VHDX  images.  In  the  following,  we  intro-
duce the functionality of the important metadata for im-
age creation and merging, respectively.

Header  is  the  first  region  that  is  examined  when
loading a VHDX image. It serves as a root of the VHDX
data structure tree. It consists of the sub-header and re-
gion table. The sub-header consists of the unique identi-
fiers that identify if the image has been modified, includ-
ing both data writing and file opening. The region table
lists the location of the block allocation table (BAT) and
the  metadata  region.  As  such,  it  helps  the  system  find
the metadata of interests.

BAT translates  the  sequence  number  of  a  block  to
the offset in the virtual  hard disk file.  It  consists of  en-
tries  that  determine  the  state  and  file  offset  of  blocks.
There are two kinds of blocks: sector bitmap blocks and
payload blocks. They are aligned in an interleaved manner
in the image. The sector bitmap block is the metadata for
the payload blocks, in the way that it identifies whether
the corresponding payload block has been modified.

The  metadata  region  contains  the  metadata  items
such as  virtual  disk size,  logical  and physical  sector  ID,
etc. The  Log  contains  the  updates  of  all  metadata  ex-
cept the headers. These two regions will not be modified
for image generation and merging.
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 IV. Design of Troy
To enable  efficient  and  automated  service  deploy-

ment, we design two modules in Troy, i.e., initial image
generation module and differencing image merging mod-
ule.  The  generation  module  generates  an  initial  image
that is linked to the parent image. To this end, we parse
and  analyze  the  initial  image  generated  by  diskpart  to
find out the structure and semantics of each field in the
VHDX image. In runtime, all the modifications that are
made in the parent image are saved in the initial image
through CoW,  turning  the  initial  image  into  the  differ-
encing image. Then the merging module merges a differ-
encing  image  with  its  parent  image.  The  key  is  to  find
out which  blocks  are  modified  during  runtime,  then  re-
place the corresponding blocks in the parent image.  We
find  that  the  sector  bitmap  blocks  record  whether  the
payload blocks are modified during runtime, and one sec-
tor  bitmap  block  is  responsible  for  multiple  payload
blocks. To  this  end,  we  analyze  the  relationships  be-
tween the sector  bitmap blocks and the payload blocks.
Furthermore,  the  intensive  data  reading  and  writing  in
image merging leads to a heavy I/O burden, which con-
stitutes  the  performance  bottleneck  in  terms  of  latency.
To alleviate the I/O burden, we design a lazy block writ-
ing  scheme  that  groups  the  block  write  operations  into
one  I/O,  to  reduce  the  number  of  I/O  operations.  We
give the design of the two modules in detail as below.
 1. Initial image generation

This  module  creates  an  initial  image  that  is  filled
with appropriate metadata to make it a differencing im-
age  for  a  specific  parent  image.  To  this  end,  it  creates
the required metadata including Header, Log, BAT, and
Metadata  region.  There  are  two  goals  in  generating  an
initial  image.  The  first  one  is  to  minimize  its  size.  The
second one is to link the initial image to the specific par-
ent image, such that it can serve as a differencing image.
Toward the two goals,  we develop three rules for initial
image generation.

Rule 1: The size of a block should be carefully set to
minimize the size of the initial image  By analyzing the
documentation of VHDX, we find that the metadata has
to be aligned at a granularity of MB. For example, if the
size  of  BAT  is  2.4  MB,  it  should  be  assigned  a  3  MB

bs = 2t bytes t

block in the storage. Since the metadata consists of four
domains, i.e.,  the  Header,  Log,  BAT,  and  Metadata  re-
gion, we require at least 4 MB for the initial image. To
constrain the size of the BAT to 1MB, we determine the
size of each block by , where  is equal to:
 

t = max(⌈log2(is/B)⌉, 20) (1)

Bwhere  denotes the number of entries in the BAT. We
use the ceiling operator to align the blocks at a granular-
ity of MB.

Rule 2: The BAT and log domains can be set to ze-
ros  Since the initial image does not consist of any pay-
load and operating history, we initialize the BAT and log
domains to all zeros.

Rule  3:  Fill  in  the  corresponding  fields  in  the  gion
domain to link the initial image to the parent image  To
enable  the  linkage,  we run multiple  experiments  to  find
out the key fields. The fields can be divided into two cat-
egories. In the first category, the fields in the initial im-
age and parent image should be the same, including vir-
tual  disk  size,  virtual  disk  id,  logical  sector  size,  and
physical sector size. In the second category, the fields in-
dicate  the  relative  path  of  the  parent  image  and  the
check  code  between  the  two  images.  For  the  relative
path,  the  Relative_path  value  stores  the  relative  path
from the initial image to its parent image. For the check
code, the parent_linkage value in the parent locator field
must be equal to the value of the DataWriteGuid field in
the  Header  of  the  parent  image.  The  check  code  of  the
parent  image  changes  upon  modification.  As  such,  the
differencing  image  cannot  be  linked  to  a  parent  image
that changes.
 2. Differencing image merging

The  differencing  images  need  to  be  transfered  to
dozens or  hundreds  of  user  terminals  through  the  net-
work, so large images will occupy a lot of network band-
width. We  use  compression  and  prune  methods  to  re-
duce the size of the differencing image.

We use LZ4 compression algorithm to compress the
differencing image. LZ4 is one of the fastest compression
algorithms  and  has  a  high  compression  ratio.  It  can
greatly reduce the size of the differencing image with lim-
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ited overhead on decompression.
We  also  prune  the  differencing  image  according  to

its characteristics. We find that the payload block of the
differencing image is  identical  to the corresponding part
of the parent image by comparison. Such that prune the
payload block to reduce the size of the image.

During runtime, the windows system saves the mod-
ifications  on  the  parent  image  into  the  initial  image,
bringing up  the  differencing  image.  By merging  the  dif-
ferencing image into the parent image, we can apply all
the modifications to other systems without manual inter-
vention. To this end, we analyze the structure of the dif-

ferencing image in-depth. We show the layout of BAT in
Figure 3. Importantly, the sector bitmaps serve as meta-
data for the payload blocks. Specifically, each bit in the
sector bitmaps identifies whether a sector in the payload
blocks has been modified in runtime. The payload blocks
and sector bitmaps are aligned in an interleaved way in
the  image.  Each  block  has  two  parts.  For  a  payload
block, the  first  part  identify  whether  it  has  been  modi-
fied, while  for  a  sector  bitmap,  it  identifies  if  any  pay-
load blocks it corresponds to has been modified. The sec-
ond part in both kinds of blocks gives the offset used by
the system to locate the block in the storage.
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Figure 3  BAT Example.
 

In the  following,  we  first  identify  the  correspon-
dence  between  the  sector  bitmaps  and  payload  blocks.
Then  check  the  modification  of  payload  blocks  at  the
granularity  of  a  sector,  and  matches  the  blocks  in  the
differencing image  to  the  parent  image.  At  last,  We re-
place the corresponding content in the parent image with
the modified content in the differencing image. Since the
replacement incurs  an  intensive  I/O  burden,  we  inte-
grate the I/O of sectors into a large chunk, to reduce the
I/O times.  In  the  following,  we  detail  the  design  of  the
differencing image merging in a step-by-step way.

Step 1  Determine the correspondences between sec-
tor  bitmaps  and  the  payload  blocks  in  the  BAT of  the
differencing image,  according  to  the  block  size  and  sec-
tor size.
 

c_chunk_ratio = 223 × S/B (2)

c_chunk_ratio
S

B

where  is the proportion of payload blocks
and sector bitmap blocks of the differencing image.  de-
notes the sector size of the differencing image.  denotes
the payload block size of the differencing image.

Step 2  Locate the sectors that have been modified
in all the payload blocks.

The  sector  bitmap  block  consists  of  two  fields,  i.e.,
the state  field  and the  offset  field.  The  State  field  indi-
cates whether  the  corresponding  PBs  have  been  modi-
fied. It has three possible values, i.e., Not_Present, Par-
tially_Present, and  Present.  Not_Present  state  indi-
cates  that this  sector bitmap block’s contents  are unde-
fined  and  that  the  block  is  not  allocated  in  the  image.
Partially_Present  state  indicates  that  partial  blocks  are
modified.  The  Present  state  indicates  that  the  sector
bitmap block contents have been modified as a whole.

For  blocks  in  Partially_Present  state,  we  need  to

216

determine the  modified  blocks  from the  differencing  im-
age according to the corresponding sector bitmap blocks.
In the differencing image, the size of a sector is usually 512
bytes. If a payload block’s size is 32 MB, then it consists
of  sectors.  For each sector,  there is  a corresponding
bit in the corresponding sector bitmap block. If the bit is
1, the sector should be read from the differencing image.
If the bit is 0, the sector should be read from the parent
base fixed image.

Step  3  Find  the  matching  between  the  payload
blocks  in  the  differencing  image  and  parent  image,  and
their locations.

There  is  a  correspondence  between  the  payload
blocks  of  the  differencing  image  and the  payload blocks
of the parent image, determined in the BAT. There is a
sequence correspondence  between  the  payload  block  en-
tries  in their  block allocation tables.  For example,  for  a
parent image with a block size of 16MB and a differenc-
ing image based on it with a block size of 4MB, there is
a one-to-four relationship. That is, payload block 0 of the
block allocation  table  of  the  basic  fixed  image  corre-
sponds to payload blocks 0, 1, 2, and 3 of the block allo-
cation table  of  the  differencing  image.  The  correspond-
ing relationship is shown in Figure 4.

Step  4  Replace  the  original  sectors  in  the  parent
image by the modified sectors in the differencing image,
while minimizing the I/O burden.

Troy  reads  the  modified  payload  block  or  sectors
from the  differencing  image,  then  write  it  to  the  corre-
sponding  location  of  the  parent  image.  For  partially
modified payload blocks, we can write each modified sec-
tor to the corresponding location of the parent image one
by  one.  However,  it  results  in  a  large  number  of  write
operations.  We  combine  the  writes  of  the  continuous
modified sectors  into one write  operation,  thus reducing
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the number of write operations.
Further,  a  similar  optimization  can  be  adopted  for

the fully modified payload block. For a continuous fully
modified  payload,  we  can  write  each  modified  payload
block to  the  corresponding location of  the  parent  image
one by  one,  resulting  in  a  large  number  of  write  opera-
tions. In the parent image, the positions of the continu-
ous payload in the BAT are also continuous in the physi-
cal  disk,  so  there  is  a  condition  for  completing  a  write
operation across  multiple  payload  blocks.  We  can  com-
bine the writes of continuously modified payloads in the
child image into one write operation to reduce the num-
ber of write operations.

 V. Implementation

memalign malloc free memset
memcpy

bswapseriesmacro

We implement  Troy  in  Linux  with 4523 lines  of  C
code.  We  use  the , , ,  and

 functions in C standard library to manage mem-
ory access. We use the  in GCC to con-
vert byte order according to the byte order of CPU. We
use the implementation of the CRC32 algorithm in C to
calculate the checksum.

UTF8 to UTF16

random int
open lseek read write

strcmp strlen memcmp strdup

We use the glib library function _ _  to
provide a UTF16 encoding function. We use the Glib li-
brary function _  to provide the UUID genera-
tion function.  We use , , ,  and  of  the
Linux system calls  to provide a file  access function.  We
use  the , , ,  functions  in  C
standard library  to  manage  strings  and  validate  the  in-
tegrity and valid relationship of differencing images.

 VI. Evaluations
In  this  section,  we  evaluate  the  performance  of  the

key components of Troy. We evaluate Troy on two bare
metal machines. One is equipped with AMD Ryzen 7 5800H
3.20 GHz CPU, WDC PC SN730 SSD, and 16 GB of mem-
ory; The other is equipped with Intel Core i7 7700HQ 2.8
GHz CPU, HGST HTS721010A9E630 HDD, and 16 GB
memory.

Resource Adjustment  On the machine with an SSD
disk,  we  use  the  Cgroup  mechanism  of  Linux  to  adjust
and  limit  system  resources.  Linux  Cgroups  provide  the
ability  to  control  and count the  resources  of  a  group of
processes, including CPU, memory, storage, network, etc.
Cgroups  can  easily  limit  the  resource  occupation  of  a

process  and  can  monitor  the  monitoring  and  statistical
information  of  the  process  in  real-time.  We  use  Cgroup
to  limit  the  CPU  performance,  available  memory  size,
and hard disk I/O speed to assist our evaluation.

Parent  Image  and  Differencing  Image  We  use  2
parent images.  Both of  them are  with Windows 10 sys-
tem.  The  first  is  used  in  generation  evaluation,  with  a
size  of  40  GB.  The  second  is  used  in  merge  evaluation,
with  a  size  of  30  GB.  We use  three  differencing  images
with  different  sizes  to  evaluate  the  merging  module.
They  are  generated  in  two  ways.  The  first  is  installing
softwares.  The  second  is  changing  system  settings.  The
details are shown in Table 1.
  
Table 1  Differencing image generation

Image size Operations

2.57 GB Install WeChat; Change user group config

4.93 GB Install QQ, TencentVideo, Feishu;
Change security config

8.76 GB Install IQIYI, bilibili, Epic, Vmware Workstation
 
 

Baseline  The  baseline  for  us  to  compare  Troy  is
Diskpart, which is a management tool that manages the
physical disk and virtual disk in Windows systems.

Metrics  We  evaluate  the  performance  of  Troy  in
terms of image size, and merging latency. For initial im-
age generation, we use image size as the metric. For im-
age merge, we use merging latency in seconds as the met-
ric.

Figure 5 shows the impact of different block size set-
tings on the initial size of the child image when the size
of the parent image is 40 GB. When the block size is set
to  a  small  value,  the  size  of  the  generated initial  image
increases. Troy sets the block size of the child image ac-
cording to the image size of the parent image so that the
size of the generated child image is always 4 MB.
 1. Merge function evaluation

We  then  evaluate  the  performance  of  the  merge
function of Troy. We evaluate the impact of various per-
formance factors on the performance of image merging in
Troy. The parent size is 30 GB.

1) Disk type
We  evaluate  the  latency  required  for  Troy  and

Diskpart to merge differencing images of different sizes in
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bare metal machines configured with 16 GB memory and
SSD  and  bare  metal  machines  configured  with  16GB
memory and HDD, respectively. The results are shown in
Figures 6 and 7.

According to the experimental results, it can be rea-
sonably  inferred  that  the  I/O speed  of  the  hard  disk  is
the most  important  factor  affecting  the  merging  perfor-
mance of Troy. At the same time, in the bare metal ma-
chine configured with SSD hard disk,  Troy achieves the
same  performance  as  Diskpart,  but  on  the  bare  metal
machine configured with HDD, Troy is about half slow-
er than Diskpart. The implementation of the merge func-
tion of Troy does not fully utilize the I/O performance of
the HDD.

2) I/O operation optimization
To verify the impact of our I/O operation optimiza-

tion  on  the  performance  of  the  image  merging  module,
we evaluate the performance with and without I/O oper-
ation optimization on bare metal machines with SSD and
HDD,  respectively.  The  results  are  shown  in Figures  8
and 9.

The  results  show  that  the  lazy  I/O  can  effectively
reduce  the  latency.  On  bare  metal  machines  with  SSD,
the lazy I/O achieves 2 to 3 times performance boost. On
the  bare  metal  machine  with  HDD,  the  performance
boost  achieves  5  times.  For  HDD, the  latency of  a  disk
I/O  operation  consists  of  the  non-transfer  time  (seek
time  and  rotation  delay)  and  the  transfer  time.  If  the
number of I/Os increases, even if the total amount of da-
ta  transfer  remains  the  same,  the  increase  of  non-trans-
fer time will also cause the total latency to increase. For
SSD,  every  I/O operation  needs  to  be  processed  by  the
controller. If the number of I/O operations increases, the
increase in controller processing time will also lead to an
increase in the total  latency.  The lazy I/O optimization
can reduce the number of I/O operations,  thus optimiz-
ing the performance of the image merging module.

3) Compression and prune methods
To verify the impact of  our compression and prune

methods on the size of the differencing image, we evalu-
ate  the  size  of  the  differencing  image  with  and  without
Compression and prune methods. The results are shown

in Figure 10. The results show that the LZ4 compression
algorithm  can  effectively  reduce  the  size  of  the  image.
The compression ratio achieves about 50% or more. The
effect of prune method is relatively less. We suppose that
the  prune  method  is  better  for  images  in  which  users
have done uninstall and remove operation.

4) I/O speed
To  further  verify  the  impact  of  I/O  speed  on  the

performance  of  the  merge  function,  we  use  the  Cgroup
mechanism  of  Linux  on  the  bare  metal  machine  with
SSD configuration to limit the hard disk I/O speed and
test the performance at different I/O speeds. The results
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are  shown in Figure  11.  We can see  that  the  faster  the
I/O speed is, the shorter the merging latency is, and the
faster the merging speed is, the merging speed is propor-
tional to the hard disk I/O speed.

5) Memory size
We  evaluate  the  performance  impact  of  different

memory sizes on the merge function of Troy on the bare
metal machine configured with SSD. We limit the memo-
ry  to  4  GB and  16  GB based  on  the  I/O speed  of  100
MB/s and 300 MB/s. The results are shown in Figure 12.
It can be seen that memory size has little impact on the
performance  of  Troy  and  is  not  the  main  performance
factor.

6) CPU performance
We  evaluate  the  performance  impact  of  different

CPU performances on the merge function of Troy on the
bare metal  machine configured with SSD. Based on 100
MB/s and 300 MB/s I/O speed, we limit the CPU to use
100% performance  and  only  20%  performance.  The  re-
sults are shown in Figure 13.

The  experimental  results  show  that  when  the  I/O
speed is 100 MB/s, the change in CPU performance does
not affect the merging speed. When the I/O speed is 300
MB/s, the change in CPU performance has a significant
impact  on  the  merging  speed.  The  reason  is  that  when
the I/O speed is slow, the CPU needs to issue and pro-
cess  fewer  I/O  requests  per  unit  time,  while  when  the

I/O  speed  is  fast,  the  CPU  needs  to  issue  and  process
more I/O requests per unit time.

7) Summary
According  to  the  above  experimental  results  and

evaluation,  the main factor affecting the performance of
the merge function of Troy is I/O speed, which is I/O in-
tensive. When  the  I/O  speed  is  slow,  the  CPU  perfor-
mance  will  have  a  small  impact,  while  when  the  I/O
speed is  fast,  the  CPU  performance  will  have  a  signifi-
cant impact.  Memory  size  has  little  impact  on  perfor-
mance. For end users, latency is one of the important in-
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dicators, so better hard disks and CPUs can bring a bet-
ter user experience.

 VII. Conclusion
We propose Troy to enable efficient and automated

service  deployment  for  Windows  systems.  Troy  enables
the  administrator  to  automatically  deploy  services  on  a
large number of machines. Troy consists of two modules,
i.e., the image generation module and the image merging
module. In the image generation module, Troy generates
an empty differencing image that is minimized in size to
link  to  a  specific  parent  image.  In  the  image  merging
module, we analyze the correspondence between the sec-
tor  bitmap  blocks  and  the  payload  blocks  to  locate  the
sectors that  have  been  modified  in  a  runtime.  Further-
more, we find the matching between the payload blocks
in  the  differencing  and  parent  image,  such  that  replace
the blocks in the parent image with the modified blocks
in  the  differencing  image.  We  thoroughly  evaluate  the
performance  of  Troy  in  terms  of  latency.  The  results
show that Troy achieves comparable merging latency in
comparison  to  the  native  implementation  in  Windows
systems.
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