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Abstract — The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from
the power of few-shot class-incremental learning (FSCIL), deep learning models can continuously recognize new class-
es with only a few samples. The difficulty is that limited instances of new classes will lead to overfitting and exacer-
bate  the  catastrophic  forgetting  of  the  old  classes.  Most  previous  works  alleviate  the  above  problems  by  imposing
strong constraints on the model structure or parameters, but ignoring embedding network transferability and classifi-
er adaptation (CA), failing to guarantee the efficient utilization of visual features and establishing relationships be-
tween old and new classes. In this paper, we propose a simple and novel approach from two perspectives: embedding
bias  and  classifier  bias.  The  method  learns  an  embedding  augmented  (EA)  network  with  cross-class  transfer  and
class-specific discriminative  abilities  based  on  self-supervised  learning  and  modulated  attention  to  alleviate  embed-
ding  bias.  Based  on  the  adaptive  incremental  classifier  learning  scheme  to  realize  incremental  learning  capability,
guiding the adaptive update of prototypes and feature embeddings to alleviate classifier bias. We conduct extensive
experiments  on  two  popular  natural  image  datasets  and  two  medical  datasets.  The  experiments  show  that  our
method is significantly better than the baseline and achieves state-of-the-art results.
Keywords — Few-shot class-incremental learning, Embedding augmentation, Classifier adaptation, Image classi-
fication.
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 I. Introduction
Deep learning  techniques  play  an  important  role  in

image  analysis  tasks  [1]–[3].  Most  deep  learning  models
are  developed  in  closed  scenarios  with  large-scale,  high-
quality datasets. However, actual task scenarios are usu-
ally dynamic and open, requiring a model to incremental-
ly  integrate  new  class  knowledge  without  forgetting  old
classes  [4],  [5],  which  poses  severe  challenges  to  deep
learning systems. Class incremental learning (CIL) [6]–[14]
addresses  this  challenge  to  a  certain  extent  when  there
are  enough  new class  instances  in  the  incremental  task.

However,  many  scenarios,  such  as  the  medical  domain,
suffer from data privacy and sparsity issues. First of all,
due to the scarcity of medical data, the data for new dis-
eases  is  often  relatively  small,  which  will  cause  severe
overfitting problems and exacerbate the forgetting of old
diseases.  Secondly,  due  to  privacy  issues,  when  learning
new  disease  classes,  the  old  class  data  may  no  longer
have the right to be used, so the overlap or confusion be-
tween the  new and  old  class  representations  in  the  em-
bedding space leads to catastrophic forgetting of the old
diseases.  These  problems  motivate  research  of  few-shot
class-incremental  learning  (FSCIL)  without  saving  old 
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data, i.e., only access data of few-shot new classes in in-
cremental  tasks  and  learn  a  unified  classifier  that  can
recognize all visible classes.

The  FSCIL  research  has  only  just  begun.  Current
works  mainly  penalize  parameters  change  by  enforcing
strong  constraints  on  model  structure  [15] or  model  pa-
rameters [16]–[18] to mitigate catastrophic forgetting and
overfitting. However, in [19], [20],  a simple and effective
Baseline  model  was  found,  which is  trained only on the
base class, and directly classifies old and new classes us-
ing  the  nearest  class  mean  (NCM)  classifier.  It  suffers
from  two  major  limitations:  1)  Fixed  feature  extractors
can retain the representation of learning, but ignore the
representation  of  new  classes,  resulting  in  embedding
bias. 2) When we directly add additional weight vectors
of new  classes  in  the  incremental  tasks,  the  discrimina-
tive  decision  boundary  of  the  unified  classifier  may  be
severely biased.  To  alleviate  the  first  problem,  Refer-
ences [12], [13] and [17] introduced self-supervised learn-
ing (SSL) methods to mine more information to improve
the  quality  of  feature  representations;  Reference  [14]
learns transferable and diverse representations by letting
the model see more classes during training through Mix-
up data augmentation. To alleviate the second problem,
Reference  [19]  proposed  a  continually  evolved  classifier,
which  employs  a  graph  model  to  propagate  contextual
information  to  update  the  classifier  weights  learned  on
each task.

Despite this,  the  above  method  ignores  several  im-
portant issues. 1) The number of new class samples is ex-
tremely limited, and it is difficult for traditional feature
extraction networks to extract discriminative details, es-
pecially for fine-grained images, such as medical images.
Therefore, how to make full  use  of  image context  infor-
mation to improve the effective utilization of discrimina-
tive  features  is  very  important.  2)  Gradually  learning
and adjusting old and new class prototypes also leads to
a  mismatch  between  fixed  feature  representations  and
classifier prototypes.  Therefore,  how  to  adaptively  ad-
just  the  unified  classifier  and  feature  representation  of
old and new tasks is crucial for subsequent tasks.

In order to solve the above problems, we propose a
new  few-shot  class-incremental  learning  based  on  em-
bedding augmentation and classifier adaptation (FSCIL-
EACA) model from the perspective of embedding learn-
ing and classifier learning.  Specifically,  in the embedded
learning  stage,  we  propose  an  embedding  augmentation
network  (EAN).  To  learn  the  embedded  features  that
can  be  migrated  to  new  tasks,  we  introduced  SSL  into
the network to improve the generalization of the model.
To make better use of the unique distinguishing features
of sparse samples, we added a modulated attention (MA)
mechanism to obtain the weighted context information of
each  category,  which  is  more  conducive  to  extracting
more representative features based on the global informa-
tion  of  the  image.  To  adaptively  adjust  the  classifier
weight  and  embedded  features,  we  propose  an  adaptive

incremental classifier (AIC) in the classifier learning stage
to  alleviate  the  classification  bias  of  the  FSCIL  model.
The process includes a hybrid relational projection (HRP)
module and a pseudo-incremental episode selection (PES)
module. HRP uses prototype self-projection (PSP) to es-
tablish a global context correlation between previous and
current tasks to calibrate the weight of the unified clas-
sifier. Adaptively adjust the embeddings of the query set
to  adapt  to  the  global  classification  task  through  query
set  cross-projection  (QCP).  At  the  same  time,  we  hope
that HRP has the learning ability of FSCIL incremental
tasks,  hence  we  propose  a  pseudo-incremental  learning
method  based  on  meta-learning  to  conduct  multi-stage
training for HRP to quickly adapt to new tasks. Specifi-
cally,  we  build  pseudo  incremental  tasks,  namely  meta
tasks, through the PES module, and learn the generaliza-
tion  ability  of  the  model  between  different  meta  tasks
through the  meta-learning mechanism.  If  the  model  can
handle  different  types  of  simulated  pseudo  incremental
tasks, it will easily handle the incoming “real” tasks with
generality. Thus,  when  faced  with  a  new  and  unprece-
dented task, it can also be better classified.

The main  contributions  of  this  paper  are  summa-
rized as follows:

1) An embedding augmentation network is proposed
to improve  the  generalization  ability  of  the  feature  ex-
traction network by introducing self-supervised learning,
and  a  modulated  attention  mechanism  is  proposed  to
make  full  use  of  image  context  information  to  extract
discriminative features of fine-grained sparse samples.

2) A novel and effective hybrid relational projection
module  is  designed,  which  adaptively  adjusts  new  and
old  class  prototypes  through  prototype  self-projection,
and adjusts feature representations to match correspond-
ing prototypes through query set cross-projection.

3) A pseudo-incremental episode selection module is
proposed  to  obtain  a  rich  meta-training  set  to  simulate
incremental learning tasks. Based on meta-learning train-
ing techniques, the hybrid relational projection module is
endowed with the ability of continual learning.

4) Experiments on the CUB-200, MiniImagenet, Hy-
perKvasir, and SKIN-7 datasets show that our method is
significantly  better  than  the  baseline  and  sets  a  new
state-of-the-art performance with a significant advantage.

 II. Related Work

 1. Class-incremental learning
Incremental learning aims to develop an artificial in-

telligence system that can process novel data continuous-
ly appearing in the real world while learning new knowl-
edge,  retaining  or  even  integrating  and  optimizing  old
knowledge not  to  be  forgotten.  The current  incremental
learning methods mainly include:

1) Solutions based on rehearsal strategies. Rehearsal
strategies  [6]–[9],  aim  to  store  a  limited  sample  of  old
classes  to  prevent  forgetting  previous  tasks.  Methods
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such  as  iCaRL  [6]  and  EEIL  [7]  learn  to  preserve  the
knowledge gained  from  the  old  class  based  on  distilla-
tion  losses.  At  present,  there  are  many  methods  [10],
[21], [22] to generate old data by training the GAN net-
work, thereby avoiding the potential  data privacy prob-
lems  of  rehearsal  strategies.  However,  the  generative
model  itself  has not yet  reached high accuracy,  and the
effect of this type of method is not satisfactory.

2)  Solutions  based on regularization.  Regularization
strategies such as elastic weight consolidation (EWC) [23],
memory  aware  synapses  (MAS)  [24],  and  PathInt  [25],
aim to minimize the impact of essential weights on previ-
ous tasks when learning novel tasks. For example, EWC
uses the  Fisher  information  matrix  to  calculate  the  im-
portance of  network weights  offline  and slows down the
learning  of  network  weights  that  are  highly  relevant  to
previous  tasks.  PathInt  calculates  the  integration
strength  of  synapses  online  and  expands  it  based  on
memory  to  accumulate  information  related  to  the  task.
However,  as  some  works  have  noticed,  these  methods
perform poorly in FSCIL scenarios.

3)  Other  solutions  include  NCM  [11], which  com-
bines cosine normalization, forgetting constraints, and in-
ter-class separation  strategies  to  reduce  the  adverse  ef-
fects of the imbalance between the previous data and the
new data. This paper aims to reduce catastrophic forget-
ting in FSCIL without storing old data or using complex
generative  models.  Reference  [14]  adopted  explicit  class
augmentation and implicit semantic augmentation to ad-
dress representation bias and classifier bias in class incre-
mental learning, achieving state-of-the-art performance.
 2. Few-shot learning

Few-shot learning (FSL) aims to adapt the model to
recognize novel classes with very few samples, regardless
of the model’s performance in recognizing the base class-
es. Typical FSL algorithms need to extract task episodes
from the overall data distribution for training. The data
of each class  in the episode is  divided into a small  sup-
port set and a more extensive query set. The number of
classes in each episode is called “way”, and the number
of  support  images  in  each  class  is  called  “shot ”,  so  a
group  of  five  classes  and  one  labeled  image  to  form  a
“5way 1-shot” classification problem. Our work is  more
related  to  the  FSL  method  based  on  meta-learning,
which includes  the  metric-based  learning  method,  opti-
mization-based learning method, and model-based learn-
ing method.  The  metric-based  learning  method,  refer-
ences [26]–[32] focus on classifying well by nearest neigh-
bor  classifiers  with  similarity  measurement  functions
such  as  Euclidean  [30],  cosine  distance  [31], and  Deep-
EMD  [32].  For  example,  DeepEMD  [32] splits  the  pic-
ture  into  multiple  tiles  and  then  introduces  the  earth
mover’s  distance  (EMD)  as  a  metric  function  to  obtain
more discriminative information with local features. The
optimization-based  learning  method  considers  whether
the  machine  can  learn  some  training  steps  by  itself.
MAML [33] uses a nested optimization learning model to

let the  machine  learn  initialization  parameters  to  opti-
mize so that it can quickly adapt to new tasks. MAXL [34]
trains  two neural  networks  in  the  form of  dual-gradient
meta-learning:  a  label  generation  network  for  predicting
auxiliary  labels  and  a  multi-task  network  for  training
main  and  auxiliary  tasks  to  improve  the  generalization
ability. Metadock [35] compresses the metamodel by dy-
namically selecting the kernel, which can be easily deploy-
ed  on  edge  devices.  The  model-based  learning  methods
aim to find the best architecture, in which the model can
quickly update parameters. Reference [36] proposed few-
shot NAS. The core idea is  to divide the super network
into several subnetworks to search different areas of the
space. Due to the slight increase in the number of super
nodes, the accuracy of the few-shot NAS has been great-
ly improved. In [37], a hierarchical prototype model is in-
troduced,  in  which  each  level  of  the  prototype  obtains
corresponding information from the hierarchical memory,
and  performs  meta-learning  on  the  model  through  the
newly derived  hierarchical  variational  reasoning  frame-
work so that the hierarchical memory and the prototype
are jointly optimized.
 3. Few-shot class-incremental learning

Recently, TOPIC [15] raised a challenging but prac-
tical FSCIL problem. To solve this problem, TOPIC pro-
posed a neural gas (NG) network to constrain the feature
space  topology  of  knowledge  representation  and  push
novel class instances to their respective NG nodes to re-
tain old knowledge and adapt to novel knowledge. Refer-
ence [16] proposed a framework to explicitly address the
problems  of  generalized  few-shot  learning  by  balancing
between  learning  novel  classes,  forgetting  base  classes,
and calibration across them in three phases. At the same
time, it is based on base-normalized cross-entropy, to over-
come the bias learned by the model on the base classes in
combination with weight constraints to mitigate the for-
getting problem. Reference [17]  trained the current  task
data set by selecting a small number of unimportant pa-
rameters, thereby reducing the catastrophic forgetting of
old  classes.  Reference  [18]  use  a  non-parametric  method
based on learning vector quantization in deep embedding
space to harmonize old knowledge preservation and nov-
el  knowledge  adaptation.  Reference  [19]  decoupled  the
feature  extraction  module  from  the  classifier  and  only
updated the classifier  for each incremental  task.  And to
make the classifier applicable to all classes, they propose
a  continually  evolved  classifier  (CEC)  that  employs  a
graph  model  to  propagate  context  information  between
classifiers for adaptation. Reference [20] searched for flat
local minima of the objective function during training of
the  base  class,  and  fine-tuned  the  model  parameters  in
the  flat  region  of  the  new  task  so  that  the  model  was
adapted to the new classification task. Reference [38] de-
signed an inspatial frequency-aware regularization to en-
force SvF constraints on different frequency components,
and  proposed  a  spatial  combination  operation  to  well
balance the slow forgetting of old knowledge and the fast
adaptation  to  new  knowledge.  Reference  [39]  proposed
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the  ForwArd  compatible  training  (FACT)  strategy  by
assigning  virtual  prototypes  to  compress  the  embedded
representation of base classes, reserve a certain space for
new classes,  predict  possible  new tasks,  and  prepare  for
the  update  process.  This  effectively  incorporates  new
classes  with  forwarding  compatibility  while  preventing
old  classes  from  being  forgotten.  In  reference  [40],  the
method of no data replay is proposed. This method syn-
thesizes data through the generator and applies entropy
regularization to encourage more uncertain examples. At
the same time, the method uses labels to relabel the gen-
erated data, allowing the network to learn only by mini-
mizing the cross-entropy loss,  which alleviates the prob-
lem of balancing different objectives in traditional knowl-
edge distillation methods. Reference [41] proposes a two-
level  optimization  based  on  meta-learning  to  learn  how
to incrementally learn in the setting of FSCIL. Reference
[13]  has  developed  a  self-supervised  learning  (SSL)  and
knowledge  distillation  (KD)  framework  to  enhance  the
feature extraction of the low-capacity backbone network
work of ultra-fine-grained FSCIL. Reference [42] proposed
the  multi-feature  space  similarity  supplement  (MFS3)
method. This method first trains different feature spaces
for different tasks and uses an inter-feature space similar-
ity supplement (IFS3) to focus on the boundary-sensitive
sample  points  to  improve  the  expression  ability  of  each
session. At the same time, this method further designed
an  outer-feature  space  similarity  supplement  (OFS3),
which can use  the  new feature  space  to  supplement  the
basic feature space to re-estimate the sample points.

 III. From Old Classes to Novel Classes

 1. Problem statement

D1, D2, . . . , Dt Di =
{
Ii, Ci

}
t

Ii i

Di Ci

i Di

Ci ∩ Cj = ∅ (i ̸= j)

D1 Nb

t ≥ 2
Nn K

Nn

K
i

C =
∪t

i=1 C
i

The FSCIL setting includes a series of labeled train-
ing  sets ,  where ,  repre-
sents tasks,  are images corresponding to the -th task,
the corresponding label space of  is denoted by , and
in the -th task, only  is available. The classes among
all  tasks  are  disjoint,  i.e., .  The  first
training set, , has  classes and enough training sam-
ples,  termed  the  old  class  set,  also  known  as  the  base
class  set.  In  incremental  tasks  ( ),  there  are  only  a
few samples per class, usually described as an -way -
shot  training  set,  where  there  are  classes  in  the
dataset and each class has  samples, termed the novel
class set. When task  is trained, the model is evaluated
on all encountered classes .

 2. A baseline model for FSCIL
F′

CW

D1 F′

I
F′

x′ = F′(I)

We train the embedding network  with a classifier
 [43], [44] by minimizing the cross-entropy loss using

the base class , and the embedding network  is fixed
when  performing  incremental  tasks.  Specifically,  all  the
training  and  test  samples  are mapped  to  the  embed-
ding space of the embedding network  to generate em-
bedding vectors: .  We use  the  mean vector  to
calculate a prototype for each class. 

w′
c =

1

nc

∑
j

[yj = c]x′
j (1)

c nc

c yj = c
[yj = c] = 1

W ′
base ={

w′base
1 ,w′base

2 , . . . ,w′base
Nb

}
∈ RNb×d W ′

novel =
{
w′novel

1 ,

w′novel
2 , . . . ,w′novel

Nn

}
∈ RNn×d

W ′ = [W ′
base;

W ′
novel] dist(·, ·)

X ′ = [X ′
base;X

′
novel]

W ′

where  represents  the  class,  and  is  the  number  of
training  samples  of  class .  If  is  true,  then

,  otherwise  it  is  0.  We  can  naively  form  the
prototypes  of  the  base  class  and  novel  class  as 

 and  
.  The  inference  is  performed

by an NCM classifier with a weight matrix 
.  We  use  Euclidean  distance  to  calculate

all  test  samples  embeddings   and  all
prototypes  semantic differences. The classifier is giv-
en by
 

f(x,W ) =
e−dist(x′,w′

c)∑
w′

j∈W ′
e−dist(x′,w′

j)
(2)

To  overcome  the  problems  of  embedding  bias  and
classifier  bias  faced  by  the  baseline  model  proposed  in
Section I, we propose the FSCIL-EACA model here. The
goal is  to  learn  a  robust  embedding  augmentation  net-
work  (EAN)  that  facilitates  feature  representations  for
old  and  new  classes,  and  learn  an  adaptive  incremental
classifier (AIC)  that  dynamically  scales  new tasks  with-
out forgetting old ones.

 IV. Methods

 1. Overview
In this section, we introduce FSCIL-EACA in terms

of both training and usage. The architecture of our mod-
el is shown in Figure 1.

The  training  process  of  FSCIL-EACA  is  shown  in
Figure  1(a), which  mainly  includes  two  stages:  1)  Em-
bedding augmentation network (EAN) pre-training stage;
2)  Adaptive  incremental  classifier  (AIC)  incremental
learning stage. Because the data of the base classes and
the  novel  classes  are  seriously  unbalanced,  we  decouple
the  two stages.  The model  only  trains  EAN in the  first
base task, and there is a large amount of available data
in  the  base  task.  In  the  novel  task,  we  fixed  the  EAN,
and  adjusted  the  AIC  according  to  the  novel  and  old
classes, thus minimizing the over-fitting and catastroph-
ic forgetting problems at the task level. Details are given
next.

F(·)

EAN pre-training stage  In the base task, we intro-
duce  the  self-supervised  learning  (SSL)  and  modulation
attention  (MA)  modules  and  train  the  EAN  net-
work through the base class dataset.

AIC incremental  learning  stage  In  order  to  realize
the adaptive adjustment of novel and old classes in incre-
mental  tasks,  we  propose  the  hybrid  relation  projection
(HRP) module, and we train it through meta-learning to
quickly adapt to novel classes. Specifically, first, we gen-
erate pseudo-incremental data through the pseudo-incre-
mental  episode  selection  (PES)  module,  including  the
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Wbase

Wnovel Xnovel Xbase

Wbase Wnovel

Wnew Wbase

Wnovel Xnovel Xbase

Xnew

pseudo-incremental  support  set  (PIS)  and  pseudo-incre-
mental  query  set  (PIQ).  Since  we  hope  that  HRP  can
classify novel and old classes, we save prototypes (usual-
ly the mean of the feature embeddings of all  samples in
the class)  for all base classes, and also extract the
base query set (BQ) from the base class to jointly train
the  HRP  module.  Then,  input  PIS,  PIQ,  and  BQ  into
the EAN module to get , , and , respec-
tively. Finally, we project  and  to the proto-
type self-projection  (PSP)  module  of  HRP  training  up-
date to get updated prototypes . And project ,

, ,  and  to  the  query  set  cross-projec-
tion (QCP) module of HRP training update to get 
and classify  by  NCM classifier.  The  parameters  are  up-
dated by cross-entropy loss. Equation (2) is rewritten as
 

f(x,W ) =
e−dist(xnew,w

c
new)∑

wj
new∈Wnew

e−dist(xnew,wnew
j)

(3)

Wnovel

Wnovel Wbase

Wnew

The use process of FSCIL-EACA is shown in Figure
1(b).  After  FSCIL-EACA  training,  the  model  has  the
ability  to  continuously  learn.  We freeze  EAN and HRP
modules  and  deploy  them  to  real  incremental  tasks.
When a novel class appears, we can directly get the pro-
totype  representation  of  the  novel  class  through
EAN,  and  the  new  image  will  no  longer  undergo  SSL-
based  rotation  change  and  prediction  process.  Finally,

 and base class  prototypes  input PSP mod-
ule to get updated . When there is an image to be

Xtest

Wnovel

Wbase

Xnew

Wnovel

Wbase

Wbase = [Wbase; W novel]

classified,  we  input  the  embedded  representation 
and  prototype  of  the  image  into  QCP  together
with the base class prototypes  to obtain the updat-
ed .  Finally,  the  classification  is  realized  by  the
NCM classifier. At the same time, we merged  in-
to  as the base class prototypes for the next novel
task, i.e., .
 2. Embedding augmentation network (EAN)

Self-supervised learning (SSL)  The standard classi-
fication  network  is  directly  trained  from a  large  labeled
dataset  to  learn  the  weight  vectors  of  different  classes
and then classify test samples. However, in our few-shot
class-incremental  task,  the embedding representations of
the novel class samples are calculated by the embedding
function trained in the base classes.  In other words, the
embedded knowledge learned on the base data set needs
to  be  well  transferred  to  the  novel  classes  for  classifica-
tion prediction.  Therefore,  we  believe  that  the  embed-
ding  function  needs  to  have  good  generalization  and
transferability  and  generate  robust  feature  embeddings
for invisible classes.

SSL has been proven to use auxiliary tasks to mine
its supervision information from large-scale unsupervised
data to  improve  the  generalization  ability  and  robust-
ness  of  the  model  to  learn  valuable  representations  for
downstream tasks [45].  Recently, the SSL method based
on rotation prediction has achieved great success in relat-
ed  scenarios  such  as  incremental  learning  [12],  few-shot
incremental  learning [17], and class  imbalance classifica-

 

(a) The training process of FSCIL-EACA

(b) The use process of FSCIL-EACA
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Figure 1  Overall network architecture.
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tion  [46],  so  we  use  rotation  prediction  as  our  auxiliary
task.  In this  work,  we rotate the images  by  degrees
and obtain  by  the  embedding  network ,  where 

. We add an additional 4-way classifi-
er  to predict one of 4 classes in . The loss is given
by
 

L
(
D1

)
= [LCE (CWr (x

r) , r) + LCE (CW (xr) , y)] /2
(4)

LCEwhere  is the standard cross-entropy loss.
Modulated  attention  (MA)  Although  SSL  helps

generalize features between old and new classes, it is al-
so important  to  extract  discriminative  features.  There-
fore,  we  introduce  modulation  attention  [47]  to  obtain
more  representative  feature  embeddings  and  maintain
the differences between classes.

(x)
(x) (x)

(x) (x)
(x)

(x)

(x)

The  modulation  attention  MA  consists  of  two
parts, self-attention SA  and location attention LA .
First, the interaction information between any two posi-
tions in the feature map is calculated by self-attention [48]
to capture the long-range dependency, which makes each
pixel of the feature map contain contextual information,
and the SA  map is obtained. Then, LA  is applied
on the basis  of  SA  to select  the information of  some
positions with  the  most  discriminative  ability  and  en-
courage  different  classes  to  use  context  information  of
different strengths,  which helps maintain the distinction
between  old  and  new  classes.  In  the  article,  LA  is
mainly implemented by a fully connected layer + softmax
function. First, the original feature map is flattened, then
the weight information map of different feature space po-
sitions  is  learned  through  the  fully  connected  layer  and
the softmax  function,  and  finally,  the  weight  informa-
tion  map is  restored  to  the  original  feature  map size  to
obtain LA  map. The final feature map becomes
 

MA(x) = LA(x)⊗ SA(x) + x (5)

+xwhere  represents a residual connection, the contextu-
al information  is  added  back  (by  skipping  the  connec-
tion)  to  the  original  feature  map  for  enhancement.  We
apply MA to the last layer of the feature embedding net-
work.
 3. Hybrid relation projection (HRP)

Transformers  [49],  [50] can  learn  contextual  rela-
tions  between  all  prototypes  and  query  set  embeddings
without  considering  their  ordering,  which  is  suitable  for
modeling  complex  interactions  between  prototypes  and
query  set  embeddings.  So,  we  developed  transformer-
based  HRP  modules,  including  prototype  self-projection
(PSP) and query set cross-projection (QCP), as shown in
Figure 2.

Prototype  self-projection  (PSP)  In order  to  estab-
lish a  global  dependency between the  previous  and cur-
rent task prototypes, the adaptive adjustment of the pro-

T(·)
W

Wnew Wnew = T (W ) T (·)
(Q,K,V ) Q K V

W

totype is  realized  to  make  the  prototypes  more  distin-
guishable in the current task space. We train a set-to-set
function  based on Transformers, which transforms a
set of original prototypes  into a set of updated proto-
types ,  where .  The  inputs  of 
adopt the triple form of . , ,  and  share
the same input source , PSP can be expressed as
 

Q = WQW� K = WKW� V = WV W (6)
 

Ṽ = Softmax
(
QKT

√
m

)
V (7)

 

Wnew = LayerNorm
(
Dropout

(
WFCṼ +W

))
(8)

W = [Wbase;Wnovel]

WQ,WK ,WV ∈ Rm×hm

h WFC ∈
Rhm×m m

Softmax
(

QKT
√
m

)
V

V Ṽ

Wnew

where  indicates  that  the  old  class
prototypes  and  the  novel  class  prototypes  are  merged,
and updated simultaneously through PSP. The matrices

 are the learnable transform ma-
trices,  which  project  the  original  prototypes  into  the
shared  metric  space,  is  the  number  of  heads, 

 is  a  trainable  weight  matrix,  and  is the  em-
bedding  dimension.  is  the  relation
matrix  between  prototypes.  We  use  the  relation  matrix
as  the  weight  coefficients  to  aggregate  the  information
from  all  the  prototypes  in  to  obtain .  Finally,  the
original prototypes are merged to obtain updated proto-
types .

X W
Xnew

Xnew = T (X,W )

Query set cross-projection (QCP)  After the classifi-
er  prototypes  are  updated,  it  will  inevitably  lead  to  a
mismatch between  the  new  and  old  class  feature  repre-
sentations and  the  classifier,  so  the  feature  representa-
tion needs to be adjusted to better adapt to the current
classification task. Because the query set samples need to
be classified  according  to  the  distance  from  the  proto-
types, we establish a cross-projection process between the
query  set  embeddings  and  the  prototypes  to ob-
tain  the  updated  embeddings .  QCP  and  PSP  use
the  same  calculation  form,  i.e., .  The
formula is as follows:
 

Q = WQX, K = WKW , V = WV W (9)
 

X̃ = Softmax
(
QKT

√
m

)
V (10)

 

Xnew = LayerNorm
(
Dropout

(
WFCX̃ +X

))
(11)

 4. Pseudo-incremental episode selection (PES)
In the FSCIL scenario, it is very important to train

HRP  to  have  the  ability  of  continuously  learning.  We
propose  a  method  based  on  meta-learning  to  conduct
multi-stage training for HRP to achieve this goal. Meta-
learning  requires  a  large  number  of  support  sets  and
query sets  to  learn the common characteristics  of  cross-
tasks. However, in FSCIL, only data from a single task is
available, and the amount of data in incremental tasks is
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always  limited,  which  cannot  be  used  to  support  meta-
learning  training  methods.  Fortunately,  in  the  FSCIL
task,  base  data is  sufficient,  so  how to  make full  use  of
base  data  for  meta-learning  training  plays  a  key role  in
HRP’s  continuous  learning  ability.  In  [14],  in  order  to
make  the  embedded  model  see  more  categories  during
training  and  improve  the  portability  of  the  model,  a
large  number  of  novel  classes  were  generated  based  on
the method of mixup [51].  Inspired by [14],  we design a
pseudo-incremental episode selection (PES) algorithm to
construct pseudo-incremental  tasks  based  on  base  class-
es to simulate incremental scenes, as shown in Figure 3.
PES randomly  draws  two samples,  and ,  from two
different  base  classes  and  to generate  a  representa-
tive pseudo-incremental class (PIC) sample .
 

Iab = λIa + (1− λ)Ib (12)

λ
Nb

Nb (Nb − 1) /2

Nn K

Nn

where  is a random number of interpolations coefficient,
based on  base classes, we can use the above method
to generate  pseudo-incremental new class-
es. Similar to the episodic meta-learning strategy, we use
pseudo-incremental datasets  to  generate  a  pseudoincre-
mental  support  set  (PIS)  in  the  form of  an -way -
shot  in  each  iteration.  The  corresponding  pseudo-incre-
mental query set (PIQ) is sampled from  classes.

 V. Experiments

 1. Dataset
In the experiment,  we selected two classic  datasets,

CUB-200  and  MiniImageNet,  that  are  widely  used  to
evaluate the performance of FSCIL, as well as two fine-
grained medical datasets, HyperKvasir and SKIN-7.

224× 224

The CUB-200 dataset contains approximately 6,000
training  images  and  6,000  test  images  from 200  classes.
Each image size is . We split the 200 classes in-
to 100 base classes and 100 incremental classes. For each
incremental session training set of CUB-200, we use the
10-way  5-shot  setting.  Hence,  for  the  CUB-200  dataset,
we  have  1  base  session  and  10  incremental  sessions  (11
sessions in total).

84× 84

The  MiniImageNet  dataset  contains  60,000  images
from 100  classes,  which  are  selected  from the  ImageNet
dataset. Each class has 500 training images and 100 test
images,  with  a  size  of .  We  split  the  100  classes

into 60 base classes and 40 incremental classes. For each
incremental  session,  we  use  the  5-way  5-shot  setting.
Therefore, for the MiniImageNet dataset, we have 1 base
session and 8 incremental sessions (a total of 9 sessions).

The  HyperKvasir  dataset  [52]  is  one  of  the  largest
publicly available gastrointestinal endoscopy datasets un-
der CC BY 4.0  (Creative  Commons  Attribution  4.0  In-
ternational). The  dataset  includes  labeled  images,  seg-
mented  images,  unlabeled  images,  and  labeled  videos,
and we  choose  labeled  images  among  them  for  experi-
ments. The dataset contains a total of 10,662 labeled im-
ages,  and  23  categories,  including  BBPS  2-3  (1148),
Polyps (1028), Cecum (1009), Dyed lifted polyps (1002),
Pylorus  (999),  Dyed  resection  margins  (989),  Z-line
(932), Retroflex stomach (764), BBPS 0-1 (646), Ulcera-
tive  colitis  grade-2  (443),  Esophagitis  grade  A  (403),
Retroflex rectum (391), Esophagitis grade B-D (260), Ul-
cerative  colitis  grade-1  (201),  Ulcerative  colitis  grade-3
(133), Impacted stool (131), Barrett’s short segments (53),
Barretts (41),  Ulcerative  colitis  grade-0-1  (35),  Ulcera-
tive colitis grade-2-3 (28), Ulcerative colitis grade-1-2 (11),
Ileum (9), Hemorrhoids (6). Among them, the number of
samples  for  the  latter  three  diseases  is  too  small,  so  we
selected the first 20 diseases to carry out the experiment.
We selected the top 5 disease categories with the largest
amount of data as the base classes, and the remaining 15
as  the  incremental  classes.  In  the  HyperKvasir  dataset,
each incremental task had 3 new classes, with 10 images
per category, which means the new class dataset was set
at 3-way 10-shot (a total of 6 sessions).

The SKIN-7 dataset [53] contains the 7 most impor-
tant skin  disease  classes  in  the  realm  of  pigmented  le-
sions collected  from  different  age  groups,  different  re-
gions, and different methods. There are 10,015 dermato-
scopic images in total. The images are labeled by expert
pathologists  as  Melanocytic  nevi  (NV, 6705),  Melanoma
(MEL, 1113),  Benign  keratosis  (BKL, 1099),  Basal  cell
carcinoma (BCC,  514),  Actinic  keratoses  and  Intraep-
ithelial carcinoma (AKIEC, 327), Vascular lesion (VASC,
142)  and  Dermatofibroma  (DF,  115).  We  chose  NV,
MEL, and BKL as the base classes and the remaining 4
classes  as  the  increment  classes.  For  each  incremental
session  of  SKIN-7,  we  use  settings  of  2-way  10-shot  for
experiments.  Therefore,  for  the SKIN-7,  we have 1 base
session and 2 incremental sessions (a total of 3 sessions).
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Figure 2  Hybrid relation projection module.
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 2. Implementation details
In the first stage, we use the ResNet-18 architecture

as  the  backbone  network  for  both  MiniImageNet  and
CUB-200 datasets, pre-train 100 epochs on the base task
with the SGD optimizer, and use the same initial learn-
ing  rate  as  CEC,  which  is  0.1.  After  30  and  40  epochs,
we reduced  the  learning  rate  to  0.01  and  0.001,  respec-
tively. We found that when the initial learning rate was
adjusted to 0.01, better results were achieved on the two
natural  image  datasets,  so  we  carried  out  experiments
with  different  learning  rates.  For  HyperKvasir  and
SKIN-7, we use the ResNet-34 architecture as the back-
bone network with a learning rate of 0.01, and other set-
tings are the same as the natural image experiments.

In the second stage, for MiniImageNet and CUB-200,
the  support  set  selection  method  is  15-way  1-shot.  For
HyperKvasir, it’s 5-way 1-shot. For SKIN-7, it’s 2-way 5-
shot. We fix E to 10, use an initial learning rate of 0.0002
on all datasets, and train on HRP for 100 epochs.
 3. Comparison with state-of-the-art methods

To  better  evaluate  the  overall  performance  of  our
model,  in  addition  to  the  baseline  introduced,  we  com-
pare FSCIL-EACA with state-of-the-art methods for FS-
CIL (SSFE-Net  [13],  TOPIC [15],  FSLL [17],  CEC [19],
MgSvF [38],  Data-free replay [40],  MetaFSCIL [41],  and
MFS3 [42]) and some classic methods of CIL (iCaRL [5],
EEIL [7],  NCM [11],  PASS [12],  and IL2A [14]).  At the
same  time,  we  also  compared  the  Ft-CNN  and  Joint-
CNN models. The Ft-CNN model only involves fine-tun-
ing the model on incremental tasks; the Joint-CNN mod-
el involves  co-training  on-base  task  data  and  incremen-
tal task  data.  We first  conducted an experimental  com-
parison  on  the  CUB-200  and  MiniImageNet  datasets  to
prove  the  superiority  of  our  model.  Then  we  validated
our method on the HyperKvasir and SKIN-7 datasets.

Results  and discussion on CUB-200  The results  of
CUB-200 are shown in Table 1. All models in the experi-
ments were pre-trained with ImageNet. According to the
experimental results, we have the following observations:

1)  The  baseline  model  has  significant  superiority.
Our model  FSCIL-EACA proposes  EAN and AIC mod-

ules on the basis of the baseline model, and the average
accuracy (Avg) is improved by 4.73%.

2)  FSCIL-EACA  significantly  outperforms  Ft-CNN
and Joint-CNN models. The Avg of FSCIL-EACA on the
CUB-200 dataset is 36.21% and 16.50% higher than that
of Ft-CNN and Joint-CNN, respectively. This shows that
fine-tuning on new data or retraining on all old and new
data  is  not  the  best  option  when  there  are  only  a  few
new data.

3)  Our  model  is  better  than  typical  incremental
learning  methods  like  iCaRL,  EEIL,  and  NCM.  This
proves that  our  method  can  effectively  solve  the  catas-
trophic forgetting problem in FSCIL without storing old
data samples, and only a few samples of new classes are
needed to adapt to new tasks, whereas incremental learn-
ing methods require sufficient samples for each new class
to obtain satisfactory performance.

4)  Compared  with  typical  FSCIL  methods  such  as
TOPIC,  FSLL,  CEC,  etc.,  the  performance  of  FSCIL-
EACA  has  improved  in  almost  all  sessions.  Compared
with the  most  similar  CEC  model,  the  Avg  has  in-
creased by 3.45%. It shows that FSCIL-EACA performs
better through the embedding augmentation and classifi-
er adaptation strategy.

5) Better results are achieved when the initial learn-
ing rate is 0.01. The * in the following experimental re-
sults represents that we have adjusted the learning rate.
We  denote  the  experimental  results  as  FSCIL-EACA*.
Compared  with  FSCIL-EACA,  the  Avg  of  FSCIL-EA-
CA* has increased by 1.68%. Compared to models  with
the  same  initial  learning  rate  of  0.01  (FSLL*,
FSLL+SSL*, IDLVQ-C*),  our  model  has  absolute  ad-
vantages.

Results  and  discussion  on  MiniImageNet  Table  2
shows  the  results  of  the  experiments.  From  the  related
results, our model also achieves excellent results on Mini-
ImageNet and can draw the same conclusions as CUB-200.
It  is  worth noting that none of  the current state-of-the-
art methods  are  pre-trained,  so  only  the  models  identi-
fied by  #  are  pre-trained  in  our  experiments  (i.e.,  FS-
CIL-EACA# and FSCIL-EACA*#). It can be seen from
the  results  that  further  improvement  has  been  achieved
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Table 1  Results on CUB-200 using the ResNet-18 architecture on 10-way 5-shot FSCIL setting

Tasks

Model 1 2 3 4 5 6 7 8 9 10 11 Avg

Baseline 75.92 72.02 67.37 62.68 61.15 57.67 56.51 53.58 52.40 51.39 49.89 60.05

Ft-CNN 68.68 44.81 32.26 25.83 25.62 25.22 20.84 16.77 18.82 18.25 17.18 28.57

Joint-CNN 68.68 62.43 57.23 52.80 49.50 46.10 42.80 40.10 38.70 37.10 35.60 48.28

iCaRL [5] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67

EEIL [7] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27

NCM [11] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49

TOPIC [15] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92

FSLL [17] 68.72 65.67 62.33 58.10 55.44 52.66 51.17 50.27 48.31 47.25 45.55 55.04

CEC [19] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33

Data-Free Replay [40] 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52

MetaFSCIL [41] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.92

MgSvF [38] 72.29 70.53 67.00 64.92 62.67 61.89 59.63 59.15 57.73 55.92 54.33 62.37

MFS3 [42] 75.63 72.51 69.65 65.29 63.13 60.38 58.99 57.41 55.55 54.95 53.47 62.45

SSFE-Net [13] 76.38 72.11 68.82 64.77 63.59 60.56 59.84 58.93 57.33 56.23 54.28 62.99

FSCIL-EACA 79.04 75.19 71.61 66.59 66.04 62.71 60.57 59.05 57.66 57.46 56.61 64.78

FSLL* [17] 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 60.93

FSLL+SSL* [17] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 62.62

IDLVQ-C* [18] 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 65.23

FSCIL-EACA* 79.25 76.03 72.41 67.81 67.76 64.84 64.07 62.13 61.13 59.98 59.32 66.79
 

  

Table 2  Results on MiniImageNet using the ResNet-18 architecture on 5-way 5-shot FSCIL setting

Tasks

Model 1 2 3 4 5 6 7 8 9 Avg

Baseline 70.67 66.09 61.94 58.59 55.61 52.73 50.12 48.32 46.99 56.78

Baseline# 73.90 68.91 64.73 61.36 58.44 55.31 52.66 50.74 48.98 59.45

Ft-CNN 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 13.45

Joint-CNN 61.31 56.60 52.60 49.00 46.00 43.30 40.90 38.70 36.80 47.25

iCaRL [5] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.8 17.21 33.29

EEIL [7] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 34.97

NCM [11] 61.31 47.8 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83

TOPIC [15] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64

FSLL [17] 61.32 58.43 54.53 50.68 47.79 45.58 43.36 40.93 39.49 49.12

CEC [19] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75

SSFE-Net [13] 72.06 66.17 62.25 59.74 56.36 53.85 51.96 49.55 47.73 57.74

Data-Free Replay [40] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02

MetaFSCIL [41] 72.04 67.94 63.77 60.29 57.58 55.16 52.9 50.79 49.19 58.85

MFS3 [42] 73.65 68.91 64.60 61.48 58.68 55.55 53.33 51.69 50.26 59.79

FSCIL-EACA 76.23 71.11 66.31 63.39 60.60 57.13 54.37 52.19 50.61 61.33

FSCIL-EACA& 77.45 72.15 67.9 64.41 61.40 58.32 55.44 53.45 51.70 62.47

FSCIL-EACA# 76.18 71.32 67.40 64.17 61.48 58.25 55.46 53.25 51.83 62.15

FSLL* [17] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28 52.58

FSLL+SSL* [17] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 53.92

IDLVQ-C* [18] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16

FSCIL-EACA*# 80.50 75.89 71.46 68.00 65.23 61.88 58.71 56.59 55.14 65.93
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60 + 60× (60− 1)/2

Iabc=λIa+βIb+(1−λ−β)Ic
λ β

compared to FSCIL-EACA. We added an additional ex-
periment  on  MiniImageNet,  replacing  the  SSL  method
with the Mixup data augmentation method. We perform
Mixup data augmentation on the 60 base  classes  to  ob-
tain  enhanced  classes.  In  this  way,  the
original 60-class problem in the base task is expanded to

-class questions  to  train  the  embed-
ding augmentation network to learn transferable and di-
verse  embedding  representations.  For  the  PES  module,
we use three types of base image merging to obtain pseu-
do-incremental  classes,  i.e., ,
where  and  are random numbers of interpolation coef-
ficients. In the same way, we deploy the model to real in-
cremental  tasks,  and  do  not  perform  the  Mixup  data
augmentation process in the new data classification pro-
cess.  The  experimental  results  are  expressed  as  FSCIL-
EACA&, and the Avg is 1.14% higher than that of FS-
CIL-EACA. This  method  only  works  with  MiniIma-
geNet.  There  is  no  improvement  when  we  adopt  this

100 + 100× (100− 1)/2

method in CUB-200. This may be due to the large num-
ber  of  CUB-200 classes.  This  method expands  the  basic
tasks  to -class,  and  each  base
class has only 60 samples, which is not conducive to fea-
ture representation.

Results and discussion on HyperKvasir  The experi-
mental  results  are  shown  in Table  3.  Compared  with
Baseline,  Joint-CNN,  and  CEC,  FSCIL-EACA  has
achieved  the  same  effect  on  fine-grained  medical  image
datasets as in natural image datasets, showing the supe-
riority  of  the  FSCIL-EACA  model.  Compared  with  the
model IL2A and PASS network, which also uses the en-
hanced algorithm in the embedded network, FSCIL-EA-
CA has  achieved  better  results,  which  proves  the  effec-
tiveness of the embedded enhanced network proposed in
this  paper.  In  subsequent  tasks,  FSCIL-EACA  only
needs  a  small  number  of  new class  samples  to  adapt  to
new tasks, while IL2A and PASS need a large amount of
new task data to achieve satisfactory results.

 
 

Table 3  Results on HyperKvasir using the ResNet-34 architecture on 3-way 10-shot FSCIL setting

Model
Tasks

1 2 3 4 5 6 Avg

Acc

Baseline 98.82 88.98 79.94 74.21 67.59 67.51 79.51

Joint-CNN 98.82 87.89 78.33 73.63 68.68 68.06 79.24

IL2A [14] 97.78 80.23 63.41 55.92 46.25 36.72 63.39

PASS [12] 98.07 82.26 62.77 43.88 31.58 18.15 56.19

CEC [18] 99.09 89.01 80.02 73.99 67.86 67.91 79.65

FSCIL-EACA 99.27 90.71 82.82 77.53 72.71 71.04 82.35

F1

Baseline 98.75 89.00 80.08 75.17 70.61 69.06 80.45

Joint-CNN 98.75 88.18 78.69 75.32 71.75 70.15 80.47

IL2A [14] 97.35 81.22 64.04 57.86 49.45 38.62 64.76

PASS [12] 97.77 82.56 63.24 46.35 35.21 20.75 57.65

CEC [19] 99.04 88.94 80.24 74.88 70.89 69.35 80.56

FSCIL-EACA 99.19 90.71 83.33 78.99 75.21 72.59 83.34

AUC

Baseline 99.22 93.72 89.04 86.63 84.39 83.72 89.45

Joint-CNN 99.22 93.24 88.28 86.71 84.99 84.29 89.46

IL2A [14] 98.61 88.70 79.87 76.27 71.45 66.69 80.27

PASS [12] 98.79 89.87 79.52 69.78 63.65 56.92 76.42

CEC [19] 99.40 93.68 89.13 86.47 84.54 83.87 89.52

FSCIL-EACA 99.54 94.70 90.83 88.69 86.83 85.57 91.03
 
 

Results  and  discussion  on  SKIN-7  The  results  in
Table  4 show that  our  model  achieves  better  and  more
stable results, with consistent increases in all three evalu-
ation metrics of Accuracy (Acc), F1, and receiver operat-
ing  characteristic  (ROC)  curve  (AUC).  This  shows  our
model’s excellent ability to deal with real-world medical
data problems.

 4. Ablation experiments
The  proposed  method  comprises  three  components:

SSL, MA, and AIC. Here we conducted ablation experi-
ments  on the  CUB-200 and MiniImageNet  datasets  and
further discussed the impact of each component.

For CUB-200,  we  conducted  four  different  experi-
ments with the following experimental settings: the mod-
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el  contains  only  the  AIC  module,  only  the  SSL  module
with  feature  generalization,  contains  both  the  SSL  and
MA  modules  (i.e.,  EAN),  contains  both  the  EAN  and
AIC modules (i.e.,  EAN+AIC, EAN+AIC*). Table 5 il-
lustrates the experimental results for these four variants.
When the AIC module is added to the baseline, the clas-
sification performance  on  each  task  is  significantly  im-
proved,  and  the  average  accuracy  rate  is  increased  by
2.16%. This suggests that AIC models global task corre-
lations, facilitating  efficient  integration  of  unified  classi-
fiers.  And use  the  global  task  information  to  accurately
update the embedding representation of  the test  sample
to  make  it  more  suitable  for  the  current  classification
task.  We  observed  some  incremental  precision  when
adding the SSL module to baseline. When using SSL and
MA modules (i.e., EAN) for feature embedding enhance-
ment,  more  incremental  accuracy  is  produced,  and  the
average accuracy is  3.62% higher  than baseline.  The ef-
fectiveness of EAN shows that a well-trained embedding
augmentation network is beneficial to improving the sta-
bility  of  the  model  and  is  of  great  value  for  extracting
the embedding features  of  the base class  and new class.
When the EAN and AIC modules are introduced simul-
taneously, the  performance  on  each  task  is  further  im-
proved, and the average accuracy of EAN+AIC is 4.73%
higher  than  that  of  the  baseline.  It  is  shown  that  the

EAN  and  AIC  modules  promote  each  other,  and  the
combination of the two significantly improves the classi-
fication performance of FSCIL.

For the ablation experiments on MiniImageNet and
HyperKvasir  datasets  as  shown  in Tables  6 and 7,  we
can get some conclusions similar to the CUB-200 experi-
ments.
 5. Visualization

Visual class activation mapping (CAM) is a popular
tool  for  visualizing  discriminative  regions.  To  visualize
the  MA  module  effect,  we  adapted  the  post-hoc  visual
explanation  method  (Score-CAM)  [54].  The  results  in
Figure  4 show  that  the  MA  module  can  capture  more
discriminative  features  from  the  collaborative  context,
clearly focusing on the target object. Therefore, the visu-
alization intuitively demonstrates the effectiveness of the
MA module.

▲ •

We use t-SNE to visualize the prototype and test set
feature  embeddings  for  each  class  on  the  CUB-200
dataset. As shown in Figure 5, the prototypes are denot-
ed by “ ”, the test set embeddings are denoted by “ ”,
and the dots with different colors represent different da-
ta classes. In this study, five classes are randomly select-
ed as base classes (30, 47, 58, 78, 88), and five addition-
al classes are added as incremental classes (108, 128, 138,

  

Table 4  Results on SKIN-7 using the ResNet-34 architecture on 2-way 10-shot FSCIL setting

Model

Tasks

1 2 3

Acc F1 AUC Acc F1 AUC Acc F1 AUC

Basline 91.72 91.76 93.82 80.33 81.38 88.36 75.66 75.81 85.89

CEC [19] 92.01 92.04 94.03 79.04 79.53 87.21 74.44 74.87 84.88

FSCIL-EACA 92.53 92.65 94.49 80.53 81.87 88.67 78.24 78.42 87.41
 

  

Table 5  Ablation experiment results on CUB-200

Model
Tasks

1 2 3 4 5 6 7 8 9 10 11 Avg

Baseline 75.92 72.02 67.37 62.68 61.15 57.67 56.51 53.58 52.40 51.39 49.89 60.05

+AIC 77.66 73.39 69.47 64.31 63.33 59.79 58.88 56.16 54.70 54.05 52.52 62.21

+SSL 78.12 73.50 68.76 63.86 62.70 58.59 56.74 56.14 52.94 52.98 51.59 61.45

+EAN 78.67 74.66 70.62 65.62 64.68 61.15 59.74 58.72 56.36 55.61 54.56 63.67

+EAN+AIC 79.04 75.19 71.61 66.59 66.04 62.71 60.57 59.05 57.66 57.46 56.61 64.78

+EAN+AIC* 79.25 76.03 72.41 67.81 67.76 64.84 64.07 62.13 61.13 59.98 59.32 66.79
 

  

Table 6  Ablation experiment results on MiniImageNet

Tasks

Model 1 2 3 4 5 6 7 8 9 Avg

Baseline# 73.90 68.91 64.73 61.36 58.44 55.31 52.66 50.74 48.98 59.45

+AIC# 75.43 70.29 65.97 62.44 59.49 56.26 53.58 51.43 49.59 60.50

+EAN# 75.23 70.06 66.06 62.65 59.50 56.72 53.93 52.02 50.65 60.76

+EAN+AIC# 76.18 71.32 67.40 64.17 61.48 58.25 55.46 53.25 51.83 62.15

+EAN+AIC*# 80.50 75.89 71.46 68.00 65.23 61.88 58.71 56.59 55.14 65.93
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140, 179). We show results for two configurations: 1) with
and without EAN and 2) with and without AIC. In Fig-
ure  5(a), we  show  the  baseline  model  before  the  incre-
mental update, and Figure 5(b) shows the baseline+EAN
model  before  the  incremental  update.  We  observe  that
EAN reduces the overlap between the base class and the
new class (such as the base class 58 and the new class 140).

And make the  new classes  more  compact  in  the  feature
space (such as new classes 128 and 140). Therefore, EAN
can  learn  more  general  and  transferable  features  for
downstream tasks,  resulting  in  robust  embedding  repre-
sentations. Then we add the AIC module to incremental-
ly update  the  prototypes  and  test  set  feature  embed-
dings,  as  visualized  in Figure  5(c)  and Figure  5(d).  We
can infer that the AIC module further improves the dis-
tribution  of  old  and  new  classes,  contributing  to  the
higher density  of  samples  of  the  same  class  in  the  fea-
ture space. And the prototypes can be adaptively updat-
ed  to  calibrate  the  decision  boundary  between  old  and
new classes.  It  is  also  shown that  the  AIC module  pre-
serves  the  classification  performance  of  old  samples  and
resists catastrophic forgetting.

 VI. Conclusions
This study proposes a novel FSCIL-EACA to adapt

to  the  incremental  recognition  of  few-shot  images.  Our
model addresses the main challenges of  FSCIL from the
perspectives  of  embedding  representation  learning  and
classifier  learning.  First,  we  learn  powerful  embedding
representations by introducing self-supervision and mod-
ulated attention training model on the base class. In the
second  stage,  in  order  to  achieve  cross  base  and  novel
classes  classification  weights  calibration  and  query  data
embeddings  adaptation.  We  propose  an  incremental
adaptive incremental classifier (AIC) program, including
a hybrid  relation projection module  (HRP) and pseudo-
incremental episode selection module (PES). Specifically,
we  project  the  old  and  novel  class  prototypes  into  the
shared  embedding  space  based  on  the  AIC  module  and
contextualize the  prototypes  to  get  the  updated  proto-
types.  Then,  in  order  to  adapt  the  query sample  to  the
current task, we build a cross-mapping between the test
data and the prototypes to update the test embeddings.
Meanwhile, we  use  the  PES  module  to  simulate  incre-
mental episodes to enhance the scalability of the classifi-
er. We conduct comparative and ablation experiments on
four popular datasets, showing that the proposed method
is general, suitable for medical image and natural image
classification tasks,  and  has  achieved  superior  recogni-
tion results.
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Table 7  Ablation experiment results on HyperKvasir

Model
Tasks

1 2 3 4 5 6 Avg
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(a) Original images

(b) Baseline+SSL

(c) Baseline+SSL+MA

Figure 4  The visualized activation maps of MA on CUB-200.
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Figure 5  Prototype  and  test  set  feature  embedding  visualization.
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