

RESEARCH ARTICLE

Formal Verification of Data Modifications in
Cloud Block Storage Based on Separation Logic

Bowen ZHANG1, Zhao JIN3,1, Hanpin WANG2,1, and Yongzhi CAO1

1. Key Laboratory of High Confidence Software Technologies (MOE), School of Computer Science, Peking University,
Beijing 100871, China

2. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

Corresponding author: Hanpin WANG, Email: whpxhy@pku.edu.cn
Manuscript Received May 3, 2022; Accepted October 8, 2022
Copyright © 2024 Chinese Institute of Electronics

Abstract — Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block
storage (CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can
provide interfaces for other types. Data modifications in CBS have potential risks such as null reference or data loss.
Formal verification of these operations can improve the reliability of CBS to some extent. Although separation logic
is a mainstream approach to verifying program correctness, the complex architecture of CBS creates some challenges
for verifications. This paper develops a proof system based on separation logic for verifying the CBS data modifica-
tions. The proof system can represent the CBS architecture, describe the properties of the CBS system state, and
specify the behavior of CBS data modifications. Using the interactive verification approach from Coq, the proof sys-
tem is implemented as a verification tool. With this tool, the paper builds machine-checked proofs for the functional
correctness of CBS data modifications. This work can thus analyze the reliability of cloud storage from a formal per-
spective.
Keywords — Formal verification, Separation logic, Cloud block storage, Verification tool, Coq.
Citation — Bowen ZHANG, Zhao JIN, Hanpin WANG, et al., “Formal Verification of Data Modifications in
Cloud Block Storage Based on Separation Logic,” Chinese Journal of Electronics, vol. 33, no. 1, pp. 112–127, 2024.
doi: 10.23919/cje.2022.00.116.

 I. Introduction
In recent years, with the rapid development of Inter-

net technology, cloud services have made breakthrough
progress. However, with more frequent use, the reliability
of cloud storage has been questioned in recent years. In
the United States, nearly USD 285 million is lost per
year directly caused by cloud storage failures [1]. For ex-
ample, in 2020, dozens of servers in Amazon’s cloud ser-
vices have crashed for five hours simultaneously, which
was caused by a “small increase in storage capacity” [2].
Although many providers deploy advanced failover meth-
ods, cloud storage still suffers from many service failures
and reliability problems. Therefore, it is necessary to im-
prove the reliability of cloud storage, to avoid the recur-
rence of such accidents and reduce the risk of data loss.
The reliability involves two main dimensions: the stability
of hardware infrastructure and the correctness of data

management programs [3]. The management programs are
directly related to users. Improving their correctness can
thus improve the reliability of cloud storage. Currently,
the mainstream cloud storage in the market can be clas-
sified into three categories: file storage, object storage,
and block storage [4]. This classification is about the dif-
ferent system architectures and data storage levels.
Cloud block storage (CBS) has the most direct interac-
tion with the storage medium. It can even directly pro-
vide interfaces for the other two types [5].

Hadoop distributed file system (HDFS) [6] is one of
the most representative CBS products. HDFS has a typi-
cal CBS storage approach, which allows for deploying
large data sets by dividing them into discrete blocks.
HDFS has a master-slave storage architecture. The mas-
ter node maintains a file system, and the slave nodes
store the block’s actual content. The other CBS prod-
ucts have a similar architecture and storage method to

Associate Editor: Prof. Ju REN, Tsinghua University.

Chinese Journal of Electronics
vol. 33, no. 1, pp. 112–127, January 2024
https://doi.org/10.23919/cje.2022.00.116

HDFS. Generally speaking, the management of data in
CBS involves a logical storage relation like “file-block-
content”. To analyze and verify the correctness of pro-
grams in CBS, we need to pay attention to this storage
relation.

Early versions of CBS products, including HDFS,
follow the simple coherency model [7], which means that
once a file is created, users cannot modify the file’s con-
tent. That model is designed to simplify data coherency
issues and enable high throughput data access. However,
with the growing popularity of CBS, various usage sce-
narios require CBS to support the modification of exist-
ing files. Therefore, the updated CBS products started to
support data modifications. HDFS typically introduces
two management programs: append and truncate, to add
and remove content at the end of a file. Compared to ba-
sic CBS data operations, these modifications are more
complex to execute and more likely to cause logical stor-
age errors, such as null reference or block loss. Therefore,
it is necessary to analyze their correctness.

The correctness of a program generally refers to the
fact that each input will produce the desired result.
There are two main approaches to verifying it: testing
and formal verification. The testing approach is difficult
to achieve overall coverage for large systems [8]. Formal
verification models complex systems as mathematical en-
tities. It can mathematically analyze whether a program
is correct [9]. Theorem proving is a formal verification
technique based on mathematical logic [10]. It models a
computer system as an axiomatic system with reasoning
capabilities. In recent years, theorem proving has produced
many results for the verification of traditional storage.
But, cloud storage has a more complex architecture than
local storage. In addition, the size of cloud storage may
change as the requirements grow. Such factors make for-
mal verification of cloud storage challenging, and it is
also hard to directly apply the verification techniques for
traditional storage. Therefore, researchers need to extend
and innovate on the existing approaches. The current
validation works on cloud storage mainly focus on data
consistency, high availability, or integrity. However, there
are fewer discussions of data operations from a logical
storage perspective. Logical storage involves information
to locate the target data, such as file directories and
block locations. We advocate using the theorem proving
technique to analyze and verify the correctness of CBS
data operations, especially modifications, as a way to re-
duce the errors of logical storage.

t
{H}t{Q} t

H
Q

Separation logic [11], [12] is a breakthrough in the
area of program verification. It was originally proposed
by O’Hearn and Reynolds, as a formal proof system based
on Hoare logic [13]. Separation logic is an intuitive way
to verify programs with explicit memory management [14].
It describes the behavior of a program by a triple as
“ ”, such a triple is called a specification of .
The precondition is a predicate that describes the in-
put state, and the postcondition describes the output

state. Separation logic has two features: small-footprint
specification and local reasoning. According to these two
features, one may verify a program by focusing on only
the partial state relevant to execution without discuss-
ing the irrelevant state [15]. Thus, separation logic is
suitable for verifying complex storage systems, especially
for CBS.

To improve the practicality and efficiency of theo-
retical models, researchers usually implement a verifica-
tion tool to facilitate reasoning. Coq [16] is one of the
mainstream implementation environments. The proof
system developed in Coq can be used as a verification
tool, and the proof process of verifying a program in such
a tool retains mathematical rigor. Using that tool, one
can build machine-checkable proof and avoid possible
negligences in pen-and-paper inference [17]. Hence, many
practical tools are used for analyzing computer systems,
from data structures to operating system kernels.

For analyzing and verifying CBS management pro-
grams, Zhang et al. implemented a verification tool [18],
by directly developing a proof system in Coq. The proof
system has the features of separation logic. The verifica-
tion tool with Coq can encode CBS operations intuitive-
ly and verify their specifications semi-automatically.
Zhang’s work introduces the concepts of immutable vari-
ables and mutable heap from the functional program-
ming language [19]. The immutable variable means that
once a variable has been assigned, then its value cannot
be changed. The mutable heap means that only the val-
ues allocated in the memory cell can be changed. These
concepts avoid the complexity caused by mutable vari-
ables and make the code easier to reason. They thus rea-
soned and verified the correctness of basic data opera-
tions in CBS products, such as creation, deletion, and
fetch. However, their work directly implements the proof
system in Coq without giving a mathematical definition
first, and it cannot verify the correctness of CBS data
modifications.

In the previous work [18], they implemented a proof
system directly in Coq and used Coq’s built-in libraries
to implement some key components. Although that ap-
proach did simplify the implementation process, the con-
struction of their proof system was ambiguous and ob-
scure, due to the absence of a mathematical definition. In
addition, implementation in Coq directly makes their
work a highly Coq-dependent tool, and all reasoning can
be performed only in Coq. However, the formal verifica-
tion’s rigor is from that it mathematically proves the cor-
rectness of a software design. We believe that construct-
ing a self-contained proof system with formal language
alone is a necessary step. Thus, our proof system does
not involve any implementation environment, and its
construction is more explicit and specific. We also check
whether its components are reliable. Although it is subse-
quently implemented as a tool to simplify reasoning, our
work can improve the rigor of subsequent verification to
some extent.

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 113

On the other hand, the previous work verified only
the basic data operations of early CBS products, such as
create, delete, and fetch. For these operations, their prin-
ciple is relatively simple, their representations are more
intuitive, and their verifications are smoother. The data
modifications introduced later have more complex princi-
ples and are more likely to cause errors. The modifica-
tions involve some new data operations and mechanisms,
such as the block append, or the truncating range of a
block should not be larger than its size. Such points are
the key to consider during the verification but are not
covered by the previous work. We focus on these new op-
erations, developing appropriate representations and rea-
soning rules, and thus build the machine-checked proofs
for their functional correctness.

The main contribution of this paper is that we pro-
pose a proof system based on separation logic, which can
represent, specify, and verify the CBS data modifica-
tions. According to the formal definition of this new
proof system, we update our previous verification tool,
which enhances the rigor of verifications in Coq. Finally,
we give machine-checked proofs for the functional cor-
rectness of CBS data modifications. Our work can fur-
ther improve the reliability of cloud storage from a for-
mal perspective. The contributions are related to the fol-
lowing three aspects:

1) We formalize CBS data modifications and CBS
state properties. In detail, the modifications involve new
data operations. We introduce some primitive opera-
tions related to the key executions of modifications, in-
cluding truncating and appending a block or a file. They
can be organized into a compound statement to repre-
sent the actual operations. Besides, we abstract the CBS
architecture as a two-tier structure. To describe the
properties of a given CBS state, we define the heap pred-
icate with mathematical language alone, instead of rely-
ing on Coq’s standard libraries as in the previous work.

2) We re-formulate CBS separation logic triples to
specify the behavior of a program. The semantics of such
a triple reflects the details of the state, which makes the
proof of reasoning rules smoother. It still follows the
small-footprint specifications in traditional separation
logic. Besides, we formulate reasoning rules for the new
primitive operations. They can be used to verify whether
a specification holds. Thus far, we give a more explicit
and specific formal definition of the proof system.

3) We update the verification tool to simplify rea-
soning, by implementing and proving all the new defini-
tions and rules. Using this tool, we build the machine-
checked proofs of CBS modifications. Corresponding to
append and truncate, we code two sample programs to
represent them. These programs cover the details of ac-
tual executions, such as allowing arbitrary-sized files as
input, or the truncate range of a block cannot be larger
than its size. Finally, we verify the functional correct-
ness of these example programs.

The rest of the paper is organized as follows. In Sec-

tion II, the preliminaries are provided. The construction
of our proof system is presented in the following three
sections. The modeling language in Section III can repre-
sent the CBS architecture and data modifications, and
the assertion language in Section IV can describe the
properties of a given CBS state. In addition, Section V
formulates the CBS separation logic triples and reason-
ing rules to specify and verify the programs. Then, in
Section VI, a validation example of truncating a file is
given. The related work is discussed in Section VII. Fi-
nally, conclusions are drawn in Section VIII, where our
future research on this topic is also discussed.

The implementation of our proof system has amount
to 4723 non-blank lines of Coq code. It includes 86 defi-
nitions, 318 lemmas, and the verifications of 9 usage sce-
narios. All definitions, lemmas, and rules in this paper
are implemented and proved in Coq. We encourage the
reader to check out the corresponding source files online
at: https://github.com/BinksZhang/CBS-Verification.

 II. Preliminaries
In this section, we review some required basic con-

cepts and preliminaries. Represented by HDFS, this sec-
tion first describes the storage architecture of CBS prod-
ucts, then presents the CBS data modifications in prac-
tice, and last shows how the previous work verifies the
CBS basic data operations.
 1. Hadoop distributed file system

Apache Hadoop is a platform providing a solution
for massive amounts of data. HDFS is the core of the
Hadoop storage part and provides high-throughput ac-
cess for storing massive data sets. It is one of the most
representative CBS products, which has characteristics
like the master-slave architecture, breaking up data into
blocks, and storing or operating those blocks as the ba-
sic data unit.

A typical CBS cluster comprises a single master
node and multiple slave nodes [20]. In HDFS, the master
node is called NameNode, and the slave nodes are called
DataNodes. NameNode is the centerpiece of HDFS. It
maintains a block management command set called
Block Management and a file system called NameSpace.
The Block Management contains block operation instruc-
tions, and the NameSpace stores the file’s information
such as file location, directory trees, and block metadata.
In particular, the block metadata contains the key infor-
mation of each block, including block location, file-to-
block mappings, or block size. Each operation on files
and blocks in the cluster will update the NameSpace cor-
respondingly, especially the block metadata. On the oth-
er hand, DataNodes are physical storage to store the ac-
tual data of each block. They are responsible for block
operations such as creation and deletion. After execu-
tions, they will send back the new information about
blocks to NameNode for updating the NameSpace.

The data block is the unit and the physical repre-

 114 Chinese Journal of Electronics, vol. 33, no. 1

sentation of data in HDFS. Each block is identified as a
unique block location. The block size is 128 MB by de-
fault and allows users to configure it. Data blocks serve
many advantages to HDFS. In particular, as being divid-
ed into blocks, a file can be larger than any single disk in
an HDFS cluster.

The architecture of a classic HDFS cluster, which
usually consists of one single NameNode and multiple
DataNodes, is shown in Figure 1.

Block

management
NameSpace

NameNode

Physical storage

DataNode DataNode

Figure 1 The storage architecture of CBS represented by HDFS.

 2. Append and truncate in CBS
Early versions of CBS products follow the simple co-

herency model. Their applications only have write-once-
read-many access for files, which means that once a file
is created cannot be changed. It simplifies data coheren-
cy issues and enables high throughput data access. How-
ever, the growing popularity of CBS has made many re-
quirements for data modifications. For example, a data-
base may need to keep a log as an ever-expanding file. In
the versions after 2.7.0, HDFS offers two additional man-
agement programs: append and truncate. Both these two
modification operations are only allowed at the end of a
file, not anywhere in it.

The append operation can add content at the end of
a file [21]. In HDFS, a client needs to send an append re-
quest to NameNode first. Then NameNode checks the
file’s last block. If the last block is full, HDFS allocates a
new last block. Otherwise, NameNode changes this block
to be an under-construction block, writing the corre-
sponding data into it until it is full.

f

The truncate operation can remove data from the
end of a file [22]. After passing a file location and a trun-
cating range into NameNode, the truncate operation di-
rectly removes all the whole blocks within the range. If
the last block cannot be entirely removed, then a piece of
its contents will be removed. For example, as shown in
Figure 2, truncating a file from the current length to
the new length removes block3 and block4 entirely, and
then it removes a piece of the contents from the tail of
block2.

Other CBS products also offer these two manage-
ment programs for modifications, which follow similar
mechanisms, like EBS [23]. Adding and removing the
contents in CBS may lead to storage errors, such as
block loss or content changes accidentally. It is neces-
sary to ensure that no such errors occur during the CBS
data modifications.

NewLength

File f

CurLength

Block1 Block2 Block3 Block4

Figure 2 Truncate a file.

 3. Verify CBS basic data operations
In the previous work, Zhang et al. implemented a

verification tool for reasoning about the correctness of
CBS basic data operations [18]. Based on separation log-
ic, they developed a proof system directly in Coq. It con-
tains a modeling language to represent the CBS architec-
ture and operations, an assertion language to describe
the properties of the CBS state, and a specification lan-
guage to specify the behavior of programs.

t
{H}t{Q}

Their proof system has the features of separation
logic: small-footprint specification and local reasoning. In
traditional separation logic, the behavior of a program
is specified through a triple, written as . Such a
separation logic triple captures all the interactions that a
program may have with the storage state. Any piece of
state that is not described explicitly in the precondition
is guaranteed to remain untouched. Zhang’s proof sys-
tem also encourages small-footprint specifications, i.e.,
specifications that mention nothing but what is strictly
needed about the CBS storage state. Subsequently, local
reasoning can generalize the local properties to the glob-
al state. Thus one can focus the verification only on the
partial CBS state relevant to execution without dis-
cussing the irrelevant state, which is necessary to reason
such a complex system as CBS.

In addition, the implementation of their proof sys-
tem in Coq allows itself to be used as a verification tool.
They built a series of notations to encode actual CBS op-
erations intuitively and provided some automated proof
scripts to simplify the verifying process. The mathemati-
cal rigor of that tool comes from its implementation envi-
ronment Coq, which is one of the mainstream environ-
ments in implementing proof systems related to comput-
er programs. Coq is an interactive theorem prover based
on “type theory” and “inductive constructions”, which
constrain and strict the proof process. It uses a bottom-
up reasoning approach, requiring the user to construct a
derivation tree for a given proposition, that is, each
premise of the proposition needs to be proven. Zhang’s
work makes the verification of the basic CBS operations

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 115

work smoothly. They thus verified such operations as
creation, replication, fetch, and deletion.

However, their previous work implemented a proof
system directly in Coq, and some components were im-
plemented using Coq built-in libraries, such as the asser-
tion language. Thus, the construction of their proof sys-
tem was ambiguous and obscure, and the implementa-
tion in Coq directly makes their work a highly Coq-
dependent tool. On the other hand, the data modifica-
tions introduced later by CBS, i.e., truncate and append,
have a more complex principle and are more likely to
cause errors. These modifications involve new mecha-
nisms that the previous work cannot reason and verify.

We develop an axiomatic system with inference ca-
pabilities using the formal language alone. This construc-
tion approach makes our model a self-contained proof
system, i.e., it can represent and reason CBS directly
without involving any implementation environment. Be-
sides, during the construction, we also check whether
each component is reliable. Now, the construction of our
proof system is more explicit and specific, which can im-
prove the rigor of verification from a formal perspective.
In addition, for reasoning and verifying actual CBS data
modifications, we introduce some new instructions and
rules into our proof system. Further, to simplify verifica-
tion and give machine-checked proofs, we update the
previous tool in Coq. We also code two sample programs
to represent the CBS modifications: append and trun-
cate. Both cover some details of actual executions, and
we build the machine-checked proofs for them.

 III. Modeling Language
λ

λ

λ

λ

We consider the functional language with -calculus
in our modeling language. The reasons are as follows:
First, the CBS data modifications operate on storage
cells. The concepts of immutable variables and mutable
heap in functional language allow us to focus more on
the operations with locations. Second, -calculus ab-
stracts extraneous details away from the programming
language, which may allow a concise representation of
file or block operations. For example, the -calculus re-
ductions can directly represent introducing arguments to
a function. Last, the implementation in Coq technically
depends on the form of -calculus.

The definition of modeling language mainly con-
cerns the CBS heap, syntax tree, and evaluation rules.
According to CBS’s actual architecture, we use a two-
tier heap structure to abstract its state. We also introduce
a series of primitive operations to represent the key parts
of CBS data modifications. Thereafter, using terms (e.g.,
let-bindings, conditionals.) to combine them, the com-
pound statements can thus represent the actual CBS op-
erations. In addition, we use operational semantics to de-
velop the evaluation rule for each introduced syntax ele-
ment. These rules indicate the update of the system state
and corresponding return value. Using them, one can
represent the execution process of CBS data operations.

 1. CBS heaps
The master node in CBS maintains the relations be-

tween files and blocks, while the slave nodes store each
block’s contents. According to this structure, we subdi-
vide the CBS storage into two tiers: a file tier and a
block tier. Correspondingly, we use a file heap to repre-
sent the system state at the file tier, and it is defined as
a finite map from file locations to block-location se-
quences. Similarly, a block heap represents the storage of
each block’s content, and it is defined as a finite map
from block locations to integer sequences. Thus, we may
abstract the CBS architecture by a two-tier heap struc-
ture, as shown in Figure 3.

FLoc

BLoc

Integer

Heapf
Heapb

...

...

Figure 3 Using a two-tier heap structure to represent CBS state.

floc bloc

list(bloc)
list(int)

fmap α β α β

Thereafter, let be a file location type and
be a block location type, and they can be implemented
by natural numbers. Let denote a sequence of
block locations, denote the sequence of integers,
and let denote the finite maps type from to .
The finiteness property is required to ensure that fresh
locations always exist. We define the file heaps and block
heaps as below.

fmap floc list(bloc)
Definition 1 (Representation of file heaps) The

type of file heaps is defined as “ ”.

fmap bloc list(int)
Definition 2 (Representation of block heaps) The

type of block heaps is defined as “ ”.
heapf heapb

hf hb

hf ⊥ h′
f

hf ⊎ h′
f

Let and denote the types of file heaps
and block heaps, let and denote a meta-variable of
these two types, respectively. Thereafter, let as-
sert two file heaps are disjoint, that is, there is no file lo-
cation both belong to the domain of two file heaps. Let

 denote the union of two disjoint file heaps. These
two operators may similarly apply to the block heap.

A CBS heap, representing a piece of CBS state, is
defined by a 2-tuple consisting of a file heap and a block
heap.

(heapf × heapb)
Definition 3 (Representation of CBS heaps) The

type of CBS heaps is defined as “ ”.
heap

h h
(hf , hb)

h1 h2

(hf , hb) (h′
f , h

′
b) h1 ⊥ h2

(hf ⊥ h′
f) ∧ (hb ⊥h′

b)

Thereafter, let denote the type of CBS heap,
and denote a meta-variable of it. Syntactically, may
be refined as . The operators between two CBS
heaps are defined by this refined version. Consider two
CBS heaps and , suppose they may be refined like

 and , respectively. Let assert that
two CBS heaps are disjoint, i.e., .

 116 Chinese Journal of Electronics, vol. 33, no. 1

h1 ⊎ h2

((hf ⊎ h′
f), (hb ⊎ h′

b))

Likewise, let denote the union of internal heaps
in each tier, i.e., . In practice, the
refined version is more effective to define the evaluations
of primitive operations.
 2. Types of values

τ

list A

A

Classifying the types of values can provide a protec-
tive covering that hides the underlying implementations
and constrains the interaction between values [24]. The
following definition of type contains all possible types
of values in our proof system, and the implementations
of these types are in Definition 5. The data type “ ()”
is the most versatile in functional programming lan-
guages [19], which can be used to store a collection of el-
ements in type . In particular, it simplifies our reason-
ing because elements in a sequence need not be ex-
pressed explicitly.

Definition 4 (Types of values)

τ ::= unit | bool | int | floc | bloc
| list(int) | list(bloc)

unit tt bool
true false int

floc
bloc

list(int)
list(bloc)

Among them, the implementation of ignorable-val-
ue type is the keyword ; the bool type is the
constants and ; the integers is implement-
ed by the integer set. The types of file locations
and block locations are both implemented by the
natural number set. The type of integer sequence

 is implemented by the power set of the inte-
gers, and the block-location sequence is the
power set of the natural numbers. For simplicity’s sake,
we do not consider the floating-point numbers in our
proof system, since we are more interested in reasoning
about data management than arithmetic properties.

Definition 5 (Implementation of value types)

[[unit]] ≡ {tt} [[bool]] ≡ {true, false}
[[int]] ≡ Z [[floc]] ≡ N [[bloc]] ≡ N
[[list(int)]] ≡ Z∗ [[list(bloc)]] ≡ N∗

 3. Syntax

v fprim
bprim t

fprim bprim
t

The modeling language involves the meta-variable of
value , the file primitive operation , the block
primitive operation , and the term . Correspond-
ing to the storage operations in practice, we introduce
the primitive operations into and . Note
that the term only represents the execution order,
which is just rewritten from our previous work [18]. Be-
sides, some other primitive operations omitted here are
unnecessary for verifying modifications.

Definition 6 (Syntax)

v ::= tt | be | n | f | b | ln | lb
fprim ::= ... | attach f lb | fset f n b | ftrun f n

bprim ::= ... | bcreate ln | bget b

| append b ln | btrun b n

trm ::= v | x | fprim | bprim | if t then t else t

| let x = t in t | λx.t | µF.λx.t | (t t)

v unit
tt be n f

b ln
lb

The meta-variable for value relates to the
value , Boolean literal , integer , file location ,
block location , integer sequence , and block-location
sequence .

fprim
n

bprim

The file primitive operation includes: append-
ing blocks, updating the th block, and truncating
blocks. The block primitive operation includes:
creating a block, getting a block’s contents, and append-
ing or truncating content from a block.

t v
x fprim

bprim
λx.t

µF.λx.t (t t)

The terms include the value meta-variables , pro-
gramming variables , file primitive operations ,
block primitive operations , conditionals, let-bind-
ings, non-recursive functions , recursive functions

, and function invocations .
 4. Semantics

s
heap

t/s ⇓ v/s′

t s
v s′

In our proof system, the evaluation of each syntax
element depends on a given full state. We use to repre-
sent a meta-variable of type corresponding to the
full CBS storage state. The semantics of our language is
defined by the big-step semantics judgment with return
values, which is a pattern like “ ”. This judg-
ment describes a term , starting from the state , evalu-
ates to a value and terminates at the final state . The
definition of semantics has two parts: the evaluation
rules for terms and the evaluation rules for primitive op-
erations.

t[v/x] t[v/x] x v t

t
µF.λx.t

F

be

The evaluation rules for terms are not related to the
details of primitive operations but indicate how state-
ments execute. They are rewritten from our previous
work [18]. The value meta-variable evaluates itself. The
let-bindings indicates the sequential execution in our lan-
guage, and it carries the return value from the middle of
execution. The second line is the evaluation rules for
function invocations, which depend on a substitution
“ ”. The substitution “ ” replaces all by in .
The non-recursive functions may be invoked by substi-
tuting variables with arguments directly in . While the
recursive functions additionally introduce the re-
turn value of previous execution to replace the function
name , thus avoiding possible confusion in recursive in-
vocation. The last rule for conditional evaluates accord-
ing to the value of Boolean literal .

Definition 7 (Evaluation rules for terms)

v/s ⇓ v/s

v1 = µF.λx.t (t[v/x][v1/F])/s ⇓ v′/s′

((µF.λx.t) v)/s ⇓ v′/s′

(t[v/x])/s ⇓ v′/s′

((λx.t) v)/s ⇓ v′/s′
t1/s ⇓ v1/s

′ (t2[v1/x])/s
′ ⇓ v/s′′

(let x = t1 in t2)/s ⇓ v/s′′

if be then (t1/s ⇓ v/s′) else (t2/s ⇓ v/s′)

(if be then t1 else t2)/s ⇓ v/s′

sf sb heapf

Thereafter, we focus on the introduced file and block
primitive operations. Considering that these operations
only occur at the corresponding tier, we first need to re-
fine the representation of the CBS state. Likewise, we in-
troduce the meta-variables and of type and

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 117

heapb

(sf , sb)

, to represent the full storage state in file and block
tiers, respectively. Then, a given full CBS state may be
represented as .

m
dom(m) p

m m[p] p v
m m[p := v]

l l2
l1 l1 · l2 l
v update i v l

l droplast nl

The semantics of storage primitive operations is re-
lated to updating maps and list operations. For ease of
illustration, we first agree on some notations. With re-
spect to updating maps, for each finite map , its do-
main is denoted by “ ”, the result of mapping in

 is denoted by “ ”, and updating a link from to
in is denoted by “ ”. With respect to list oper-
ations, for each finite sequence , appending to the end
of is denoted by “ ”, updating the i-th element in
to is denoted by “ ”, and removing the last
n elements in is denoted by “ ”. The evalua-
tion rules for the new primitive modifications are shown
in Definition 8.

f
lb lb
sf

f
sf

tt f
n f

sf tt

unit

The evaluation of primitive operations will only up-
date the corresponding internal state. The first three
lines indicate the modifications of a file: Attaching a new
block sequence to a file, with the file location and
block location sequence , appends at the end of that
file’s mapping result in . Updating the nth block’s loca-
tion in a file changes the nth element in the mapping
result, thus updating and returning the ignorable val-
ue . Truncating a file, with a location and an integer
, removes the last n elements in the mapping result,

then updating and returning . Although these modi-
fications do not need to return an explicit value, they al-
so return an ignorable value of the type .

Definition 8 (Evaluation rules for primitive opera-
tions)

f ∈ dom(sf)

(attach f lb)/(sf , sb) ⇓ tt/(sf [f := (sf [f] · lb)], sb)
f ∈ dom(sf)

(fset f n b)/(sf , sb)⇓ tt/(sf [f :=(update n b sf [f])], sb)

f ∈ dom(sf)

(ftrun f n)/(sf , sb)⇓ tt/(sf [f :=(droplast n sf [f])], sb)
b /∈ dom(sb)

(bcreate ln)/(sf , sb) ⇓ b/ (sf , sb[b := ln])
b ∈ dom(sb)

(bget b)/(sf , sb) ⇓ (sb[b])/(sf , sb)
b ∈ dom(sb)

(append b ln)/(sf , sb) ⇓ tt/ (sf , sb[b := (sb[b] · ln)])
b ∈ dom(sb)

(btrun b n)/(sf , sb)⇓ tt/(sf , sb[b :=(droplast n sb[b])])

ln
b b

ln sb b

ln

tt sb

tt
sb

The following four lines indicate the operations of a
block: Creating a block with an integer sequence re-
turns a new block location and creates a link from to

 in . Reading a block by the location returns the in-
teger sequence stored in that block, and it does not
change the state. Appending new content to a block
appends that integer sequence to the end of the map-
ping result, returns the value , and updates the map .
Truncating a block removes the last n elements from the
tail of the mapping result, returns the value , and up-
dates correspondingly.

b0
blk

b1
sb[b := ln] s′b

Using these evaluation rules, we can represent the
execution process of CBS data operations. For example,
the following function invocation in Example 1 can rep-
resent the operation of copying a block. By introducing a
specific block location , the invocation first replaces the
function variable . Then, using the evaluation rule of
let-binding, the function body can be subdivided as the
sequential execution of two primitive operations, i.e.,
reading the target block’s content and then creating a
new block with that. This function invocation returns
the new block’s location , and updates the block heap
as , which is denoted by .

Example 1 (Representation of copying a block)

(bget b0)/(sf , sb) ⇓ ln/(sf , sb) (bcreate ln)/(sf , sb) ⇓ b1/(sf , s
′
b)(

let con = (bget b0) in (bcreate con)
)
/(sf , sb) ⇓ b1/(sf , s′b)(

(λbk. let con = (bget bk) in (bcreate con)) b0

)
/(sf , sb) ⇓ b1/(sf , s′b)

 IV. Assertion Language
The assertion language is used to describe the prop-

erties of a given CBS system state, which is necessary to
specify a program’s behavior. This section defines the
CBS heap predicates to describe such properties, the en-
tailment relation to state the logical order between predi-
cates, and the postconditions to describe the properties
of the output state and output value.
 1. CBS heap predicates

Based on the higher-order predicate BI [25] in sepa-
ration logic, we define the CBS heap predicate as a propos-
ition about CBS heaps. The meaning of such a predicate
is a set of CBS heaps that can satisfy the proposition.
The definition of CBS heap predicates is inductive,

which means we define each element that will be in-
volved first, and then define the CBS heap predicate en-
tirely.

η

η

n l

n̄

l̄ [[v : τ]]η
η v

b bloc
bloc

In the beginning, we introduce an assignment to
define the meaning of the meta-variable for each value,
except bool. Because the bool meta-variable evalutes ei-
ther true or flase, which depend on comparisons in the
context. The assignment maps each meta-variable to a
concrete value corresponding to its type. These mapping
values involve the integer , natural number , integer
sequence instance , and natural-number sequence in-
stance . We use denote the mapping result in an
assignment from a meta-variable . For example, for
some meta-variable in the block-location type ,
since the type is implemented by natural numbers,

 118 Chinese Journal of Electronics, vol. 33, no. 1

[[b : bloc]]η lthen is a concrete natural number .
Definition 9 (Implementation of value meta-vari-

ables)

[[tt : unit]]η ≡ tt [[n : int]]η ≡ n

[[b : bloc]]η ≡ l [[f : floc]]η ≡ l

[[lb : list(bloc)]]η ≡ l̄ [[ln : list(int)]]η ≡ n̄

v1 =τ v2
P1 ∧ P2

Then, we define pure propositions to describe the
properties of the meta-variables, which can introduce
some auxiliary information, like the properties of return
value in the postcondition. The pure propositions hold
only with respect to the assignment and are independent
of any CBS heap. They contain an equivalence compari-
son “ ” between two meta-variables of the same
type, and a conjunction “ ” between two pure
propositions.

Definition 10 (Syntax of pure propositions)

P ::= v1 =τ v2 | P1 ∧ P2

η
H

H ⊘

H

Whether a pure proposition holds is only related to
the assignment , and its semantics is a set over the CBS
heaps. Let denote a universal set that consists of all
CBS heaps. For an equivalence comparison, if two meta-
variables take the same value, then the evaluation of this
proposition is the set , otherwise is an empty set .
Likewise, for a conjunction between two propositions, if
they both holds, then the evaluation is the set , other-
wise is an empty set.

Definition 11 (Semantics of pure propositions)

[[v1 =τ v2]]η ≡
{

H, if [[v1 : τ]]η = [[v2 : τ]]η
⊘, otherwise

[[P1 ∧ P2]]η ≡
{

H, if [[P1]]η = H and [[P2]]η = H
⊘, otherwise

T
F

Next, as mentioned above, the primitive operations
update the system state at the internal storage level, so
we need to describe the system state properties in detail.
For the internal storage state, we define the file heap
predicates and block heap predicates to describe their
properties, respectively. The notation means that the
proposition of heaps holds and means that it does not.

heapf → {T, F}
Definition 12 (File heap precidates) A file heap

predicate is a predicate of type “ ”.

heapb → {T, F}
Definition 13 (Block heap precidates) A block heap

predicate is a predicate of type “ ”.
Hf HbWe let denote a file heap predicate and de-

note a block heap predicate. Since describing the differ-
ent internal heaps, these two predicates have different
types and need to be defined individually. The syntax of
them is shown below.

Definition 14 (Syntax of internal heap predicates)

Hf ::= []f | f 7→f lb | Hf ⋆f H ′
f

Hb ::= []b | b 7→b ln | Hb ⋆b H
′
b

[]f f 7→f lb

Hf ⋆f H ′
f

[]b b 7→b ln
Hb ⋆b H

′
b

The internal heap predicates consist of the file and
block heap predicates. The file heap predicates are emp-
ty file heap , file singleton , and file separat-
ing conjunction . Likewise, the block heap pred-
icates are empty block heap , block singleton ,
and block separating conjunction .

η

Internal heap predicates describe the properties of
the internal state, and their semantics is a set consisting
of the corresponding internal heaps. For example, a file
heap predicate is a proposition about the file-tier state,
and its semantics under an assignment is the set of file
heaps that can satisfy the proposition. The semantics of
internal heap predicates is defined below.

Definition 15 (Semantics of internal heap predi-
cates)

[[[]f]]η ≡ {hf | dom(hf) = ⊘}
[[f 7→f lb]]η ≡ {hf | dom(hf) = [[f]]η and hf ([[f]]η) = [[lb]]η }[[
Hf ⋆f H ′

f

]]
η

≡ {hf | ∃h1
fh

2
f . (h

1
f ⊥ h2

f) ∧ (hf = h1
f ⊎ h2

f) ∧ (h1
f ∈ [[Hf]]η) ∧ (h2

f ∈
[[
H ′

f

]]
η
) }

[[[]b]]η ≡ {hb | dom(hb) = ⊘}
[[b 7→b ln]]η ≡ {hb | dom(hb) = [[b]]η and hb([[b]]η) = [[ln]]η }

[[Hb ⋆b H
′
b]]η ≡ {hb | ∃h1

bh
2
b . (h

1
b ⊥ h2

b) ∧ (hb = h1
b ⊎ h2

b) ∧ (h1
b ∈ [[Hb]]η) ∧ (h2

b ∈ [[H ′
b]]η) }

[]f

f 7→f lb

[[f]]η
[[lb]]η

h1
f

h2
f Hf H ′

f

The empty file heap characterizes the domain of
a file heap as empty. Notice that this set it describes is
different from the empty set. Because in the former set,
one can find a mapping whose domain is empty, while
the empty set does not have any elements. The file sin-
gleton characterizes a singleton map. The map’s
domain only has a file location and takes the value
as a block sequence . The file singleton can also show
that the block sequence is not stored in a null file loca-
tion. The file separating conjunction characterizes the file
heap can be partitioned into two disjoint heaps and

, which satisfy the two file heap predicates and ,
respectively.

[[b]]η [[ln]]η

Likewise, the empty block heap characterizes that
the domain of a block heap is empty. The block single-
ton characterizes the block heap as a singleton map from
a block location to an integer sequence , indi-
cating that the block location is not null. The block sepa-
rating conjunction characterizes that the block heap can
be partitioned into two disjoint block heaps, and these
two block heaps can satisfy the corresponding block heap
predicates.

Finally, we define the CBS heap predicates to de-
scribe the properties of a given CBS system state.

heap → {T, F}
Definition 16 (CBS heap predicates) The type of

CBS heap predicates is “ ”.

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 119

HLet denote a meta-variable in CBS heap predi-
cate type, we define the syntax of CBS heap predicates
as follows.

Definition 17 (Syntax of CBS heap predicates)

H ::= [] | P | ⟨Hf ,Hb⟩ | H1 ⋆ H2 | ∃v : τ.H | ∀v : τ.H

[] P

The syntax of CBS heap predicates contains empty
heap , pure proposition , refinement predicate

⟨Hf ,Hb⟩ H1 ⋆ H2

∃v : τ.H ∀v : τ.H
∃v.H ∀v.H

h h.f
h.b

, separating conjunction , existential
quantifier , and universal quantifier .
Note that we usually omit the types as or in
practice reasoning since they can be inferred from the
context. For a CBS heap , let denote its internal
file heap and denote its block heap. The semantics of
a CBS heap predicate is a set about the CBS heaps, de-
fined as follows.

Definition 18 (Semantics of CBS heap predicates)

[[[]]]η ≡ {h | dom(h.f) = ⊘ ∧ dom(h.b) = ⊘}
[[⟨Hf ,Hb⟩]]η ≡ {h | h.f ∈ [[Hf]]η ∧ h.b ∈ [[Hb]]η }
[[H1 ⋆ H2]]η ≡ {h | ∃h1h2. (h1 ⊥ h2) ∧ (h = h1 ⊎ h2) ∧ (h1 ∈ [[H1]]η) ∧ (h2 ∈ [[H2]]η)}

[[∃v : τ.H]]η ≡
∪

i∈[[τ]]

[[H]]η[v→i]

[[∀v : τ.H]]η ≡
∩

i∈[[τ]]

[[H]]η[v→i]

[]

P [[P]]η
⟨Hf ,Hb⟩

Hf

Hb

H1 ⋆ H2

h1 h2

H1 H2

The empty heap characterizes a CBS heap that
consists of an empty file heap and an empty block heap.
The pure proposition still follows its semantics in
Definition 11. The refinement predicate charac-
terizes that inside a CBS heap, the file heap satisfies ,
and the block heap satisfies . The separating conjunc-
tion characterizes that a CBS heap can be parti-
tioned into two disjoint heaps and , which satisfy

 and , respectively.
∃v : τ.H

H x η
i ∀v : τ.H

H x η i
η[v → i] v

i η

The existence quantifier describes the union
of all sets that can make hold with mapping in as
an instance . The universal quantifier , on the
other hand, describes the intersection of all sets that can
make hold after mapping in as . We write

 to denote that the meta-variable maps to an
instance in the assignment .

η h

H h ⊨η H

h ∈ [[H]]η h ⊨η H H
h η

Remark a) For an assignment , a CBS heap ,
and a CBS heap predicate , we let denote

. We call that the predicate can be
satisfied with the heap in the assigement .

h ⊨ H h ⊨η H
η H

h h

H

b) Let denote that holds for all as-
signments , and we call it that a CBS heap predicate
can be satisfied with a CBS heap , or the heap can
satisfy the predicate .
 2. Entailment relation

H1 ⊢ H2 H1

H2

Entailment is a logical order relation between heap
predicates, which is necessary to construct the reasoning
rules or state the properties between heap predicates. In
this paper, we use “ ” to denote that can en-
tail .

H1 H2 h
H1 H2 H1 H2

H1 ⊢ H2 ≡ ∀h. h ⊨ H1 ⇒ h ⊨ H2

Definition 19 (Entailment relation) For any CBS
heap predicates and , if any CBS heap satisfy-
ing also satisfies , then we call can entail ,
i.e., .

CBS heap predicates on entailment can satisfy the
reflexive, transitive, and antisymmetry properties. They
correspond in turn to the following lemmas.

Lemma 1 (Logical order of CBS-heap predicates)

H ⊢ H

H1 ⊢ H2 H2 ⊢ H3

H1 ⊢ H3

H1 ⊢ H2 H2 ⊢ H1

H1 = H2

In particular, the antisymmetry property concludes
on equality between two CBS heap predicates. With this
property, we prove that the separating conjunction of
two refinement predicates is equivalent to that of their
internal heap predicates. This equivalence is crucial for
reasoning in practice, since it supports the interplay be-
tween the internal state and the macro CBS state, which
is illustrated as follows:

Lemma 2 (Equivalence of separating conjunction
from the macro and internal perspectives)

⟨Hf ,Hb⟩ ⋆ ⟨H ′
f ,H

′
b⟩ = ⟨ (Hf ⋆f H ′

f), (Hb ⋆b H
′
b) ⟩

 3. Generalization to CBS postconditions
According to the evaluation rules, a primitive opera-

tion will output a return value when terminated. The
postcondition of a triple, called a CBS postcondition, has
a type as follows. It can describe the properties of a giv-
en CBS state and additionally describes a return value.

τ → heap → {T, F}
Definition 20 (CBS postconditions) The type of

CBS postconditions is “ ”.

λr : τ.H H
r H

λr.H
λ

According to the type theory, a CBS postcondition
takes the form “ ”, where is a CBS heap predi-
cate, and is a meta-variable bound in to describe the
return value. We can also omit it as , since the type
can be inferred during the -calculus reduction.

λ
λ (λr.H) v

v

H λ
(λr.H) v H[v/r]

r v H
(λr.H) v ≡ H[v/r]

Definition 21 (-reduction of CBS postcondition)
We let the -application “ ” denote introducing a
concrete value meta-variable into a CBS heap predi-
cate . According to -calculus reduction, the expression
“ ” is reducible by the substitution , which
replaces all meta-variable by in the predicate , i.e.,

.
Q

Q λr.H λ
Q v

Thereafter, let range over CBS postconditions,
i.e., takes the form , then the corresponding -ap-
plication can be written as “ ”. To define the specifi-
cations and the reasoning rules, it is convenient to ex-

 120 Chinese Journal of Electronics, vol. 33, no. 1

H ⋆H ′ H ⊢ H ′

Q ⋆̇ H ′ Q ⊢̇ Q′

tend separating conjunction and entailment for postcon-
ditions. We generalize the predicates and
by introducing predicates and .

Q v
After introducing a return value, the new predicate

“ ” has a CBS heap predicate type, that is, it is a
predicate that may directly apply to the separating con-
junction.

Definition 22 (Separating conjunction between a
postcondition and a CBS heap predicate)

Q ⋆̇ H ′ ≡ λv. (Q v ⋆ H)

Q Q′

v
Q v Q′ v

The entailment relation between postconditions is an
extension of the entailment between CBS heap predi-
cates. For postcondition, it states that entails if
and only if, for any value meta-variable , the CBS-heap
predicate entails .

Definition 23 (Entailment between postconditions)

Q ⊢̇ Q′ ≡ ∀v. (Q v ⊢ Q′ v)

 V. Specifications
This section illustrates how to specify and verify the

behavior of a program. We define a CBS separation log-
ic triple to specify the state properties before and after
program execution. Based on the concept of separation
logic, the triple only needs to describe the state corre-
sponding to the execution. We also formulate the reason-
ing rules about the introduced operations and rewrite the
structural rules with the CBS triples form.
 1. CBS separation logic triples

t
{H}t{Q} t

H
Q λr.

H

A CBS separation logic triple can specify the behav-
ior of a program. Such a triple of a program is written
as “ ”, which is also called a specification of .
The precondition is a CBS heap predicate describing
the input state. The postcondition , shaped as “

”, describes the output state and the output value. In
particular, the precondition in this triple only needs to
describe the piece of CBS state which is related to the
execution.

h1 H
h2

t v
(h′

1 ⊎ h2)
t/(h1 ⊎ h2) ⇓ v/(h′

1 ⊎ h2) v
h′
1 Q

h′
1

h2 t

The definition of CBS separation logic triple, shown
below, reads as follows: if the input state decomposes as
a part that satisfies the precondition and a dis-
joint part that represents the rest of state, then the
evaluation of term produces an output value and an
output CBS state , as the evaluation judgement
“ ”; meanwhile, the value and
heap together satisfy the postcondition . Notice that
the output state is made of a part and, disjointly, a
part which was unmodified by .

Definition 24 (CBS separation logic triples)

{H} t {Q} ≡ ∀h1.∀h2.

{
h1 ⊨ H
h1 ⊥ h2

⇒

∃h′
1. ∃(v : τ).

 h′
1 ⊥ h2

t/(h1 ⊎ h2) ⇓ v/(h′
1 ⊎ h2)

h′
1 ⊨ Q v

{⟨Hf ,Hb⟩} t {λr.⟨H ′
f ,H

′
b⟩}

⟨Hf ,Hb⟩

This definition fits naturally with the local reason-
ing since it asserts from the beginning that any resource
is preserved if it is not mentioned in the precondition. In
addition, as the primitive operations evaluate with the
internal states, a refined triple form, written as

, is more suitable to reason the
primitive operations on the specific storage level. Notice
that is a refinement predicate in the CBS heap
predicates type.

Copy_blk

b
ln

b
b′ ln

For example, the following triple specifies the behav-
ior of the copy block operation. We use to de-
note the copy function in Example 1. The precondition
describes that the target block is stored at location
with contents . The postcondition describes that at the
end of a function invocation with the argument , there
is a new block stored at location , also with contents .

Example 2 (Specification of copying a block)

{⟨Hf , (b 7→b ln)⟩} (Copy_blk b)
{λr. ∃b′. (r =τ b) ⋆ ⟨Hf , (b

′ 7→b ln) ⋆b (b 7→b ln)⟩}

 2. Reasoning rules
The reasoning rules in our logic fall into three cate-

gories. First, the structural rules: do not depend on the
details of the programming language. Second, the reason-
ing rules for terms: include one such rule for each term
construct of the language (like conditionals). Third, the
specifications of primitive operations: include such rules
for each kind of internal primitive operation.

The structural rules, shown below, include the con-
sequence rule, frame rule, and extraction rules for pure
assertions and quantifiers. They are just rewritten from
traditional separation logic [11] into our proof system.

Lemma 3 (Structrual rules)

H ⊢ H ′ {H ′} t {Q′} Q′ ⊢̇ Q

{H} t {Q}
{H} t {Q}

{H ⋆H ′} t {Q ⋆̇ H ′}
P ⇒ {H} t {Q}
{P ⋆ H} t {Q}

∀x.{H} t {Q}
{∃x.H} t {Q}

t

The consequence rule allows strengthening the pre-
condition and weakening the postcondition. The frame
rule asserts that if a term safely executes in a given
piece of state, it also can execute safely in a larger piece
of state. The next two rules can extract the pure proposi-
tions and the existential quantifiers from the precondi-
tions.

The reasoning rules for terms include one rule for
each term. These rules are independent of primitive oper-
ations and are rewritten from our previous work.

Lemma 4 (Reasoning rules for terms)

H ⊢ (Q v)

{H} v {Q}
{H} t1 {Q′} ∀v.{Q′ v} (t2[v/x]) {Q}

{H} (let x = t1 in t2) {Q}
{H} t[v/x] {Q}

{H}((λx.t)v) {Q}
v1 = µF.λx.t {H}t[v/x][v1/F]{Q}

{H}((µF.λx.t)v){Q}
(be = true) ⇒ {H}t1{Q} (be = false) ⇒ {H}t2{Q}

{H} (if be then t1 else t2) {Q}

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 121

The first rule applies to the evaluation of values,
and it does not change the state. The next rule applies to
let-binding, which splits the proof for sequential execu-
tion into two subgoals. It brings the intermediate return
value into the subsequent execution. The rules in the sec-
ond line apply to function invocations. When introduc-
ing a concrete argument, one needs to prove that the
triple holds after the substitution in the function body.
Besides, for the invocation of a recursive function, the

function name is additionally substituted with the re-
turn value of the previous execution. The last line is the
rule for conditionals.

The reasoning rules for primitive operations include
the specifications of the file and block primitive opera-
tions. These specifications are the rules for reasoning
about primitive operations without any premises.

Lemma 5 (Specifications for primitive operations)

{⟨(f 7→f lb), Hb⟩} (attach f lb′) {λr. (r =τ tt) ⋆ ⟨f 7→f (lb · lb′),Hb⟩}
{⟨(f 7→f lb),Hb⟩} (fset f n b) {λr. (r =τ tt) ⋆ ⟨f 7→f (update n b lb),Hb⟩}
{⟨(f 7→f lb),Hb⟩} (ftrun f n) {λr. (r =τ tt) ⋆ ⟨f 7→f (droplast n lb),Hb⟩}
{⟨Hf , []b⟩} (bcreate ln) {λr. ∃b.(r =τ b) ⋆ ⟨Hf , b 7→b ln⟩}
{⟨Hf , (b 7→b ln)⟩} (bget ln) {λr. (r =τ ln) ⋆ ⟨Hf , b 7→b ln⟩}
{⟨Hf , (b 7→b ln)⟩} (append b ln′) {λr. (r =τ tt) ⋆ ⟨Hf , b 7→b (ln · ln′)⟩}
{⟨Hf , (b 7→b ln)⟩} (btrun b n) {λr. (r =τ tt) ⋆ ⟨Hf , b 7→b (droplast n ln)⟩}

f 7→f lb

attach f lb

f 7→f (lb · lb′)

fset f n b

f 7→f (update n b lb)

lb b

ftrun f n

f 7→f (droplast n lb) droplast n lb

n

The first three rules are the different ways of modi-
fying a file, and all the return values of them can be ig-
nored. The modifications of a file all require a precondi-
tion as a predicate , which describes the file cell
to be manipulated. The postcondition in appending
“ ” asserts that the final file heap may be de-
scribed by , reflecting the concatenation of
two block-location sequences. The postcondition in up-
dating the nth block “ ” asserts that the updat-
ed file heap may be described by ,
reflecting change the nth element in sequence as .
The postcondition in truncating “ ” asserts that
the final file heap may be described by

, where the new list ()
removes the last block locations at the end of the se-
quence.

bcreate
ln

b 7→b ln

bget b

b 7→b ln

r

ln

Then the next two rules are the operations of a
block. Creating a block by an integer sequence “

” can execute in an empty block heap, and it intro-
duces a new block singleton cell into the state of
the block tier and returns the location of that new block.
Reading a block’s content “ ” requires a block sin-
gleton cell as . Its postcondition asserts that the
result value, named , is the corresponding block’s con-
tent , and this operation does not change any state.

b 7→b ln

append b ln′

b (ln · ln′)

btrun b n

b 7→b (droplast n ln)

The last two rules are the different ways of modify-
ing a block. They all return an ignorable value and re-
quire the existence of a block cell, as . These rules
assert: appending a block “ ” updates the
mapping result of in the block heap to , i.e.,
the concatenation of two contents; moreover, truncating
a block “ ” modifies the block cell as

, reflecting the removal of a part of
block content.

 VI. Verification of Modifications
In Coq, we implement the above proof system and

prove the soundness of all its reasoning rules. In particu-

lar, the frame rule holds, showing that our proof system
supports local reasoning for CBS programs. The imple-
mentation makes our proof system a verification tool.
Using it, one can represent the CBS data operations, ver-
ify their correctness, and generate a machine-checked
proof. Our new tool still supports verifying the basic
CBS data operations, like proving the specification of
copying a block in Example 2. Additionally, we can also
use it to verify the CBS modifications, i.e., append and
truncate. This section presents the verification of them
to demonstrate how our tool codes and verifies actual
CBS data modifications.

Three steps are required for verifying an actual CBS
operation: First, code a function by the modeling lan-
guage to represent the corresponding operation; Second,
specify the invocation of this function by a triple; Last,
reason and prove this triple using the proven reasoning
rules. All steps can be directly implemented by code,
which may reduce the labor costs and avoid potential
negligences of pen-and-paper inference.

⟨f1 7→f b, b 7→b ln⟩⋆
⟨f2 7→f b, b 7→b ln⟩

⟨(f1 7→f b) ⋆f (f2 7→f b),
(b 7→b ln) ⋆b (b 7→b ln)⟩

In addition, the files stored in the real CBS do not
share data blocks, and our model also follows this princi-
ple. In our proof system, different files sharing a data
block will raise logical errors. Thus, we can avoid modi-
fying one file leads to affecting other files. In detail, when
describing the overall storage of a file, one needs to char-
acterize the file’s every block. However, the repeated de-
scriptions of the same block can cause contradictions.
For example, in a given state, if two files are stored at
different locations, and they both index the same block,
then the state can be described like

. And according to the Lemma 2, this
formula is equivalent to formula

. It means that now there are two
same blocks in the block storage tier. However, the defi-
nition of block separation conjunction mentions that the
two heaps should be disjoint. Thus, such a formula is a
contradiction, which makes it cannot a postcondition of a
triple that holds. With this property, our system can

 122 Chinese Journal of Electronics, vol. 33, no. 1

avoid multiple files sharing same blocks, thus we can fo-
cus the verification of data modifications only on the tar-
get file.
 1. Verification of truncating

Truncate_File

Truncate_File

As mentioned before, truncating a file removes the
block and content from the end of a file. This operation
may lead to storage errors, which makes the verification
of its correctness necessary. We represent this modifica-
tion as a compound statement which consists of primi-
tive operations. The recursive function
shown in Figure 4 represents truncating an arbitrary file.
Corresponding to the actual operation, this function on-
ly requires a file location and a truncating range, and it
can terminate by itself. The execution of
may subdivide into the following parts: First, it com-
pares whether the range is smaller than the last block’s
size. If so, the function truncates the last block and ends
the execution. Otherwise, the function removes the last
block entirely and modifies the truncating range, then re-
cursively invokes that function with the new range.

Fix F f n := ···
f

n F
F f n′

(µF.λfn. · · ·)

Truncate_File f n

The declaration “ ” denotes that a re-
cursive function requires two arguments: a file location
and a truncating range . Notice that “ ” is the function’s
name of the internal recursive invocation, such as “ ”
in the last line. This declaration corresponds to the

 in our proof system. By introducing the
different arguments, the function invocation, shaped as
“ ”, may represent truncating the ar-
bitrary file.

triple t H Q

λr.H ′ (fun r => H′)
(fun− => · · ·)

\R[Hf, Hb]
⟨Hf ,Hb⟩

b ∼ b ∼> ln
f ∼ f ∼> lb Hb1 \b ∗ Hb2

H1
b ⋆b H

2
b

In our tool, we use a triple like “ ” to
code the specification of a program, and the postcondi-
tion is coded as “ ”. In Coq, we may
use “ ” to describe directly that the return
value can be ignored. In addition, “ ” is the re-
finement CBS heap predicate ; the block single-
ton heap is “ ”, and the file singleton heap is
“ ”; moreover, “ ” is the separat-
ing conjunction between two block-heap predicates corre-
sponding to .

f
p1 p2 p3

(p1 :: p2 :: p3 :: nil)

Now, consider the following storage case: a file,
stored at location , has three blocks, each stored at lo-
cations , , and , respectively. The file indexes
these block locations as a sequence .
Then, the following specification in Figure 5 may de-
scribe removing two contents from the tail of that file.

f

This specification characterizes the behavior of trun-
cating: the precondition describes that the target file is
stored at location , which indexes the block-location se-
quence, and each block has its concrete contents. The
postcondition describes that the execution returns an ig-
norable value. Moreover, at the block tier, this opera-
tion entirely removes the last block and partially re-
moves the contents of the new last one; at the file tier, it
updates the block-location sequence correspondingly.

To prove the specification of truncate, we first need
to split the compound statement, using the reasoning

rules for let-bindings or conditionals, and then prove the
primitive operation of each step, using the correspond-
ing specifications. The above proof scripts in Figure 6 is
the machine-checked proof script for this specification.
Since the recursive operation has some repetitive parts,
we also write automated proof scripts to shorten the
proof process.
 2. Verification of appending

Append_File

Append_File

Appending is another common modification method
in CBS. For example, a database may need to keep a log
as an ever-expanding file, which always requires append
content to that file. So we use a recursive function

 in Figure 7 to represent appending a file
with arbitrary-sized content. This function needs to in-
put a file location and appended contents, and it also can
terminate by itself. The execution of can
be subdivided as follows: First, it compares whether the
appended content is smaller than the block size. If so,
this function appends a block with the contents to that
file. Otherwise, this function extracts parts of contents to
create a block and recursively invokes that function with
the rest contents.

Fix F f ln

Append_File f ln

Likewise, “ ” represents a recursive func-
tion with two arguments, i.e., a file location and the ap-
pended contents. The function invocation denoted as
“ ” may represent appending contents

Definition Truncate_File :=
Fix F f n :=

(* m is the size of the f i l e f *)
Let m := fsize f in

(* m1 is the index of file’s tail *)
Let m1 := m − 1 in

(* bk is the file’s last block *)
Let bk := nth_blk f m1 in

(* k is the size of bk *)
Let k := bsize bk in

(* be is a bool result of ’n <= k ’*)
Let be := (n <= k) in
If be
Then

(* truncate n elements from the tail of block bk *)
btrun bk n

Else
(* n ’ is the new truncating range *)

Let n’ := n − k in
(* delete the entire last block *)

Let i1 := bdelete bk in
(* truncate the file’s last block *)

Let i2 := ftrun f 1 in
(* recursive function invocation *)

F f n’.

Figure 4 Representation of truncating a file.

Figure 5 Specification of truncating a file.

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 123

to an arbitrary file.

f
b (n1 :: n2)

(n3 :: n4 :: n5)

Consider the following storage case: a CBS file is
stored at location , and it only has one block. The block
is stored as and has content . Now, we ap-
pend the contents to that file. The triple
below in Figure 8 can specify the behavior of this modifi-
cation.

(n3 :: n4) (n5)

The postcondition in the specification characterizes
that after the append operation, the system exists two
new blocks associated with the file, and their contents
are and , respectively. Also, the return val-
ue of this operation can be ignored. We give proof of this
specification in our tool, whose Coq script is shown in
Figure 9.

 VII. Related Work
In this paper, we develop a proof system for verify-

ing the correctness of CBS modifications, and we also im-
plement it as a verification tool to improve the practical-
ity. We divide the discussion of related work into three
categories: First, the application of theorem proving
techniques on traditional storage; Second, theorem prov-

ing in cloud storage; Last, some excellent verification
tools based on separation logic.

Formal verification uses mathematical models for
analyzing computer systems to establish system correct-
ness with mathematical rigor. Existing formal verifica-
tion techniques can be divided into two categories: mod-
el checking and theorem proving. Model checking [26]
can check exhaustively and automatically whether a
model about a system meets a given specification. Due to
the state explosion problem in model checking, the num-
ber of states is usually limited. Therefore, model check-
ing is more suitable for characterizing the precise scenar-
ios in storage systems, such as deadlock and data proto-
cols. In contrast, theorem proving is a formal verifica-
tion technique based on mathematical logic. It allows one
to formulate an axiomatic system with derivation capa-
bilities about the large industrial systems. Then, the de-
sired property of a system can be stated as a mathemati-
cal theorem, typically as a logical formula, and one can
verify whether the theorem is provable [10].

Theorem proving in traditional storage Previous
papers have studied using the theorem proving to ana-
lyze and reason about the traditional storage and under-
lying file systems, which inspired us to work on verifying
CBS. Chen et al. extended traditional Hoare logic and
introduced a logic framework called “Crash Hoare Logic”
[27], [28]. They developed a file system FSCQ, and it can
recover the system correctly without losing data when a
crash happens. Rather than handling crashes, we consid-
er how to model and verify CBS in the first place. Ark-
oudas et al. modeled the Unix file system as a map from

Proof .
(* The f i r s t recursive execution *)

(* i n i t i a l i z ethe proof *)
introv M N. subst . applys* triple_app_fix2 . simpl .
(* reason about getting f i l e size *)
applys triple_let triple_fsize . ext .
(* reason about the subtraction *)
applys triple_let triple_min . ext .
(* reason about indexing the tail block *)
applys triple_let triple_fget_nth_blk . ext .
applys triple_let .
(* reason about getting block size *)
applys triple_conseq_frame triple_bsize .
inner_femp_r.
intros r . applys himpl_refl . ext ’.
(* reason about the comparison *)
applys triple_let triple_le . ext .
(* reason about the conditional *)
applys triple_if . rewrite le_2_1. case_if *.
(* reason about the subtraction *)
applys triple_let triple_min . ext .
applys triple_let .
(* reason about deleting the block *)
applys triple_conseq_frame triple_bdelete .
(* rewrite the format *)
rewrite hstar_sep . applys himpl_refl .
intros r . rewrite hstar_sep , hfstar_hempty_r ,

hbstar_hempty_l.
applys himpl_refl .
(* reason about truncating the last block *)
intros . simpl . applys triple_let triple_ftruncate .
(* complete the verification of the f i r s t time *)
intros . simpl . unfold droplast . simpl . rew_list .

(* Exit recursive execution *)
run2time . (* repeat the above proof scripts *)
(* reason about the conditional *)
applys triple_if . rewrite le_1_2. case_if *.
(* reason about truncating the block *)
applys triple_conseq_frame triple_btruncate .
(* compelete the verification *)
rewrite hstar_sep . applys himpl_refl .
intros r . rewrite hstar_sep , hfstar_hempty_r .
unfold droplast . simpl . rew_list .
rewrite hbstar_comm. applys himpl_refl .

Qed .

Figure 6 Proof for the specification of truncating file.

Definition Append_file :=
Fix F f ln :=

(* m is the size of the appended content ln *)
Let m := len ln in

(* compare whether m is smaller than block size *)
Let be := (m<= 2) in
If be
Then

(* create a block with ln at the end of the f i l e *)
Append_blk f ln

Else
(* extract the contents that can be stored in a

block *)
Let ln1 := hd ln in

(* ln2 is the rest of contents after extraction *)
Let ln2 := tl ln in

(* append a block with ln1 *)
Let r := Append_blk f ln1 in

(* recursive function invocation *)
F f ln2 .

Figure 7 Representation of appending a file.

Figure 8 Specification of appending a file.

 124 Chinese Journal of Electronics, vol. 33, no. 1

file names to sequences of bytes, and they presented a
correctness proof for the file system using Athena proof
system [29]. In contrast, the size of a block in CBS is not
fixed, and our proof system additionally supports local
reasoning. Gardner et al. provided a program logic based
on separation logic for specifying the POSIX file system
[30]. That work supports local reasoning, and it uses a
file heap and a file-descriptor heap to represent the con-
tent and the descriptor of a file.

Theorem proving in verifying cloud storage Cloud
storage has a sophisticated architecture, and its reliabili-
ty is correspondingly more difficult to be verified. The
existing research works, based on theorem proving, most-
ly focus on the data consistency, integrity, or availabili-
ty. Pereverzeva et al. used the write-ahead logging and
Event-B to verify the data consistency in replicas, dur-
ing the cloud storage operations [31]. Bobba et al. pro-
posed a formal design of cloud storage to ensure data
consistency and stable performance. They developed a
logic framework using rewriting logic and its accompany-
ing Maude tools [32]. Blanchard et al. modeled and veri-
fied the cloud hypervisor for the resource isolation and
protection in the virtual memory system, using Frama-C

software verification tool and Coq [33].
There are also some results for reasoning the correct-

ness of CBS management programs, from the logical
storage level. Jing et al. proposed a modeling language to
represent the system state and data operations [34].
Based on this modeling language and applying the idea
of separation logic, Jin et al. constructed a proof system
to verify the behavior of programs [35], and they also
proved the adaptation completeness of that proof sys-
tem [36]. However, their works cannot be fully applied to
this paper. First, they only focus on the storage security
of blocks but ignore that of files. Second, the content of a
data block can just be an integer. Last, one can only per-
form the inference on pen-and-paper. In this paper, we
improve all of the above points. Our proof system addi-
tionally describes the storage state of the master node,
which increases the inference capability about CBS file
operations. We also expand the block content into a se-
quence of integers, which improves the expressive power
of the modeling language. In addition, reasoning in the
proof assistant Coq may avoid potential negligences of
pen-and-paper derivations, and the automated scripts in
the tool may also reduce labor costs. Besides, the previ-
ous work [18] by Zhang et al. is most related to ours, in
particular, it inspires us to develop the formal defini-
tions of our proof system. We additionally analyze and
verify the data modifications on top of their work.

λ

Verification tools Based on separation logic, the
last decade has seen tremendous progress in verifying
programs by tools. CFML is more related to this paper,
which is a verification tool for the functional program-
ming language. CFML can verify complex data struc-
tures such as linked lists, trees, and union-find sets [37],
[38]. Likewise, it implements separation logic in Coq and
uses the form of -calculus. Thus, we can adopt a few
Coq libraries directly from CFML, mainly involving the
automation scripts. Besides, the Iris [39] supports higher-
order logic concurrent separation logic; the Charge! [40]
supports object-oriented programming languages; the
Ynot [41] supports functional languages with dependent
type systems; the Bedrock [42] supports the low-level
code and XML processor; and the Infer [43] is used in the
software development cycle at Facebook, to verify Java
and C programs.

 VIII. Conclusion and future work
To improve the reliability of cloud block storage,

this paper focuses on verifying the correctness of its data
modifications. A proof system is developed based on sep-
aration logic, and it is subsequently implemented as a
verification tool in Coq. The construction of the proof
system is explicit and specific, which can enhance the
rigor of the corresponding verifications in Coq. This pa-
per illustrates that our work can represent, specify, and
verify the actual CBS management programs. In particu-
lar, this paper builds machine-checked proofs for the
functional correctness of CBS data modifications.

Proof .
(* The f i r s t recursive execution *)

(* i n i t i a l i z ethe proof *)
intros . applys*triple_app_fix2 . simpl .
(* reason about getting contents ’size *)
applys triple_let triple_list_len .
(* reason about the comparison *)
ext . applys triple_let triple_le . ext .
(* reason about the conditional *)
applys triple_if . case_if * . destruct C. auto .
(* reason about the extraction *)
applys triple_let triple_list_hd . ext .
applys triple_let triple_list_tl . ext .
applys triple_let .
(* reason about appending a new block *)
applys triple_conseq_frame triple_Append_blk .
(* rewrite the format *)
rewrite hstar_sep . rewrite hfstar_hempty_r ,

hbstar_hempty_l.
apply himpl_refl . intros r . simpl . apply

himpl_refl .
(* extract the new block ’s location as p2 *)
intros r . rewrite hstar_hexists .
applys triple_hexists . intros p2.
rewrite hstar_sep , hfstar_hempty_r , hbstar_comm.

(* The second recursive execution *)
(* reason about the recursive invocation *)
applys*triple_app_fix2 . simpl .
(* reason about getting contents ’size *)
applys triple_let triple_list_len . ext .
(* reason about the comparison *)
applys triple_let triple_le . ext .
(* reason about the conditional *)
applys triple_if . case_if *.
(* reason about the otherwise situation *)
2: { destruct C0. rew_list . discriminate . }
(* reason about appending a new block with (n5) *)
applys triple_conseq_frame triple_Append_blk .
(* rewrite the format and finish the proof *)
rewrite hstar_sep , hfstar_hempty_r ,

hbstar_hempty_l. apply himpl_refl .
rewrite hstar_hexists . apply himpl_hexists_append .

Qed .

Figure 9 Proof for the specification of appending file.

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 125

However, our current work also has some shortcom-
ings: For the tool itself, the proof process is slightly de-
pendent on manual debugging. The reasoning ability
could be improved by writing more automated scripts.
On the other hand, for modeling CBS, this paper consid-
ers the most basic case, i.e., no replica of data blocks.
While in CBS, the blocks are replicated to enhance the
fault tolerance, and data modifications inevitably affect
data consistency. If we combine consider the security of
logical storage and the consistency among multiple repli-
cas, the reliability of CBS can be better discussed. We
will further explore and study these shortcomings in our
future work.

 Acknowledgement
This work was supported by the National Key R&D

Program of China (Grant No. 2021YFF1201102) and the
National Natural Science Foundation of China (Grant
Nos. 61972005, 62172016, and 61932001).

References
 M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, “Reli-
ability and high availability in cloud computing environ-
ments: a reference roadmap,” Human-Centric Computing and
Information Sciences, vol. 8, no. 1, article no. 20, 2018.

[1]

 L. Tung, “Amazon: here’s what caused the major AWS out-
age last week,” Available at: https://www.zdnet.com/article/
amazon-heres-what-caused-major-aws-outage-last-week-apolo-
gies/, 2020.

[2]

 A. Gawanmeh and A. Alomari, “Challenges in formal meth-
ods for testing and verification of cloud computing systems,”
Scalable Computing:Practice and Experience, vol. 16, no. 3,
pp. 321–332, 2015.

[3]

 IBM Cloud Education, “What is block storage?,” Available
at: https://www.ibm.com/cloud/learn/block-storage, 2019.

[4]

 M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based stor-
age,” IEEE Communications Magazine, vol. 41, no. 8, pp.
84–90, 2003.

[5]

 K. Shvachko, H. R. Kuang, S. Radia, et al., “The hadoop dis-
tributed file system,” in Proceedings of the 26th IEEE Sym-
posium on Mass Storage Systems and Technologies, Incline
Village, NV, USA, pp. 1–10, 2010.

[6]

 Apache, “HDFS architecture guide,” Available at:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html,
2020.

[7]

 C. Newcombe, T. Rath, F. Zhang, et al., “How Amazon web
services uses formal methods,” Communications of the ACM,
vol. 58, no. 4, pp. 66–73, 2015.

[8]

 J. M. Wing, “A specifier’s introduction to formal methods,”
Computer, vol. 23, no. 9, pp. 8–22, 1990.

[9]

 J. H. Gallier, Logic for Computer Science: Foundations of
Automatic Theorem Proving, 2nd ed., Dover Publications,
New York, NY, USA, pp. 1–12, 2015.

[10]

 J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” in Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science, Copenhagen,
Denmark, pp. 55–74, 2002.

[11]

 P. O'Hearn, “Separation logic,” Communications of the
ACM, vol. 62, no. 2, pp. 86–95, 2019.

[12]

 C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp.
576–580, 1969.

[13]

 S. C. Qin, Z. W. Xu, and Z. Ming, “Survey of research on
program verification via separation logic,” Journal of Soft-

[14]

ware, vol. 28, no. 8, pp. 2010–2025, 2017. (in Chinese)
 D. Pym, J. M. Spring, and P. O'Hearn, “Why separation log-
ic works,” Philosophy & Technology, vol. 32, no. 3, pp.
483–516, 2019.

[15]

 Inria, “The Coq proof assistant,” Available at: https://coq.in-
ria.fr/, 2021.

[16]

 N. A. Hamid and Z. Shao, “Interfacing Hoare logic and type
systems for foundational proof-carrying code,” in Proceed-
ings of the 17th International Conference on Theorem Prov-
ing in Higher Order Logics, Park City, UT, USA, pp.
118–135, 2004.

[17]

 B. W. Zhang, Z. Jin, H. P. Wang, et al., “A tool for verify-
ing cloud block storage based on separation logic,” Journal of
Software, vol. 33, no. 6, pp. 2264–2287, 2022. (in Chinese)

[18]

 J. Backfield, Becoming Functional: Steps for Transforming
Into A Functional Programmer. O’Reilly Media, Inc., Se-
bastopol, CA, USA, pp. 1–3, 2014.

[19]

 T. White, Hadoop: The Definitive Guide, 3rd ed., O'Reilly
Media, Inc., Sebastopol, CA, USA, pp. 43–53, 2012.

[20]

 Apache, “Append to files in HDFS,” Available at: https://is-
sues.apache.org/jira/browse/HADOOP-1700, 2016.

[21]

 Apache, “HDFS truncate,” Available at: https://issues.apache.
org/jira/ browse/HDFS-3107, 2016.

[22]

 Amazon, “Amazon elastic block store,” Available at:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/A
mazonEBS.html, 2022.

[23]

 L. Cardelli and P. Wegner, “On understanding types, data
abstraction, and polymorphism,” ACM Computing Surveys,
vol. 17, no. 4, pp. 471–523, 1985.

[24]

 B. Biering, L. Birkedal, and N. Torp-Smith, “BI hyperdoc-
trines and higher-order separation logic,” in Proceedings of
the 14th European Symposium on Programming, Edinburgh,
UK, pp. 233–247, 2005.

[25]

 C. Baier and J. P. Katoen, Principles of Model Checking.
MIT Press, Cambridge, MA, USA, pp. 7–16, 2008.

[26]

 H. G. Chen, D. Ziegler, T. Chajed, et al., “Using Crash Hoare
logic for certifying the FSCQ file system,” in Proceedings of
the 25th Symposium on Operating Systems Principles, Mon-
terey, CA, USA, pp. 18–37, 2015.

[27]

 H. G. Chen, T. Chajed, A. Konradi, et al., “Verifying a high-
performance crash-safe file system using a tree specification,”
in Proceedings of the 26th Symposium on Operating Sys-
tems Principles, Shanghai, China, pp. 270–286, 2017.

[28]

 K. Arkoudas, K. Zee, V. Kuncak, et al., “Verifying a file sys-
tem implementation,” in Proceedings of the 6th Internation-
al Conference on Formal Engineering Methods, Seattle, WA,
USA, pp. 373–390, 2004.

[29]

 P. Gardner, G. Ntzik, and A. Wright, “Local reasoning for
the POSIX file system,” in Proceedings of the 23rd Euro-
pean Symposium on Programming Languages and Systems,
Grenoble, France, pp. 169–188, 2014.

[30]

 I. Pereverzeva, L. Laibinis, E. Troubitsyna, et al., “Formal
modelling of resilient data storage in cloud,” in Proceedings
of the 15th International Conference on Formal Engineer-
ing Methods, Queenstown, New Zealand, pp. 363–379, 2013.

[31]

 R. Bobba, J. Grov, I. Gupta, et al., “Survivability: Design,
formal modeling, and validation of cloud storage systems us-
ing Maude,” in Assured Cloud Computing, R. H. Campbell,
C. A. Kamhoua, and K. A. Kwiat, Eds. Wiley-IEEE Press,
Hoboken, NJ, USA, pp. 10–48, 2018.

[32]

 A. Blanchard, N. Kosmatov, M. Lemerre, et al., “A case
study on formal verification of the Anaxagoros hypervisor
paging system with Frama-C,” in Proceedings of the 20th In-
ternational Workshop on Formal Methods for Industrial
Critical Systems, Oslo, Norway, pp. 15–30, 2015.

[33]

 Y. X. Jing, H. P. Wang, Y. Huang, et al., “A modeling lan-
guage to describe massive data storage management in cyber-

[34]

 126 Chinese Journal of Electronics, vol. 33, no. 1

physical systems,” Journal of Parallel and Distributed Com-
puting, vol. 103, pp. 113–120, 2017.
 Z. Jin, H. P. Wang, B. W. Zhang, et al., “Reasoning about
cloud storage systems based on separation logic,” Chinese
Journal of Computers, vol. 43, no. 12, pp. 2227–2240, 2020.
(in Chinese)

[35]

 Z. Jin, B. W. Zhang, L. Zhang, et al., “An adaptation-com-
plete proof system for local reasoning about cloud storage
systems,” Theoretical Computer Science, vol. 903, pp. 39–73,
2022.

[36]

 A. Charguéraud, “Separation logic for sequential programs
(functional pearl),” Proceedings of the ACM on Program-
ming Languages, vol. 4, no. ICFP, article no. 116, 2020.

[37]

 A. Charguéraud, “Software foundations (6): Separation logic
foundations,” Electronic Textbook, Version 1.6 (Coq 8.17 or
later), 2023-08-23.

[38]

 R. Jung, R. Krebbers, J. H. Jourdan, et al., “Iris from the
ground up: A modular foundation for higher-order concur-
rent separation logic,” Journal of Functional Programming,
vol. 28, article no. e20, 2018.

[39]

 J. Bengtson, J. B. Jensen, F. Sieczkowski, et al., “Verifying
object-oriented programs with higher-order separation logic in
Coq,” in Proceedings of the 2nd International Conference on
Interactive Theorem Proving, Berg en Dal, The Netherlands,
pp. 22–38, 2011.

[40]

 A. Nanevski, G. Morrisett, A. Shinnar, et al., “Ynot: Depen-
dent types for imperative programs,” in Proceedings of the
13th ACM SIGPLAN International Conference on Function-
al Programming, Victoria, BC, Canada, pp. 229–240, 2008.

[41]

 A. Chlipala, “The Bedrock structured programming system:
combining generative metaprogramming and Hoare logic in
an extensible program verifier,” in Proceedings of the 18th
ACM SIGPLAN International Conference on Functional
Programming, Boston, MA, USA, pp. 391–402, 2013.

[42]

 C. Calcagno, D. Distefano, J. Dubreil, et al., “Moving fast
with software verification,” in Proceedings of the 7th Inter-
national Symposium on NASA Formal Methods, Pasadena,
CA, USA, pp. 3–11, 2015.

[43]

Bowen ZHANG is a Ph.D. candidate at the
School of Computer Science, Peking Univer-
sity, China. His current research interests in-
clude formal verification, interactive theorem
proving, cloud block storage, and Coq.
(Email: zhangbowen@pku.edu.cn)

Zhao JIN received the Ph.D. degree from the
Peking University, China, in 2022. He is work-
ing in the School of Computer and Artificial
Intelligence, Zhengzhou University, China. His
current research interests include program se-
mantics, programming logic, and formal veri-
fication. (Email: jinzhao@pku.edu.cn)

Hanpin WANG received the Ph.D. degree
from the Beijing Normal University, China, in
1993. He is a Professor at the School of Com-
puter Science, Peking University, China. His
current research interests include program-
ming logic, formal semantics, description and
verification of computer systems.
(Email: whpxhy@pku.edu.cn)

Yongzhi CAO received the Ph.D. degree from
the Beijing Normal University, China, in 2003.
He is a Professor at the School of Computer
Science, Peking University, China. His cur-
rent research interests include formal meth-
ods and their applications, privacy and secur-
ity, and reasoning about uncertainty.
(Email: caoyz@pku.edu.cn)

Formal Verification of Data Modifications in Cloud Block Storage Based on Separation Logic 127

