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Abstract — With the diversification of  space-based information network task requirements and the dramatic in-
crease in demand, the efficient scheduling of various tasks in space-based information network becomes a new chal-
lenge. To address the problems of a limited number of resources and resource heterogeneity in the space-based infor-
mation network, we propose a bilateral pre-processing model for tasks and resources in the scheduling pre-processing
stage. We use an improved fuzzy clustering method to cluster tasks and resources and design coding rules and match-
ing methods to match similar categories to improve the clustering effect. We propose a space-based information net-
work task scheduling strategy based on an ant colony simulated annealing algorithm for the problems of high latency
of  space-based information  network  communication  and  high  resource  dynamics.  The  strategy  can  efficiently  com-
plete the task and resource matching and improve the task scheduling performance. The experimental results show
that our proposed task scheduling strategy has less task execution time and higher resource utilization than other al-
gorithms under the same experimental conditions. It has significantly improved scheduling performance.
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I. Introduction
With  the  rapid  development  of  space  science  and

technology, space-based information networks are gradu-
ally becoming an essential infrastructure for the develop-
ment of  communication services  [1]–[3].  The coverage of
a  space-based  information  network  is  relatively  wide,
which can  realize  the  information  collection  and  trans-
mission between  various  geographic  areas  that  are  diffi-
cult to cover by terrestrial signals [4], [5].

With  the  emergence  of  low-cost constellation  sys-
tems  with  large  numbers  of  satellites  such  as  StarLink,
the  space-based  information  network  is  faced  with  the
problem that a task can be scheduled to multiple  satel-
lites.  It  is  difficult  for  the  space-based information  net-
work to achieve reasonable scheduling of tasks in multi-
ple satellites.  With  the  increase  in  the  number  of  satel-
lites, the types of tasks that can be served by the space-

based  information  network  have  become  diverse.  Space-
based information  networks  suffer  from  a  limited  num-
ber  of  on-board  resources,  heterogeneous  on-board re-
sources,  high  communication  latency,  and  difficulty  in
upgrading  on-board  equipment  [6]–[9].  Designing  a  task
scheduling  strategy  applicable  to  space-based informa-
tion networks is essential to address the above issues.

The  existing  research  on  resource  scheduling  of  the
space-based  information  network  takes  task  demand  as
the input condition to  schedule  resources.  To match re-
sources  that  meet  the  requirements  of  task  computing
and storage, most of them are designed based on heuris-
tic search algorithms. Li et al. [10] used the tabu search
algorithm to solve the multi-satellite multi-task problem.
The tabu search algorithm has weak global development
ability and is easy to find the local optimal solution. Lin
et al. [11] use a genetic algorithm to solve the multi-task 
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single satellite resource scheduling problem. He et al. [12]
introduced  ant  colony  optimization  into  the  problem  of
matching  satellite  communication  resources  and  tasks,
which  improved  the  comprehensive  benefits  of  task
scheduling. Most of the above studies analyze the whole
satellite as a resource node and mission scheduling unit,
lacking  tasks  and  resource  pre-processing.  In  contrast,
the  satellite  as  a  scheduling  unit  can  hardly  meet  the
gradually  growing  mission  demand.  With  the  increasing
number  of  tasks  and  satellite  resources,  the  scheduling
algorithm efficiency will decline.

To  overcome  the  above  shortcomings,  a  scheduling
framework for large scale tasks and satellites is required.
The  scheduling  framework  should  first  simplify  the
scheduling  size  of  resources  and  tasks.  Secondly,  it  can
make  scheduling  decisions  quickly.  Heuristic  algorithms
such as the ant colony optimization algorithm have good
performance in path selection. However, there are differ-
ent problems in the application of resource scheduling. In
this  paper,  we  propose  a  resource  and  task  pre-process-
ing model to reduce the scheduling scale of resources and
tasks. To improve the problems in the resource schedul-
ing process of the ant colony optimization algorithm. We
also improved the ant colony algorithm for the resource
characteristics  of  the  space-based  information  network.
To improve  the  problem  that  the  ant  colony  optimiza-
tion algorithm is easy to fall into the local optimum, we
combine  the  simulated  annealing  algorithm  to  quickly
jump out  of  the  local  optimum.  It  combines  the  ad-
vanced idea of a heuristic algorithm and improves the ef-
ficiency of resource utilization. The main contributions of
this paper are as follows:

1) To reduce the task scheduling scale, we propose a
pre-processing clustering algorithm to reduce the comple-
tion time  of  task  scheduling  according  to  task  and  re-
source attribute values. We use an improved fuzzy clus-
tering  algorithm  to  pre-process  tasks  and  resources  for
clustering. We  design  coding  rules  and  matching  meth-
ods to  reduce  the  search  range  for  task  assignment  re-
sources.

2)  To improve the efficiency of  resource utilization,
we design the task scheduling strategy based on the ant
colony  simulated  annealing  algorithm  according  to  the
characteristics of space-based information network (SIN).
We improve the scheduling performance by constructing
a scheduling  model  and  analyzing  the  scheduling  objec-
tives and designing factors.

3) We completed the simulation and results analysis.
The  results  show  that  our  proposed  task  scheduling
strategy  has  better  results  in  terms  of  task  completion
time and load balancing.

The remainder of this paper is organized as follows.
Section II  outlines  the  related  works  in  this  field.  Sec-
tion III introduces the system model and scheduling ob-
ject.  Section  IV  discusses  the  details  of  task  scheduling
pre-processing. Section V provides details about the pro-
posed task scheduling algorithm. The performance of the

system  is  simulated  in  Section  VI.  Finally,  Section  VII
summarizes this paper. 

II. Related Works
The research methodology of SIN task scheduling is

divided into two aspects. The first aspect is the study of
the  architecture  of  SIN  and  the  application  of  different
techniques to improve the way SIN is managed. The sec-
ond aspect is the design of scheduling algorithms for dif-
ferent  situations,  and  researchers  have  applied  different
algorithms  to  design  scheduling  algorithms  to  improve
the efficiency of task scheduling.

First,  we  discuss  the  researches  on  the  architecture
of SIN. In recent years, researchers have focused on inte-
grated satellite networks formed by multi-star link inter-
connections, mainly  applying  SDN  technology  to  simu-
late  dynamic programmable  reconfiguration of  inter-star
routing, network topology, and device resources as a way
to  improve  integrated  performance  services  [13]–[18].
Wang et  al.  proposed  a  resource  management  strategy
for SIN  to  design  scheduling  and  collaborative  manage-
ment based on dynamic space resource virtualization for
multiple  dimensions  of  resources  in  SIN  [19].  Qu et  al.
proposed an architecture and network model for a time-
space uninterrupted SIN and a SIN network model based
on  a  hierarchical  autonomous  system  [20].  Zhang et  al.
used  cascaded  fuzzy  neural  networks  to  design  a  new
path  selection  algorithm  by  analyzing  satellite  payload
resources, which can perform more efficient agile routing
settings  [21].  The  resource  mobility  utilization  strategy
proposed by Sheng et al. effectively utilizes the practical
resources that significantly improves the network perfor-
mance  [22].  Cheng et  al.  discussed  the  application  of
blockchain in SIN security for problems such as the vul-
nerability of nodes of space information networks to vari-
ous  cyber  and  physical  attacks  [23].  Zhang et  al. de-
signed a three-layer Walker constellation, a topology con-
struction  algorithm  based  on  available  time  inter-satel-
lite  links  to  solve  problems  caused  by  satellite  network
dynamics [24]. Overall  SIN architecture research has fo-
cused on virtualization, cloud computing, SDN, and lay-
ered  architecture  design.  While  these  technologies  are
novel,  research  approaches  rarely  propose  solutions  for
large-scale task and resource situations.

Secondly,  the  researchers  mainly  studied the design
of the scheduling algorithm. With the gradual increase of
user services the task requirements of users have shown a
diversified trend and a certain increase in the number of
missions.  Researchers  have  focused  on  meeting  the
scheduling  between  large-scale  tasks  and  resources  and
satellite architecture design [25]–[27]. More and more re-
searchers  are  working  on  multi-satellite  collaborative
mission scheduling,  and  intelligent  optimization  algo-
rithms  are  more  effective  in  large-scale  satellite  mission
scheduling. Habet et al. optimized the results by using a
consistent percolation sampling method mainly in select-
ing the search space during resource allocation [28]. Sun
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et  al. proposed  an  improved  genetic  algorithm  to  im-
prove agile satellite scheduling [29]. Yuan et al. designed
an enhanced genetic algorithm that sets high-quality ini-
tial solutions, resulting in a more efficient solution to the
satellite  mission  scheduling  scheme  planning  problem
[30]. Li et al. used fuzzy neural networks and ant colony
algorithms to solve the task scheduling problem [31].  Li
et al. applied an improved genetic algorithm to the prob-
lem of scheduling satellite resources and task problems [32].
Huang et  al. designed a  scheduling strategy with an in-
telligent optimization algorithm for the tasks scheduling
problem of multiple ground stations on multiple stars [33].
Sun et  al.  proposed  a  task  scheduling  mechanism  for
multiple users and tasks by studying space tasks and re-
sources  [34].  He et  al.  proposed  a  network  swarm  task
scheduling algorithm based on double-threshold load bal-
ancing  control  to  improve  network process  and memory
management [35].  Meng et al. introduced the A3C algo-
rithm in deep reinforcement learning to model and simu-
late the resource allocation process [36]. Wan et al. devel-
oped a multi-objective, multi-constrained network topol-
ogy  model  for  high  network  survivability  and  low  link
consumption, resulting in low link consumption and bet-
ter convergence speed [37]. Chen et al. proposed a genet-
ic algorithm based on population perturbation and elimi-
nation  strategies  focusing  on  the  multi-satellite schedul-
ing  problem [38].  Scheduling  algorithms  mainly  apply  a
heuristic  search  process,  but  fewer  algorithms  combine
location factors and optimize for both resource usage and
time consumption.

In  our  work,  we  have  first  considered  the  size  of
tasks and resources simplification problem. Secondly, the
task  scheduling  algorithm  is  designed  for  the  objectives
such as resource usage and time consumption. Finally, to
avoid  the  problem  of  local  optimality  of  the  algorithm,
we combined different heuristic improvement ideas to op-
timize the scheduling algorithm. 

III. System Model
In this  section,  we  present  the  details  of  the  re-

sources and tasks considered in the system model, as well
as  the  optimization  goal  of  the  system model.  First,  we
introduce  the  resource  virtualization  system description.
Secondly, we  define  the  system  description  for  task  re-
quests.  Finally,  the  system  utility  goal  is  established  in
terms of both consumption time and resource usage. 

1. Scheduling scenario

R = {R1,R2, . . . ,Rn}

Our  scenario  is  a  scheduling  model  based  on  the
cloud  computing  framework.  The  scheduling  model  is
shown in Figure 1. The hardware resource layer is the re-
source  entity  of  task  scheduling,  including  high-orbit
satellites,  medium  and  low-orbit  satellites,  and  ground
cloud  centers.  The  virtual  resource  layer  is  obtained
based on  the  hardware  resource  layer.  We  cluster  re-
sources and schedule tasks according to virtual resources.
The virtual resource set  and user

T = {T1,T2, . . . ,Tm}
Rj = {rc, rm, rb}

G = (R, E, [ts, te]) R
E

[ts, te]
Eij Ri Rj

Cij

Ri Rj

Eij C
E

h

F = {[b1, f1], [b2, f2], . . . , [bh, fh]}
[bi, fi]

request task set  in the system. The
resource  contains three  different  re-
source capabilities  computing,  storage,  and  communica-
tion  capabilities.  Because  of  the  dynamic  characteristics
of  satellite  networks,  we  assume  that  the  topology  of
satellite  networks  is  fixed in  a  small  time slot,  which  is
widely used for satellite network modeling [39]. We rep-
resent  the  space-based  information  network  in  the  form
of an aggregation graph .  is the re-
source node,  denotes that the resources are connected,
and the connection time of each edge of . The edge

 denotes  the  connection of  the  task from  to .
When  a  task  is  published,  the  connection  time  be-
tween  resource  nodes  and  can be  calculated  ac-
cording  to .  Finally,  we  can  calculate  all  accord-
ing to all edges  in the network, and divide them into

 non-overlapping time slots by time. The topology state
of  the  space-based  information  network  can  be  divided
into time slot sequences .
In  each  slot ,  we  will  schedule  tasks  to  resources
according  to  the  scheduling  algorithm.  The  next  time
slot starts to reschedule.
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Figure 1  SIN cloud computing scheduling model.
  

2. Task model

T = {T1,T2, . . . ,Tm}
Ti = {tc, tm, tb}

tc

Task  requirements  mainly  include  remote  sensing,
communication, and navigation tasks. At the same time,
with the  development  of  satellite  network,  taking  Star-
Link commercial  projects  as  an  example,  satellite  net-
works  began  to  access  the  Internet.  The  demands  for
satellite network  tasks  are  more  diverse.  The  main  re-
source required by the remote sensing task is the storage
resource  and the  main  communication  resource  required
by  the  communication  task.  Therefore,  a  single  virtual
resource  form  can  better  complete  resource  scheduling.
When each  time  slot  starts  scheduling,  the  system con-
tains the task set .  We define each
task  as  according to  the  different  re-
quirements and resource forms of the task. Where  de-
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tm
tb

notes the computing capability required for the task, 
denotes the storage capacity required by the task,  de-
notes the communication capability required by the task. 

3. Scheduling objective

cTime
Rc

As the  number  of  satellites  and tasks  in  the  space-
based  information  network  increases,  task  scheduling
time gradually  increases  while  resource  utilization  effi-
ciency  decreases.  Here,  the  task  completion  time 
and the resource usage  of the task are considered as
optimization objectives. The utility of the system can be
defined as follows:

 

S = α
∑
Ti∈T

cTimei + β
∑

Ti∈T ,Rj∈R

Rc
ij (1)

cTimei Ti

Rc
ij

Rj Ti α β

where  denotes the time when the task  sched-
uling is completed.  denotes the resource usage of the
resource  used to complete the task .  and  are
the weights  of  task  scheduling  completion  time  and  re-
source usage, respectively.

The  optimization  objective  of  this  paper  minimizes
the system utility, that is,

 

minimize S

s.t. tjc ≤ rjc , ∀Ti → Rj

tjm ≤ rjm, ∀Ti → Rj

tjb ≤ rjb , ∀Ti → Rj

(2)

The above problem is a mixed nonlinear integer pro-
gramming. It is usually an NP-hard problem. In this pa-
per,  we  will  propose  a  heuristic  algorithm  to  solve  the
above problem. 

IV. Space-Based Information Network
Task Scheduling Pre-processing

The resource task bilateral clustering (RTBC) algo-
rithm is proposed in the scheduling pre-processing stage,
using  an  improved  fuzzy  clustering  algorithm to  cluster
tasks and resources  separately  to  obtain  a  certain  num-
ber of task sets and resource sets. After the clustering is
completed, the tasks and resources are matched to sets of
the  same  type  or  similar  types  according  to  the  similar
class matching method. 

1. Clustering model
1) Resource capacity vector definition

Rj = {rc, rm, rb}
rc

rm
rb

A resource has different kinds of capabilities. There-
fore,  the resource can be expressed as .

 denotes the computing capacity of the resource, calcu-
lated by the number of instructions executed per second.

 denotes the storage capacity of the resource, calculat-
ed by the amount of storage of the resource.  denotes
the  communication  capacity  of  the  resource,  calculated
by the bandwidth size of the resource.

V = {v0, v1, v2} v0
v1 v2

The attribute demand vector is . ,
 and  correspond to the demand vectors for compu-

vs ∈
{−1, 0, 1} s = 1, 2, 3 |vs| = 1

vs vs>0
vs<0

vs = 0
s

tation,  storage,  and  communication,  respectively. 
, , and  denotes interest in the

first  characteristic  attribute  indicator.  The  positive  and
negative of  denotes the direction. If , the small-
er the attribute indicator, the better. In contrust, if ,
the larger the indicator is, the better.  denotes no
interest  in  the  feature attribute  indicator.  The  eigen-
vector can be obtained as

 

N(Rkc
) = (xk0, xk1, xk2)×

|v0||v1|
|v2|

 (3)

xks s
k Rk xk0

k
xk1

k xk2

k
|vj |

|vs|
|N | = m = {vs|vs ̸= 0}

where  denotes the -th feature attribute indicator of
the -th resource . Where  denotes the character-
istic attribute metric of the -th resource computing ca-
pability.  denotes  the  characteristic  attribute  metric
of  the -th  resource  storage  capacity.  denotes  the
characteristic attribute metric of the -th resource trans-
fer capability.  denotes the absolute value of its corre-
sponding demand vector. The resource feature attributes
that are of interest can be left and those that are not can
be  eliminated  by  judging  the .  Then  the  number  of
resource features is denoted as .

2) Building data matrix
Rk R = {R1,R2, . . . ,Rn}

m
n×m (xis)n×m

Each resource  in the  set
of space-based information network resources has its own
different resource properties,  and each resource is  repre-
sented by  attribute parameters for its resource proper-
ties, and the  raw data matrix  of space-
based information network resources can be obtained.

3) Data normalization

[0, 1]

The attribute capability scales and orders of magni-
tude are different for each resource in the space-based in-
formation  network  resources.  The  attribute  capability
values  of  each  resource  are  standardized  to  within  the
range  of  before  the  data  are  processed.  According
to the description of sensitivity in resource allocation by
Wang et al. [40], the data normalization can be obtained
by

 

x′′
ks =

x′
ks − min

1≤k≤n
{x′

ks}

max
1≤k≤n

{x′
ks} − min

1≤k≤n
{x′

ks}
, (s = 1, 2, . . . ,m) (4)

4) Building fuzzy similarity matrix

P (Ri,Rj) Ri

Rj

Different columns in the original data matrix are dif-
ferent resource attributes,  and to classify resources with
similar properties into one category, the exponential sim-
ilarity  coefficient  method  can  be  used  to  determine  the
degree of similarity between two resources, i.e., the simi-
larity  between two different resources  and

 is defined by
 

P (Ri,Rj) = pij =
1

m

m∑
k=1

e
− 3

4 ·
(x′′

ik−x′′
jk)2

s′′
k
2 ∈ [0, 1] (5)

s′′k
2
= 1

n

∑n
k=1(x

′′
kj−x′′

j )
2 x′′

j =
1
n

∑n
1 x

′′
kj 1≤i, j≤nwhere , , .
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5) Cluster division

P ∗ P ∗

Ri Rj

α
Ri Rj α

max = pij pjk (1≤k≤n, k ̸= i, j)

max
max

p∗ij

We  use  the  optimized  transfer  closure  method  for
clustering the  resources,  calculate  the  equivalence  rela-
tion array , and complete the clustering by . The
key to clustering is to make resource  and resource 
belong to  the same class  at  the  level  of  division thresh-
old ,  and to specify the degree of  equivalence between
resource  and resource  is not less than . The spe-
cific process of taking the optimal passing closure method
is to set  to compare each 
with  in terms of numerical size, and assign the max-
imum value to  after each round of comparison. Af-
ter optimizing the transfer closure method to solve each

.
α6) Setting division threshold 

P ∗
α = p

∗(α)
ij P ∗

Ri Rj p
∗(α)
ij = 1

As  shown  in  the  following  equations (6)  and  (7),
 is  the  intercept  matrix  of , and  the  re-

sources  and  satisfying  are grouped to-
gether to form an equivalence class, i.e., both are in the
same logical subgroup.

 

p
∗(α)
ij =

{
1, p∗ij ≥ α
0, p∗ij < α

(6)

 

[Ri]α = {Rj |p∗(α)ij = 1} (7)

α(0 ≤ α ≤ 1)

α

α

{[1, αx), [αx, αy), . . . ,

[αz, o]}

By setting different thresholds ,  it  will
be  shown  as  a  dynamic  clustering  graph  depending  on
the clustering  results.  Refer  to  the  analysis  of  the  im-
pact  of  different  clustering  radii  on  clustering  results  in
the work [41]. We can get different  values that can ef-
fectively partition the clustering results. The smaller the
value  of  represents  the  lower  the  similarity  between
categories, and vice versa, the higher the similarity, thus
forming  different  division  intervals 

.
Rk R = {R1,R2, . . . ,Rn}
[0, 1]

The component  of  needs
to be a value between , specified by

 

Rk =
Rk∑n

i=1
Ri

(8)

1 ≤ k ≤ n Rk

E = (e1, e2, . . . , en)

ei
i 0 ≤ ei ≤ 1

ei
α

where ,  is  the  attribute  weight  of  the
space-based information  network  resources.  The  mini-
mum error  tolerance  vector  is  given
because there are differences in the attribute capabilities
between resources  due  to  the  heterogeneity  between  re-
sources. Where  is the minimum error tolerance of the
resource of class  and . The size of this value
affects  its  error  and  can  indicate  the  importance  of  the
factor, the larger the  the more important, so the for-
mula  for  calculating  the  division  threshold  of the  re-
source is obtained by

 

α =

n∑
k=1

Rk × ek (9)

7) Clustering performance modelling
Rk

V = {v0, v1, v2}
W = {w0, w1, w2}

Rk

For  an  arbitrary  resource , the  resource  charac-
teristic attribute demand vector  and the
resource  demand  weight  are  used  to
represent  the  preference  of  for  different  resource
characteristic attributes.

η
i

RLi ni

i

Let  be the number of classifications after the clus-
tering  is  completed,  the -th resource  class  in  the  re-
source  classification  is  noted  as ,  there  are  re-
sources in each resource class, and the comprehensive at-
tribute capability of the -th resource class is defined by

 

CP (RLi) =
1

ni

∑
Rk∈RLi

m∑
s=1

vs · ws · x′′
ks (10)

vs
s

ws

s

where  denotes  the  direction of  the  demand vector  of
the  attribute  feature  of  the -dimensional  resource,  and

 denotes the demand weight of the attribute feature of
the -dimensional resource. 

2. Similar category matching
After clustering  the  task  set  and  resource  set  sepa-

rately using the above improved fuzzy clustering method,
the  process  of  similar  category  matching  is  performed
next. For example, ten original resources are clustered in-
to five resource classes. One of the possible results of re-
source clustering is shown in Table 1 to represent each of
the five different resource types.
  
Table 1  Resource clustering results

ra0 ra1 ra2 ra3 ra4

R3,R6 R1,R4,R7 R2,R10 R9 R5,R8

 

At  the  end  of  clustering,  the  features  of  the  class
center within  the  same  class  can  approximately  repre-
sent the features of other objects in the class, so the fea-
tures  of  the  class  center  are  used  to  represent  the  data
object features of the class.

We calculate  the size  of  the  attribute  values  of  the
cluster  center’s  demand  for  computation,  storage,  and
bandwidth, i.e.,  we  judge  the  demandability  of  the  cur-
rent  cluster  center  for  these  three  dimensions.  Suppose
the value of the dimension attribute of the cluster center
exceeds 60% of its value range. In that case, the demand
for the current dimension is considered vital, and this at-
tribute is set as a strong attribute, and the essential at-
tribute is coded as “1” and vice versa, it is coded as “0”.
Tasks  that  are  computation-intensive  and  I/O-intensive
image or video processing are stronger in terms of CPU
and bandwidth  requirements  but  do  not  consume much
memory when processing this type of task, and this type
of task can be coded as “110”, as shown in Table 2.

t
n

The Hemming distance is used as the difference de-
gree  measure  between  the  task  class  and  the  resource
class. For example, if the class code where  is located is
“010” and the class code where  is located is “011”, the
difference  measure  between “010” and “011” has a  dif-
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ferent measure of 1.
The specific similar category matching method is as

follows: the nearest Hemming distance priority matching
is used  as  the  rule  for  similar  matching  between  cate-
gories,  taking  the  task  class  as  the  reference,  the  first
matching is the resource class with a Hemming distance
of  0  from the  task  class,  then  the  resource  class  with  a
Hemming  distance  of  1  from  the  task  class  and  so  on.
And finally,  all  task classes  will  find a suitable resource
class.  For  example,  assuming  that  tasks  and  resources
are classified into five classes using a modified fuzzy clus-
tering algorithm, the difference degree matrices  between
these 5 task class codes and five resource class codes and
between task and resource classes are shown in Table 3.
  
Table 3  Difference matrix

Type ra0 ( )“010” ra1 ( )“110” ra2 ( )“011” ra3 ( )“000” ra4 ( )“001”

ta0 ( )“110” 1 0 2 2 3

ta1 ( )“011” 1 2 0 2 2

ta2 ( )“101” 3 2 2 2 1

ta3 ( )“111” 2 1 1 3 2

ta4 ( )“010” 0 1 1 1 2

 

ta0

ra1 ta1
ra2 ta4

ra0

ta2
ra4

ta3

ra4

According  to  the  above  similar  category  matching
method, firstly, the task class with the different degree of
0  and  the  resource  class  are  matched  first,  i.e., 
matches ,  matches ,  matches , secondly,
the task class with the different degree of 1 and the re-
source class are selected, then  matches , and final-
ly,  the  task class  with the different  degree  of  2  and
the  resource class are selected and matched, and the
results are shown in Table 4.
  
Table 4  Similar matching results between sets

1 2 3 4 5

[ta0 , ra1 ] [ta1 , ra2 ] [ta4 , ra0 ] [ta2 , ra4 ] [ta3 , ra4 ]

 

The bilateral pre-processing model based on the im-
proved fuzzy clustering algorithm is mainly based on cat-
egorizing  the  own  demand  for  tasks  and  the  attribute
characteristics of resources, forming a certain number of
task  categories  and  resource  categories,  and  prioritizing
the matching of  similar  types  of  task  categories  and re-
source  categories.  The  RTBC  pseudo  code  is  shown  in
Algorithm 1.

Algorithm 1  The implementation of the RTBC algorithm
T R num

a b
Input: :  Tasks’ set; :  Resources’ set; :  Iteration

number; :  Number  of  task  clusters; : Number  of  re-

source cluster.
Output:

c　 : matching pairs of task sets and resource sets.
T R 1: Data normalization , ;

< num 2: while Iteration number   do
T R 3:　Clustering operation for , ;

 4: end while
a Tlist b Rlist 5: Get  set of task clusters ,  set of resources ;

dis 6: Calculating the difference degree value ;
min← 0 7: ;

Rlist ̸= 8: while  null do
disij = min 9:　if  then

Ti Rj10:　　Matching task set  to resource set ;
Tlist Ti11:　　  delete task set ;
Rlist Rj12:　　  delete resource set ;

13:　end if
min← min+ 114:　 ;

15: end while

T
R m

O(m)

Rlist n
O(n)

O(m+ n)

According  to  the  above  algorithm  description,  we
can obtain the time complexity of the algorithm. The al-
gorithm  time  complexity  is  determined  through  Big  O
Notation.  The  RTBC  algorithm  need  two  iterations  to
obtain the final result. The first iteration is to cluster 
and ,  with  an  iteration  number  of  and time  com-
plexity is . The similarity matching of resource and
task  clustering  results  is  judged  circularly  according  to
the  quantity  of the resource list.  The time com-
plexity of  this  step is . Hence,  the total  time com-
plexity of the RTBC clustering algorithm is . 

V. Task Scheduling Algorithm
After  the  tasks  and  resources  are  pre-processed  by

clustering,  a  suitable  scheduling  algorithm  is  needed  to
schedule the tasks to the appropriate resources for execu-
tion.  We  design  an  improved  ant  colony  optimization
simulated annealing  (IACOSA)  task  scheduling  algo-
rithm based on the characteristics of the space-based in-
formation network  with  the  optimization  goal  of  reduc-
ing task  scheduling  completion  time  and  improving  re-
source utilization. 

1. Scheduling constraints
1) Scheduling constraints

Ti Rj

The resources  of  SIN are  heterogeneous.  For  differ-
ent  resources,  the  capabilities  of  each  attribute  of  their
resources are different, so the response time of the same
task  varies  on  different  resources.  The  total  response
time of a single task  on the resource  is expressed
by

 

cTimeij = wTimeij + kTimeij (11)

wTimeij

tTimeij

where  denotes  the time that the task needs to
wait before executing on the resource and is expressed in
equation (12).  is a process that requires a trans-
fer before a task can be assigned to a resource for execu-

 

Table 2  Coding example

Type Computing Storage Communication code

R1 2000 100 200 010‘ ’

R2 4500 200 300 110‘ ’
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a
j ti_b

i
rj_b

j kTimeij

tion, and is calculated by (13).  denotes the number of
tasks  that  have  been  assigned  on  resource .  de-
notes that bandwidth is required before the task  can be
executed.  denotes  the size  of  the bandwidth in the
resource  attribute.  refers  to  the  time  that  a
task is expected to execute after it is deployed on the re-
source set and is calculated by (14).

 

wTimeij =



tTimeij ,

unassigned tasks on resource nodes∑a

x=1
kTimexj + tTimeij ,

otherwise 1 ≤ x ≤ a ≤ m

(12)

 

tTimeij =
ti_b

rj_b
(13)

 

kTimeij =
Te

Rp
(14)

kTimeij
Te i

Rp j

The task execution time  is calculated as the
ratio of the resource profile  required for task  execu-
tion and the capacity  that resource  can provide.

cTimeij
K

After  clustering,  tasks  of  the  same  type,  depending
on  their  demand  areas,  will  be  concurrently  executed
mapped to matched sets of similar resources. If we want
to minimize the execution completion time of all tasks in
SIN, we have to ensure that the overall completion time
of  all  tasks  refers  to  The  maximum  value  of  the  task
completion time on a single resource. That is, the maxi-
mum  value  in ,  the  task  execution  completion
time of  a  certain allocation scheme  can be expressed
by

 

cTime(K) = max(cTime), i ∈ [1,m], j ∈ [1, n] (15)

cTimemax

cTimemin

As the demand of each task is different, assigning all
tasks to the resource with the weakest attribute capabili-
ty to execute, the task completion time is the largest, de-
noted by . On the contrary, assigning all tasks
to  the  resource  with  the  strongest  attribute  capability,
the  task  completion  time  is  the  smallest,  denoted  by

.
2) Location constraints

i j
Gij

The location of satellite nodes in SIN is dynamically
changing, and each resource class is able to serve only a
certain range in a certain time period due to the differ-
ent locations of resources in the task scheduling process.
The distance situation between the demand area of task
 and the service range of resource  can be expressed in

terms of , which is calculated by
 

Gij =
√
(loni − lonj)2 + (lati − latj)2 + (hi − hj)2 (16)

lon lat h
Gij

where , , and  denote longitude, latitude, and al-
titude respectively.  A smaller  value of  denotes  that
the  gap  between  the  two  is  smaller,  and  the  closer  the

i jdemand area of task  and the service range of resource 
are,  the  smaller  the  scheduling  completion  time  of  the
task will be.

3) Credibility factor

[0, 1]

T1 Rj

tx

Trustworthiness refers to the ability to provide ser-
vices for a resource within a certain time frame, and this
trustworthiness varies  with  time,  and  the  trustworthi-
ness takes values in . Trustworthiness means that at
a given moment , the resource  is derived based on
the experience of processing task type  in the record of
historical behavior, and each resource needs to maintain
a  table  of  trustworthiness  relations,  which  is  calculated
by

 

γ(T1 − Tx, tk) = e−(T1−Tx)/n(tk) (17)

tk T1

Tx

tx Tx

where,  is the decay rate of confidence.  denotes the
current  time.  denotes  the  last  execution  time  of  the
task type  on the resource. A larger value of  means
a more drastic degree of credibility decay. The credibili-
ty factor is calculated by

 

D(Rj , tx, T1) =

∣∣∣∣nx − sx
nx + sx

∣∣∣∣ · γ(T1 − Tx, tx) (18)

nx Rj

tx sx
Rj tx

where  denotes the number of  times resource  has
successfully completed task type .  denotes the num-
ber of failures of resource  for task type . The trust-
worthiness of the tasks in the queue to be assigned to the
resource  changes  from  time  to  time  and  from  task  to
task, and the trustworthiness needs to be updated in re-
al time. When a resource successfully performs a task, it
needs to increase the trustworthiness of the resource for
that task type, and conversely decrease the trustworthi-
ness if it fails.

Based on the  above  idea,  the  resource  uses  the  fol-
lowing equation to update its credibility:

 

D(Rj , tx, T1) =



D(Rj , tx, T2) + λ1e−1/v,

(0 < λ1 < 1) ∧ (N = 1)

D(Rj , tx, T2)− λ2e−1/v,

(0 < λ2 < 1) ∧ (N = 0)

(19)

 

D(Rj , tx, T2) =

{
1, D(Rj , tx, T1) > 1

0, D(Rj , tx, T1) < 0
(20)

D(Rj , tx, T1)

Rj

tx T1 D(Rj , tx, T2)

λ1 λ2 v
Rj tx N

N = 1 Rj

tx

where  is the confidence level obtained from
the  evaluation  of  resource  after  the  completion  of
task  type  at  moment .  denotes  the
credibility before the update, as shown in equation (20).

 and  denote the update factor.  denotes the num-
ber of  resource  completions for the task type . 
denotes  the  flag  of  success  or  failure  of  this  execution
task.  If ,  it  means  resource  successfully exe-
cutes task type , otherwise it fails. 
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2. Task scheduling algorithm based on ant colony
simulated annealing algorithm

The  matching  process  of  tasks  and  resources  is  a
mixed nonlinear integer programming with complex vari-
ables.  According  to  similar  work  [42],  this  is  usually  an
NP-hard  problem.  The  heuristic  algorithm  can  find  an
approximate  solution  to  this  kind  of  problem.  Because
the matching process from task to resource is similar to
path selection, we choose the ant colony optimization al-
gorithm as the basis of task scheduling. But for SIN, we
need  to  make  targeted  improvements.  In  the  process  of
improvement, the simulated annealing algorithm is com-
bined to  improve  the  overall  performance  of  the  algo-
rithm.

The resources  of  SIN  are  structured  through  net-
work connectivity. The pheromone of the ant colony al-
gorithm needs to consider the performance of task execu-
tion. The performance of different resources varies great-
ly. The pheromone in the initial state needs to be set ac-
cording to  the  specific  application  scenario.  In  the  de-
sign of heuristic information for the algorithm, some fac-
tors  that  can affect  the  effect  of  task execution need to
be considered. Therefore,  through the corresponding im-
provement of  the  basic  algorithm,  the  improved  algo-
rithm  can  be  suitable  for  solving  the  task  scheduling
problem  of  the  space-based  information  network  and
achieve a better scheduling effect.

Ant colony optimization (ACO) algorithm has high
flexibility and robustness, but the algorithm has the de-
fects of slow convergence and is easy to occur into local
optimum.  Simulated  annealing  (SA)  has  the  ad-vantage
of  better  local  search  capability  and  fast  convergence,
which can  make  up  for  the  defects  of  the  ACO  algo-
rithm. We propose an improved ant colony simulated an-
nealing algorithm (IACOSA) with the characteris-tics of
a  space-based  information  network.  It  can  thus  better
serve  the  space-based  information  network  and  achieve
the expected  goal  of  task  scheduling.  The  specific  algo-
rithm design is as follows.

1) Initialization method design
The original  ant  colony optimization algorithm sets

the  initial  pheromone  as  the  same  value.  To  accelerate
the convergence of the algorithm, we improve the initial-
ization of pheromones by applying task and resource lo-
cations and resource capabilities. The initial value of the
pheromone of the path search is determined jointly with
the attribute  capabilities  of  the  resource  and  the  loca-
tion information of the resource. The specific calculation
is shown as

 

τj(0) = Rc +
1

drij
(21)

Rc

drij

where,  denotes the  attribute  capability  of  the  re-
source.  denotes the  location  relationship  of  the  re-
source.  In  the  beginning  of  the  algorithm,  since  the
pheromones on each path are different, according to the

attribute capability of the resources and the location in-
formation,  the  ants  can  make  purposeful  path  selection
and avoid  the  problem of  strong randomness  at  the  be-
ginning of the algorithm.

2) The way ants select resources

k

Ti k
Rj t

pkij(t)

Ant  colony  optimization  algorithm  is  an  algorithm
for routing based on path probability [42].  We designed
pheromone  and  heuristic  information  in  an  ant  colony
optimization  algorithm  for  the  optimization  goal  of
matching tasks  to  resources  in  the space-based informa-
tion network. Through this probability,  we can find the
matching path from the optimal task to the resource that
meets  the  optimization  goal.  Ants  need  to  perform  a
path search based on state migration rules. When select-
ing a resource, ant  takes into account the location fac-
tor and the trustworthiness of the resource, and then cal-
culates the transfer probability by using pheromones and
heuristic information to select the next selected resource.
The  migration  probability  of  task ,  i.e.,  ant , be-
tween resources  at  the moment of  is  expressed by

 as
 

pkij(t) =


[τij(t)]

α[ηij(t)]
β∑m

s=1
[τis(t)]

α[ηis(t)]
β
, s, j ∈ allowedk

0, otherwise

(22)

τij(t)
Ti Rj

ηij(t) =
1

Gij
+D(Rj , ti, T1)

Gij D(Rj , ti, T1)

α β

Gij

D(Rj , ti, T1)

allowedk
allowedk

Here  is  the  pheromone  concentration  of  the
task  scheduled  to  the  resource  for  execution.

 represents heuristic  informa-
tion.  Both  and  are  heuristic  factors,
representing the  location  distance  situation  and  the  de-
gree of credibility, respectively. The coefficients ,  de-
note  the  weight  indexes  in  the  control  pheromone  and
state  transfer  probability,  respectively.  A  smaller 
represents the proximity of the task demand area to the
range  served  by  the  resource.  A  higher  value  of

 denotes  a  higher  level  of  confidence  in  the
resource. The task performs the selection of resources in

, and when the ant has finished searching for a
resource, it gets rid of it from .

3) Pheromone update

τij(t)
Ti Rj t

t+ 1

The  pheromone  concentration  will  influence  the
pheromone  concentration  in  the  path  selection.  The
pheromones  on  the  path  are  changed and updated  with
each task deployment.  is  the pheromone value on
the path from task  to resource  at the moment of ,
and the pheromone update at the moment of  is cal-
culated by

 

τij(t+ 1) = (1− ρ) · τij(t) + ∆τij(t), ρ ∈ [0, 1) (23)

ρ

ρ

where, the parameter  refers to the pheromone volatili-
ty  factor,  which  represents  the  volatility  degree  of
pheromone  concentration  in  the  process  of  constant
pheromone updating, and the larger parameter  means
the faster volatility.
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K

The time constraint function is improved to the up-
date rule of the pheromone, and the following equation is
used to evaluate the degree of time spent for the select-
ed task scheduling scheme “ ”:

 

sTime(K) =
cTime(K)− cTime(K)min

cTime(K)max − cTime(K)min
(24)

∆τij(t)

∆τij(t)

The  time  constraint  function  is  proportional  to  the
time  required  to  complete  the  task  execution,  and  the
smaller  the  value,  the  shorter  the  execution time of  the
group of tasks. The design of the pheromone update in-
crement  needs  to  consider  the  task  completion
execution time during the task scheduling process of SIN,
so  the  calculation  of  the  pheromone  increment 
can be expressed as

 

∆τij(t) =
Q1

sTime(K)
(25)

Q1where  is a constant, the pheromone increment in (25)
is the increment used in the local pheromone update.

The local optimal solution of ACO is obtained as the
initial solution of SA algorithm, and the pheromone up-
date  of  the  optimal  solution  derived  from SA algorithm
is  performed to obtain the global  pheromone increment,
which is calculated by

 

∆τij(t) =
Q2

min[sTime(K)]
(26)

Q2where  is a constant, and the global pheromone incre-
ment  is  to  find  the  best  solution  for  pheromone  update
among all the scheduling solutions.

4) Metropolis guidelines

p
p

T

If the resources allocated for these two tasks are dif-
ferent, the resources are swapped based on the local opti-
mal solution.  If  the  completion  time  of  the  task  is  re-
duced after the swap, then this new solution is accepted.
Otherwise, it is judged whether to receive this new solu-
tion  according  to  the  Metropolis  criterion  of  simulated
annealing. According to the following equations (27) and
(28), the probability  of using the new solution is calcu-
lated. If the value of  is smaller than the random value
generated  at  the  current  temperature ,  then  this  new
solution will not be accepted, and vice versa.

 

∆cTime_T =cTime_T− cTimemin_T (27)
 

pkij(t) =

{
e−( cTime_∆T

T ), cTime_∆T > 0

1, others
(28)

cTime_T

T cTimemin_T

T p

∆cTime_T > 0

where  denotes  the  sum  of  the  time  that  all
tasks run after swapping resources at the current temper-
ature .  denotes the minimum time used to
execute all resources to complete all tasks at the current
temperature  using  the  ant  colony  algorithm.  de-
notes  the  probability  that  a  new  solution  is  acceptable
when the conditions of  are satisfied.

M

T
Tmin T (t+ 1) < Tmin

In the sampling process of SA algorithm, if the cur-
rent local optimal solution is disturbed at the same tem-
perature  for  consecutive  times,  if  this  local  optimal
solution always does not change in any way, then it can
be considered to be in full compliance with the criterion
of  sampling  stability.  The  termination  condition  of  the
algorithm can be derived by analyzing the annealing pro-
cess  according  to  the  simulated  annealing  process,  i.e.,
comparing  the  magnitude  of  the  current  temperature 
and ,  when ,  then  the  algorithm  is
terminated.

Based on  the  above  analysis  and  design,  the  IA-
COSA algorithm is described in detail by pseudo code, as
shown in Algorithm 2.

Algorithm 2  IACOSA algorithm
Input:
T = {T1,T2, . . . ,Tm} R = {R1,R2, . . . ,Rn}　 , .

Output:
　Optimal scheduling solution for tasks and resources.

α β ρ λ Q1 Q2 T0 Tmin 1: Set , , , , , , , ;
τj(0) = Rc + 1/drij 2: Initializing pheromone 

pij(t) 3: Calculating the path transfer probability ;
Ti ∈ T 4: for  do
Rj ∈ R 5:　for  do

cTimemin

 6:　　Calculating  the  local  optimal  solution  according  to
;

τij(t+ 1) 7:　　Updating local pheromone based on ;
 8:　　A new solution to the construction of the Metropo-

lis criterion in SA;

p
 9:　　Calculating the probability of accepting the new so-

lution ;
10:　　Updating Global pheromone;

T (t+ 1) > Tmin11:　　if  then
12:　　goto step 5
13:　　else
14:　　return the optimal solution;
15:　　end if
16:　end for
17: end for

n
m

O(nm)

k
O(knm)

l
O(lknm)

According to the design process of  Algorithm 2, we
can get the time complexity of the algorithm. The num-
ber of tasks in the IACOSA algorithm is  and the num-
ber of resources is . The time complexity of task-to-re-
source  scheduling  process  is .  The  path  selection
of the ant colony optimization algorithm is done by accu-
mulating pheromones by ants. The number of ants is .
The  time  complexity  is .  The  path  selection
needs several  iterations  to  complete,  and the number of
iterations  is .  From  the  above  analysis,  we  finally  get
the algorithm time complexity as .

m = 10
n = 200

Refer  to  Chen et  al.  [43]  for  a  detailed  analysis  of
the algorithm response time. We perform a specific calcu-
lation of  the  overhead time of  the  algorithm. When the
number  of  ants ,  the  number  of  satellite  tasks
takes  the  average  size  and the  number  of  re-
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m = 40
t = 18.3

T = 2π
√
r3/µ µ = 398600.441 km3/s2 r

30◦

sources .  It  can  be  calculated  that  the  task
scheduling time  s. The motion of satellites is pe-
riodic,  and generally  the  orbital  altitude of  low orbiting
satellites  is  around  500–2000  km.  The  orbital  period  is

,  where ,  is  the
orbital  height.  The  operating  period  can  be  calculated
from 5663.7 s to 76173 s. At the same time, the satellite
flight  process  covers  the  ground,  and  when  the  satellite
side field of view is , the coverage area radius can be
calculated as 288.68 km. The flight speed of the satellite
at  500 km orbital  altitude is  7.6  km/s.  We can roughly
calculate  the  time taken by  the  satellite  to  fly  over  the
ground coverage area to be t = 75.96 s.  First of  all,  we
can  compare  that  our  scheduling  time  is  much  smaller
than the satellite  cycle  time.  Also,  the  satellite  schedul-
ing  time  is  smaller  than  the  time  of  the  satellite  flying
over a region. Therefore, our proposed algorithm can be
applied to satellite networks with high dynamic changes. 

VI. Simulation and Analysis
 

1. Simulation environment and scenario establish-
ment

We established a SIN scenario consisting of 6 GEOs
+ 14 MEOs + 10 LEOs + 5 ground stations by Satellite
Tool  Kit  (STK),  as  shown in Figure  2.  We can get  the
resource  locations  of  different  periods  by  STK and slice
the satellite’s operation time into different time slices to
get different resource topology and location information.
  

Figure 2  Space-based information network scenario.
 

We  perform  the  simulation  verification  of  the
scheduling algorithm by CloudSim cloud simulation soft-
ware.  In  addition  to  the  resource  location  information
and topology information, we need to configure the simu-
lation’s task and resource capability parameters. The re-
sources  of  SIN  are  set  through  VM  instances  in
CloudSim, and the tasks of SIN can be set through Task
instances in  CloudSim.  The  CloudSim  simulation  envi-
ronment  resources  include  VM,  Host,  and  datacenter
classes.  We  use  VM  as  the  resource  clustering  and
scheduling unit. The satellites are set as Host, GEO serv-
er, MEO server,  and Ground server are set  as Datacen-
ter, and in addition to the inherent resource parameters
of  ram,  bw  and  storage  in  CloudSim,  we  add  the  time
slot t, latitude, longitude, and high parameters. Based on
these parameters,  we can determine resource connectivi-
ty, resource location, etc. The same three parameters are
included  in  the  task  settings.  The  requested  location  is

for  example  the  various  ground  targets  in Figure  2.
Based on the resource and task parameters  we can per-
form scheduling planning. The location and moment pa-
rameters  of  the  resources  we  obtain  according  to  STK.
Other parameters are shown in Table 5.
  
Table 5  Cloudsim platform parameter configuration

Type Parameters Value

Resource sets

Number 40

CPU (MIPS) [100, 10500]

Storage (MB) [10000, 1050000]

Communication (MB) [100, 10000]

Manager type Time-Sharing

Task sets

Number [10,600]

Length (MIPS) [100, 5000]

Storage (MB) [10000, 460000]

Communication (MB) [100, 10000]
 

T0 = 1000 Tmin = 10 a =
0.995 M = 50

The  parameter  settings  of  the  ACO  algorithm  for
the experimental simulation are shown in Table 6, where
IACOSA sets the parameters , , 

,  respectively on the basis of ACO.
  
Table 6  ACO parameters

Parameters Value Parameters Value
α 1 m 37

β 2 Q1 Q2, 100
ρ 0.4 Imax 100

  

2. Analysis of simulation performance
Since  the  algorithm  proposed  in  this  paper  is  a

heuristic algorithm,  the  optimal  matching  results  ob-
tained  from  the  algorithm  optimization  vary  somewhat
with  the  algorithm’s  solution  process.  We  repeated  the
simulations 10 times with the same variables for the ac-
curacy  of  the  results,  and  the  average  of  the  statistical
results is shown in the resulting graph. Also, for the com-
prehensiveness  of  the  experimental  results,  we  show the
standard deviation  SD  between  different  simulation  re-
sults and the mean value in the form of error bars in the
experimental results.

1) Simulation  performance  analysis  of  different  im-
provement ideas

We  analyze  the  impact  of  different  improvement
ideas  on  the  simulation  results.  The  improvement  ideas
include  the  improved ant  colony optimization algorithm
(IACO), the  improved  ant  colony  optimization  simulat-
ed annealing algorithm (IACOSA) and the improved ant
colony optimization simulated annealing algorithm based
on RTBC clustering (RTBC-IACOSA). As shown in Fig-
ure  3(a) and  (b),  the  performance  of  different  improve-
ment ideas  in  task  scheduling  completion  time  and  re-
source  usage  is  shown  respectively.  It  can  be  seen  from
the results that RTBC-IACOSA performs best. From the
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paper,  we  can  know  that  IACO only  improved  the  ant
colony  algorithm  to  adapt  to  the  characteristics  of  the
space-based  information  network.  However,  IACO  is
prone to fall into local optimum and perform the worst.
After the  combination  of  the  simulated  annealing  algo-
rithm  and  ant  colony  algorithm,  IACOSA  can  quickly
jump out of  the local  optimum, and the result  is  better
than IACO. After adding RTBC clustering, tasks and re-
sources  can  be  matched  faster,  so  RTBC-IACOSA per-
forms best.
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Figure 3  Comparison of different improvement ideas.
 

2) Scheduling performance analysis
We  simulate  and  analyze  the  proposed  RTBC-IA-

COSA, a joint RTBC and IACOSA-based task schedul-
ing  strategy  for  space-based  information  networks.  The
RTBC-IACOSA algorithm is based on the IACOSA algo-
rithm with  the  addition  of  RTBC clustering.  Therefore,
the  ACO algorithm [42]  is  selected  among  the  heuristic
algorithms for  comparison.  In contrast,  the Min-Min al-
gorithm [44]  that  comes  with  the  CloudSim platform is
selected among  the  traditional  task  scheduling  algo-
rithms  for  comparison  with  it.  At  the  same  time,  we
compare the  existing  satellite  network  resource  schedul-
ing  algorithm  PSOW  [45].  The  RTBC-IACOSA algo-
rithm is compared with these algorithms in terms of the
four performance  evaluation  indexes  of  scheduling  com-
pletion  time,  resource  usage,  load  balance  degree,  and
failed  services.  The  effectiveness  and  advantages  of  our

RTBC-IACOSA algorithm  in  task  scheduling  are  veri-
fied.

ACO simulates the path selection process of ants in
nature  when  they  are  looking  for  food.  Ants  leave
pheromones  on  their  search  paths,  and  pheromones  can
guide ants to choose paths. The path selection process of
ants  is  similar  to  that  of  a  task  to  resource  matching.
This paper is mainly about the improvement of this algo-
rithm.  We  take  ACO  as  the  benchmark  algorithm  for
comparison.  Min-Min is  a  more traditional  and classical
scheduling algorithm. The main scheduling idea of the al-
gorithm  is  to  allocate  and  process  tasks  in  the  fastest
time. Assign tasks to the resources with the shortest pro-
cessing time. PSOW (particle swarm optimization weight)
is a population based optimization algorithm that simu-
lates  the  collective  behavior  of  birds.  These  groups  will
cooperate to find food, and the group can improve the ef-
ficiency of searching for food by learning about the expe-
rience of each member. The learning process can be con-
trolled by the weight factor to achieve rapid convergence.

As  shown  in Figure  4, the  task  scheduling  comple-
tion time are  shown for  a  different  number  of  tasks  us-
ing three different algorithms. It can be seen that as the
number of  tasks  increases  the  task  scheduling  comple-
tion  time  increases  and  the  scheduling  completion  time
used in the scheduling scheme obtained using the RTBC-
IACOSA algorithm  is  reduced  to  a  great  extent  com-
pared to the ACO, PSOW, and the Min-Min algorithm.
By improving the heuristic factor of the ACO algorithm
in the  RTBC-IACOSA algorithm,  the  tasks  can quickly
find the resources close to their locations and reduce the
time consumption due to the location relationship. By in-
troducing the confidence factor, the tasks can be reason-
ably matched with the resources faster.
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Figure 4  The task  scheduling  completion time with the  number  of
tasks.
 

As shown in Figure 5, the variation of the sum of re-
source  usage  for  each  task  corresponding  to  the  use  of
three different algorithms at a different number of tasks
is shown. The RTBC-IACOSA algorithm still has an ad-
vantage over the ACO, PSOW, and Min-Min algorithms.
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This  is  because  the  RTBC-IACOSA  algorithm  clusters
resources and tasks using a bilateral pre-processing mod-
el  in  the  scheduling  pre-processing  stage.  Tasks  are
matched with resources in a similar type of resource set,
resulting in lower usage of resources.
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Figure 5  Changes in resource usage with the number of tasks.
 

As in Figure 6 (a), the relative standard deviation is
used to measure the degree of load balancing of the algo-
rithms. The changes in the relative standard deviation of
the RTBC-IACOSA scheduling algorithm, ACO, PSOW,
and Min-Min algorithms are compared separately as the
number of  tasks  increases.  The  difference  is  not  signifi-
cant because RTBC-IACOSA, as a kind of swarm intelli-
gence  algorithm,  has  a  certain  global  search  ability  and
distributes  tasks  relatively  evenly.  Compared  with  the
ACO,  PSOW,  and  Min-Min  algorithms,  the  scheduling
scheme  generated  by  RTBC-IACOSA  is  always  in  the
best state  of  load  balancing  and  more  stable,  with  im-
proved performance, and the algorithm is optimal.

As Figure 6 (b) compares the number of  failed ser-
vices of different algorithms, the number of failed service
tasks  can  effectively  measure  the  algorithm’s  reliability.
From  the  results,  the  number  of  failed  service  requests
for the four algorithms Min-Min, ACO, PSOW and RT-
BC-IACOSA  gradually  increases  when  the  number  of
tasks  gradually  increases.  However,  compared  with  the
other three algorithms, the RTBC-IACOSA algorithm al-
ways has the lowest number of failed requests due to in-
troducing  a  confidence  factor  in  the  ant  state  transfer
probability  when  designing  the  RTBC-IACOSA algo-
rithm, which makes the algorithm have better reliability. 

VII. Conclusions
This  paper  proposes  a  clustering  pre-processing

based task scheduling strategy for SIN. A bilateral clus-
tering  pre-processing  model  is  proposed  for  the  problem
of  long  initial  resource  and  task  search  time  for  task
scheduling. To improve the matching effect of tasks and
resources and enhance resource utilization, we propose a
task scheduling algorithm with improved ant colony sim-
ulated  annealing,  which  first  improves  the  pheromone

and heuristic  factor  of  the  traditional  ant  colony  algo-
rithm and introduces  the  simulated annealing algorithm
to  avoid  the  local  optimum  situation.  After  simulation
verification,  our  proposed  task  scheduling  strategy  can
improve  task  scheduling  performance,  effectively  reduce
task scheduling time and increase resource utilization. 
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