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Abstract — Visible-light indoor positioning is  a new generation of  positioning technology that can be integrated
into smart lighting and optical communications. The current received signal strength (RSS)-based visible-light posi-
tioning systems struggle to overcome the interferences of background and indoor-reflected noise. Meanwhile, when en-
suring the lighting, it is impossible to use the superposition of each light source to accurately distinguish light source
information; furthermore, it is difficult to achieve accurate positioning in complex indoor environments. This study
proposes an indoor positioning method based on a combination of power spectral density detection and a neural net-
work.  The  system integrates  the  mechanism for  visible-light  radiation  detection  with  RSS theory,  to  build  a  back
propagation neural  network model  fitting for  multiple  reflection channels.  Different frequency signals  are loaded to
different light sources at the beacon end, and the characteristic frequency and power vectors are obtained at the loca-
tion end using the Pisarenko harmonic decomposition method. Then, a complete fingerprint database is established to
train the neural network model and conduct location tests.  Finally, the location effectiveness of the proposed algo-
rithm is verified via actual positioning experiments. The simulation results show that, when four groups of sinusoidal
waves with different frequencies are superimposed with white noise,  the maximum frequency error is  0.104 Hz and
the maximum power error is 0.0362 W. For the measured positioning stage, a 0.8 m × 0.8 m × 0.8 m solid wood
stereoscopic  positioning  model  is  constructed,  and  the  average  error  is  4.28  cm.  This  study  provides  an  effective
method for separating multi-source signal energies, overcoming background noise, and improving indoor visible-light
positioning accuracies.
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composition, Back propagation neural network.
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 I. Introduction
With the gradual maturation of visible-light commu-

nication technology and the in-depth study of indoor-po-
sitioning-related applications, indoor positioning technol-
ogy  has  attracted  increasing  attention  from  researchers
at  home  and  abroad  [1],  [2].  The  technology  combines
lighting and communication, and offers rich spectrum re-
sources  without  electromagnetic  interference  [3],  [4].  It
has numerous advantages over traditional radio frequen-
cy  communications  [5],  [6]. In  recent  years,  it  has  be-
come a new research hotspot in the field of wireless tech-

nology [7], [8].
The received signal strength (RSS) localization algo-

rithm  is  based  upon  the  photodetectors  and  is  widely
used because  it  offers  a  simple  theoretical  implementa-
tion and strong portability [9], [10]. However, when used
to ensure lighting, it fails to accurately obtain the atten-
uation factor of each light-emitting diode (LED) light [11],
[12];  hence,  it  cannot  position  precisely  [13],  [14].  To
solve these problems, one study [15] adopted centralized
single-array light-source illumination, and the receiver ef-
fectively solved  the  problem  of  light-source  discrimina-
tion detection  by  using  a  four-array  symmetrical  pho- 
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todetectors (PD) layout. However, the centralized single-
array  illumination  has  poor  illumination  uniformity
(which leads to problems of communication blind spots),
and  the  positioning  error  is  as  large  as  12.65  cm.  To
solve the blind spot problem of single-array communica-
tions, reference [16] proposed a code division multiple ac-
cess (CDMA) RSS triangle positioning method based on
diversity  reception  technology.  The  method  adopted
three LEDs  and  arranged  them to  control  the  position-
ing accuracy to within 10 cm. However,  the method re-
quired the  support  of  coding  technology,  which  in-
creased  the  system  complexity.  Reference  [17]  proposed
an  indoor  three-dimensional  space  positioning  algorithm
based on a mixture of RSS and arrival angle information.
The least squares method was used to establish the opti-
mization objective  function and derive  the  least  squares
estimator. It could control the positioning error to with-
in  8.7  cm;  however,  it  placed strict  demands upon time
synchronization.  In  [18],  a  receiver-signal-strength-aided
perspective three-point  localization  algorithm  was  pro-
posed.  The  position  of  the  receiver  was  estimated  using
visual  and  intensity  information.  The  simulation  results
show that the method could realize a positioning accura-
cy  lower  than  10  cm in  more  than  70%  of  the  indoor
area, though the positioning error was large because the
directions  of  the  LED and  receiver  were  neglected.  The
power spectral density (PSD) detection algorithm had a
high frequency identification ability. Combined with the
nonlinear  mapping  ability  of  a  neural  network,  it  could
effectively  separate  the  attenuation  factors  of  multi-ar-
ray LED lights in the spatial transmission process and fit

the nonlinear  mapping  relationship  between  the  receiv-
ing power and position coordinate [19],  to  achieve high-
precision positioning.

Therefore,  on  the  premise  of  ensuring  lighting,  the
power  discrimination  and  precise  positioning  of  visible
light indoor positioning can be realized at the same time.
we propose an indoor-positioning method based on PSD
detection  and  a  neural  network.  It  can  distinguish  and
extract the light signals for different frequencies, by load-
ing  different  frequency  signals  to  different  light  sources
at the beacon end and selecting the appropriate PSD de-
tection  method  at  the  position  detection  end;  then,  the
separate  light  signals  are  applied  to  the  neural  network
to achieve real-time and accurate positioning.

 II. Location Algorithm Based on
Pisarenko Decomposition
and Neural Network
The interference  of  multiple  reflections  and  back-

ground light means that the received power is non-linear-
ly  mapped  to  the  position  coordinates.  It  is  difficult  to
overcome the influence of background noise and multiple
reflections in the traditional RSS positioning process [20].
Therefore, this study adopts a neural network combined
with the RSS positioning principle [21], [22], and it pro-
poses a positioning algorithm based on Pisarenko decom-
position and a neural network. The principle is shown in
Figure 1. Multiple LED light source signals are modulat-
ed  using  sine  waves  of  different  frequencies;  then,  these
are sent to the drive circuit, which drives multiple LED

 

d2

d1

π/2−α

α
β

LED driver circuit

The beacon end

Photodetector
Amplifying 

circuit

Power spectrum 

analysis

Position sensing end

Modulation

Estimated power of LED light 
source

Coordinates

LED1

PD

LED2 LED...

LEDi

PD

P1MP11

PKM

P2MP21

PK1

(x1, y1, z1)

(x2, y2, z2)

(xK, yK, zK)

θ
φ
d

f
1

f2 fif…

x1(n)=asin(2πf1n+θ)

x2(n)=asin(2πf2n+θ)

…

… … … …

…

…

…

xi(n) = asin(2πfin+θ)

π/2− β

Figure 1  Location algorithm based on Pisarenko decomposition and neural network.
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lights to  emit  multiple  light  signals  with  different  fre-
quencies.  The  energy  databases  of  each  light  source,  as
established by Pisarenko decomposition, are separated to
form the  training  and  test  data,  Finally,  these  are  in-
putted  to  a  back-propagation  (BP)  neural  network  for
training and testing [23], [24].
 1. Data separation and database establishment

based on Pisarenko decomposition
i

fi

Assuming  that  the -th  LED  at  the  transmitter  is
driven  by  a  sinusoidal  signal  of  frequency ,  the  signal
at the transmitter is
 

xi(n) = Ai sin(2πfin)(1 ≤ i ≤ M) (1)

Ai

fi
i

where  is the amplitude of the modulation signal, and
 is the frequency of the optical power signal generated

by the -th LED light source.
By the linear properties of sine signals, we have that

 

sin(2πfin+ φ) + sin [2πfi(n− 2) + φ)]

= 2 cos(2πfi) sin [2πfi(n− 1) + φ] (2)

Substituting  (1)  into  (2),  we  obtain  the  difference
equation:
 

x(n)− 2 cos(2πfi)x(n− 1) + x(n− 2) = 0 (3)

Z transformation is  performed on both sides  of  (3),
which yields
  [

1− 2 cos(2πfi)z−1 + z−2
]
X(z) = 0 (4)

Thus,
 

1− 2 cos(2πfi)z−1 + z−2 = 0 (5)

The two results of (5) are
 

z = cosω ± j sinω = e±j2πfi (6)

Therefore, the frequency of the sine wave is
 

fi =
1

2π
arctan

[
Im(zi)

Re(zi)

]
(7)

When M LED  lights  are  simultaneously  driven  by
different  frequency  signals,  the  root  can  be  determined
using
 

M∏
i=1

(z − zi)(z − z∗i ) =

2M∑
i=0

aiz
2M−i = 0 (8)

a0 = 1 ai =
a2M−I (I = 0, 1, . . . ,M)

The  coefficients  exhibit  a  symmetry  of 
.   The  difference  equation  of  (8)

is
 

x (n) +

2M∑
i=1

aix(n− i) = 0 (9)

The visible-light signal  received by the receiver can
be expressed as [25], [26]
 

y(n) = x(n) + e(n) = H(0)An(2πfnt) + σ2
noise (10)

where H (0) is the channel DC gain of the fitted multi-
ple reflection channel [27], [28], and can be expressed as
 

H (0)=HLOS (0) +H1
NLOS (0)

=
(m1 + 1)A

2πd2
cosm1 (θ)TS(φ)g(φ) cos(φ)

+
(m1+1)A

2πd21d
2
2

·dSfTS(φ)ρ cosα cosβcosm1 (θ) cos(φ)

(11)

HLOS(0) H1
NLOS(0)

m1

θ
φ

α
β

D
d1 d2

ρ
dSf TS(φ)

g(φ)

where  and  represent DC gain and pri-
mary reflection gain, respectively, and  represents the
Lambertian  luminescence  order  at  the  emitter,  is  the
transmission angle relative to the vertical axis of LED, 
is the incident angle relative to the receiving axis,  and
 are the incident angle and the outgoing angle of the re-

flected  light  signal  respectively.  is the  distance  be-
tween the sending and receiving ends,  and  are the
distances from the LED to reflection point and reflection
point  to  receiver  respectively.  is the  reflection  coeffi-
cient, and  is the area element of the reflector. 
is the optical filter gain, and  is the collector gain [29],
[30].

Substituting (12) into (9), we obtain
 

y(n) +

2M∑
i=1

aiy(n− i) = e(n) +

2M∑
i=1

aie(n− i) (12)

y(n) e(n) x(n)where  denote the observations with noise , 
is the original signal without noise. Equation (12) is writ-
ten in matrix form as
 

Y TA = ETA (13)
  

Y = [y(n), y(n− 1), . . . , y(n− 2M)]
T

A = (1, a1, . . . , a2M )T

E = [e(n), e(n− 1), . . . , e(n− 2M)]
T

(14)

Multiply both sides of (13) to the left by the vector
Y, Taking the mathematical expectation on both sides si-
multaneously, we obtain
 

RY A = σ2
eA (15)

where
 

RY = E
{
yyT

}
=


Ry(0) Ry(−1) . . . Ry(−2M)
Ry(1) Ry(0) . . . Ry(−2M + 1)

...
...

. . .
...

Ry(2M) Ry(2M − 1) . . . Ry(0)


(16)

RY  is the auto-correlation matrix of the observation
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y(n) σ2
e λI RY

A
λi

λmin = σ2
e

p (p > 2M)
RY

A

process ,  is  the  characteristic  values  of .
The coefficient vector  of the characteristic polynomial
corresponds to the eigenvalue of eigenvector  . The di-
mension of the noise subspace is 1, which is composed of
the feature vector corresponding to the minimum eigen-
value . When applying the Pisarenko harmonic
decomposition  method  to  a  dimension auto-
correlation matrix , to avoid multiple eigenvalues and
multiple solutions of the coefficient vector , it is neces-
sary to apply dimension-reduced processing:
 

E
{
yyT

}
=


Ry(0) Ry(−1) . . . Ry(−M)
Ry(1) Ry(0) . . . Ry(−M + 1)

...
...

. . .
...

Ry(M) Ry(M − 1) . . . Ry(0)


def
= RY

(17)

A

x(n) e(n)
y(n)

To solve the coefficient matrix  of the characteris-
tic  polynomial  in (14),  the frequency of  each sine signal
can be calculated using (7). Because of the statistical in-
dependence between signal  and white noise , the
auto-correlation matrix of the received signal  can be
expressed as (18) via (10).
 

Ry(k) = Rx(k) +Re(k) =

M∑
i=1

Pieie
H
i + σ2

ωI (18)

ei = [1, ej2πfi , ej2(2πfi), . . . , ej(M−1)2πfi ] i = 1,

2, . . . ,M M
Pi = |Ai|2
i

Here,  (
)  denote  linearly  independent  vectors.  And
 is the power of the light signal emitted by the

-th LED light, as detected at the receiving end.
a1, a2, . . . , aM

aia
H
i = 1

Assuming that the eigenvectors  of the
signal  subspace  are  normalized,  we  have  that .
Because
 

RY ai = λiai, i = 1, 2, . . . ,M (19)

aHiwe multiply both sides of the above formula by  from
the left, and get
 

aHi RY ai = λia
H
i ai = λi, i = 1, 2, . . . ,M (20)

RYWe substitute  (see (18)) into the above formula,
thus,
 

aHi RY ai = aHi

{
M∑
k=1

Pkeke
H
k + σ2

ωI

}
ai = λi (21)

Simplifying this gives us
 

M∑
k=1

Pk

∣∣eHkai∣∣2 = λi − σ2
ω, i = 1, 2, . . . ,M (22)

∣∣eHkai∣∣2
ai

where  is the square amplitude of the discrete-time
Fourier  transform  for  signal  subspace  eigenvector  at

fkfrequency . We have that
  ∣∣eHkai∣∣2 =

∣∣Ai(ejωk)
∣∣2 (23)

Hence, equation (22) can be written as
 

M∑
k=1

Pk

∣∣Ai(ejωk)
∣∣2 = λi − σ2

ω, i = 1, 2, . . . ,M (24)

M
M P

The  above  equation  expresses  linear  equations,
which have  unknown parameters  and can be writ-
ten in matrix form as follows:
  

∣∣A1(ejω1)
∣∣2 ∣∣A1(ejω2)

∣∣2 . . .
∣∣A1(ejωM )

∣∣2∣∣A2(ejω1)
∣∣2 ∣∣A2(ejω2)

∣∣2 . . .
∣∣A2(ejωM )

∣∣2
...

...
. . .

...∣∣AM (ejω1)
∣∣2 ∣∣AM (ejω2)

∣∣2 . . .
∣∣AM (ejωM )

∣∣2



×


P1

P2

...
PM

 =


λ1 − σ2

ω

λ2 − σ2
ω

...
λM − σ2

ω

 (25)

P = [P1, P2, . . . , PM ]

Pi i

The  power  matrix , can  be  ob-
tained by solving (25).  is  the  power  of  the -th  LED
light  detected  at  the  receiver,  which  is  the  input  power
for the input layer of the neural network. The final posi-
tioning coordinates can be obtained by repeatedly train-
ing and testing the neural network.
 2. Position estimation  based  on  BP  neural  net-

work

P

As shown in Figure 2, the neural network is a three-
layer BP one. The input of the input layer is the power
matrix , which is extracted from the Pisarenko decom-
position in (24); the outputs of the output layer are the
relative coordinates of the unknown positioning points.

Q
H = 0

K
L (L+K = Q)

M

XT

We randomly  select  points in  the  plane  of  posi-
tioning area  m as the reference point of the finger-
print data sample; the number of training datasets is ,
and the sample number of test datasets is .
The matrix constructed via the PSD estimation of the 
LED  light  sources  received  by  each  fingerprint  point  is
the input training set :
 

XT =


X1

X2

...
XK


T

=


P11, P12, . . . , P1M

P21, P22, . . . , P2M

...
PK1, PK2, . . . , PKM


T

K×M

(26)

Xd = (Pd1, Pd2, . . . , PdM ) (1 ≤ d ≤ K)

M
d PdM

M
n (xn, yn, zn)

Here,   repre-
sents  the  power  estimation  of  LED light  sources  re-
ceived at the  position reference point.  represents
the optical power value of the -th LED light source re-
ceived  by  the -th  fingerprint  at  position .
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For  each  training  sample,  we  calculate  the  output  of
each  neuron  from  forward  to  backward.  The  excitation
function is a unipolar S-type function, expressed as [31]
 

f(x) =
1

1 + e−βx
, β > 0 (27)

The output layer weight coefficient is
 

∆θk = −ηβOk(1−Ok)(dk −Ok) (28)

η k

Ik =
Q∑

j=0

wjkOj

Ok = f(Ik)

where  is  the  learning  rate.  The  net  input  of  the -th

node in the output layer is . The net out-
put is .

The weight coefficient of the hidden layer is
 

∆wij = ηδjOi = ηβOiOj(1−Oj)

L∑
k=1

δkwjk (29)

M
L

The  matrix  containing  the  optical  power  of  the 
LEDs corresponding to the  reference points in the test
set is inputted to the trained BP neural network model.
Meanwhile,  the  input matrix  of  the  neural  network test
dataset can be expressed as
 

X̄T =


X̄1

X̄2

...
X̄L


T

=


P11, P12, . . . , P1M

P21, P22, . . . , PM

...
PL1, PL2, . . . , PLM


T

L×M

(30)

X̄q = (Pq1, Pq2, . . . , PqM )

M q

 denotes  the  light  power
values of the  LED light sources as received by the -
th reference fingerprint point in the test  set.  The corre-
sponding output matrix is 

Y
T
=


Y1

Y2

...
YL

 =


x1 y1 z1
x2 y2 z1
...

...
...

xL yL zL


T

(31)

Yq = (xq, yq, zq)(1 ≤ q ≤ L)
q

 are the predicted coordi-
nates  of  the -th  reference  fingerprint  point  in  the  test
set.

 III. Numerical Simulation and
Experimental Verification

 1. Numerical simulation

L = W = 4 m H = 3 m
L1

L2 L3

L4

An  indoor  positioning  environment  was  built,  and
an  experiment  was  performed  in  the  three-dimensional
space  model  ( , ).  The  coordinates
of  the four LED light  sources  were  (0.6  m, 0.6  m, 3
m),  (0.6 m, 3.4 m, 3 m),  (3.4 m, 3.4 m, 3 m), and

 (3.4 m, 0.6 m, 3 m), respectively. Grid calibration was
performed upon the receiving plane using a 5  cm mesh.
The four LED light sources were loaded with sinusoidal
signals  of  different  frequencies  at  the  transmitting  end,
and the frequencies and corresponding optical  powers of
the four  LED  light  sources  were  separated  via  the  Pis-
arenko harmonic decomposition algorithm at each finger-
print point of the plane, using the spatial channel simu-
lation parameters shown in Table 1.

Figure  3 shows  the  signal  frequency  discrimination
and  power  extraction  effects  for  multiple  LED  light
sources at different detection positions. The results are as
follows: when the signal-to-noise ratio is 10 dB, the pre-
dicted  frequency  does  not  deviate  significantly  from the
power value, and the maximum frequency error is 0.104 Hz;
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Figure 2  Schematic diagram of neural-network-based visible-light localization.
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the power change is sensitive to the distance of the posi-
tioning point, and the maximum error of the power esti-
mation  is 0.0362 W;  the  extracted  power  value  of  each
LED (as the training input data) has good stability and
high recognition.

Figure 4 shows the three-dimensional simulation po-
sitioning error  maps when H = 0 m, 0.5 m, 1.0 m, and
1.5 cm, respectively. The hollow green circle indicates the
real  position  coordinates,  and  the  red  star  denotes  the
position coordinates measured by the BP neural network.
When H = 0 m, 0.5 m, 1.0 m, and 1.5 cm, the average
errors  are  5.75  cm,  3.56  cm,  2.12  cm,  and  1.19  cm, re-
spectively,  and the  overall  three-dimensional  positioning
average positioning error is 3.18 cm.

 

Table 1  Simulation parameters

Parameter Value
Model room 4 m × 4 m × 3 m

LED bead power 5 W
LED1 loading frequency
LED2 loading frequency
LED3 loading frequency
LED4 loading frequency

100 Hz
300 Hz
500 Hz
700 Hz

LED bead half-power angle
Receiving area of photodetector (A)

Focus lens gain (g)
Optical filter gain (TS)

54°
2 cm2

1.5
1.5

φIncident angle of photodetector receiver ( )
Photodetector conversion efficiency (R)

60°
0.4 A/W
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Figure 3  Estimated signal frequency-power distribution at different coordinates. (a) (4, 1, 0); (b) (2, 3, 0); (c) (1, 2, 0); (d) (2, 1, 0).
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Figure 4  Four-dimensional distribution of positioning errors in different planes for indoor visible light localization. (a) H = 0 m; (b) H = 0.5
m; (c) H = 1.0 m; and (d) H = 1.5 m.
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 2. Experimental verification
We set up a 3D test space with a side length of 0.8

m, as shown in Figure 5. Concerning the positioning sys-
tem design in the paper,  NLT5W is chosen as the LED
light  source,  with  rated  power  of  5  W  for  each  LED
lamp. Meanwhile,  PIN photodiode of  LSSPD-3.5  is  cho-
sen as  the receiving end detector  of  the system. We ar-
ranged  four  LED light  sources  on  top  of  the  space  and
established a two-dimensional coordinate system with the
corner of the bottom plane as the origin. In the bottom
plane of the space, the grid points were divided at 5 cm
intervals, and 289 equally spaced measurement positions
were selected. At the transmitter side, the signal genera-
tor  generated  sinusoidal  signals  of  different  frequencies
and loaded them to the corresponding LED light source
via the light drive circuit, such that the LED sent light
signals  periodically.  At  the  receiving  end,  the  PD  was
used as a signal receiver; it was placed horizontally at 289
equally spaced measurement positions in the positioning
area, to convert the received optical  signal into an elec-
trical one. Then, using the Pisarenko harmonic decompo-
sition  algorithm,  we  separated  and  obtained  the  light
power  vectors  corresponding  to  the  four  LED  light
sources at the measurement positions. Finally, using the
neural network  positioning  algorithm,  289  sets  of  train-
ing data and 20 sets of test data were selected for multi-
ple tests, to obtain the location coordinates of the PD.

Some of the extracted light power data are shown in
Table  2, which shows the  light  power  values  and corre-
sponding position coordinates of LED1, LED2, LED3, and
LED4,  respectively.  Using  the  proposed  neural  network

positioning algorithm, 289 sets of data were imported in-
to the neural network for processing and training.

After  multiple  positioning  tests  on  the  selected  289
sets of  training  data  and  20  sets  of  test  data,  the  posi-
tioning error distribution diagram shown in Figure 6 was
obtained. The results show that the probability of an er-
ror of less than 5 cm was 60%, and the probability of an
error below 2 cm was 10%; the average positioning error
was  4.28  cm,  which  shows  that  the  proposed  algorithm
has a high positioning accuracy and stable positioning ef-
fect.

 IV. Conclusions
The traditional  RSS-based  visible-light  indoor  posi-

tioning system cannot accurately obtain the attenuation
factor for each LED light in space transmission processes.
A visible-light indoor location model, based on a combi-
nation of  the  Pisarenko  harmonic  decomposition  algo-
rithm and a BP neural network, was proposed. The algo-
rithm improved the frequency estimation and power ex-
traction capabilities for multiple LED light sources load-
ed  with  sinusoidal  signals  of  different  frequencies  under

 

LED2

LED1 LED4

LED3

PD

Figure 5  Experimental setup.
 

  

Table 2  Actual training data

x y LED1 LED2 LED3 LED4 x y LED1 LED2 LED3 LED4

0 0.00 38.97 19.33 10.01 15.84 0.05 0.00 42.84 20.16 11.61 19.35

0 0.05 41.63 20.70 11.09 17.15 0.05 0.05 45.18 22.79 12.47 19.80

0 0.10 41.49 21.44 11.69 17.28 0.05 0.10 47.16 25.47 13.41 19.80

0 0.15 45.14 26.15 14.06 18.68 0.05 0.15 48.87 28.76 14.69 20.48

0 0.20 45.61 27.90 13.25 17.19 0.05 0.20 49.32 31.37 15.41 20.52

0 0.25 45.18 31.14 13.70 18.25 0.05 0.25 48.51 34.70 16.16 19.98

0 0.30 44.82 35.10 14.99 17.19 0.05 0.30 46.71 38.12 16.90 19.44

0 0.35 42.84 37.85 15.89 16.83 0.05 0.35 44.33 40.86 17.03 18.13

0 0.40 41.13 40.86 17.17 16.81 0.05 0.40 40.73 42.84 16.63 15.91

0 0.45 37.76 42.75 18.47 14.78 0.05 0.45 38.39 45.45 17.44 15.48

0 0.50 34.50 46.62 20.09 14.60 0.05 0.50 35.01 48.60 18.47 14.83

0 0.55 32.00 47.88 21.13 14.29 0.05 0.55 32.40 49.14 18.63 13.91

0 0.60 27.85 46.71 19.67 12.53 0.05 0.60 29.84 50.58 21.44 14.96

0 0.65 24.30 45.45 17.89 11.10 0.05 0.65 27.09 50.2 22.12 14.31

0 0.70 21.15 44.33 17.12 10.66 0.05 0.70 24.03 49.05 20.81 12.78

0 0.75 19.62 43.34 16.79 9.94 0.05 0.75 21.47 47.61 20.39 11.79

0 0.80 18.77 40.77 15.10 8.94 0.05 0.80 19.85 43.97 19.07 11.68
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conditions of colored noise and low signal-to-noise ratios
(SNRs).  The individual  power values  of  each LED light
source  were  trained  and  tested  in  the  neural  network;
they significantly  improved  the  indoor  positioning  accu-
racy of the visible-light system, to achieve accurate posi-
tioning. In  the  simulation  stage,  the  maximum frequen-
cy detection error was 0.104 Hz and the maximum pow-
er  detection  error  was 0.0362 W  when  SNR  =  10  dB.
The  algorithm  was  applied  to  a  wooden  stereo  model
with a  side  length of  0.8  m,  and 289 groups  of  training
data and 20 groups of test data were randomly selected
to perform the actual positioning test. The average error
was  4.28  cm,  making  this  a  feasible  scheme  for  visible-
light indoor positioning technology.
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