

RESEARCH ARTICLE

FlowGANAnomaly: Flow-Based Anomaly
Network Intrusion Detection with
Adversarial Learning

Zeyi LI1, Pan WANG2, and Zixuan WANG3

1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Corresponding author: Pan WANG, Email: wangpan@njupt.edu.cn
Manuscript Received June 16, 2022; Accepted November 23, 2022
Copyright © 2024 Chinese Institute of Electronics

Abstract — In recent years, low recall rates and high dependencies on data labelling have become the biggest ob-
stacle to developing deep anomaly detection (DAD) techniques. Inspired by the success of generative adversarial net-
works (GANs) in detecting anomalies in computer vision and imaging, we propose an anomaly detection model called
FlowGANAnomaly for detecting anomalous traffic in network intrusion detection systems (NIDS). Unlike traditional
GAN-based approaches, which are composed of a flow encoder, a convolutional encoder-decoder-encoder, a flow de-
coder and a convolutional encoder, the architecture of this model consists of a generator (G) and a discriminator (D).
FlowGANAnomaly maps the different types of traffic feature data from separate datasets to a uniform feature space,
thus can capture the normality of network traffic data more accurately in an adversarial manner to mitigate the
problem of the high dependence on data labeling. Moreover, instead of simply detecting the anomalies by the output
of D, we proposed a new anomaly scoring method that integrates the deviation between the output of two Gs’ convo-
lutional encoders with the output of D as weighted scores to improve the low recall rate of anomaly detection. We
conducted several experiments comparing existing machine learning algorithms and existing deep learning methods
(AutoEncoder and VAE) on four public datasets (NSL-KDD, CIC-IDS2017, CIC-DDoS2019, and UNSW-NB15). The
evaluation results show that FlowGANAnomaly can significantly improve the performance of anomaly-based NIDS.
Keywords — Anomaly detection, Unsupervised learning, Generative adversarial network, Intrusion detection
system.
Citation — Zeyi LI, Pan WANG, Zixuan WANG, “FlowGANAnomaly: Flow-Based Anomaly Network Intru-
sion Detection with Adversarial Learning,” Chinese Journal of Electronics, vol. 33, no. 1, pp. 58–71, 2024. doi: 10.23919/
cje.2022.00.173.

 I. Introduction
With the advent of the 5G era, Internet of every-

thing has become a significant trend. Due to the increasing
frequency of attacks on Internet of things (IoT), vehicle
networking, and other environments, cyber security is
gaining more and more attention from academia and in-
dustry, which has prompted many researchers to design
and develop effective network intrusion detection systems
(NIDS). In general, intrusion detection techniques fall into
two genres: misuse-based and anomaly-based detection.
Misuse-based detection systems can parse the payload in
network traffic and match it with existing signatures-alert

messages to indicate abnormal behaviour once the system
is under attack [1]. Nevertheless, misuse-based intrusion
detection systems (IDS) methods incur high computa-
tional costs and require manual signatures maintenance
by experts over time [2]. Above all, new types of attacks
can not be identified in time, which largely limits the de-
velopment of misuse-based IDS [3]. Accordingly, anomaly-
based NIDS mitigates the problem by learning normal
network behaviour features and capturing deviations
from normal ones. These deviations are called anomalies
[4]. Therefore, anomaly-based methods are more suitable
for NIDS than misuse-based approaches, especially to de-
tect new types of attacks.

Associate Editor: Prof. De-chuan ZHAN, Nanjing University.

Chinese Journal of Electronics
vol. 33, no. 1, pp. 58–71, January 2024
https://doi.org/10.23919/cje.2022.00.173

Anomaly-based network intrusion detection system
(ANIDS) focuses on capturing the normal behaviour fea-
tures in the network and calculating the deviation from
the coming traffic flow to detect anomalies. Many tradi-
tional machine learning (ML) algorithms have been used
to develop anomaly detection (AD) models [5]. Never-
theless, ML-based AD algorithms have many challenges.
First, it is hard to learn the traffic features for ML algo-
rithms because the network traffic data is complex, high-
dimensional, and non-linear. Second, the size of normal
network traffic is huge leading to great difficulties in algo-
rithm training. Third, the concept of an anomaly is sub-
jective and highly depends on the application domain
and context. In addition, anomalous samples are difficult
to label and are usually done manually by human experts.
And finally, the boundary between normal and anomaly
is often imprecise. Fortunately, deep learning (DL) has
been a great success as a revolutionary innovation in
computer vision, imaging, and speech. DL uses automat-
ic feature learning to perform better modeling, avoiding
task-specific engineering and large amounts of prior
knowledge. Generative adversarial network (GAN), an
emerging technique, provides helpful context for the de-
velopment of DL because its most valuable contribution
has been proved to well capture the normality underly-
ing the given data and then detect abnormal instances,
especially on image/video data. Recently, existing GAN-
based models and theories [6] have been verified in the
literature that they are suitable for anomaly detection.
So, more and more attention is drawn by researchers from
traditional training methods of DL toward adversarial
learning methods.
 1. Motivations

Recently, deep anomaly detection (DAD) technolo-
gy has gained much attention for its ability of detecting
unknown attacks without having to manually build a li-
brary of traffic behaviour based on DL algorithms. How-
ever, DAD techniques are still more or less limited by
the following challenges:

1) The detection of traffic behaviour may be biased
due to the lack of well-designed DL models and threshold
selection algorithms. The boundary between normal and
outlier traffic is often unclear and imprecise, resulting in
a low recall of anomaly detection.

2) Traditional convolutional modules [7] require fixed
input parameters, and frequent changes of model param-
eters are required to train different data sets.

3) The calculation of anomaly scores is not accurate
enough to detect the deviation from the features of the
flow.

4) The last issue is that DAD rarely has interpret-
ability, which makes the algorithm less trustworthy.
 2. Key contribution

GAN is rapidly becoming a popular DAD method
because of its excellent automatic feature extraction
through adversarial learning [8]. This paper proposes an

ANIDS algorithm based on adversarial learning called
FlowGANAnomaly which consists of a generator (G) and
a discriminator (D). The proposed algorithm learns the
underlying distribution of network traffic data through
adversarial training. At the same time, multiple loss
functions are combined to form multiple constraints aim-
ing to train the GAN model more accurately, and the
scores of discriminators and reconstruction distances are
weighted as anomaly scores. Given that the features of
each dataset are not consistent, G’s flow encoder maps
the different types of traffic feature data from separate
datasets to a uniform feature space, thus can capture the
normality of network traffic data more accurately. The
main contributions of this paper are as follows:

1) This paper proposes a network anomaly detec-
tion algorithm called FlowGANAnomaly. GAN consist-
ing of a deconvolutional decoder, a flow encoder, a flow
decoder, and three convolutional encoders plays a piv-
otal role in this model. A convolutional encoder acts as D
and the remaining parts make up G. The flow encoder
can map the data of different features into G uniformly,
which can be applied to different flow feature computing
environments and has good scalability. Meanwhile, the
results prove that adding the flow encoder module works
better.

2) The anomaly score is composed of Euclidean dis-
tance between two convolutional encoders in G and D’s
output, which can well reflect the anomalous characteris-
tics of network traffic. The results are better than the
traditional GAN methods.

3) We propose an improved threshold selection algo-
rithm for anomaly scores, which utilizes the kernel func-
tions as thresholds to accurately obtain the normal and
abnormal traffic boundaries using kernel functions and
set them as thresholds.

4) The six benchmarking ML/DL methods on four
public datasets are compared to experimentally evaluate
the proposed method with good results. Moreover, we
apply the ATON (attention-guided triplet deviation net-
work for outlier interpretation) algorithm to explain the
FlowGANAnomaly to ensure that the proposed algo-
rithm is credible by judging the contribution of the fea-
tures.

 II. Related Works

 1. Review of anomaly detection algorithms
The first wave of anomaly detection algorithms was

on the basis of ML algorithms, which can be divided in-
to six families [9]: clustering, neighbor-based, density-
based, statistical, angle-based, and classification-based.
Clustering assumes a large number of unlabeled data to
be normal and learns to group them into several clusters
to discriminate between the normal and anomalies [10].
K-means is a widely used clustering algorithm. Neigh-
bour-based algorithms are used to classify data based on
similarities in distance metrics such as Euclidean, and

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 59

Manhattan distance. A typical example is the K-nearest
neighbour (KNN) [11]. Density-based algorithms like local
outlier factor (LOF) [12] are based on a neighbor-based
family to improve the capability of detecting anomalies.
Statistical algorithms like principal component analysis
(PCA) [13] are used to detect subspaces of the data to
identify deviations from the expected subspaces, and
thus detect anomalies [14]. Angle-based algorithms re-
late data to high-dimensional spaces, using the variance
in the angles between a data point to the other points as
an anomaly score, such as angle-based outlier detection
(ABOD) [15]. Classification-based algorithms aim at
learning a decision boundary to group the data points.
One-class support vector machine (one-class SVM) [16]
and isolation forest (IF) [17] are two representatives. The
paper [18] proposes the anomaly detection method of
iForest, which has better experimental results and more
robustness than LOF and OCSVM. However, when en-
countering large-scale data, AD algorithms will reach a
bottleneck [19]. The first wave posed several challenges:
1) Low recall rate; 2) High-dimensional or not-indepen-
dent data; 3) Data-efficient learning of normality/abnor-
mality; and 4) Noise resilience.

The second wave is based on DL algorithms since
2015 due to the superior performance [20] applied in the
area of computer vision [21]/image/speech. We can simp-
ly summarize three apparent trends: 1) More novel and
advanced deep learning algorithms are adopted [22], such
as MLP/CNN/AE/RNN even GAN/GNN; 2) Learning
methods adopted by deep learning models are gradually
from supervised [23] to semi-supervised [24], weak-super-
vised and unsupervised learning; 3) The anomaly score
learning approaches are moving from separately learning
to end-to-end including more precise threshold selection
algorithms.
 2. Deep anomaly detection algorithms in IDS

Deep anomaly detection (DAD) techniques for short,
aim at learning hierarchical discriminative features or
anomaly scores via deep neural networks for the sake of
anomaly detection. DAD algorithms can learn from his-
torical data with normal and anomalous traffic and auto-
matically reduce the network traffic complexity to find
the correlations among data without human intervention.
Furthermore, DAD is more powerful in detecting zero-
day attacks and adapting to evolving systems. In sum-
mary, there are two main genres applied in DAD-based
IDS: AE-based and GAN-based, which will be intro-
duced in detail in the following subsections.

1) Autoencoder-based AD Methods in IDS
As a popular deep structure for anomaly detection,

AE and its genres have played a very important role dur-
ing these decades. Autoencoders (AEs) are a neural net-
work architecture that has emerged as a suitable solu-
tion to anomaly detection in recent years. AEs usually
behave well on normal data instances with small recon-
struction errors (REs), but poorly reconstruct anomalies

with large REs when they attempt to reconstruct the
original input data at the output layer. RE is commonly
used as a measure of anomaly score. Gharib et al. [25]
presented AutoIDS, a network anomaly detector by cas-
cading a sparse AE and AE to increase accuracy and de-
crease the time complexity, in which anomalous flows are
distinguished from normal ones by the first detector and
the second one is only used for difficult samples that the
first detector is not confident about. AutoIDS was
trained on NSL-KDD and private datasets, which detect-
ed the network traffic anomalies by calculating the REs
of the AE models based on the manually selected thresh-
old. A plug-and-play NIDS called kitsune, utilizing an
ensemble of AEs to collectively detect anomalous traffic
on the local network in an unsupervised online manner
was proposed by Mirsky et al. [26]. And the evaluations
showed that Kitsune can detect various attacks with a
performance comparable to offline anomaly detectors,
even on a Raspberry PI.

Zavrak et al. [27] applied AE and VAE to detect
anomalous network traffic from flow-based data. The ex-
perimental results show that VAE outperforms AE and
one-class SVM on CICIDS2017 dataset. Abolhasanzadeh
et al. [28] proposed an AE-based IDS approach from the
point of view of dimensionality reduction to detect
anomalous network behavior. With the comparison of
PCA, KernalPCA, and factor analysis (FA), the experi-
mental results showed that the proposed AE method per-
formed better than the others on the NSL-KDD dataset.

Shone et al. [29] proposed a combination of deep and
shallow learning which leverages the feature learning
power of non-symmetric deep auto-encoder (NDAE) and
the accuracy and speed of random forest (RF). They ob-
tained promising experimental results on KDD CUP’99
and NSL-KDD. CANnolo, an IDS based on LSTM-AE to
identify anomalies in controller area networks (CANs),
creates a reconstructed time series of CAN packets for
each CAN-ID that minimizes the RE so that a great er-
ror rate would flag any potential anomaly [30].

In summary, the AE family based on AD methods
have the following several advantages: the methods are
simple, easy to design, and general for different data
types. In addition, the model can use different classical
types of AE variants for anomaly detection. However, it
still has shortcomings in that the model learning cannot
learn the deep underlying distribution of the normal
dataset well, which can lead to some rare and biased nor-
mal flows being classified as outliers. As for the objec-
tive function of data reconstruction design, the model is
only dimensionality reduction or data compression, but
not anomaly detection. Therefore, the model of the AE
series still needs more improvement for anomaly detec-
tion.

2) GAN-based AD Methods in IDS
GAN-based anomaly detection methods are general-

ly used to learn the latent feature space by adversarial
learning of G and D so that the latent space can capture

 60 Chinese Journal of Electronics, vol. 33, no. 1

the normality of the given data well. In some form, resid-
uals between actual and generated data samples are de-
fined as anomaly scores. Schlegl et al. [31] proposed
AnoGAN, a deep convolutional GAN, to learn multiple
normal anatomical variants, accompanied by a new
anomaly scoring scheme based on a mapping from image
space to latent space. The model flags anomalies and
scores image patches to apply to recent data, indicating
that they fit a known distribution. Zenati et al. [32] uti-
lizes a recently developed GAN model for anomaly detec-
tion and achieves state-of-the-art performance on image
and NIDS datasets. Subsequently, Schlegl et al. [33] pro-
posed fast AnoGAN (f-AnoGAN), a GAN-based semi-
supervised learning method that can identify anomalous
images and fragments. This method detects anomalies
using a combined anomaly score based on a trained mod-
el’s building blocks containing a residual discriminator
feature and an image reconstruction error. Akcay et al.
[34] introduced a new anomaly detection model called
GANomaly that uses conditional GAN (CGAN) to joint-
ly learn the generation of high-dimensional image space
and inference of the latent space with given conditions.
They designed an encoder-decoder-encoder sub-network
in the G network, enabling the model to map the input
image to a lower-dimensional vector, which is then used
to reconstruct the generated output image. The distance
between these images and the underlying vector is mini-
mized during the training period of learning the data dis-
tribution of the normal samples. Siniosoglou et al. [35]
proposed an IDS called MENSA adopting AE and GAN
for detecting the operational anomalies and classifying
ModBus/TCP and DNP3 cyber-attacks in smart grid.
Adversarial loss between the real and fake samples is uti-
lized to calculate the anomaly score, while the threshold

value range is defined as t in [0, 1].
However, these algorithms usually only apply to im-

ages/videos/speech, which can not fit the feature infor-
mation of the traffic well. In short, GAN models have
shown excellent ability in generating actual instances, es-
pecially on image/video data. GAN-based AD methods
generally detect anomalous cases poorly generated from
the latent space. Many existing GAN-based models and
theories can be used for anomaly detection. However, the
currently GAN-based AD methods still have the following
limitations. First, most existing GAN-based AD models
are only suitable for images/videos, not for network traf-
fic. Second, existing GAN-based AD algorithms are not
capable of extracting and retaining network information
well, which results in a weak ability to represent fea-
tures in the mapping of normal network data to low-
dimensional latent features, hence, leading to a poorly
discriminative ability for network anomalies.

 III. The Proposed Method
In this section, we will introduce the process of the

proposed FlowGANAnomaly based on GAN in detail, as
shown in Figure 1.

First, the raw packets will be preprocessed to con-
struct the flow attribute matrix (FAM), which is the
footstone of FlowGANAnomaly as the model input.
FAM is composed of several attributes which will be
comprehensively demonstrated in the following section.
Our model consists of a deconvolutional decoder, a flow
encoder, a flow decoder, and three convolutional en-
coders. The input vector, in G, analogous to the seed of
a pseudorandom number, successively passes through a
flow encoder, a convolutional encoder-decoder-encoder, a

Anomaly

Normal

Raw packet
preprocessing

...

...

...

...

...

...

...

...

...

Threshold
selection

CovEncoder2

Euclidean
distance

Outputs

Scores of G

Scores of D

Raw packet
FAM

Flow
encoder

CovEncoder1

CovDecoder

CovEncoder1

Flow
decoder

G
Random

input vector

D

Fine tune
training

Fine tune
training

Scores

Test process

Train process

0 1 0 0 0 0 1
0 0 1 1 1 1 0

0
0

0 1 0 0 0 0 1
0 0 1 1 1 1 0

0
0

Figure 1 The framework of FlowGANAnomaly.

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 61

flow decoder, and then becomes the output vector. We
use a D to estimate the output of G and the real flow.
Furthermore, the model measures the binary cross en-
tropy (BCE) between the target and the output and up-
dates the gradient. After the adversarial learning based
on FAM, G and D can calculate the anomaly score, of
which G’s score is computed on the basis of a difference
between two convolutional encoders, thus detecting the
deviation from the network traffic flow. Finally, the elab-
orated threshold, obtained by extensive experiments, is
employed to determine whether the network flow is ab-
normal or not based on the deviation calculated by the
anomaly scoring algorithms. In order to describe the
methods easily, we define the network-traffic-related no-
tations as below:

P = {p1, p2, . . . , pi−1, pi} , 0 ≤ i ≤M M

1) Packet: A packet is a basic unit in flow. Set
, is the number

of packets.

F = {f1, f2, . . . , fi−1, fi} , 0 ≤ i ≤ K K

2) Flow: Source address, destination address, source
port, destination port, and TCP/UDP protocol five-tuple
consists of flow, which is unidirectional to differs from
Session. Set , is
the number of flows.

S = {s1,
s2, . . . , si−1, si} , 0 ≤ i ≤ N N

3) Session: Bi-directional flows are two flows of the
same tuples of upstream and downstream. Set

, is the number of sessions.
 1. Model input design

FAM = {FF1, FF2, . . . , FFi−1, FFi}

As shown in Table 1, the vector of flow features
(FF) is the basic unit of FAM, including packet-level (di-
rection, packet size, etc.), flow-level (flow size, flow dura-
tion, etc.), and statistical features (mean packet size,
mean inter-arrival time, etc.). FAM is composed of FFs:

. The number of di-
mensions of FF is defined as FN.

Table 1 The example of flow attribute matrix (FAM)

Packet-level Flow-level Statistics level

Pkt len … Flow duration … Mean (Pkt len) …

6 … 34 … 22.666 …

… … … … … …

31 … 52 … 12.55 …

Taking the CIC-IDS2017 dataset as an example, we

H = {FAM1, FAM2, FAM3, FAM4}

divided the dataset into three levels by definition and fi-
nally formed the FAM based on the FFs after the raw
packets preprocessing. Table 1 shows the examples of the
FAM. The complete FAM of a dataset is composed of
multiple pieces of FAMs. Since we define a batch size of
64, the dimension of a small FAM is 64 × FN. Define the
set of FAM as H. In this paper, H contains four kinds of
data sets, namely, .
Figure 2 shows the new FAM formed after normalization
and one-hot encoding. The new FAM is input into the
FlowGANAnomaly model for the subsequent training.
 2. Model design

ϕ W ∈ Rd×D

x
v

v = ϕ(x) ϕ(x)

The model will uniformly map the multidimensional
feature space of the FAMs to the feature space of fixed
dimensions to get the mapped new FAM. The model us-
es a learnable linear layer as the feature mapping func-
tion by the weight matrix parameter , to
obtain a new FAM with powerful representation capabil-
ities. Simple linear transformations can also ensure the
scalability of the model. The data object is transferred
to a new array by the feature mapping function,

. is defined as equation (1).

ϕ(x) =

 W (1, 1)x(1) . . . W (1, D)x(D)
...

. . .
...

W (d, 1)x(1) . . . W (d,D)x(D)

 (1)

W x
W (i, j)

i j
W x(i) i x

ϕ(x)

where is the matrix of neuron parameters and is the
matrix of eigenvalue in flow encoder, where rep-
resents the element in the -th row and -th column of

, and represents the -th element of . Each di-
mension can be regarded as a linear pattern (combina-
tion) of the original feature space. The mapping func-
tion will effectively aggregate the network flow fea-
tures into a new FAM and then pass it to the convolu-
tional encoder (CovEncoder) for feature space mapping.

LeakyReLU()
v z

v
z

x Z
Z ∈ Rd

The FAM newly generated in CovEncoder uses a
convolutional layer and performs batch normalization
(BN) and activation function respectively.
By compressing the FAM into a hidden space , the di-
mensionality of is reduced. At the same time, the mod-
el obtains the most representative hidden features. is
also called the hidden feature of , is defined as equa-
tion (2), . Assuming that its dimension is the

Pkt dir Pkt len …… Pkt count

UNSW-NB15 FAM

IAT

…… …… …… …………

…… …… …… …………

Pkt dir Pkt len … Pkt count

UNSW-NB15 FAM

IAT

…… …… …… ………

…… …… …… ………
Pkt len ……

CIC-IDS2017 FAM

…… …… …… …………

…… …… …… …………

Pkt len …

CIC-IDS2017 FAM

…… …… …… …………

…… …… …… …………

fl_dur fin_c ATV_avg

Pkt dir Pkt len …… Pkt count

NSL-KDD FAM

IAT

…… …… …… …………

…… …… …… …………

Pkt dir Pkt len … Pkt count

NSL-KDD FAM

IAT

…… …… …… …………

…… …… …… …………

64×194

64×78

64×116

Model input

Fl_dur Pkt len …… FIN_c

CIC-DDoS2019

ATV

…… …… …… …………

…… …… …… …………

Fl_dur Pkt len … FIN_c

CIC-DDoS2019

ATV

… … … ……

… … … ……
64×79

Figure 2 FlowGANAnomaly input design.

 62 Chinese Journal of Electronics, vol. 33, no. 1

xsmallest, the space can best reflect its features of . As
shown in Figure 3, the module has four convolutional
layers. The kernel size of each layer is 4. The input di-
mension of the module is 64 × 1 × 32. The output di-
mension of the module is 64 × 100 × 1, where the batch
size is 64.

Z =
v − E[v̂]√
Var[v] + ε

(2)

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

First layer

convolution

network

Second layer

convolution

network

Third layer

convolution

network

Fourth layer

convolution

network

64×100×1

Figure 3 The parameters of the convolutional encoder1.

ReLU

The decoder part of the G uses the architecture of
the DCGAN [36] generator. The network features are
then flattened and concatenated to form new vector. The
decoder uses a convolutional transposed layer, an activa-
tion function () and BN. Tanh layer is added at
the end to decode the hidden space into the generated
embedding space. The specific parameters of the decoder
are shown in Figure 4.

z

v v̂

ψ(v̂) x̂ ψ(v̂)

v̂ = Gd(z)

The module has four deconvolution layers. The ker-
nel size of each layer is 4. The input dimension of the
module is 64 × 100 × 1. The output dimension of the
module is 64 × 1 × 32, where the batch size is 64. This
method reconstructs the hidden space and recon-
structs as . On this basis, the dimensionality is ex-
panded using linear changes through the mapping func-
tion to become a new space . is defined as
equation (3). The whole process is called space back-
tracking, where .

C
o
n
v
T

ra
n
sp

o
se

1
d

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
T

ra
n
sp

o
se

1
d

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
T

ra
n
sp

o
se

1
d

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
T

ra
n
sp

o
se

1
d

T
an

h

First layer Second layer Third layer Fourth layer

64×1×32

Figure 4 The parameters of the deconvolutional decoder (CovDe-
coder).

ψ(v̂) =

 W (1, 1)v(1) . . . W (1, D)v(D)
...

. . .
...

W (d, 1)v(1) · · · W (d,D)v(D)

 (3)

W (i, j) i j
W v̂i i

v̂

where denotes the element of the -th row and -
th column of the matrix . denotes the -th element
of the space . Each dimension can be regarded as a lin-
ear pattern of the original feature space. We use the ob-
tained reconstructed space for comparison with the origi-
nal space. The generator can understand the contextual
information about the input data. The loss function for
normal FAMs and generated FAMs is defined as equa-
tion (4). The training process of the generator is shown
in Figure 5.

losscon = Ex-Euclidean ∥x− ψ(v̂)∥1 (4)

v̂
v̂

ẑ = E(v̂)
ẑ

z

z
v ẑ

In the part of convolutional encoder1, the model
compresses the FAM reconstructed by the neural net-
work. reconstruct the flow space compression to find its
characteristics, specifically expressed: . The di-
mension of the hidden space vector is the same as the
dimension of so that the distance can be calculated lat-
er. This sub-network is special in the proposed method,
where it can represent the hidden features in the recon-
struction space. Unlike previous methods [27] based on
VAE, the distance between the latent space and the
original is minimized by hidden features . The sub-
network minimizes the distance through parameterized

x

FAM

ϕ (x) G
E
 (υ) G

d
 (z)

CovEncoder1 CovEncoder1CovDecoder

Output variables: z

Output

variables:

new_v

Output

variables:

new_zOutput variables: v

FlowEncoder

Lcon=E
x-Euclidean||x− (υ)||1ˆ

Lhiddenloss=MAE|| G
E
 (υ)−E (G

E
 (υ))||2ˆ

FlowDecoder

Fake FAM

Generator

Figure 5 The architecture for the generator.

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 63

explicit learning. MAE depicts the average distance of
the two variables. This model uses a second-norm to cal-
culate the distance between two hidden vectors. The loss
function of the hidden features is defined as equation (5).

losshidden = MAE ∥GE(v)− E (GE(v̂))∥2 (5)

The training process of the discriminator is shown in
Figure 6. The goal of discriminators is to classify the in-
put and output as True or False, respectively. This sub-

network is a standard discriminator network introduced
in DCGAN. The discriminant loss function is defined as
equation (6). The parameters of convolutional encoder2
are shown in the Figure 7. The components of the model
are similar to the previous ones. Nevertheless, the dimen-
sions of the input and output of the module are different.
The input dimension of the module is 64 × 100 × 1. The
output dimension of the module is 64 × 1 × 32.

lossadv = Ex−p(x)

∥∥f(x)− Ex−p(x)f(G(x))
∥∥
2

(6)

G Fake FAM

True FAM

Input

Input
Flow-

Encoder
CovEncoder2

Compute

Backward

Discriminator

SD (x)=Sigmoid (DE (x))

Ex~pX|| f (x)−Ex~pX f (G (x))||2

Figure 6 The architecture for the discriminator.

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

B
at

ch
N

o
rm

1
d

L
ea

k
y
R

el
u

C
o
n
v
o
lu

ti
o
n

K
er

n
el

 s
iz

e=
4

S
ig

m
o
id

First layer

convolution

network

Second layer

convolution

network

Third layer

convolution

network

Fourth layer

convolution

network

64×1×1

Figure 7 The parameters of the convolutional encoder2.

losscon
losshidden

lossadv

min(losstotal)

 is the Euclidean distance between original
samples and generated samples. is the Eu-
clidean distance between two hidden space vectors.

 is the loss of D in GAN. We adjust the weighting
parameters to determine the overall objective function.
Then we end up with the goal of minimizing the loss
function, .

losstotal =wadv lossadv+wcon losscon+whidden losshidden
(7)

 3. Model training

v̂
GE(v̂) ẑ

z ẑ

We assume that the generator fails to reconstruct
the network flow when an outlier flow passes through the
generator, which is because the network is trained on
normal samples. The generator’s parametric modelling is
not suitable for generating outlier samples. The recon-
struction failure means that the encoder network

 cannot be mapped to a vector typically, result-
ing in a large distance between and . See Algorithm 1
for details.

x x ∈ FAM |

v GE

The pseudocode is shown in Algorithm 1. The G
firstly reads the input data , where (batch-
size × mum), forwards it to a layer of dimensional com-
pression fully connected , and then passes it to . Us-

v

G ReLU
Tanh

z v
v̂

ing a convolutional layer and then performing BN and
activation function, respectively, the dimension of is re-
duced by compressing it into a vector. These features
represent normal network flow. The decoder part of the

 uses a deconvolution layer, activation functions ,
and BN together with a layer at the end. This
method scales the vector and reconstructs the flow as
. The algorithm calculates the loss according to equa-

tion (4).

Algorithm 1
Require:

FAM = {FF1,
FF2, . . . , FFm−1, FFm}

　 FAM will be divided into several batches,
;

X X = {FF1, FF2,
. . . , FFbatchsize−1, FFbatchsize}

　 represents data entered at one time,
;

niter　 is the number of iterations.
i← 1 niter 1: for to do

x̂ v̂ 2: 　Use generator to calculate and ;
v = ϕ(x), z = GE(v), v̂ = Gd(z), x̂ = ψ(v̂) 3: 　 ;

x̂ losscon = Ex-Euclidean ∥x− ψ(v̂)∥1 4: 　Compute loss of : ;
ẑ = GE(v̂) 5: 　Find compress: ;

losshidden =MAE ∥GE(v)− E (GE(v̂))∥2
 6: 　Compute hidden loss:
　　
 7: 　Send the fake FAM to the discriminator;

lossadv = Ex−p(x)

∥∥f(x)− Ex−p(x)f(G(x))
∥∥
2

 8: 　Compute loss:
　　

losstotal = wadv lossadv + wcon losscon + whidden losshidden
 9: 　Compute total loss:
　　

gk = ∇L (xk)10:　Compute gradient directions: ;
11:　Update parameters;
12: end for

v̂

v̂ ẑ = GE(v̂)

The second sub-network is the CovEncoder, which
compresses the network flow data reconstructed by the
neural network. CovEncoder is compressed downward to
, and its features representation is found. At

this point, the algorithm calculates the loss according to

 64 Chinese Journal of Electronics, vol. 33, no. 1

ẑ

z

D
x x̂

equation (5). The dimension of the vector is the same
as the dimension of so that the distance can be calcu-
lated. The third sub-network is the , whose goal is to
classify input and output as true or false, respective-
ly, according to equation (6). The algorithm eventually
minimizes equation (7) by gradient.
 4. Anomaly scores

SG(x) SG(x)

The anomaly score consists of two components. A
part of the anomaly score is the G’s score, another part
is the D’s score. A part of the anomaly score calculation
in this paper will use the calculation of the Euclidean
distance between two hidden vectors, as shown in the
following equation. To facilitate the threshold selection
later, we first normalize the obtained Euclidean distance
and finally obtain . represents G’s anomaly
score.
 

SG(x) = Ex-Euclidean ∥GE(v)− E (GE(v̂))∥2

SGi(x) =
SGi − SGmin(x)

SGmax(x)− SGmin(x)

(8)

SD(x)

In order to take full advantage of the adversarial
training of the generator and the discriminator, another
part of the anomaly score comes from the discriminator,
which reflects the anomaly score of the test sample more
comprehensively. is the D’s anomaly score.

SD(x) = Sigmoid (DE(x)) (9)

A(x) λ

Therefore, for a test sample x, the anomaly score
 is defined by the following equation (10), where is

adjusted by the validation set according to the different
data sets.

A(x) = λSG(x) + (1− λ)SD(x) (10)

 5. Threshold selection
The threshold selection method is as follows. The

first is the choice of validation set data. The experiment
selects a certain proportion of normal and malicious traf-
fic in an orderly manner. Then, the validation set is fed
into the anomaly detection model. Calculate the recon-
struction distance of each normal flow sample and mali-
cious flow sample in the validation set according to equa-
tion (10). Finally, the probability density and kernel
equation (13) are obtained according to the reconstruc-
tion distance of the verification set, and the threshold is
determined.

A(x) = {a1, a2, . . . , ai−1, ai}
F (a)

In validation set, there are n outliers scores as fol-
lows: . Assume that the cumu-
lative distribution function of the sample data is .

F (ai−1 < a < ai) =

ˆ at

at−1

f(a)da (11)

f(a)And the probability density function is .

f (ai) = lim
h→0

F (ai + h)− F (ai − h)
2h

(12)

f(a) h f(a)

Introduce the empirical distribution function of the
cumulative distribution function and substitute this func-
tion into , after determining , can be trans-
formed into

f(a) =
1

2nh

n∑
i=1

1a−h < ai < a+ h

=
1

2nh

n∑
i=1

K

(
|a− ai|
h

)
(13)

We calculate the two functions of normal and
anomaly flows, using the kernel density function, respec-
tively, and get the intersection. Turn the intersection in-
to a threshold.

 IV. Evaluation

 1. Evaluation settings and chosen datasets
The data sets we select need to meet the experimen-

tal requirement. The four classic NIDS data sets, namely,
NSL-KDD [37], CIC-IDS2017 [38], UNSW-NB15 [39],
and CIC-DDoS2019 [40], are the most popular bench-
mark datasets to evaluate the performance of NIDS algo-
rithms.

From Table 2, malicious flows account for a relative-
ly large proportion of UNSW-NB15 and CIC-DDoS2019.
In order to be close to the actual network scenario, we
use a ratio of normal flow to malicious flow of 100 to 1 to
evaluate the FlowGANAnomaly.

Table 2 Summary of datasets used for evaluation (FE: features)

Dataset Size % Attacks Format

NSL-KDD 20.7 MB 48.12 42FE

UNSW-NB15 45.4 MB 63.91 46FE

CIC-DDoS2019 8.14 GB 85.92 79FE

CIC-IDS2017 848 MB 19.68 78FE

The experimental environment is AMD Ryzen 3600,
16GB RAM, NVIDIA GTX 1660, CUDA 7.5, CDNN10.5.
In this paper, Python3 is the primary programming lan-
guage. The following is a description of the evaluation
metrics: Precision, Recall, F1, Accuracy, and AUC as
evaluation metrics.

Marco average, means that each type of sample is
given equal weight. For example, in this article, the
macro average accuracy index is defined as

P =
Pnormal + Pmalware

2
(14)

Weighted average, is to use the proportion of the
sample size of each category in the total number of sam-
ples in all categories as the weight. In this article, the
weighted average accuracy index P is defined as

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 65

P =
Nnormal

Nnormal +Nmalware
× Pnormal

+
Nmalware

Nnormal +Nmaiware
× Pmalware (15)

Time-complexity-related metrics like detection time
or training time are not included in this paper because
we think those are highly dependent on the hardware re-
sources whether training or detecting.
 2. Ablation study

We conducted an ablation study using UNSW-NB15
dataset in this subsection. Table 3 shows that if the
model is processed by adding a flow encoder, the repre-
sentative elements will be represented as a matrix in the
subspace. Then the feature space mapping will be per-
formed.

Table 3 Improved model comparison

Model progressive Original model FlowGANAnomaly

Precision
Weighted avg. 0.7647 0.9859

Marc. avg. 0.6890 0.5102

Recall
Weighted avg. 0.3852 0.7037

Marc. avg. 0.5063 0.7354

F1
Weighted avg. 0.2236 0.8384

Marc. avg. 0.2881 0.4471

AUC 0.7808 0.8530

From Table 3, the results are not ideal if only the
module used for image anomaly detection is directly mi-
grated to detect network traffic. The weighted average of
F1 for our proposed model is 0.6148 higher, and the
AUC is increased by 0.0722. Therefore, our proposed
model is 0.6148 higher and can significantly improve net-
work anomaly detection performance.

The experiment compares the classical AD model
based on GAN to detect anomaly flows in a network en-
vironment. Since models need to be evaluated globally,
AUC has become a leading model evaluation indicator.
FlowGANAnomaly performs better than the other two
models in Table 4. On the UNSW-NB15 data set, the
AUC value of this model reaches 0.8530, which is 0.1315
higher than f-AnoGAN. Our model proposed is more ef-
fective than EGBAD. The CICIDS2017 data set has a
vast amount of data. Hence, with sufficient training, al-
though the AUC value of FlowGANAnomaly is the high-
est, the difference between the three types of GAN mod-
els is not significant. Also, on the NSL-KDD data set,
our model has a higher AUC than the other two models.
Therefore, we can conclude that the FlowGANAnomaly
model clusters the features by adding a flow-encoder,
which can refine the feature form of the data. At the
same time, our model uses the loss function to optimize
and constrain the hidden features. In the following com-
parison stage, we use FlowGANAnomaly as the represen-
tative of the GAN series model to compare with other

family’s algorithm models.

Table 4 GAN compared in four datasets

Model (AUC) FlowGANAnomaly f-AnoGAN EGBAD

UNSW-NB15 0.8530 0.7215 0.5638

CIC-IDS2017 0.7432 0.6929 0.7365

NSL-KDD 0.9801 0.9572 0.9372

CIC-DDoS2019 0.7883 0.5535 0.7651

 3. Performance evaluation
The experiment selects representative algorithm data

sets for testing in different algorithm families. In Table 5,
as AUC is the overall indicator of the evaluation model,
our algorithm has a better performance on each data set
than other algorithms. In the NSL-KDD data set in Fig-
ure 8, although FlowGANAnomaly shows the best effect,
it is not much different from other algorithms. Since the
NSL-KDD dataset was collected earlier, this data set
does not have the timeliness of the current network. In
addition, NSL-KDD datasets contain relatively a small
amount of samples, each model can learn the dataset’s
characteristics and achieve better results. From Figure 8,
the AUC of our algorithm is 0.8530, which is second on-
ly to LOF and shows a stable performance on UNSW-
NB15 dataset. The CICIDS2017 dataset is a relatively
new data set of the four data sets and is also an exten-
sive data set. Traditional outlier algorithms tend to fail
when training large amounts of data. Rather, DAD mod-
els, such as AE, VAE, and FlowGANAnoamly, also show
their advantages. The AUC value of the deep learning
model achieves 0.73, while other traditional AD algo-
rithms, such as LOF, SVM, and so on, are between 0.5
and 0.6. Thus, the proposed FlowGANAnomaly in this
article is still in a leading position in DAD algorithms.

In the field of anomaly detection, a large emphasis
has been devoted to reducing false negatives, instead of
decreasing true negatives. Therefore, the number of false
flows determined as proper flows should be as small as
possible. So we consider that the benign accuracy rate
and the negative recall rate have great weight. This ex-
periment shows the weighted average precision rate and
the macro average recall rate.

FlowGANAnomaly’s accuracy rate achieves 98% be-
cause the ratio of normal and abnormal flow in the train-
ing set is 100:1. Therefore, most of the normal flow can
be well-identified. In addition, the reason for the low re-
call rate in each dataset is that lots of malicious traffic
are identified as normal traffic. Therefore, whether
anomaly detection can detect anomalous flow, the recall
index is essential. The recall of FlowGANAnomaly, as a
representative of deep learning algorithms, is higher than
other algorithms on the CICIDS2017 data set. Therefore,
our model has a relatively strong ability to detect
anomaly flows.

From Table 5, the LOF performs exceptionally well

 66 Chinese Journal of Electronics, vol. 33, no. 1

in the experiments. Accordingly, DAD algorithms can-
not effectively learn the features of the network traffic,
limited by the size of the UNSW-NB15 dataset. Because
comparing the density between the sample points, LOF
is more advantageous in learning small-scale data sam-
ples. However, LOF will be more unstable when convert-
ing data sets or increasing the size. On the CICIDS2017
dataset, the AUC value of LOF is only 0.5483, indicat-
ing that the algorithm cannot obtain density bias based
on features when training large-scale data, resulting in
the algorithm not fitting.
 4. Experiment discussion

This experiment chooses two data sets, and plots
box figures to show the anomaly scores for each type of
malicious flow. Figure 9 demonstrates that the model
does not work well on Exploits, Fuzzers, and Reconnais-
sance. Fuzzers and Reconnaissance are two attacks that
have something in common. Fuzzers attempt to suspend
a program or network by providing randomly generated

data. Reconnaissance, on the other hand, implements the
attack by simulating information gathering. Both types
of attacks are generated by simulation, which is inherent-
ly random. Therefore, the features of these two types of
flow are similar to normal flow, and it is difficult for the
model to distinguish them. Exploits are vulnerable at-
tacks. The attacker knows the security issues in the oper-
ating system or software and exploits this knowledge by
exploiting the vulnerability. These vulnerabilities are
generated along with the flow of software applications.
So the flow features of these vulnerabilities are similar to
the typical flow features in the software operation pro-
cess, making the model difficult to identify.

Attacks like Heartbleed are loopholes in the “ssh ”
protocol, and too few samples are available for testing.
Therefore, the anomaly score is not good. On the data
set UNSW-NB15, the normal samples for training are too
few, so the anomaly score of normal flow will be slightly
higher than the CICIDS2017 data set. Brute-force crack-
ing of this attack is often done through repeated trial

Table 5 Evaluation results (including OCSVM, Isolation Forest, PCA, LOF, AE, VAE, and FlowGANAnomaly)

Model Dataset
Precision Recall F1

Accuracy AUC
Weighted avg. Marc. avg. Weighted avg. Marc. avg. Weighted avg. Marc. avg.

OCSVM

CICIDS2017 0.9831 0.5031 0.5545 0.5773 0.7044 0.3686 0.5545 0.6341

NSL-KDD 0.9899 0.5433 0.9059 0.9050 0.9423 0.5550 0.9059 0.9680

UNSW-NB15 0.9831 0.5058 0.7730 0.6039 0.8631 0.4538 0.7730 0.8339

CICDDoS2019 0.8286 0.4808 0.7970 0.4740 0.8123 0.4762 0.7970 0.5328

Isolation forest

CICIDS2017 0.9838 0.5096 0.8266 0.6402 0.8961 0.4767 0.8266 0.6500

NSL-KDD 0.9899 0.5427 0.9041 0.9060 0.9413 0.5535 0.9041 0.9673

UNSW-NB15 0.9823 0.5051 0.8198 0.5760 0.8921 0.4677 0.8198 0.5021

CICDDoS2019 0.0007 0.0088 0.0242 0.3144 0.0013 0.0172 0.0242 0.2854

PCA

CICIDS2017 0.9806 0.5081 0.9866 0.5030 0.9836 0.5037 0.9866 0.6795

NSL-KDD 0.9901 0.5422 0.9015 0.9106 0.9398 0.5519 0.9015 0.9603

UNSW-NB15 0.9831 0.5067 0.8014 0.6077 0.8808 0.4643 0.8014 0.5904

CICDDoS2019 0.8270 0.4763 0.7980 0.4686 0.8121 0.4715 0.7980 0.5399

LOF

CICIDS2017 0.9814 0.5418 0.9882 0.5100 0.9846 0.5149 0.9882 0.5483

NSL-KDD 0.9893 0.5336 0.8816 0.8768 0.9285 0.5319 0.8816 0.9118

UNSW-NB15 0.9879 0.5242 0.8573 0.8113 0.9144 0.5092 0.8573 0.8775

CICDDoS2019 0.9704 0.5321 0.7106 0.7736 0.8086 0.4780 0.7106 0.7629

AE

CICIDS2017 0.9848 0.5132 0.8385 0.6823 0.9032 0.4859 0.8385 0.7357

NSL-KDD 0.9901 0.5184 0.7509 0.8603 0.8484 0.4639 0.7509 0.9628

UNSW-NB15 0.9753 0.4968 0.1969 0.4495 0.3181 0.1691 0.1969 0.5456

CICDDoS2019 0.8345 0.4983 0.5506 0.4948 0.6456 0.4206 0.5506 0.5630

VAE

CICIDS2017 0.9841 0.5420 0.9614 0.6447 0.9720 0.5610 0.9614 0.7475

NSL-KDD 0.9903 0.5511 0.9192 0.9236 0.9499 0.5714 0.9192 0.9735

UNSW-NB15 0.9832 0.5154 0.9125 0.6206 0.9453 0.5111 0.9125 0.6455

CICDDoS2019 0.8279 0.4549 0.9093 0.4997 0.8667 0.4763 0.9093 0.5520

FlowGANAnomaly

CICIDS2017 0.9841 0.5152 0.8840 0.6807 0.9295 0.5030 0.8840 0.7432

NSL-KDD 0.9888 0.5303 0.8747 0.8535 0.9245 0.5244 0.8747 0.9801

UNSW-NB15 0.9859 0.5102 0.7037 0.7354 0.8384 0.4471 0.7354 0.8530

CICDDoS2019 0.8590 0.6066 0.9012 0.5275 0.8727 0.5316 0.9012 0.7883

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 67

and error by enumerating exhaustive methods. There-
fore, there will be apparent manifestations in features
such as flow duration that allow the model to easily dis-
tinguish the difference from the normal flow.

In the last part of the experiment, we also per-
formed model interpretability work on the UNSW-NB15
dataset. We use the ATON [41] method to explain the
outlier results of anomaly detection. The ATON algo-
rithm is used for post hoc interpretation, where the ob-
tained anomalous data are put into the ATON algo-
rithm, thus explaining the contribution of the model for
each feature in the dataset.

There are many samples of DoS attacks and DDoS
attacks in the UNSW-NB15 dataset. DoS attack traffic is

characterized by a one-to-one approach, sending a large
amount of data to the network server, flooding the web-
site server with a large amount of information that re-
quires a reply, consuming network bandwidth or system
resources, and causing the network or system to be over-
loaded. DDoS, characterized by multiple different hosts,
sends a large amount of data to the network server, caus-
ing a large number of requests to flood the server, mak-
ing the server paralyzed and unable to work properly.
“ct-srv-dst” refers to the number of connections that in-
cluded the same server and destination address in the
last 100 connections. Therefore, when two types of at-
tacks occur, a large number of requests in the server
cause “ct-srv-dst” to soar, which can be classified as ab-

IsolationForest AUC=0.9724
OCSVM AUC=0.9680
LOF AUC=0.9118
PCA AUC=0.9603
AE AUC=0.9628
VAE AUC=0.9706
FlowGANAnomaly AUC=0.9801

Model:

IsolationForest AUC=0.5021
OCSVM AUC=0.8339
LOF AUC=0.8775
PCA AUC=0.5904
AE AUC=0.5456
VAE AUC=0.6455
FlowGANAnomaly auc=0.8530

Model:

IsolationForest AUC=0.6500
OCSVM AUC=0.6341
LOF AUC=0.5483
PCA AUC=0.6795
AE AUC=0.7357
VAE AUC=0.7475
FlowGANAnomaly AUC=0.7432

Model:

IsolationForest AUC=0.2854
OCSVM AUC=0.5328
LOF AUC=0.7629
PCA AUC=0.5399
AE AUC=0.5630
VAE AUC=0.5520
FlowGANAnomaly AUC=0.7883

Model:

0

0

0.2

0.2

0.4

0.4

0.6

0.6

FPR

Dataset: NSL-KDD

T
P

R

0.8

0.8

1.0

1.0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

FPR

Dataset: UNSW-NB15

T
P

R

0.8

0.8

1.0

1.0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

FPR

Dataset: CIC-DDoS2019

T
P

R

0.8

0.8

1.0

1.0

0

0

0.2

0.2

0.4

0.4

0.6

0.6

FPR

Dataset: CICIS2017

T
P

R

0.8

0.8

1.0

1.0

(a) (b)

(c) (d)

Figure 8 Comparison of ROC curves for four datesets. a) NSL-KDD; b) CIC-DDS2019; c) UNSW-NB15; d) CIC-IDS2017.

 68 Chinese Journal of Electronics, vol. 33, no. 1

normal traffic by the model. The time of existence of
“sttl ” as source-to-destination traffic also differs from
normal traffic when an attack occurs. Figure 10 shows
that features such as “sttl” and “ct-srv-dst” play a more
important role in the model.

 V. Conclusion and Future Work
In this paper, we propose an anomaly detection

model called FlowGANAnomaly for detecting anoma-
lous traffic in NIDS. FlowGANAnomaly maps and learns
G’s hidden flow feature space through different feature
datasets to better capture the normality of network traf-
fic data, instead of learning diverse types of labeling da-
ta, therefore solving the problem of complex data la-
belling. We conducted several experiments comparing ex-
isting machine learning algorithms and existing deep
learning methods on four public dataset. The evaluation
results show that FlowGANAnomaly can significantly
improve the performance of anomaly-based NIDS.

However, research on unsupervised flow detection al-
gorithms is rare and immature. Although unsupervised
algorithms have made some achievements in this paper,
there is still much room for improvement. In addition,
intrusion detection datasets in this experiment are di-
verse and large in scale, there is still a gap between them

and the real scene. In the future, our work will continue
to build large datasets in real-world settings.

 Acknowledgement
This work was supported by the National Natural

Science Foundation (Grant No. 61972211), the National
Key Research and Development Project (Grant No. 2020
YFB1804700), and the Future Network Innovation Re-

Normal

0

Analysis

0.2

Backdoor

0.4

Dos

0.6

UNSW-NB15 type

S
co

re
s

Exploits

0.8

Fuzzers Generic Reconn-

aissance

Shellcode Worms

1.0

Normal

0

Dos

0.2

DDoS

0.4

FTP-patator

0.6

CICIDS2017 type

S
co

re
s

Heart-

bleed

0.8

Infiltraion PortScan SSH-

patator

Bot Web

1.0

Figure 9 Box-line figure of FlowGANAnomaly on two datasets (UNSW-NB15 and CIC-IDS2017).

10−2 10−1 100 101

Contribution of features

sttl

ct_srv_dst

service

ct_srv_src

ct_state_ttl

ct_dst_src_ltm

service_dns

proto_udp

Figure 10 Interpretation of the model and important features in
UNSW-NB15.

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 69

search and Application Projects (Grant No. 2021FNA02
006).

References
 O. Depren, M. Topallar, E. Anarim, et al., “An intelligent in-
trusion detection system (IDS) for anomaly and misuse detec-
tion in computer networks,” Expert systems with Applica-
tions, vol. 29, no. 4, pp. 713–722, 2005.

[1]

 S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algo-
rithms for mining outliers from large data sets,” in Proceed-
ings of 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, TX, USA, pp. 427–438, 2000.

[2]

 G. S. Pang, C. H. Shen, L. B. Cao, et al., “Deep learning for
anomaly detection: a review,” ACM Computing Surveys, vol.
54, no. 2, article no. 38, 2022.

[3]

 V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec-
tion: A survey,” ACM Computing Surveys, vol. 41, no. 3, ar-
ticle no. 15, 2009.

[4]

 M. Ahmed, A. N. Mahmood, and J. K. Hu, “A survey of net-
work anomaly detection techniques,” Journal of Network and
Computer Applications, vol. 60, pp. 19–31, 2016.

[5]

 A. Creswell, T. White, V. Dumoulin, et al., “Generative ad-
versarial networks: an overview,” IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 53–65, 2018.

[6]

 Z. P. Qiang, L. B. He, F. Dai, et al., “Image inpainting based
on improved deep convolutional auto‐encoder network,” Chi-
nese Journal of Electronics, vol. 29, no. 6, pp. 1074–1084,
2020.

[7]

 C. Qin and X. G. Gao, “Spatio-temporal generative adversar-
ial networks,” Chinese Journal of Electronics, vol. 29, no. 4,
pp. 623–631, 2020.

[8]

 F. Falcão, T. Zoppi, C. B. V. Silva, et al., “Quantitative
comparison of unsupervised anomaly detection algorithms for
intrusion detection,” in Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, Limassol,
Cyprus, pp. 318–327, 2019.

[9]

 E. Schubert, A. Koos, T. Emrich, et al., “A framework for
clustering uncertain data,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 12, pp. 1976–1979, 2015.

[10]

 P. Cunningham and S. J. Delany, “k-nearest neighbour classi-
fiers-a tutorial,” ACM Computing Surveys, vol. 54, no. 6, ar-
ticle no. 128, 2022.

[11]

 M. M. Breunig, H. P. Kriegel, R. T. Ng, et al., “LOF: Identi-
fying density-based local outliers,” in Proceedings of 2000
ACM SIGMOD International Conference on Management of
Data, Dallas, TX, USA, pp. 93–104, 2000.

[12]

 J. Camacho, A. Pérez-Villegas, P. García-Teodoro, et al.,
“PCA-based multivariate statistical network monitoring for
anomaly detection,” Computers & Security, vol. 59, pp.
118–137, 2016.

[13]

 R. Kwitt and U. Hofmann, “Unsupervised anomaly detection
in network traffic by means of robust PCA,” in Proceedings
of 2007 International Multi-Conference on Computing in the
Global Information Technology, Guadeloupe, French
Caribbean, pp. 37–37, 2007.

[14]

 H. P. Kriegel, M. Schubert, and A. Zimek, “Angle-based out-
lier detection in high-dimensional data,” in Proceedings of
the 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Las Vegas, NV, USA, pp.
444–452, 2008.

[15]

 M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing
one-class support vector machines for unsupervised anomaly
detection,” in Proceedings of the ACM SIGKDD Workshop
on Outlier Detection and Description, Chicago, IL, USA, pp.
8–15, 2013.

[16]

 F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in[17]

Proceedings of the 8th IEEE International Conference on
Data Mining, Pisa, Italy, pp. 413–422, 2008.
 F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation-based
anomaly detection,” ACM Transactions on Knowledge Dis-
covery from Data, vol. 6, no. 1, article no. 3, 2012.

[18]

 X. S. Wei, H. J. Ye, X. Mu, et al., “Multi-instance learning
with emerging novel class,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 33, no. 5, pp. 2109–2120,
2021.

[19]

 L. L. Wang, B. Q. Wang, P. P. Zhao, et al., “Malware detec-
tion algorithm based on the attention mechanism and
ResNet,” Chinese Journal of Electronics, vol. 29, no. 6, pp.
1054–1060, 2020.

[20]

 D. W. Zhou, H. J. Ye, and D. C. Zhan, “Learning placehold-
ers for open-set recognition,” in Proceedings of 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, pp. 4401–4410, 2021.

[21]

 L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, et al., “A
unifying review of deep and shallow anomaly detection,” Pro-
ceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.

[22]

 D. W. Zhou, Y. Yang, and D. C. Zhan, “Learning to classify
with incremental new class,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 6, pp.
2429–2443, 2022.

[23]

 A. Haque, L. Khan, and M. Baron, “SAND: Semi-supervised
adaptive novel class detection and classification over data
stream,” in Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, pp. 1652–1658,
2016.

[24]

 M. Gharib, B. Mohammadi, S. H. Dastgerdi, et al., “Au-
toIDS: Auto-encoder based method for intrusion detection
system,” arXiv preprint, arXiv: 1911.03306, 2019.

[25]

 Y. Mirsky, T. Doitshman, et al., “Kitsune: An ensemble of
autoencoders for online network intrusion detection,” in Pro-
ceedings of the 25th Annual Network and Distributed Sys-
tem Security Symposium, San Diego, CA, USA, 2018.

[26]

 S. Zavrak and M. Iskefiyeli, “Anomaly-based intrusion detec-
tion from network flow features using variational autoen-
coder,” IEEE Access, vol. 8, pp. 108346–108358, 2020.

[27]

 B. Abolhasanzadeh, “Nonlinear dimensionality reduction for
intrusion detection using auto-encoder bottleneck features,”
in Proceedings of the 7th Conference on Information and
Knowledge Technology, Urmia, Iran, pp. 1–5, 2015.

[28]

 N. Shone, T. N. Ngoc, V. D. Phai, et al., “A deep learning
approach to network intrusion detection,” IEEE Transac-
tions on Emerging Topics in Computational Intelligence, vol.
2, no. 1, pp. 41–50, 2018.

[29]

 S. Longari, D. H. N. Valcarcel, M. Zago, et al., “CANnolo:
An anomaly detection system based on LSTM autoencoders
for controller area network,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1913–1924, 2021.

[30]

 T. Schlegl, P. Seeböck, S. M. Waldstein, et al., “Unsuper-
vised anomaly detection with generative adversarial net-
works to guide marker discovery,” in Proceedings of the 25th
International Conference on Information Processing in Med-
ical Imaging, Boone, NC, USA, pp. 146–157, 2017.

[31]

 H. Zenati, C. S. Foo, B. Lecouat, et al., “Efficient GAN-
based anomaly detection,” arXiv preprint, arXiv: 1802.06222,
2018.

[32]

 T. Schlegl, P. Seeböck, S. M. Waldstein, et al., “f-AnoGAN:
Fast unsupervised anomaly detection with generative adver-
sarial networks,” Medical Image Analysis, vol. 54, pp. 30–44,
2019.

[33]

 S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon,
“GANomaly: Semi-supervised anomaly detection via adver-
sarial training,” in Proceedings of the 14th Asian Confer-
ence on Computer, Perth, Australia, pp. 622–637, 2019.

[34]

 70 Chinese Journal of Electronics, vol. 33, no. 1

 I. Siniosoglou, P. Radoglou-Grammatikis, G. Efstathopoulos,
et al., “A unified deep learning anomaly detection and classi-
fication approach for smart grid environments,” IEEE Trans-
actions on Network and Service Management, vol. 18, no. 2,
pp. 1137–1151, 2021.

[35]

 A. Radford, L. Metz, and S. Chintala, “Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks,” arXiv preprint, arXiv: 1511.06434, 2015.

[36]

 L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD
dataset for intrusion detection system based on classification
algorithms,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 4, no. 6, pp.
446–452, 2015.

[37]

 R. Panigrahi and S. Borah, “A detailed analysis of
CICIDS2017 dataset for designing intrusion detection sys-
tems,” International Journal of Engineering & Technology,
vol. 7, no. 3, pp. 479–482, 2018.

[38]

 N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive
data set for network intrusion detection systems (UNSW-
NB15 network data set),” in Proceedings of 2015 Military
Communications and Information Systems Conference, Can-
berra, Australia, pp. 1–6, 2015.

[39]

 I. Sharafaldin, A. H. Lashkari, S. Hakak, et al., “Developing
realistic distributed denial of service (DDoS) attack dataset
and taxonomy,” in Proceedings of 2019 International Carna-
han Conference on Security Technology, Chennai, India, pp.
1–8, 2019.

[40]

 H. Z. Xu, Y. J. Wang, S. L. Jian, et al., “Beyond outlier de-
tection: Outlier interpretation by attention-guided triplet de-
viation network,” in Proceedings of the Web Conference
2021, Ljubljana, Slovenia, pp. 1328–1339, 2021.

[41]

Zeyi LI was born in Soochow, China, in 1997.
He received the B.S. degree in mathematics in
2019 and M.S. degree in computer science in
2022. He is currently pursuing the Ph.D. degree
in cyberspace security at Nanjing University
of Posts and Telecommunications, China. His
research interests include network security,
anomaly detection, and deep packet inspection.
(Email: 2022040506@njupt.edu.cn)

Pan WANG received the B.S./M.S./Ph.D. de-
grees in electrical and computer engineering
from Nanjing University of Posts and Tele-
communications, Nanjing, China, in 2001, 2004,
and 2013, respectively. From 2017 to 2018, he
has been a Visiting Scholar at University of
Dayton (UD) in the Department of Electrical
and Computer Engineering, OH, USA. He is
currently a Full Professor at Nanjing Uni-

versity of Posts and Telecommunications. His research in-
terests include cyber security and communication network se-
curity in B5G/6G/IIoT/smart grid/metaverse, ML/AI-enabled
big data analytics, and applications.
(Email: wangpan@njupt.edu.cn)

Zixuan WANG was born in Nanjing, China,
in 1994. He obtained the M.S. degree in logist-
ics engineering at Nanjing University of Posts
and Telecommunications in 2020. He is cur-
rently pursuing the Ph.D. degree at Nanjing
University of Posts and Telecommunications.
His research interests include encrypted traffic
identification and data balancing.
(Email: 2020070135@njupt.edu.cn)

FlowGANAnomaly: Flow-Based Anomaly Network Intrusion Detection with Adversarial Learning 71

