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Abstract — In recent years, low recall rates and high dependencies on data labelling have become the biggest ob-
stacle to developing deep anomaly detection (DAD) techniques. Inspired by the success of generative adversarial net-
works (GANs) in detecting anomalies in computer vision and imaging, we propose an anomaly detection model called
FlowGANAnomaly for detecting anomalous traffic in network intrusion detection systems (NIDS). Unlike traditional
GAN-based approaches, which are composed of a flow encoder, a convolutional encoder-decoder-encoder, a flow de-
coder and a convolutional encoder, the architecture of this model consists of a generator (G) and a discriminator (D).
FlowGANAnomaly maps the different types of traffic feature data from separate datasets to a uniform feature space,
thus  can  capture  the  normality  of  network  traffic  data  more  accurately  in  an  adversarial  manner  to  mitigate  the
problem of the high dependence on data labeling. Moreover, instead of simply detecting the anomalies by the output
of D, we proposed a new anomaly scoring method that integrates the deviation between the output of two Gs’ convo-
lutional encoders with the output of D as weighted scores to improve the low recall rate of anomaly detection. We
conducted several  experiments  comparing existing machine learning algorithms and existing deep learning methods
(AutoEncoder and VAE) on four public datasets (NSL-KDD, CIC-IDS2017, CIC-DDoS2019, and UNSW-NB15). The
evaluation results show that FlowGANAnomaly can significantly improve the performance of anomaly-based NIDS.
Keywords — Anomaly  detection, Unsupervised  learning, Generative  adversarial  network, Intrusion  detection
system.
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 I. Introduction
With the  advent  of  the  5G  era,  Internet  of  every-

thing has become a significant trend. Due to the increasing
frequency of attacks on Internet of things (IoT), vehicle
networking,  and  other  environments,  cyber  security  is
gaining more and more attention from academia and in-
dustry,  which has prompted many researchers  to design
and develop effective network intrusion detection systems
(NIDS). In general, intrusion detection techniques fall into
two  genres:  misuse-based  and  anomaly-based  detection.
Misuse-based detection systems can parse the payload in
network traffic and match it with existing signatures-alert

messages to indicate abnormal behaviour once the system
is  under  attack [1].  Nevertheless,  misuse-based intrusion
detection systems  (IDS)  methods  incur  high  computa-
tional  costs  and  require  manual  signatures  maintenance
by experts over time [2]. Above all, new types of attacks
can not be identified in time, which largely limits the de-
velopment of misuse-based IDS [3]. Accordingly, anomaly-
based  NIDS  mitigates  the  problem by  learning  normal
network  behaviour  features  and  capturing  deviations
from normal ones. These deviations are called anomalies
[4]. Therefore, anomaly-based methods are more suitable
for NIDS than misuse-based approaches, especially to de-
tect new types of attacks. 
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Anomaly-based  network  intrusion  detection  system
(ANIDS) focuses on capturing the normal behaviour fea-
tures  in the network and calculating the deviation from
the coming traffic flow to detect anomalies. Many tradi-
tional machine learning (ML) algorithms have been used
to  develop  anomaly  detection  (AD)  models  [5].  Never-
theless, ML-based AD algorithms have many challenges.
First, it is hard to learn the traffic features for ML algo-
rithms because the network traffic data is complex, high-
dimensional,  and  non-linear.  Second,  the  size  of  normal
network traffic is huge leading to great difficulties in algo-
rithm training. Third, the concept of an anomaly is sub-
jective  and  highly  depends  on  the  application  domain
and context. In addition, anomalous samples are difficult
to label and are usually done manually by human experts.
And finally, the boundary between normal and anomaly
is  often  imprecise.  Fortunately,  deep  learning  (DL)  has
been  a  great  success  as  a  revolutionary  innovation  in
computer vision, imaging, and speech. DL uses automat-
ic  feature  learning  to  perform better  modeling,  avoiding
task-specific  engineering  and  large  amounts  of  prior
knowledge.  Generative  adversarial  network  (GAN),  an
emerging technique,  provides helpful  context for the de-
velopment of DL because its most valuable contribution
has been  proved  to  well  capture  the  normality  underly-
ing  the  given  data  and  then  detect  abnormal  instances,
especially on image/video data. Recently, existing GAN-
based  models  and  theories  [6]  have  been  verified  in  the
literature  that  they  are  suitable  for  anomaly  detection.
So, more and more attention is drawn by researchers from
traditional  training  methods  of  DL  toward  adversarial
learning methods.
 1. Motivations

Recently, deep  anomaly  detection  (DAD)  technolo-
gy has gained much attention for its ability of detecting
unknown attacks without having to manually build a li-
brary of traffic behaviour based on DL algorithms. How-
ever,  DAD  techniques  are  still  more  or  less  limited  by
the following challenges:

1) The detection of traffic behaviour may be biased
due to the lack of well-designed DL models and threshold
selection algorithms. The boundary between normal and
outlier traffic is often unclear and imprecise, resulting in
a low recall of anomaly detection.

2) Traditional convolutional modules [7] require fixed
input parameters, and frequent changes of model param-
eters are required to train different data sets.

3) The calculation of anomaly scores is not accurate
enough  to  detect  the  deviation  from the  features  of  the
flow.

4) The last  issue  is  that  DAD rarely  has  interpret-
ability, which makes the algorithm less trustworthy.
 2. Key contribution

GAN  is  rapidly  becoming  a  popular  DAD  method
because  of  its  excellent  automatic  feature  extraction
through adversarial  learning [8].  This paper proposes an

ANIDS  algorithm  based  on  adversarial  learning  called
FlowGANAnomaly which consists of a generator (G) and
a  discriminator  (D).  The  proposed  algorithm  learns  the
underlying  distribution  of  network  traffic  data  through
adversarial  training.  At  the  same  time,  multiple  loss
functions are combined to form multiple constraints aim-
ing  to  train  the  GAN  model  more  accurately,  and  the
scores of discriminators and reconstruction distances are
weighted  as  anomaly  scores.  Given  that  the  features  of
each  dataset  are  not  consistent,  G’s  flow  encoder  maps
the  different  types  of  traffic  feature  data  from  separate
datasets to a uniform feature space, thus can capture the
normality  of  network  traffic  data  more  accurately. The
main contributions of this paper are as follows:

1) This  paper  proposes  a  network  anomaly  detec-
tion algorithm  called  FlowGANAnomaly.  GAN  consist-
ing of a deconvolutional decoder,  a flow encoder,  a flow
decoder, and  three  convolutional  encoders  plays  a  piv-
otal role in this model. A convolutional encoder acts as D
and  the  remaining  parts  make  up  G.  The  flow  encoder
can map the data of different features into G uniformly,
which can be applied to different flow feature computing
environments  and  has  good  scalability.  Meanwhile,  the
results prove that adding the flow encoder module works
better.

2) The anomaly score is composed of Euclidean dis-
tance between two convolutional  encoders in G and D’s
output, which can well reflect the anomalous characteris-
tics  of  network  traffic.  The  results  are  better  than  the
traditional GAN methods.

3) We propose an improved threshold selection algo-
rithm for anomaly scores, which utilizes the kernel func-
tions  as  thresholds  to  accurately  obtain  the  normal  and
abnormal  traffic  boundaries  using  kernel  functions  and
set them as thresholds.

4) The  six  benchmarking  ML/DL  methods  on  four
public datasets are compared to experimentally evaluate
the  proposed  method  with  good  results.  Moreover,  we
apply the ATON (attention-guided triplet deviation net-
work for outlier interpretation) algorithm to explain the
FlowGANAnomaly to  ensure  that  the  proposed  algo-
rithm is credible by judging the contribution of the fea-
tures.

 II. Related Works

 1. Review of anomaly detection algorithms
The first wave of anomaly detection algorithms was

on the basis of ML algorithms, which can be divided in-
to  six  families  [9]:  clustering,  neighbor-based,  density-
based,  statistical,  angle-based,  and  classification-based.
Clustering assumes a large number of unlabeled data to
be normal and learns to group them into several clusters
to  discriminate  between  the  normal  and  anomalies  [10].
K-means is  a  widely  used  clustering  algorithm.  Neigh-
bour-based algorithms are used to classify data based on
similarities  in  distance  metrics  such  as  Euclidean,  and
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Manhattan distance. A typical example is the K-nearest
neighbour (KNN) [11]. Density-based algorithms like local
outlier  factor  (LOF) [12]  are  based on a  neighbor-based
family to improve the capability of  detecting anomalies.
Statistical  algorithms  like  principal  component  analysis
(PCA)  [13]  are  used  to  detect  subspaces  of  the  data  to
identify  deviations  from  the  expected  subspaces,  and
thus  detect  anomalies  [14]. Angle-based  algorithms  re-
late  data to high-dimensional  spaces,  using the variance
in the angles between a data point to the other points as
an  anomaly  score,  such  as  angle-based  outlier  detection
(ABOD)  [15].  Classification-based  algorithms  aim  at
learning  a  decision  boundary  to  group  the  data  points.
One-class  support  vector  machine  (one-class  SVM)  [16]
and isolation forest (IF) [17] are two representatives. The
paper  [18]  proposes  the  anomaly  detection  method  of
iForest,  which has better experimental  results and more
robustness than  LOF  and  OCSVM.  However,  when  en-
countering  large-scale  data,  AD  algorithms  will  reach  a
bottleneck [19].  The first  wave posed several  challenges:
1)  Low  recall  rate;  2)  High-dimensional  or  not-indepen-
dent data; 3) Data-efficient learning of normality/abnor-
mality; and 4) Noise resilience.

The  second  wave  is  based  on  DL  algorithms  since
2015 due to the superior performance [20] applied in the
area of computer vision [21]/image/speech. We can simp-
ly  summarize  three  apparent  trends:  1)  More  novel  and
advanced deep learning algorithms are adopted [22], such
as  MLP/CNN/AE/RNN  even  GAN/GNN;  2)  Learning
methods adopted by deep learning models  are gradually
from supervised [23] to semi-supervised [24], weak-super-
vised  and  unsupervised  learning;  3)  The  anomaly  score
learning approaches are moving from separately learning
to  end-to-end  including  more  precise  threshold  selection
algorithms.
 2. Deep anomaly detection algorithms in IDS

Deep anomaly detection (DAD) techniques for short,
aim  at  learning  hierarchical  discriminative  features  or
anomaly scores via deep neural networks for the sake of
anomaly detection.  DAD algorithms can learn from his-
torical data with normal and anomalous traffic and auto-
matically  reduce  the  network  traffic  complexity  to  find
the correlations among data without human intervention.
Furthermore,  DAD  is  more  powerful  in  detecting  zero-
day attacks  and  adapting  to  evolving  systems.  In  sum-
mary,  there  are  two main genres  applied  in  DAD-based
IDS: AE-based  and  GAN-based,  which  will  be  intro-
duced in detail in the following subsections.

1) Autoencoder-based AD Methods in IDS
As a  popular  deep structure  for  anomaly  detection,

AE and its genres have played a very important role dur-
ing these decades. Autoencoders (AEs) are a neural net-
work architecture  that  has  emerged  as  a  suitable  solu-
tion  to  anomaly  detection  in  recent  years.  AEs  usually
behave well  on normal  data  instances  with small  recon-
struction errors (REs), but poorly reconstruct anomalies

with  large  REs  when  they  attempt  to  reconstruct  the
original input data at the output layer. RE is commonly
used  as  a  measure  of  anomaly  score.  Gharib et  al.  [25]
presented AutoIDS, a network anomaly detector by cas-
cading a sparse AE and AE to increase accuracy and de-
crease the time complexity, in which anomalous flows are
distinguished from normal ones by the first detector and
the second one is only used for difficult samples that the
first  detector  is  not  confident  about.  AutoIDS  was
trained on NSL-KDD and private datasets, which detect-
ed the network traffic anomalies by calculating the REs
of the AE models based on the manually selected thresh-
old.  A  plug-and-play  NIDS  called  kitsune,  utilizing  an
ensemble of  AEs to collectively detect anomalous traffic
on  the  local  network  in  an  unsupervised  online  manner
was proposed by Mirsky et al. [26]. And the evaluations
showed  that  Kitsune  can  detect  various  attacks  with  a
performance  comparable  to  offline  anomaly  detectors,
even on a Raspberry PI.

Zavrak et  al.  [27]  applied  AE  and  VAE  to  detect
anomalous network traffic from flow-based data. The ex-
perimental  results  show that  VAE outperforms  AE and
one-class SVM on CICIDS2017 dataset. Abolhasanzadeh
et al. [28] proposed an AE-based IDS approach from the
point  of  view  of  dimensionality  reduction  to  detect
anomalous  network  behavior.  With  the  comparison  of
PCA, KernalPCA, and factor analysis  (FA), the experi-
mental results showed that the proposed AE method per-
formed better than the others on the NSL-KDD dataset.

Shone et al. [29] proposed a combination of deep and
shallow  learning  which  leverages  the  feature  learning
power of non-symmetric deep auto-encoder (NDAE) and
the accuracy and speed of random forest (RF). They ob-
tained  promising  experimental  results  on  KDD  CUP’99
and NSL-KDD. CANnolo, an IDS based on LSTM-AE to
identify  anomalies  in  controller  area  networks  (CANs),
creates  a  reconstructed  time  series  of  CAN  packets  for
each CAN-ID that minimizes the RE so that a great er-
ror rate would flag any potential anomaly [30].

In  summary,  the  AE  family  based  on  AD methods
have  the  following  several  advantages:  the  methods  are
simple,  easy  to  design,  and  general  for  different  data
types.  In  addition,  the  model  can  use  different  classical
types of AE variants for anomaly detection. However, it
still has shortcomings in that the model learning cannot
learn  the  deep  underlying  distribution  of  the  normal
dataset well, which can lead to some rare and biased nor-
mal flows  being  classified  as  outliers.  As  for  the  objec-
tive function of data reconstruction design, the model is
only  dimensionality  reduction  or  data  compression,  but
not  anomaly  detection.  Therefore,  the  model  of  the  AE
series still  needs  more  improvement  for  anomaly  detec-
tion.

2) GAN-based AD Methods in IDS
GAN-based anomaly detection methods are general-

ly  used  to  learn  the  latent  feature  space  by  adversarial
learning of G and D so that the latent space can capture
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the normality of the given data well. In some form, resid-
uals between actual and generated data samples are de-
fined  as  anomaly  scores.  Schlegl et  al.  [31]  proposed
AnoGAN,  a  deep  convolutional  GAN,  to  learn  multiple
normal  anatomical  variants,  accompanied  by  a  new
anomaly scoring scheme based on a mapping from image
space  to  latent  space.  The  model  flags  anomalies  and
scores image patches to apply to recent data, indicating
that they fit a known distribution. Zenati et al. [32] uti-
lizes a recently developed GAN model for anomaly detec-
tion  and  achieves  state-of-the-art  performance  on  image
and NIDS datasets. Subsequently, Schlegl et al. [33] pro-
posed  fast  AnoGAN  (f-AnoGAN),  a  GAN-based  semi-
supervised learning method that can identify  anomalous
images  and  fragments.  This  method  detects  anomalies
using a combined anomaly score based on a trained mod-
el’s  building  blocks  containing  a  residual  discriminator
feature  and  an  image  reconstruction  error.  Akcay et  al.
[34]  introduced  a  new  anomaly  detection  model  called
GANomaly that uses conditional GAN (CGAN) to joint-
ly  learn  the  generation  of  high-dimensional  image  space
and  inference  of  the  latent  space  with  given  conditions.
They  designed  an  encoder-decoder-encoder  sub-network
in the G network, enabling the model to map the input
image to a lower-dimensional vector, which is then used
to reconstruct the generated output image. The distance
between these images and the underlying vector is mini-
mized during the training period of learning the data dis-
tribution  of  the  normal  samples.  Siniosoglou et  al.  [35]
proposed an IDS called MENSA adopting AE and GAN
for  detecting  the  operational  anomalies  and  classifying
ModBus/TCP  and  DNP3  cyber-attacks  in  smart  grid.
Adversarial loss between the real and fake samples is uti-
lized to calculate the anomaly score, while the threshold

value range is defined as t in [0, 1].
However, these algorithms usually only apply to im-

ages/videos/speech, which  can  not  fit  the  feature  infor-
mation  of  the  traffic  well.  In  short,  GAN  models  have
shown excellent ability in generating actual instances, es-
pecially  on  image/video  data.  GAN-based  AD  methods
generally  detect  anomalous  cases  poorly  generated  from
the latent  space.  Many existing  GAN-based models  and
theories can be used for anomaly detection. However, the
currently GAN-based AD methods still have the following
limitations.  First,  most  existing  GAN-based  AD models
are only suitable for images/videos, not for network traf-
fic.  Second,  existing  GAN-based  AD algorithms  are  not
capable of  extracting and retaining network information
well, which  results  in  a  weak  ability  to  represent  fea-
tures  in  the  mapping  of  normal  network  data  to  low-
dimensional  latent  features,  hence,  leading  to  a  poorly
discriminative ability for network anomalies.

 III. The Proposed Method
In this section, we will  introduce the process of the

proposed FlowGANAnomaly based on GAN in detail, as
shown in Figure 1.

First, the  raw  packets  will  be  preprocessed  to  con-
struct  the  flow  attribute  matrix  (FAM),  which  is  the
footstone  of  FlowGANAnomaly  as  the  model  input.
FAM  is  composed  of  several  attributes  which  will  be
comprehensively  demonstrated  in  the  following  section.
Our model consists of  a deconvolutional decoder,  a flow
encoder, a  flow  decoder,  and  three  convolutional  en-
coders. The input vector, in G, analogous to the seed of
a  pseudorandom  number,  successively  passes  through  a
flow encoder, a convolutional encoder-decoder-encoder, a
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Figure 1  The framework of FlowGANAnomaly.
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flow  decoder,  and  then  becomes  the  output  vector.  We
use  a  D to  estimate  the  output  of  G and the  real  flow.
Furthermore, the  model  measures  the  binary  cross  en-
tropy (BCE) between the target and the output and up-
dates  the  gradient.  After  the  adversarial  learning  based
on  FAM,  G  and  D  can  calculate  the  anomaly  score,  of
which G’s score is computed on the basis of a difference
between  two  convolutional  encoders,  thus  detecting  the
deviation from the network traffic flow. Finally, the elab-
orated  threshold,  obtained  by  extensive  experiments,  is
employed to  determine  whether  the  network flow is  ab-
normal  or  not  based on the  deviation  calculated  by the
anomaly  scoring  algorithms.  In  order  to  describe  the
methods easily, we define the network-traffic-related no-
tations as below:

P = {p1, p2, . . . , pi−1, pi} , 0 ≤ i ≤M M

1)  Packet:  A  packet  is  a  basic  unit  in  flow.  Set
,  is  the  number

of packets.

F = {f1, f2, . . . , fi−1, fi} , 0 ≤ i ≤ K K

2) Flow: Source address, destination address, source
port, destination port, and TCP/UDP protocol five-tuple
consists  of  flow,  which  is  unidirectional  to  differs  from
Session.  Set ,  is
the number of flows.

S = {s1,
s2, . . . , si−1, si} , 0 ≤ i ≤ N N

3) Session:  Bi-directional  flows are two flows of  the
same  tuples  of  upstream  and  downstream.  Set 

,  is the number of sessions.
 1. Model input design

FAM = {FF1, FF2, . . . , FFi−1, FFi}

As  shown  in Table  1,  the  vector  of  flow  features
(FF) is the basic unit of FAM, including packet-level (di-
rection, packet size, etc.), flow-level (flow size, flow dura-
tion,  etc.),  and  statistical  features  (mean  packet  size,
mean inter-arrival time, etc.). FAM is composed of FFs:

. The number of di-
mensions of FF is defined as FN.
 
 

Table 1  The example of flow attribute matrix (FAM)

Packet-level Flow-level Statistics level

Pkt len … Flow duration … Mean (Pkt len) …

6 … 34 … 22.666 …

… … … … … …

31 … 52 … 12.55 …
 
 

Taking the CIC-IDS2017 dataset as an example, we

H = {FAM1, FAM2, FAM3, FAM4}

divided the dataset into three levels by definition and fi-
nally  formed  the  FAM based  on  the  FFs  after  the  raw
packets preprocessing. Table 1 shows the examples of the
FAM.  The  complete  FAM  of  a  dataset  is  composed  of
multiple pieces of FAMs. Since we define a batch size of
64, the dimension of a small FAM is 64 × FN. Define the
set of FAM as H. In this paper, H contains four kinds of
data  sets,  namely, .
Figure 2 shows the new FAM formed after normalization
and  one-hot  encoding.  The  new  FAM is  input  into  the
FlowGANAnomaly model for the subsequent training.
 2. Model design

ϕ W ∈ Rd×D

x
v

v = ϕ(x) ϕ(x)

The model will uniformly map the multidimensional
feature space of  the FAMs to the feature space of  fixed
dimensions to get the mapped new FAM. The model us-
es a  learnable  linear  layer  as  the  feature  mapping  func-
tion  by  the  weight  matrix  parameter ,  to
obtain a new FAM with powerful representation capabil-
ities.  Simple  linear  transformations  can  also  ensure  the
scalability of the model. The data object  is transferred
to  a  new  array  by  the  feature  mapping  function,

.  is defined as equation (1).
 

ϕ(x) =

 W (1, 1)x(1) . . . W (1, D)x(D)
...

. . .
...

W (d, 1)x(1) . . . W (d,D)x(D)

 (1)

W x
W (i, j)

i j
W x(i) i x

ϕ(x)

where  is the matrix of neuron parameters and  is the
matrix of eigenvalue in flow encoder, where  rep-
resents  the  element  in  the -th  row  and -th column  of

,  and  represents  the -th element  of . Each  di-
mension  can  be  regarded  as  a  linear  pattern  (combina-
tion) of  the  original  feature  space.  The  mapping  func-
tion  will effectively aggregate the network flow fea-
tures into a new FAM and then pass it  to the convolu-
tional encoder (CovEncoder) for feature space mapping.

LeakyReLU()
v z

v
z

x Z
Z ∈ Rd

The  FAM  newly  generated  in  CovEncoder  uses  a
convolutional  layer  and  performs  batch  normalization
(BN) and activation function  respectively.
By compressing the FAM  into a hidden space , the di-
mensionality of  is reduced. At the same time, the mod-
el  obtains  the  most  representative  hidden  features.  is
also called the hidden feature of ,  is defined as equa-
tion  (2), .  Assuming  that  its  dimension  is  the
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Figure 2  FlowGANAnomaly input design.
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xsmallest, the space can best reflect its features of  . As
shown  in Figure  3,  the  module  has  four  convolutional
layers. The kernel  size  of  each layer  is  4.  The input  di-
mension of  the module  is  64 × 1 × 32.  The output di-
mension of the module is 64 × 100 × 1, where the batch
size is 64.
 

Z =
v − E[v̂]√
Var[v] + ε

(2)
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Figure 3  The parameters of the convolutional encoder1.
 

ReLU

The  decoder  part  of  the  G uses  the  architecture  of
the  DCGAN  [36]  generator.  The  network  features  are
then flattened and concatenated to form new vector. The
decoder uses a convolutional transposed layer, an activa-
tion  function  ( )  and  BN.  Tanh  layer  is  added  at
the  end  to  decode  the  hidden  space  into  the  generated
embedding space. The specific parameters of the decoder
are shown in Figure 4.

z

v v̂

ψ(v̂) x̂ ψ(v̂)

v̂ = Gd(z)

The module has four deconvolution layers. The ker-
nel  size  of  each  layer  is  4.  The  input  dimension  of  the
module  is  64  × 100  × 1.  The  output  dimension  of  the
module is 64 × 1 × 32, where the batch size is 64. This
method  reconstructs  the  hidden  space  and recon-
structs  as . On  this  basis,  the  dimensionality  is  ex-
panded using  linear  changes  through the  mapping func-
tion  to  become  a  new  space .  is  defined  as
equation (3).  The  whole  process  is  called  space  back-
tracking, where .
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Figure 4  The  parameters  of  the  deconvolutional  decoder  (CovDe-
coder).
 
 

ψ(v̂) =

 W (1, 1)v(1) . . . W (1, D)v(D)
...

. . .
...

W (d, 1)v(1) · · · W (d,D)v(D)

 (3)

W (i, j) i j
W v̂i i

v̂

where  denotes the element of the -th row and -
th column of the matrix .  denotes the -th element
of the space . Each dimension can be regarded as a lin-
ear pattern of the original feature space. We use the ob-
tained reconstructed space for comparison with the origi-
nal  space.  The generator  can understand the contextual
information  about  the  input  data.  The  loss  function  for
normal FAMs  and  generated  FAMs  is  defined  as  equa-
tion (4).  The training process  of  the generator is  shown
in Figure 5.
 

losscon = Ex-Euclidean ∥x− ψ(v̂)∥1 (4)

v̂
v̂

ẑ = E(v̂)
ẑ

z

z
v ẑ

In  the  part  of  convolutional  encoder1,  the  model
compresses the FAM  reconstructed by the neural net-
work.  reconstruct the flow space compression to find its
characteristics,  specifically  expressed: . The  di-
mension of the hidden space vector  is the same as the
dimension of  so that the distance can be calculated lat-
er.  This  sub-network is  special  in  the  proposed method,
where it can represent the hidden features in the recon-
struction  space.  Unlike  previous  methods  [27]  based  on
VAE,  the  distance  between  the  latent  space  and  the
original  is  minimized  by  hidden  features .  The  sub-
network  minimizes  the  distance  through  parameterized

 

x

FAM

ϕ (x) G
E
 (υ) G

d
 (z)

CovEncoder1 CovEncoder1CovDecoder

Output variables: z

Output

variables:

new_v

Output

variables:

new_zOutput variables: v

FlowEncoder

Lcon=E
x-Euclidean||x− (υ)||1ˆ

Lhiddenloss=MAE|| G
E
 (υ)−E (G

E
 (υ))||2ˆ

FlowDecoder

Fake FAM

Generator

Figure 5  The architecture for the generator.
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explicit  learning.  MAE  depicts  the  average  distance  of
the two variables. This model uses a second-norm to cal-
culate the distance between two hidden vectors. The loss
function of the hidden features is defined as equation (5).
 

losshidden = MAE ∥GE(v)− E (GE(v̂))∥2 (5)

The training process of the discriminator is shown in
Figure 6. The goal of discriminators is to classify the in-
put and output as True or False, respectively. This sub-

network  is  a  standard  discriminator  network  introduced
in DCGAN. The discriminant loss function is defined as
equation  (6).  The  parameters  of  convolutional  encoder2
are shown in the Figure 7. The components of the model
are similar to the previous ones. Nevertheless, the dimen-
sions of the input and output of the module are different.
The input dimension of the module is 64 × 100 × 1. The
output dimension of the module is 64 × 1 × 32.
 

lossadv = Ex−p(x)

∥∥f(x)− Ex−p(x)f(G(x))
∥∥
2

(6)

 
G Fake FAM

True FAM

Input

Input
Flow-

Encoder
CovEncoder2

Compute

Backward

Discriminator

SD (x)=Sigmoid (DE (x))

Ex~pX|| f (x)−Ex~pX f (G (x))||2

 

Figure 6  The architecture for the discriminator.
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Figure 7  The parameters of the convolutional encoder2.
 

losscon
losshidden

lossadv

min(losstotal)

 is  the  Euclidean  distance  between  original
samples  and  generated  samples.  is the  Eu-
clidean  distance  between  two  hidden  space  vectors.

 is the loss of D in GAN. We adjust the weighting
parameters  to  determine  the  overall  objective  function.
Then  we  end  up  with  the  goal  of  minimizing  the  loss
function, .
 

losstotal =wadv lossadv+wcon losscon+whidden losshidden
(7)

 3. Model training

v̂
GE(v̂) ẑ

z ẑ

We  assume  that  the  generator  fails  to  reconstruct
the network flow when an outlier flow passes through the
generator,  which  is  because  the  network  is  trained  on
normal samples. The generator’s parametric modelling is
not suitable  for  generating  outlier  samples.  The  recon-
struction  failure  means  that  the  encoder  network

 cannot be mapped to a vector  typically, result-
ing in a large distance between  and . See Algorithm 1
for details.

x x ∈ FAM |

v GE

The  pseudocode  is  shown  in  Algorithm  1.  The  G
firstly reads the input data , where  (batch-
size × mum), forwards it to a layer of dimensional com-
pression fully connected , and then passes it to . Us-

v

G ReLU
Tanh

z v
v̂

ing  a  convolutional  layer  and  then  performing  BN  and
activation function, respectively, the dimension of  is re-
duced  by  compressing  it  into  a  vector.  These  features
represent normal network flow. The decoder part of  the

 uses a deconvolution layer, activation functions ,
and  BN  together  with  a  layer  at  the  end.  This
method scales the vector  and reconstructs the flow  as
. The  algorithm  calculates  the  loss  according  to  equa-

tion (4).

Algorithm 1
Require:

FAM = {FF1,
FF2, . . . , FFm−1, FFm}

　 FAM will be divided into several batches, 
;

X X = {FF1, FF2,
. . . , FFbatchsize−1, FFbatchsize}

　  represents  data  entered  at  one  time, 
;

niter　  is the number of iterations.
i← 1 niter 1: for  to  do

x̂ v̂ 2: 　Use generator to calculate  and ;
v = ϕ(x), z = GE(v), v̂ = Gd(z), x̂ = ψ(v̂) 3: 　 ;

x̂ losscon = Ex-Euclidean ∥x− ψ(v̂)∥1 4: 　Compute loss of : ;
ẑ = GE(v̂) 5: 　Find compress: ;

losshidden =MAE ∥GE(v)− E (GE(v̂))∥2
 6: 　Compute hidden loss:
　　 
 7: 　Send the fake FAM to the discriminator;

lossadv = Ex−p(x)

∥∥f(x)− Ex−p(x)f(G(x))
∥∥
2

 8: 　Compute loss:
　　 

losstotal = wadv lossadv + wcon losscon + whidden losshidden
 9: 　Compute total loss:
　　 

gk = ∇L (xk)10:　Compute gradient directions: ;
11:　Update parameters;
12: end for

v̂

v̂ ẑ = GE(v̂)

The  second  sub-network  is  the  CovEncoder,  which
compresses the network flow data  reconstructed by the
neural network. CovEncoder is compressed downward to
, and its features representation  is found. At

this point, the algorithm calculates the loss according to
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ẑ

z

D
x x̂

equation (5). The dimension of the vector  is the same
as the dimension of  so that the distance can be calcu-
lated.  The third sub-network is  the ,  whose goal  is  to
classify input  and output  as true or false, respective-
ly,  according  to  equation  (6).  The  algorithm  eventually
minimizes equation (7) by gradient.
 4. Anomaly scores

SG(x) SG(x)

The  anomaly  score  consists  of  two  components.  A
part of the anomaly score is the G’s score, another part
is the D’s score. A part of the anomaly score calculation
in  this  paper  will  use  the  calculation  of  the  Euclidean
distance  between  two  hidden  vectors,  as  shown  in  the
following  equation.  To  facilitate  the  threshold  selection
later, we first normalize the obtained Euclidean distance
and  finally  obtain .  represents  G’s  anomaly
score.
  

SG(x) = Ex-Euclidean ∥GE(v)− E (GE(v̂))∥2

SGi(x) =
SGi − SGmin(x)

SGmax(x)− SGmin(x)

(8)

SD(x)

In  order  to  take  full  advantage  of  the  adversarial
training of  the generator  and the discriminator,  another
part of the anomaly score comes from the discriminator,
which reflects the anomaly score of the test sample more
comprehensively.  is the D’s anomaly score.
 

SD(x) = Sigmoid (DE(x)) (9)

A(x) λ

Therefore,  for  a  test  sample  x,  the  anomaly  score
 is defined by the following equation (10), where is 

adjusted by the validation set according to the different
data sets.
 

A(x) = λSG(x) + (1− λ)SD(x) (10)

 5. Threshold selection
The  threshold  selection  method  is  as  follows.  The

first is the choice of validation set data. The experiment
selects a certain proportion of normal and malicious traf-
fic in an orderly manner. Then, the validation set is fed
into the  anomaly  detection  model.  Calculate  the  recon-
struction distance of each normal flow sample and mali-
cious flow sample in the validation set according to equa-
tion  (10).  Finally,  the  probability  density  and  kernel
equation (13)  are  obtained  according  to  the  reconstruc-
tion distance of the verification set, and the threshold is
determined.

A(x) = {a1, a2, . . . , ai−1, ai}
F (a)

In  validation  set,  there  are n outliers scores  as  fol-
lows: . Assume that the cumu-
lative distribution function of the sample data is .
 

F (ai−1 < a < ai) =

ˆ at

at−1

f(a)da (11)

f(a)And the probability density function is . 

f (ai) = lim
h→0

F (ai + h)− F (ai − h)
2h

(12)

f(a) h f(a)

Introduce  the  empirical  distribution  function  of  the
cumulative distribution function and substitute this func-
tion  into ,  after  determining ,  can be  trans-
formed into
 

f(a) =
1

2nh

n∑
i=1

1a−h < ai < a+ h

=
1

2nh

n∑
i=1

K

(
|a− ai|
h

)
(13)

We  calculate  the  two  functions  of  normal  and
anomaly flows, using the kernel density function, respec-
tively, and get the intersection. Turn the intersection in-
to a threshold.

 IV. Evaluation

 1. Evaluation settings and chosen datasets
The data sets we select need to meet the experimen-

tal requirement. The four classic NIDS data sets, namely,
NSL-KDD  [37],  CIC-IDS2017  [38],  UNSW-NB15  [39],
and  CIC-DDoS2019  [40], are  the  most  popular  bench-
mark datasets to evaluate the performance of NIDS algo-
rithms.

From Table 2, malicious flows account for a relative-
ly large proportion of UNSW-NB15 and CIC-DDoS2019.
In  order  to  be  close  to  the  actual  network  scenario,  we
use a ratio of normal flow to malicious flow of 100 to 1 to
evaluate the FlowGANAnomaly.
  
Table 2  Summary of datasets used for evaluation (FE: features)

Dataset Size % Attacks Format

NSL-KDD 20.7 MB 48.12 42FE

UNSW-NB15 45.4 MB 63.91 46FE

CIC-DDoS2019 8.14 GB 85.92 79FE

CIC-IDS2017 848 MB 19.68 78FE
 
 

The experimental environment is AMD Ryzen 3600,
16GB RAM, NVIDIA GTX 1660, CUDA 7.5, CDNN10.5.
In this paper, Python3 is the primary programming lan-
guage.  The  following  is  a  description  of  the  evaluation
metrics:  Precision,  Recall,  F1,  Accuracy,  and  AUC  as
evaluation metrics.

Marco  average,  means  that  each  type  of  sample  is
given  equal  weight.  For  example,  in  this  article,  the
macro average accuracy index is defined as
 

P =
Pnormal + Pmalware

2
(14)

Weighted  average,  is  to  use  the  proportion  of  the
sample size of each category in the total number of sam-
ples  in  all  categories  as  the  weight.  In  this  article,  the
weighted average accuracy index P is defined as
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P =
Nnormal

Nnormal +Nmalware
× Pnormal

+
Nmalware

Nnormal +Nmaiware
× Pmalware (15)

Time-complexity-related  metrics  like  detection  time
or  training  time  are  not  included  in  this  paper  because
we think those are highly dependent on the hardware re-
sources whether training or detecting.
 2. Ablation study

We conducted an ablation study using UNSW-NB15
dataset  in  this  subsection. Table  3 shows  that  if  the
model is  processed by adding a flow encoder,  the repre-
sentative elements will be represented as a matrix in the
subspace. Then  the  feature  space  mapping  will  be  per-
formed.
 
 

Table 3  Improved model comparison

Model progressive Original model FlowGANAnomaly

Precision
Weighted avg. 0.7647 0.9859

Marc. avg. 0.6890 0.5102

Recall
Weighted avg. 0.3852 0.7037

Marc. avg. 0.5063 0.7354

F1
Weighted avg. 0.2236 0.8384

Marc. avg. 0.2881 0.4471

AUC 0.7808 0.8530
 
 

From Table  3,  the  results  are  not  ideal  if  only  the
module used for image anomaly detection is directly mi-
grated to detect network traffic. The weighted average of
F1  for  our  proposed  model  is 0.6148 higher,  and  the
AUC  is  increased  by  0.0722.  Therefore,  our  proposed
model is 0.6148 higher and can significantly improve net-
work anomaly detection performance.

The  experiment  compares  the  classical  AD  model
based on GAN to detect anomaly flows in a network en-
vironment.  Since  models  need  to  be  evaluated  globally,
AUC  has  become  a  leading  model  evaluation  indicator.
FlowGANAnomaly  performs  better  than  the  other  two
models  in Table  4.  On  the  UNSW-NB15  data  set,  the
AUC value of this model reaches 0.8530, which is 0.1315
higher than f-AnoGAN. Our model proposed is more ef-
fective  than  EGBAD.  The  CICIDS2017  data  set  has  a
vast amount of data. Hence, with sufficient training, al-
though the AUC value of FlowGANAnomaly is the high-
est, the difference between the three types of GAN mod-
els  is  not  significant.  Also,  on  the  NSL-KDD  data  set,
our model has a higher AUC than the other two models.
Therefore,  we  can  conclude  that  the  FlowGANAnomaly
model  clusters  the  features  by  adding  a  flow-encoder,
which  can  refine  the  feature  form  of  the  data.  At  the
same time, our model uses the loss function to optimize
and constrain the hidden features. In the following com-
parison stage, we use FlowGANAnomaly as the represen-
tative  of  the  GAN  series  model  to  compare  with  other

family’s algorithm models.
 
 

Table 4  GAN compared in four datasets

Model (AUC) FlowGANAnomaly f-AnoGAN EGBAD

UNSW-NB15 0.8530 0.7215 0.5638

CIC-IDS2017 0.7432 0.6929 0.7365

NSL-KDD 0.9801 0.9572 0.9372

CIC-DDoS2019 0.7883 0.5535 0.7651
 
 

 3. Performance evaluation
The experiment selects representative algorithm data

sets for testing in different algorithm families. In Table 5,
as AUC is the overall indicator of the evaluation model,
our algorithm has a better performance on each data set
than other algorithms. In the NSL-KDD data set in Fig-
ure 8, although FlowGANAnomaly shows the best effect,
it is not much different from other algorithms. Since the
NSL-KDD  dataset  was  collected  earlier,  this  data  set
does  not  have  the  timeliness  of  the  current  network.  In
addition,  NSL-KDD  datasets  contain  relatively  a  small
amount  of  samples,  each  model  can  learn  the  dataset’s
characteristics and achieve better results. From Figure 8,
the AUC of our algorithm is 0.8530, which is second on-
ly  to  LOF  and  shows  a  stable  performance  on  UNSW-
NB15  dataset.  The  CICIDS2017  dataset  is  a  relatively
new data set of the four data sets and is also an exten-
sive  data set.  Traditional  outlier  algorithms tend to fail
when training large amounts of data. Rather, DAD mod-
els, such as AE, VAE, and FlowGANAnoamly, also show
their  advantages.  The  AUC  value  of  the  deep  learning
model achieves  0.73,  while  other  traditional  AD  algo-
rithms,  such as  LOF, SVM, and so on,  are  between 0.5
and  0.6.  Thus,  the  proposed  FlowGANAnomaly  in  this
article is still in a leading position in DAD algorithms.

In  the  field  of  anomaly  detection,  a  large  emphasis
has  been devoted to  reducing  false  negatives,  instead of
decreasing true negatives. Therefore, the number of false
flows  determined  as  proper  flows  should  be  as  small  as
possible.  So  we  consider  that  the  benign  accuracy  rate
and the negative recall  rate have great weight. This ex-
periment shows the weighted average precision rate and
the macro average recall rate.

FlowGANAnomaly’s accuracy rate achieves 98% be-
cause the ratio of normal and abnormal flow in the train-
ing set is 100:1. Therefore, most of the normal flow can
be well-identified. In addition, the reason for the low re-
call  rate  in  each dataset  is  that  lots  of  malicious  traffic
are  identified  as  normal  traffic.  Therefore,  whether
anomaly detection can detect anomalous flow, the recall
index is essential. The recall of FlowGANAnomaly, as a
representative of deep learning algorithms, is higher than
other algorithms on the CICIDS2017 data set. Therefore,
our  model  has  a  relatively  strong  ability  to  detect
anomaly flows.

From Table 5, the LOF performs exceptionally well
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in the  experiments.  Accordingly,  DAD  algorithms  can-
not  effectively  learn  the  features  of  the  network  traffic,
limited by the size of the UNSW-NB15 dataset. Because
comparing  the  density  between  the  sample  points,  LOF
is more  advantageous  in  learning  small-scale  data  sam-
ples. However, LOF will be more unstable when convert-
ing data sets or increasing the size. On the CICIDS2017
dataset,  the  AUC value  of  LOF is  only 0.5483, indicat-
ing that the algorithm cannot obtain density bias based
on  features  when  training  large-scale  data,  resulting  in
the algorithm not fitting.
 4. Experiment discussion

This  experiment  chooses  two  data  sets,  and  plots
box figures to show the anomaly scores for each type of
malicious  flow. Figure  9 demonstrates  that  the  model
does not work well on Exploits, Fuzzers, and Reconnais-
sance.  Fuzzers and Reconnaissance are two attacks that
have something in common. Fuzzers attempt to suspend
a program or network by providing randomly generated

data. Reconnaissance, on the other hand, implements the
attack  by  simulating  information  gathering.  Both  types
of attacks are generated by simulation, which is inherent-
ly random. Therefore, the features of these two types of
flow are similar to normal flow, and it is difficult for the
model to  distinguish  them.  Exploits  are  vulnerable  at-
tacks. The attacker knows the security issues in the oper-
ating system or software and exploits this knowledge by
exploiting  the  vulnerability.  These  vulnerabilities  are
generated  along  with  the  flow  of  software  applications.
So the flow features of these vulnerabilities are similar to
the typical  flow  features  in  the  software  operation  pro-
cess, making the model difficult to identify.

Attacks  like  Heartbleed  are  loopholes  in  the  “ssh ”
protocol,  and  too  few  samples  are  available  for  testing.
Therefore,  the  anomaly  score  is  not  good.  On  the  data
set UNSW-NB15, the normal samples for training are too
few, so the anomaly score of normal flow will be slightly
higher than the CICIDS2017 data set. Brute-force crack-
ing  of  this  attack  is  often  done  through  repeated  trial

  

Table 5  Evaluation results (including OCSVM, Isolation Forest, PCA, LOF, AE, VAE, and FlowGANAnomaly)

Model Dataset
Precision Recall F1

Accuracy AUC
Weighted avg. Marc. avg. Weighted avg. Marc. avg. Weighted avg. Marc. avg.

OCSVM

CICIDS2017 0.9831 0.5031 0.5545 0.5773 0.7044 0.3686 0.5545 0.6341

NSL-KDD 0.9899 0.5433 0.9059 0.9050 0.9423 0.5550 0.9059 0.9680

UNSW-NB15 0.9831 0.5058 0.7730 0.6039 0.8631 0.4538 0.7730 0.8339

CICDDoS2019 0.8286 0.4808 0.7970 0.4740 0.8123 0.4762 0.7970 0.5328

Isolation forest

CICIDS2017 0.9838 0.5096 0.8266 0.6402 0.8961 0.4767 0.8266 0.6500

NSL-KDD 0.9899 0.5427 0.9041 0.9060 0.9413 0.5535 0.9041 0.9673

UNSW-NB15 0.9823 0.5051 0.8198 0.5760 0.8921 0.4677 0.8198 0.5021

CICDDoS2019 0.0007 0.0088 0.0242 0.3144 0.0013 0.0172 0.0242 0.2854

PCA

CICIDS2017 0.9806 0.5081 0.9866 0.5030 0.9836 0.5037 0.9866 0.6795

NSL-KDD 0.9901 0.5422 0.9015 0.9106 0.9398 0.5519 0.9015 0.9603

UNSW-NB15 0.9831 0.5067 0.8014 0.6077 0.8808 0.4643 0.8014 0.5904

CICDDoS2019 0.8270 0.4763 0.7980 0.4686 0.8121 0.4715 0.7980 0.5399

LOF

CICIDS2017 0.9814 0.5418 0.9882 0.5100 0.9846 0.5149 0.9882 0.5483

NSL-KDD 0.9893 0.5336 0.8816 0.8768 0.9285 0.5319 0.8816 0.9118

UNSW-NB15 0.9879 0.5242 0.8573 0.8113 0.9144 0.5092 0.8573 0.8775

CICDDoS2019 0.9704 0.5321 0.7106 0.7736 0.8086 0.4780 0.7106 0.7629

AE

CICIDS2017 0.9848 0.5132 0.8385 0.6823 0.9032 0.4859 0.8385 0.7357

NSL-KDD 0.9901 0.5184 0.7509 0.8603 0.8484 0.4639 0.7509 0.9628

UNSW-NB15 0.9753 0.4968 0.1969 0.4495 0.3181 0.1691 0.1969 0.5456

CICDDoS2019 0.8345 0.4983 0.5506 0.4948 0.6456 0.4206 0.5506 0.5630

VAE

CICIDS2017 0.9841 0.5420 0.9614 0.6447 0.9720 0.5610 0.9614 0.7475

NSL-KDD 0.9903 0.5511 0.9192 0.9236 0.9499 0.5714 0.9192 0.9735

UNSW-NB15 0.9832 0.5154 0.9125 0.6206 0.9453 0.5111 0.9125 0.6455

CICDDoS2019 0.8279 0.4549 0.9093 0.4997 0.8667 0.4763 0.9093 0.5520

FlowGANAnomaly

CICIDS2017 0.9841 0.5152 0.8840 0.6807 0.9295 0.5030 0.8840 0.7432

NSL-KDD 0.9888 0.5303 0.8747 0.8535 0.9245 0.5244 0.8747 0.9801

UNSW-NB15 0.9859 0.5102 0.7037 0.7354 0.8384 0.4471 0.7354 0.8530

CICDDoS2019 0.8590 0.6066 0.9012 0.5275 0.8727 0.5316 0.9012 0.7883
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and error  by  enumerating  exhaustive  methods.  There-
fore,  there  will  be  apparent  manifestations  in  features
such as flow duration that allow the model to easily dis-
tinguish the difference from the normal flow.

In the  last  part  of  the  experiment,  we  also  per-
formed model interpretability work on the UNSW-NB15
dataset.  We  use  the  ATON [41]  method  to  explain  the
outlier results  of  anomaly  detection.  The  ATON  algo-
rithm is  used for  post  hoc interpretation,  where the ob-
tained anomalous  data  are  put  into  the  ATON  algo-
rithm, thus explaining the contribution of the model for
each feature in the dataset.

There  are  many samples  of  DoS attacks  and DDoS
attacks in the UNSW-NB15 dataset. DoS attack traffic is

characterized  by a  one-to-one  approach,  sending  a  large
amount of data to the network server, flooding the web-
site server  with  a  large  amount  of  information  that  re-
quires a reply, consuming network bandwidth or system
resources, and causing the network or system to be over-
loaded.  DDoS, characterized by multiple  different hosts,
sends a large amount of data to the network server, caus-
ing a large number of requests to flood the server, mak-
ing  the  server  paralyzed  and  unable  to  work  properly.
“ct-srv-dst” refers to the number of connections that in-
cluded  the  same  server  and  destination  address  in  the
last 100  connections.  Therefore,  when  two  types  of  at-
tacks  occur,  a  large  number  of  requests  in  the  server
cause “ct-srv-dst” to soar, which can be classified as ab-
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Figure 8  Comparison of ROC curves for four datesets. a) NSL-KDD; b) CIC-DDS2019; c) UNSW-NB15; d) CIC-IDS2017.
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normal  traffic  by  the  model.  The  time  of  existence  of
“sttl ” as  source-to-destination  traffic  also  differs  from
normal  traffic  when  an  attack  occurs. Figure  10 shows
that features such as “sttl” and “ct-srv-dst” play a more
important role in the model.

 V. Conclusion and Future Work
In  this  paper,  we  propose  an  anomaly  detection

model called  FlowGANAnomaly  for  detecting  anoma-
lous traffic in NIDS. FlowGANAnomaly maps and learns
G’s  hidden  flow  feature  space  through  different  feature
datasets to better capture the normality of network traf-
fic data, instead of learning diverse types of labeling da-
ta, therefore  solving  the  problem  of  complex  data  la-
belling. We conducted several experiments comparing ex-
isting  machine  learning  algorithms  and  existing  deep
learning methods on four public dataset. The evaluation
results  show  that  FlowGANAnomaly  can  significantly
improve the performance of anomaly-based NIDS.

However, research on unsupervised flow detection al-
gorithms  is  rare  and  immature.  Although  unsupervised
algorithms have made some achievements  in  this  paper,
there  is  still  much  room  for  improvement.  In  addition,
intrusion detection  datasets  in  this  experiment  are  di-
verse and large in scale, there is still a gap between them

and the real scene. In the future, our work will continue
to build large datasets in real-world settings.
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