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Abstract — Denoising  (DN)  and  demosaicing  (DM)  are  the  first  crucial  stages  in  the  image  signal  processing
pipeline. Recently, researches pay more attention to solve DN and DM in a joint manner, which is an extremely un-
determined inverse problem. Existing deep learning methods learn the desired prior on synthetic dataset, which lim-
its the generalization of learned network to the real world data. Moreover, existing methods mainly focus on the raw
data property of high green information sampling rate for DM, but occasionally exploit the high intensity and signal-
to-noise (SNR) of green channel. In this work, a deep guided attention network (DGAN) is presented for real image
joint DN and DM (JDD), which considers both high SNR and high sampling rate of green information for DN and
DM, respectively. To ease the training and fully exploit the data property of green channel, we first train DN and
DM sub-networks sequentially and then learn them jointly, which can alleviate the error accumulation. Besides,  in
order to support the real image JDD, we collect paired raw clean RGB and noisy mosaic images to conduct a realis-
tic  dataset.  The  experimental  results  on  real  JDD dataset  show  the  presented  approach  performs  better  than  the
state-of-the-art methods, in terms of both quantitative metrics and qualitative visualization.
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 I. Introduction
Most  digital  camera  employs  a  single  CCD/CMOS

sensor to capture natural scenes. Due to 2D sensor, color
filter array (CFA) is always employed to filter two-thirds
of RGB information, such as the most famous Bayer pat-
tern.  Besides,  due  to  the  limitation  of  imaging  circuit,
the  rest  one-third  of  information,  i.e.,  mosaic  image,  is
always  corrupted  by  various  noise.  Thus,  recovering  a
high-quality  color  image  is  a  highly  ill-posed  problem.
Image  denoising  (DN)  and  demosaicing  (DM)  are  the
first  crucial  steps  of  image  signal  processing  (ISP)
pipeline  in  most  digital  camera,  and  their  performance
has vital  influence  on  the  visual  appearance  and  down-
stream application of final result [1].

Due  to  the  modular  design  of  traditional  ISP,  DN
and  DM  are  independently  and  sequentially  handled.
However, it leads to error accumulation and sub-optimal
recovery. Either  DN needs  to  handle  non-linear  and  di-

verse noises introduced by DM, or DM suffers from unre-
liable samples caused by DN. To solve this problem, re-
searches recently focus on the joint DN and DM (JDD)
image restoration and show its advantages [2], e.g., high
performance and low computational complexity.

Since  this  restoration  task  is  undetermined,  diverse
image  priors  are  required  to  assist  the  reconstruction.
Traditional methods usually  solve an optimization func-
tion in an iterative manner with embedding hand-crafted
priors, e.g., total variation [3], nonlocal self-similarity [4],
[5].  However,  the complex data in the real  word cannot
be  sufficiently  characterized  by  the  hand-crafted  priors,
and there  are  still  a  number  of  visually  disturbing  arti-
facts appearing  on  some  challenging  high  frequency  re-
gions, e.g., checkerboard and moire patterns [1].

Recently, instead  of  hand-crafted  prior,  deep  learn-
ing  methods  [1],  [6]–[8]  automatically  learn  the  desired
prior  with  convolutional  neural  network  (CNN).  Most 
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approaches [1], [6], [7] brutally learn a mapping network
between  noisy  image,  i.e.,  mosaic  image  or  decomposed
four-channel RGGB image, and clean RGB image to ex-
ploit  intra-  and  inter-channel  correlation  and  complete
the  missing  information.  Considering  the  high  sampling
rate  of  green  channel,  Liu et  al. [8] additionally  intro-
duced a green channel recovery branch to guide RGB im-
age  restoration.  Nevertheless,  all  these  methods  are
trained  on  synthetic  data  [1],  [9]–[12],  and  CFA  and
Gaussian noise are utilized to synthesize the mosaic im-
age.  Due to the domain gap between synthetic  and real
mosaic  image,  these  methods  cannot  generalize  well  on
real raw data with complex noises.

Besides, most existing methods mainly focus on con-
sidering  the  raw  data  property  for  DM  [8],  i.e.,  higher
sampling  rate  of  green  information,  but  rarely  consider
the raw data characteristic  for  DN. As human eyes  can
perceive  green  more  sensitively  than  red  and  blue  [13],
the camera spectral sensitivity of green is designed to be
larger than red and blue, which leads to higher intensity
and  signal-to-noise  ratio  (SNR)  of  green  channel,  as
shown  in Figure  1.  These  mean,  due  to  high  sampling
rate and  high  SNR,  the  green  channel  is  easy  to  be  re-
covered not only for DM but also for DN.

In  this  work,  we  present  a  deep  guided  attention
network (DGAN) for real image JDD, which respective-
ly  considers  the  high  SNR  and  high  sampling  rate  of
green information for DN and DM, as shown in Figure 2.
The network architecture of DGAN is based on UNet [14],
and involves green channel guidance branch with multi-
ple  guided  attention  modules  and  decomposition  and
combination learning strategy.  Inspired by guided filter,
we design a guided attention module in local manner to
adaptively generate attentive kernel weights for different
spatial  positions  by  modeling  the  interdependencies  of
more completed  green  channel  feature  in  the  neighbor-
hood. To ease the learning of JDD network and fully ex-

ploit data property of green channel, we decompose JDD
network into two sub-networks, where the former focus-
es on DN with high SNR green channel guidance and the
latter takes charge of DM with high sampling rate green
channel guidance. Two sub-networks are trained sequen-
tially first, and then are combined into a whole network
for jointly training to reduce the error accumulation. Be-
sides, to support the JDD in the real world, we utilize an
advanced pixelshift  camera to collect a real  raw dataset
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Figure 1  High  SNR  and  sampling  rate  of  green  channel.  Green
channel has twice sampling rate than red and blue channels. Cam-
era spectral sensitivity of green is higher than that of red and blue,
which  leads  to  higher  intensity  and  SNR.  The  second  line  shows
higher  intensity  and  the  third  line  shows  higher  SNR  of  green
channel, respectively. Note that the Gb channel is similar to Gr.
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Figure 2  The architecture of proposed guided attention network, consisting of DN and DM two sub-networks. Each sub-network employs
Unet as the fundamental network and residual block (RB) as basic module. We utilize green channel with high SNR and sampling rate to
respectively guide the denoising and demosaicing with multiple guided attention modules (GAMs), which employ the green channel fea-
ture  in  the  corresponding  depth  as  guidance  information.  The  network  architecture  of  green  channel  branch  is  the  same  as  the  main
branch, except with half feature maps. Compared with DN sub-network, DM sub-network additional utilize pixel-shuffle layers to upsam-
ple the resolution.
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with paired clean full color RGB, noisy and clean mosa-
ic images. The experimental results on real JDD dataset
show that  the  presented  approach  performs  better  than
the state-of-the-art  methods,  in  terms  of  both  quantita-
tive metrics and qualitative visualization.

Our main contributions are as follows:
• We present  a  deep guided attention network for

real  image  JDD,  that  effectively  considers  the  green
channel  characteristics  of  high  SNR  and  high  sampling
rate in raw data.

• We propose  a  guided  attention  module  to  adap-
tively  guide  RGB  image  restoration  by  the  information
in green channel recovery branch.

•  We  collect  a  real  raw  JDD  dataset  with  paired
noisy mosaic, clean mosaic and clean full color RGB im-
ages, and utilize a decomposition-and-combination train-
ing strategy to make the trained network more practical
to the real data.

 II. Related Work
The most  related  researches  on  joint  image  denois-

ing and demosaicing,  and guided image recovery are re-
viewed in this section.
 1. Joint denoising and demosaicing

The  aim  of  image  DM  is  recovering  a  RGB  image
from a mosaic image losing two-thirds information. Vari-
ous  traditional  methods  [15]–[23]  and  deep  learning
methods [24] have been presented. Besides, due to noise
commonly existing in the real world, DM methods usual-
ly need collaboration of DN methods [25], [26], and pro-
cess the noisy mosaic image sequentially.  Because of  er-
ror  accumulation,  it  leads  to  sub-optimal  recovery.  To
solve this problem, researchers recently pay more atten-
tion  on  JDD  image  restoration  and  show  the  benefits,
which can achieve higher performance and lower compu-
tational complexity [2].

Since  image  JDD  is  an  extremely  undetermined
problem,  diverse  image  priors  are  required  to  assist  the
recovery.  The  conventional  optimization  methods  [3]–[5]
integrate hand-crafted priors to iterative optimization al-
gorithm,  and  restore  the  clean  RGB  image  from  noisy
mosaic image. Condat et al. [3] integrated the total vari-
ation  prior  to  a  primal  dual  optimization  algorithm.
Heide et  al. [4]  presented  an  optimization  method  with
nonlocal prior to recover color image. Tan et al. [5] em-
ployed  alternating  direction  method  of  multipliers  (AD-
MM) with nonlocal and total variation priors to recover
color image.

Alternatively, deep learning methods [1], [6]–[8], [27]
employ advanced  convolutional  neural  networks  to  ex-
ploit the desired prior for JDD task. Gharbi et al. [1] re-
covered color image from noisy mosaic image with a deep
convolutional  neural  network.  Tan et al. [6]  employed a
convolutional neural network to refine the initialized col-
or image via bilinear interpolation. Kokkinos et al. [7] in-
tegrated a  residual  DN  network  into  unrolled  majoriza-

tion-minimization method for color image recovery. Xing
et al. [27] discussed the effect of DN and DM processing
order,  and  presented  an  end-to-end  network  for  image
JDD.  Liu et  al. [8]  introduced  additional  green  channel
and density map guidances to design a self-guidance net-
work for color image recovery.

The conventional  methods  utilize  hand-crafted  pri-
ors that  are  often  limited  linear  characteristic  and  can-
not sufficiently employ the image nonlinearity. The deep
learning  methods  brutally  learn  the  implicit  mapping
function from noisy mosaic to clean RGB images, but do
not  well  consider  the  high  SNR and high  sampling  rate
data  properties  of  green  channel.  In  this  work,  we
present  a  deep  learning  method  to  exploit  deep  prior
with attentive green channel guidance for image JDD.
 2. Guided image recovery

Guided image recovery utilizes auxiliary prior to as-
sist  image  restoration.  Guided  filter  [28],  [29]  is  a  well-
known method that employs an additional image as guid-
ance to generate filter weights and has been successful in
many image recovery tasks, e.g., image demosaicing [30].
Recently, deep learning methods [31]–[40] have employed
various  auxiliary  information  to  guided  image  recovery,
particularly for super-resolution. Some methods [31], [32],
[35]  utilized  RGB  image  as  the  auxiliary  knowledge  to
guided  the  super-resolution  of  depth  or  hyperspectral
image.  Wang et  al. [36]  super-resolved  the  image  with
semantic  information  guidance.  Zou et  al. [34]  super-
resolved  the  image  with  cross-scale  stereo  information
guidance.

Besides,  self-guidance  network  [41]  is  presented  for
image DN, that employed the low resolution features to
enhance the high resolution feature. Liu et al. [8] utilized
the  green  channel  property  of  high  sampling  rate  and
further  designed a  green  channel  sub-network  to  guided
image  JDD,  where  guidance  information  is  fused  with
main  information  at  the  end  of  branches.  Inspired  by
guided  filter,  we  propose  a  guided  attention  module  to
adaptively fuse main information with guidance informa-
tion. In  addition,  to  fully  exploit  the  guidance  informa-
tion in  green  channel,  we  interpolate  the  guided  atten-
tion module into network with different depths.

 III. Guided Attention Network
Firstly, we formulate the problem of joint image DN

and DM, and introduce the motivation of DGAN. Then,
we describe the guided attention module, that adaptively
guides RGB image recovery by information in green channel
recovery branch. Finally, the architecture of DGAN and
the corresponding  decomposition-and-combination  train-
ing strategy are described. The decomposed sub-networks
can effectively consider the high SNR and high sampling
rate raw data properties for DN and DM, respectively.
 1. Formulation and motivation

Z ∈ R1×H×WThe JDD aims to handle mosaic image 
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n ∈ R1×H×W

X ∈ R3×H×W
corrupted  with  noise  and  recover  clean
RGB image . H and W denote height and
width of images, respectively. It can express the relation-
ship of noisy mosaic and clean RGB images as
 

Z = Y + n = M(X) + n (1)

Y M
n

where  denotes clean mosaic image and  is the mosa-
ic mapping function.  includes various noise and is not
limited to signal-independent Gaussian noise.

Numerous  researches  show  that  human  eyes  are
more sensitive to green than red and blue [13]. Therefore,
the CFA, e.g., Bayer pattern, in modern digital cameras
are designed with higher sampling rate and spectral sen-
sitivity of green than others,  as shown in Figure 1. The
higher spectral sensitivity causes higher intensity of cap-
tured  green  channel  and  the  most  noises  in  acquisition
are signal-independent noise, which leads to higher SNR
of green channel. Accordingly, the green channel is easi-
er to be recovered not only for DM but also for DN.

In  this  paper,  we  first  employ  two  networks  with
green channel guidance to respectively deal with DN and
DM, and  then  fine-tune  them  in  a  joint  manner.  Con-
cretely,  we present a guided attention module,  in which
attention  map  is  generated  from  guided  information  of
green  channel  and  is  adaptive  for  each  spatial  position.
We plug the guided attention module into network to re-
cover  color  information  with  progressive  green  channel
guidance.
 2. Guided attention module

G

I O
i

Before introducing guided attention module, we first
review the guided filter [28], which has been widely used
in image DN [42] and DM [30]. Guided filter is a transla-
tion-variant filter,  involving a guidance image , an in-
put  image ,  and  an  output  image . Given  the  guid-
ance image and input image, the output at the -th pixel
can be represented as
 

Oi =
∑

j∈N (i)

Wij(G)Ij (2)

i j N (j)
j Wij

G

I

where  and  denote  pixel  indexes  and  are  the
neighboring pixels of . The filter weight  is a trans-
formation  of  the  guidance  image  and  independent  of
input image .

1× 1
fI fG

I ′ = fI(I) G′ = fG(G)
i

N (i)
j ∈ N (i) A′

Inspired by the guided filter, we presented a guided
attention module, in which the attention map is generat-
ed from the correlation between the features of guidance
information in current position and its neighborhood, as
shown  in Figure  3.  We  first  employ  two  convolu-
tional layers  and  to embed the input and guidance
features with the same channels, and the embedded fea-
tures  are  denoted as  and , respec-
tively. Then, a certain element at position  in guidance
feature queries the correlation with elements in its neigh-
borhood .  Supposing  the  position  of  element  in
neighborhood is , the correspondence map  can
be expressed as

 

A′
ij = G′T

i G
′
j (3)

G′T
i ∈ R1×C G′

j ∈ RC×1

Ai

where  and . The final guided at-
tention map  is
 

Ai = σ(A′
i) (4)

σ

Ai

where  is  the  Softmax  function  and  forces  the  guided
attention map  sum-to-one.  Specifically,  the  each  ele-
ments calculation in  can be expressed as
 

Aij =
eA

′
ij∑

k∈N (i)
eA

′
ik

(5)

A
W

A
I ′

i

The  guided  attention  map  is  corresponding  to
guided filter kernel , they are both generated by guid-
ance  information  and  independent  of  input  information.
Given the guided attention map  and embedded input
feature , we  can  obtain  the  attended  feature  in  posi-
tion  as
 

O′
i =

∑
j∈N (i)

AijI
′
j (6)

1× 1 fOFinally, we employ a  convolutional layer  to
project  the  attended  feature  to  original  dimension  and
add it with input feature. It can be represented as
 

O = fO(O
′) + I (7)

K ×K

Comparing  with  popular  self-attention  [43],  the
guided attention map is  calculated by green channel  in-
formation. Due to high SNR and high sampling rate, the
information of green channel is more complete than oth-
er channels. It leads to more accurate attention map cal-
culation.  Besides,  taking  the  neighborhood  with  spatial
size  as  an  example.  Comparing  conventional
global attention in the vanilla transformer structure [43],

 

Element-wise multiply

Element-wise sum

σ(·)

Ai
G ′

I ′ O′

G′j G′i

fG fI

G′

Ai
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Figure 3  The guided attention module. We first employ  and 
to embed the guidance and input features. Then, inspired by guid-
ed filter [28], we utilize the guidance information  to generate lo-
cal  attention  map , which  attentively  filters  the  input  informa-
tion.  Finally,  the  attended feature  is  mapped to  input  space  with

 and added with input feature.
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H ×W ×H ×W
H ×W ×K ×K

O(H2W 2C) O(HWK2C) K

H W

the proposed guided attention reduce the memory occu-
pation  of  attention  map  from  to

,  and  the  computational  complexity
from  to .  As  is much small-
er than  and , the proposed guided attention is more
efficient than conventional attention.
 3. Network architecture

To  ease  the  network  training,  we  decompose  the
JDD  network  into  DN  and  DM  two  sub-networks,  as
shown in Figure 2.

These two sub-networks have almost the same archi-
tecture, and the main difference is that the DN sub-net-
work employs  a  convolutional  layer  to  output  the  de-
noised data, and DM sub-network additionally employs a
pixelshuffle  layer  to  upsample  the  spatial  resolution.  As
numerous  researches  [12],  [27]  show  that  applying  DN
first  and  DM later  outperforms  the  opposition,  we  first
employ the DN sub-network and feed its output through
DM sub-network to obtain the clean full color RGB im-
age.

4× 4

1/2 ×
2× 2

2 ×

3× 3

1× 1

Each sub-network  consists  of  green  channel  guid-
ance branch and main branch. Both branches are based
on  the  same  representative  Unet  [14]  architecture.  The
feature maps of green channel guidance branch is half of
that  of  main  branch.  Each  branch  has  4  encoder  steps
and  4  corresponding  decoder  steps.  After  each  encoder
step,  a  convolution  layer  with  kernel  size  and  2
stride  is  employed  to  downsample  the  feature  maps  in

 scale.  Before  each  decoder  step,  a  deconvolution
layer with  kernel size and 2 stride is utilized to up-
sample  the  feature  maps  in  scale.  Besides,  feature
maps in encoder are passed to its corresponding decoder
stage through  skip  connections.  In  each  encoder  or  de-
coder step, there is a residual block with two  con-
volution layers and an additional  convolution layer.

The  existing  method  [8] only  employs  output  fea-
ture of green channel branch once to guide the informa-
tion recovery at the end of main branch. To fully exploit
the guidance  information,  we  utilize  green  channel  fea-
tures  to  guide  main  branch  restoration  with  multiple
times.  Specifically,  we  interpolate  the  guided  attention
module  after  each residual  blocks,  and the main branch
is guided by the features in the corresponding depth.
 4. Learning strategy

As  we  decompose  the  JDD  network  into  DN  and
DM two sub-networks, we present a decomposition-and-
combination learning strategy to train the networks and
obtain a higher recovery accuracy. Our learning strategy
can  be  divided  into  three  steps,  including  decomposed
DN training, decomposed DM training and combined DN
and DM training.

L1

Firstly,  we  train  the  DN  sub-network  with  paired
clean and noisy mosaic images. Following previous works
[8],  we  decompose  the  mosaic  image  into  RGGB  four
channels. The  error is utilized as loss function, which
can be expressed as

 

LDN (θDN ) = ||τ(Y )− fDN (τ(Z); θDN )||1 (8)

τ fDN θDNwhere ,  and  denote decomposition  transfor-
mation,  the  mapping  function  of  DN  sub-network  and
the corresponding parameters, respectively.

θDN

τ(Ŷ ) τ(Ŷ )

Secondly, we fix the parameters  of DN sub-net-
work,  and  train  the  DM  sub-network.  Given  the  pre-
trained  DN  sub-network,  we  can  obtain  a  pre-denoised
four channel mosaic image . Feeding to the DM
sub-network, we want to get a full color RGB image. To
this end, we train the DM sub-network with the follow-
ing loss function
 

LDM (θDM ) = ||X − fDM (τ(Ŷ ); θDM )||1 (9)

fDN θDNwhere  and  denote the mapping function of DM
sub-network and  the  corresponding  parameters,  respec-
tively.

Thirdly, we combine the DN and DM sub-networks,
and  train  them  in  a  joint  manner.  Given  the  networks
trained  in  previous  steps,  we  fine-tune  them  jointly,
which can be represented as
 

LJ(θDN , θDM ) = ||X − fDM (fDN (τ(Z); θDN ); θDM )||1
(10)

λ

Apart from RGB recovery loss for the main branch,
we  add  corresponding  green  channel  recovery  loss  to
equations  (8)–(10)  with  balance  parameter  for differ-
ent  learning  steps.  The  total  loss  of  each  learning  step
can be expressed as
 

L = LM + λLG (11)

LM LDN LDM LJ

LG

where  is the main branch loss, i.e., ,  or ,
and  is  the  corresponding  green  channel  branch  loss,
respectively.

 IV. Paired Real Raw JDD Dataset
The existing deep learning JDD methods need to be

learned on training datasets [1], [9]–[12]. Existing datasets
for  JDD have several  problems.  The sRGB datasets  [1],
[9], [10] are nonlinearly processed and demosaiced by ex-
isting DM algorithm, which mismatches the linear work-
ing  space  of  DM approaches  and introduces  undesirable
artifacts. The linear RGB datasets [11] are generated by
raw mosaic images, however, which might alter the char-
acteristic  of  signal.  Recently,  Qian et  al. [12]  captured
linear  full  color  RGB  images  with  advanced  pixel  shift
device.  However,  these  datasets  just  include  clean  RGB
image,  but  still  synthesize  the  noisy  mosaic  image  with
CFA and  Gaussian  noise.  It  introduces  domain  gap  be-
tween synthetic image and real image with complex nois-
es, which  limits  the  application  of  learned  JDD  algo-
rithms to the real data.

To support this study, we utilize a camera with pix-
el shift technique to collect a paired real dataset, includ-
ing noisy mosaic, clean mosaic and RGB images. To cap-
ture  a  color  RGB  image,  pixel  shift  camera  takes  four
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mosaic images, as shown in Figure 4. Each mosaic image
is captured with horizontal and/or vertical sensor move-
ment.  After  capturing  four  times,  the  camera  can  fully
capture the color  information of  each pixel.  In each full
color  image  capturing,  we  can  obtain  four  pixel  shifted
mosaic images and a full color RGB image. After captur-
ing clean full  color RGB image,  the noisy mosaic image
is required to capture. According to the work in [44], we
fix the imaging setting and reduce exposure time to col-
lect  noisy  mosaic  image.  Thus,  noisy/clean  mosaic  and
noisy/clean  full  color  RGB  images  can  be  captured  in
paired manner.

For dataset capturing, we utilize an advanced pixel
shift camera Sony A7R4. We mount the camera on stur-
dy tripods and utilize  a software to remotely control  it.
We first adjust focus, aperture, exposure time and other
camera  settings  to  improve  the  definition  of  the  clean
mosaic  and  full  color  RGB  images.  Then,  the  exposure
time is reduced with a factor to collect noisy images. Due

to  multiple  acquisitions  of  the  same  scene,  we  strictly
keep the scenes in the dataset is static. After capturing,

 

Shift

Full color image

=

Shift
Shift

R

G

B

+++

Shot 1 Shot 2 Shot 3 Shot 4

Figure 4  The  working  principle  of  pixel  shift  camera.  The  camera
sensor  takes  four  shots  with  physically  moving  in  horizontal  and
vertical  dimensions  in  each  capturing.  Then,  these  mosaic  images
are integrated to get a full color image.
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Figure 5  Visual quality comparison on two representative scenes in real JDD dataset. The input noisy image and restored results of Flex-
ISP, ADMM, DeepJoint, DeepUnfold are shown in the first row, and the recovered results of SGNet, JDDS, DGAN and ground truth are
shown in the second row.
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there  are  100 outdoor and indoor scenes  in our dataset,
whose  resolution  is  with . We  randomly  se-
lect 25 scenes for testing and the rest for training.

 V. Experiments
In this section, we first describe the experiment set-

tings,  such  as  implementation  details  and  metrics  for
quantitative investigation.  Besides,  the  proposed  ap-
proach is compared with several advanced approaches on
collected  real  raw  JDD dataset.  Finally,  we  discuss  the
effective  of  different  network  modules  and  learning
strategies.
 1. Settings

K
λ

30− nepoch × 27/100 nepoch

256× 256

β1 = 0.9
β2 = 0.999

1× 10−4

The window size  of guided attention module is set
to  5.  Following  [8],  the  balance  parameter  is  set  to

,  where  is  the  number  of
learning epochs. During the training stage, the image in
our  paired real  JDD dataset  are  randomly cropped into

 spatial regions  with  overlap.  We  employ  Py-
Torch  for  implementation.  In  each  training  step,  the
model is trained with Adam optimizer [45] (  and

) for 100 epochs. The initial learning rate and
mini-batch size are set to  and 1, respectively.

Six  state-of-the-art  methods  are  compared with our
DGAN,  including  two  conventional  methods  and  four
deep  learning  methods.  The  conventional  methods  are
FlexISP [4]  and ADMM [5].  The deep learning methods
are DeepJoint [1],  DeepUnfold [7],  SGNet [8]  and JDDS

[27].  We  evaluate  all  methods  on  our  paired  real  JDD
dataset. It  is  worth  to  note  that  noisy  map  is  not  uti-
lized for all deep learning methods, as real mosaic image
contains  various  noises  [46] and  the  noise  level  is  diffi-
cult to be estimated.

Two  evaluation  metrics, i.e.,  the  Peak  Signal-to-
Noise  Ratio  (PSNR)  and  Structural  Similarity  (SSIM),
are utilized  to  investigate  the  performance  of  all  algo-
rithms. The bigger value of PSNR and SSIM means high-
er image quality.
 2. Evaluation on real JDD dataset

Quantitative  results  Table  1 provides the  aver-
aged  recovery  results  of  different  situations  on  the  real
JDD dataset,  which  quantitatively  compare  the  perfor-
mance  of  FlexISP,  ADMM,  DeepJoint,  DeepUnfold,
SGNet, JDDS and DGAN. We highlight the best results
for  each  metric  in  bold.  We  can  see  that  the  proposed
approach performs  better  than  previous  algorithms  un-
der both metrics. Specifically, deep learning methods ex-
hibits  remarkably  higher  accuracy  compared  with  the
traditional  methods  based  on  hand-crafted  priors.  It
demonstrates the superiority of the prior modeling capa-
bility  of  the  deep  network.  Compared  with  the  deep
learning methods, the proposed method fully exploits the
data  property  of  green  channel, i.e.,  high  sampling  rate
and high  SNR,  and  achieves  better  performance.  It  re-
veals the effectiveness of  our deep guided attention net-
work.

 
 

Table 1  PSNR and SSIM metrics of different algorithms on real JDD dataset

Metrics
Traditional methods Deep learning methods

FlexISP [4] ADMM [5] DeepJoint [1] DeepUnfold [7] SGNet [8] JDDS [27] DGAN(Ours)

PSNR 30.246 30.078 41.186 41.503 42.298 42.397 42.712

SSIM 0.9149 0.9120 0.9832 0.9811 0.9829 0.9827 0.9833
 
 

Perceptual  quality  For  visualization,  we  show two
typical recovered scenes in Figure 5. The input noisy im-
age and restored results of FlexISP, ADMM, DeepJoint,
DeepUnfold are  shown  in  the  first  row,  and  the  recov-
ered  results  of  SGNet,  JDDS,  DGAN and  ground  truth
are shown in the second row. The results of FlexISP and
ADMM can obviously observe noise, which indicates the
hand-crafted prior is inefficient for real image JDD. Our
method  can  produce  visually  pleasant  results  with  less
artifact and sharper edges compared with other methods,
which is consistent with quantitative results.

256× 256

Computational  complexity  The  efficiency  of  all
deep  learning  methods  are  also  quantitatively  evaluated
by two metrics, i.e., parameters and floating-point opera-
tions (FLOPs).  We show the related results  in Table 2.
It is  worth  to  note  that  FLOPs is  calculated  by restor-
ing an image with  resolution. We can see that
our method has larger number of parameters than other
methods, especially  DeepJoint  and  DeepUnfold.  It  indi-
cates  that  our  method  has  more  powerful  capability  to

exploit  the latent characteristic  of  image.  Moreover,  the
FLOPs of DGAN is smaller than all methods, and espe-
cially  compared  with  DeepUnfold,  SGNet  and  JDDS  in
two orders of magnitude smaller. It demonstrates the ef-
ficiency of the proposed method.
 
 

Table 2  Parameters and FLOPs comparison  of  deep  learning  algo-
rithms

Methods Params(M) FLOPs(G)

DeepJoint 0.56 9.39

DeepUnfold 0.38 245.60

SGNet 13.62 221.69

JDDS 6.22 399.59

DGAN(Ours) 24.86 9.18
 
 

 3. Discussion
Here, we discus the effect of different guidance mod-

ules, different  learning  strategies,  and  different  upsam-
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pling layers.
The effect  of  different guidance modules  To verify

the effectiveness of the green channel guidance with mul-
tiple  guided  attention  modules,  we  compare  it  with  one
attention  guidance,  multiple  concatenation  guidances,
one  concatenation  guidance  and  without  guidance.  The
results are provided in Table 3, and we highlight the best
results  in bold.  Specifically,  network with green channel
guidance outperforms that without guidance, which veri-
fies the effectiveness of green channel guidance. Further,
the  gains  of  our  method  with  multiple  guidances  over
that with once guidance demonstrate multiple guidances
can fully exploit the data property of green channel. Last
but not least, our method with attention guidance is con-
siderably  better  than  that  with  concatenation  guidance.
It reveals the effectiveness of our guided attention mod-
ule  that  adaptively  fuses  the  guidance  information  to
main branch.
 
 

Table 3  The effect of different guidance modules

Guidances PSNR SSIM

without guidance 41.679 0.9797

one concatenation 41.900 0.9811

multiple concatenation 42.362 0.9822

one attention 42.307 0.9821

multiple attention 42.712 0.9833
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The effect of different learning strategies  To evalu-
ate  the  effectiveness  of  the  decomposition-and-combina-
tion learning strategy (DN DM (DN DM)), we com-
pare it with different learning strategies, including direct-
ly  end-to-end  training  (E2E),  DN  and  DM  separately
training  (DN+DM),  and  separately  training  and  jointly
fine-tuning  ((DN+DM) (DN DM)).  We  provide  the
results  in Table  4,  and  highlight  the  best  results.  Note
that  numerous  researches  [12],  [27]  show  that  applying
DN first and DM later outperforms the opposition, so we
first  employ  the  DN  sub-network  and  feed  its  output
through  DM  sub-network  to  obtain  the  clean  full  color
RGB image. Specifically, due to error accumulation, the
DN  and  DM  separately  training  performs  worst.  With
the prior knowledge of DN and DM, (DN+DM) (DN
DM) and DN DM (DN DM) outperform E2E, which
demonstrates  the  necessary  of  pre-training.  Moreover,
the gain between DN DM (DN DM) and (DN+DM)

(DN DM) verifies the effectiveness of our decomposi-
tion and combination learning strategies.

The  effect  of  different  upsampling  layers  To up-
sample the  spatial  resolution,  there  mainly  three  opera-
tions  for  deep  neural  network,  including  interpolation,
deconvolution and  pixel-shuffle.  Inspired  by  the  ad-
vanced  image  super-resolution  methods  [47],  we  employ
pixel-shuffle layer to upsample the spatial resolution. To
evaluate the effectiveness of the pixel-shuffle upsampling
layer, we  compare  it  with  interpolation  and  deconvolu-
tion. We provide the results in Table 5, and highlight the
best  results.  We  can  see  that  pixel-shuffle  significantly
outperforms other upsampling layers, especially the inter-
polation  layer.  It  verifies  the  superiority  of  pixel-shuffle
layer in DM-subnetwork.
  
Table 5  The effect of different upsampling layers

Upsampling PSNR SSIM

Interpolation 41.187 0.9801

Deconvolution 42.312 0.9815

Pixel-shuffle 42.712 0.9833
 
 

 VI. Conclusion
In  this  paper,  we  present  a  novel  guided  attention

network  for  real  image  JDD,  which  considers  the  high
SNR  and  high  sampling  rate  of  green  information  to
guide the DN and DM, respectively. The designed guid-
ed  attention  module  can  adaptively  guide  the  full  color
RGB image recovery, and can fully exploit the guidance
of  green  channel  by  applying  it  multiple  times  in  the
DGAN. To  ease  the  training,  we  employ  a  decomposi-
tion-and-combination learning  strategy.  Besides,  we  uti-
lize  pixel  shift  camera  to  collect  a  paired  real  JDD
dataset  containing  clean  RGB,  clean  mosaic  and  noisy
mosaic  images,  making  the  leaned  network  with  better
generalization for  the  real  data.  The  comprehensive  ex-
perimental  results  indicate that our method have better
performance  than  existing  state-of-the-art  algorithm  in
terms of both comprehensive quantitative metrics and vi-
sual quality.  In the future,  we will  collect more suitable
data and expand the paired real JDD dataset.
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