

RESEARCH ARTICLE

Fast Cross-Platform Binary Code Similarity
Detection Framework Based on CFGs Taking
Advantage of NLP and Inductive GNN

Jinxue PENG, Yong WANG, Jingfeng XUE, and Zhenyan LIU

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Yong WANG, Email: wangyong@bit.edu.cn
Manuscript Received March 22, 2022; Accepted January 5, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — Cross-platform binary code similarity detection aims at detecting whether two or more pieces of bina-
ry code are similar or not. Existing approaches that combine control flow graphs (CFGs)-based function representa-
tion and graph convolutional network (GCN)-based similarity analysis are the best-performing ones. Due to a large
amount of convolutional computation and the loss of structural information, the use of convolution networks will in-
evitably bring problems such as high overhead and sometimes inaccuracy. To address these issues, we propose a fast
cross-platform binary code similarity detection framework that takes advantage of natural language processing (NLP)
and inductive graph neural network (GNN) for basic blocks embedding and function representation respectively by
simulating extracting structural features and temporal features. GNN’s node-centric and small batch is a suitable
training way for large CFGs, it can greatly reduce computational overhead. Various NLP basic block embedding
models and GNNs are evaluated. Experimental results show that the scheme with long short term memory (LSTM)
for basic blocks embedding and inductive learning-based GraphSAGE(GAE) for function representation outperforms
the state-of-the-art works. In our framework, we can take only 45% overhead. Improve efficiency significantly with a
small performance trade-off.
Keywords — Control flow graph, Natural language processing, Inductive graph neural network, Binary code
similarity detection.
Citation — Jinxue PENG, Yong WANG, Jingfeng XUE, et al., “Fast Cross-Platform Binary Code Similarity
Detection Framework Based on CFGs Taking Advantage of NLP and Inductive GNN,” Chinese Journal of Electron-
ics, vol. 33, no. 1, pp. 128–138, 2024. doi: 10.23919/cje.2022.00.228.

 I. Introduction
With the development of smartphones and the Inter-

net of things (IoT), the number of software is increasing
exponentially, while the number of malware is also in-
creasing recklessly. Statistics show that more than 100,000
malicious apps were uploaded to different platforms (a
variety of operating systems and hardware environments)
such as 9game and Google in 2019 [1]. The malware
hides in benign ones, controlling execution and stealing
information [2]. What’s worse, IoT vendors are compil-
ing and deploying third-party code developed on multi-
ple platforms, which poses a huge challenge to our detec-
tion efforts.

The core part of malware detection is cross-platform
binary code similarity detection, which can be can be ap-

plied at different granularities, such as instructions, basic
blocks, functions, and whole programs [3]. In addition,
cross-platform binary code similarity detection can be
also used in vulnerability search [4]–[9] and patch analy-
sis [10]–[14], etc. In real-world scenarios, the amount of
data can be as high as one million or more. Over time,
there will be problems such as excessive data volume and
model aging. However, model updating requires exces-
sive resource and time costs, so improving model efficien-
cy is crucial.

Current solutions can be roughly divided into three
categories: the graph-matching based [15]–[20], the graph-
embedding based [21]–[25], and the deep-learning based
[26]–[30]. The graph matching-based approaches detect
whether two binary functions’ control flow graphs (CFGs)
are similar, which have much higher time complexity and

Associate Editor: Prof. Zhihua ZHOU, Nanjing University.

Chinese Journal of Electronics
vol. 33, no. 1, pp. 128–138, January 2024
https://doi.org/10.23919/cje.2022.00.228

weaker portability [15]. The graph embedding-based so-
lutions map binary code into multi-dimensional vector
representations (embeddings), and then use vectors in-
stead of binary code snippets [27]. However, the features
of CFGs are usually manually defined, which will proba-
bly cause bias. An end-to-end similarity detection method
based on graph convolutional network (GCN) is proposed
to fix this defect, and the biggest improvement is to use
unsupervised feature extraction to replace manual fea-
ture extraction. But the following problems still exist:

• Low performance, high overhead. In GCN-based
approaches [22], [23], [26]–[31], binary functions are rep-
resented as structure-regular images or sequences, and
then analyzed with convolutional neural networks
(CNN). However, because of CFG’s irregular and un-
structured natures, the convolutional operations can’t be
performed effectively. GCN is a kind of transductive
learning, which learns the nodes embeddings in a deter-
ministic graph and the eigenvalue decomposition of the
graph’s Laplacian matrix. We find that the total run-
time of [26] exceeds 10 hours when we reproduce it on
our own server. For larger CFGs of complex binary func-
tions, the time cost of the traversing subgraphs, the com-
putational cost of the model training, and the storage
cost become more uncontrollable.

• The loss of control flow structural information.
Control flow semantic information represents the inter-
nal structure of a function, reflecting the dependencies
between basic blocks and their contextual semantics,
which is essential for distinguishing malware from differ-
ent platforms [32]. Unfortunately, the structural informa-
tion is not fully utilized in some approaches, since many
graph embedding methods depend on the random walk
strategy during the representation of CFGs. But the ran-
dom walk cannot obtain all the structural information of
the central node. What’s worse, the loss of structural in-
formation may affect the detection accuracy.

To address the above issues, we propose a fast bina-
ry code similarity detection framework that combines
NLP with inductive GNN. We solve the first problem by
changing the neighbor sampling strategy and filtering in-
valid nodes. And for the second problem, we combine
NLP and GNNs together. NLP can automatically learn
the representations needed from raw data with the small-
est possible human bias. Unlike transductive learning,
the feature learning of each node in inductive representa-
tion learning is only related to its K-order neighbors in-
stead of considering the full graph information, which
makes distributed learning of large-scale graph data pos-
sible. To the best of our knowledge, the graph comput-
ing framework Plato proposed by Tencent can reduce the
computation time of a super-scale graph with 1 billion
nodes to the level of minutes.

In this paper, we investigate several approaches to
embed the blocks of the CFGs. Specifically, we disassem-
ble the binary code with third-party tools and extract
the instruction sequence, CFG, and adjacency matrix

(Adj) of binary functions. Then we successively perform
instruction embedding, basic block embedding, and func-
tion representation using specific NLP models and
GNNs. We evaluate our framework on the task of com-
piler provenance, which is first afforded by Rosenblum
et al. [33]. Our framework can be adapted to various
NLP models and GNNs. In our experiment, LSTM [34],
CodBERT [35], and without-embedding are used in basic
block embedding and graph attention network (GAT) [36]
and GAE [37] for function representing. Finally, we form
six implementation schemes in total. The work of [26] is
our baseline which is the subsequent work of [27]. Exper-
imental results show that the scheme of LSTM for basic
block embedding and inductive learning-based GAE for
function representation performs best, which takes only
45% of the time overhead of the baseline.

The main contributions of our work are as follows:
1) We propose a cross-platform binary code similari-

ty detection framework, that combines NLP and GNN to
solve the problems of high overhead and structural infor-
mation loss in existing works;

2) We represent the blocks of CFGs using an induc-
tive representing learning-based approach;

3) We extensively evaluate the framework by six dif-
ferent NLP models and GNNs, showing that LSTM for
basic block embedding and GAE for function representa-
tion performs best. We can Improve efficiency signifi-
cantly with a small performance trade-off;

4) We fully preserve and utilize the structural infor-
mation of the CFG and analyze the final result in Sec-
tion V (the section Discussion).

 II. Related Work
While there has been a series of efforts on binary

code similarity detection, most of them only work on bi-
nary code from a single platform. Due to the develop-
ment of IoT, security practitioners have to focus on the
problems caused by cross-platform applications. All the
research can be divided into the following categories.

Graph matching-based solutions Those approaches
based on graph match use the edit distance of two CFGs
as the similarity value of the corresponding function pair.
Edit distance refers to the minimum number of edits
converted from one graph to another, and it is extended
from string edit distance [16]. BinGold [17] extracts se-
mantic information from CFGs and data flow graphs
(DFGs) and performs similarity calculation using the
graph match algorithm. BINGO [18] introduces function
filtering before the similarity calculation to significantly
reduce irrelevant target functions. discovRE [19] and
SIGMA [20] detect whether the two graphs are complete-
ly similar first. If they are identical, the detection ends
here and the edit distance between the two graphs is 0.
Otherwise, discovRE uses the distance to prune and
guide the next operation, and finally arranges the candi-
date functions with a distance less than the threshold in
the order from smallest to largest (the similarity is from

Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking Advantage of NLP... 129

largest to smallest), that is the similarity matching re-
sult. SIGMA executes fuzzy matching, calculating the ed-
it distance of the graphs and taking it as the final result.

Graph embedding-based solutions Graph match is
not only computationally expensive and time-consuming
but also difficult to be applied to new tasks. In order to
represent graphs in a computationally convenient form,
Genius [21] takes advantage of graph embedding to con-
vert CFGs into high-dimensional vectors. Gemini [22]
improves Genius by using Structure2Vec [23] for graph
embedding. Structure2Vec can capture the spatial struc-
ture similarity between two nodes. The concept of anno-
tated CFG (ACFG) is first proposed in Gemini, which
represents a graph containing manually selected features.
Different from Gemini, VulSeeker [24] inputs the CFGs
and DFGs of binary functions into the Structure2Vec to
jointly guide the feature learning of nodes. VulSeeker-pro
[25] improves VulSeeker by enhancing function semantic
emulation based on semantic learning.

α

Deep learning-based solutions It is worth mention-
ing that the features in CFGs discussed above are usual-
ly manually defined, which inevitably introduces human
bias. In the last few years, researchers have focused on
tackling the problem of autonomous feature learning.
Diff [29] extracts the internal features after binary pre-

processing by feeding the function directly into CNN.
SAFE [27] and Asm2vec [28] use an unsupervised feature
learning-based solution to train the model by treating
each assembly instruction’s operand as a token. Yu [30]
combine semantic representation with structure represen-
tation, using recurrent neural network (RNN), message
passing neural network (MPNN), and CNN to extract se-
mantic, structure, and sequence information, which in-
creases the F1 value to nearly 5% higher than Gemini.

 III. Problem Definition and Solution

 1. Problem statement
For easy reading, the symbols used for classification

task in this article are shown as follows:
S′− A source code S and the binary code ;

f− A function belongs to S;
− A set of compile C;

bscj cj− A binary code belongs to S and compiled by ;
G = (V,E)

p&q

− A graph where the the set of vertices
V and the set of edge E; is the number of nodes and
edges in G;

N∗− Positive integer set ;
R− Real-number set ;

− The number of instructions in b is m;
− A set of instructions in f is If, n instructions in to-

tal;
Ivi

I⃗vi

− A set of instructions in b is , mapping vector
;

B⃗

− A set of the multi-dimensional feature vectors of
all blocks in G in ;

B⃗vi− The multi-dimensional of b is ;

B⃗o− A set of invalid nodes ;
− A set of true labels of blocks T;

F⃗vi− The multi-dimensional feature vector of f is ;

Ki

− The sampling depth in GNN K, the number of
node in i-th layer is .

bs1 bs2

C: {c1, c2, . . .}
S

Our framework is on the basic block level. The
cross-platform binary code similarity analysis at the ba-
sic block level can be defined as two binary blocks ,
compiled on different platforms that are similar if they
are compiled by different compilers but
belong to the same original source code . The difficulty
lies in the fact that different CPU architectures different
program versions and different compilers with four opti-
mization levels may produce vastly different binary func-
tion segments [38].

b
C: {c1,

c2, . . .} bcj
b cj

Y (cj)|cj ∈ C

Essentially, our framework is a transformation that
maps a binary basic block to a corresponding embed-
ding. We are given a set of possible compilers

, and a binary basic block (the binary basic
block compiled by) and we have to judge the com-
piler family .

G=(V,E) V =(v1, . . . , vp), vj ∈ N∗, 1 ≤ j ≤ p
E = (e1, . . . , eq), ej ∈ N∗, 1 ≤ j ≤ q

G
f1

If1 =(i1, . . . , in), ij ∈ N∗, 1 ≤ j ≤ n
vi Ivi

= (i1,
. . . , im), ij ∈ N∗, 1 ≤ j ≤ m vi

R

Control flow graph (CFG) is the representation form
of code during the compilation process. Denoting a CFG
as where
and are the set of
vertices (basic blocks) and edges in . We indicate the
list of assembly instructions composing function with

, and represent the list
of assembly instructions contain in with

. We want to represent as a
vector in .
 2. Solution overview

To achieve cross-platform binary code similarity de-
tection with lower overhead and higher accuracy. We
propose a fast detection framework which combines NLP
and inductive GNN. As shown in Figure 1, the whole de-
tection process includes four phases.

S′ If
Adj f

1) Pre-processing. We use Radare2 [39] to analyze
the binary code and get the instruction sequences ,
CFG and of .

B⃗vi = (⃗i1,

. . . , i⃗m), i⃗j ∈ RL, 1≤j≤m vi

L B⃗vi

Ivi

h : Ivi → I⃗vi

Ivi
vi I⃗vi

I⃗vi =(⃗i1, . . . , i⃗m), i⃗j ∈ RL, 1≤j≤m
L I⃗vi

B⃗vi vi

B⃗vi B⃗vi

2) Basic block embedding. This phase aims at ob-
taining the multi-dimensional feature vector

 associated with basic block .
 is the the dimension of . We embed the instruc-

tions in by word2vec [40] in NLP. This model can be
represented by a mapping function , where

 is the instruction sequences contained in , and is
the mapping vector. ,

 is the dimension of . In order to further make full
use of the temporal information between instruction se-
quences, we further mainly use NLP methods to embed
the basic block as a whole, and obtain the feature vector

 associated with . And then a CFG is transformed
into an ACFG. But in this process, we find that some

 are composed of all zero vectors. We call such

 130 Chinese Journal of Electronics, vol. 33, no. 1

B⃗oinvalid nodes marked as . We also analyze the specif-
ic reasons in Section III.4. Considering the invalid nodes
will take up a lot of extra space in the following step, we
design an algorithm (see Section III.4).

F⃗vi =(⃗i1, . . . , i⃗m),

i⃗j ∈ RL, 1 ≤ j ≤ m L F⃗vi F⃗vi

vi

3) Function representation. This phase further con-
siders the structural information in CFGs on the basis of
basic block embedding. We use the inductive GNNs to
accomplish it and indicate the result as

, is the dimension of . rep-
resents the final representation of each basic block af-
ter instruction embedding, basic block embedding and
function representation.

F⃗vi

4) Similarity calculation and applications. In the last
phase we can use the similarity between two to rep-
resent the similarity between the corresponding binary
basic blocks, and apply it in different downstream tasks.
Such as vulnerability search, similar function detection
and compiler provenance, etc.
 3. Pre-processing

Adj

We exploit Radare2 to dissemble the binary code,
counting the arithmetic instructions, constants, strings
and jump etc. to obtain a sequence of instructions for
each function. At the same time we also retain CFG and

 of the corresponding function. Because of the com-
plex structure of the compiled instruction set, we stan-
dardized it to facilitate the subsequent processing. Same
as SAFE [27], we replace all basic memory addresses and
all immediate addresses with MEM and IMM, respective-
ly.
 4. Basic block embedding

Instruction embedding The next step is instruc-
tion embedding. There are two common embedding
methods: one-hot encoding and word2vec. The one-hot
encoding can represent a relatively simple instruction for
an input, but it can’t capture the correlation of two simi-

lar instructions. In contrast, word2vec convert similar in-
structions into similar vectors. The core idea of word2vec
is to portray a word in its context. There are two com-
mon models in word2vec: CBow and Skip-gram [41]. The
Skip-gram model can achieve better performance on large
data sets, so we finally choose Skip-gram to accomplish
the instruction embedding.

B⃗vi

Basic block embedding Basic block embedding based
on the instruction embedding, with the goal of obtaining
the associated multi-dimensional feature vector for
each block in CFG.

p

m

p m

m = 50 p = 100

Tensorflow [42] (a deep learning framework) re-
quires train batches of uniform dimension. Actually, the
total number of basic blocks contained in each CFG()
and the number of instruction sequences in each basic
block() are both uncertain. Therefore, we firstly need
to determine the value of and . Extensive experi-
ments show that our framework can achieve best perfor-
mance when and and this is done by two
operations: padding or truncation.

We use LSTM, CodeBERT to embed the basic block.
For comparison, we also do the without-embedding ex-
periments. Note that CodeBERT is only for basic block
embedding here, function representation and similarity
calculation are still done by GNNs. This section takes
LSTM as an example, and other models will be further
detailed in Section IV.5. The core idea of LSTM is to
control the transmission state by gating the state. Com-
pared with RNN, LSTM can selectively forget or remem-
ber the input from the previous node, instead of just one
memory superposition mode. So, LSTM can solve the
problem vanishing gradient and exploding gradient in
long- sequence training.

Each component of the padding vector is zero. That’s
why invalid nodes appear. Generally speaking, the in-
valid nodes will be generated when the actual total num-

Binary
code

Reverse
analysis

Addr_1: mov eax,10

Addr_2: dec eax

Addr_3: mov [base+eax], 0

Addr_4: jnz Addr_2

Addr_5: mov eax,ebx

CFG

Instruction
embedding

B1ock
embedding

B1ock embedding

i1=(0.32,..., 0.21)
→

i2=(0.12,..., 0.41)
→

i3=(0.22,..., 0.62)
→

i4=(0.50,..., 0.78)
→

i5=(0.58,..., 0.99)
→

B1=(1.3,..., 3.1)
→

B2=(1.1,..., 1.6)
→

B3=(2.5,..., 5.1)
→

B4=(3.0,..., 1.1)
→

B5=(5.1,..., 1.2)
→

ACFG

Function representation

Similarity value F

GNN

→

Figure 1 The system processing flow graph, input is a binary code, and output the similarity value.

Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking Advantage of NLP... 131

p
p

ber of basic blocks formed by a function after disassem-
bly is less than . In order to avoid information omission
such as semantics, we usually set higher values of , so it
is inevitable that invalid nodes will appear in most cases.
However, in the following step, the invalid nodes have no
practical significance (zero vector means no feature
valid) and will cause additional system overhead, so we
design an algorithm that can delete the invalid nodes
while retaining the structure information.

B⃗ Adj T G

G

The input to Algorithm 1 includes all basic blocks’s
embeddings , and the true label set of three
parts. We are aiming at filtering out invalid nodes and
keeping valid nodes and the structural information in .
The algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1 Invalid node filtering
B⃗ AdjInput:　 : all basic blocks’s embeddings in G; : Adja-

cency matrix; T: true label set.
B⃗viOutput: .

Invalid V alid Res ∅ 1:　　global values A,D; , , = ;

B⃗vi B⃗ 2:　　for each IN

B⃗vi 3:　　　if equals(0)
Invalid 4:　　　　 .Append(A);

 5:　　　else
B⃗vi 6:　　　　X = CONCAT(A, , T);

V alid 7:　　　　 .Append(X);
 8:　　　end if
 9:　　　C.Increment;
10:　　end for

Adj11:　　for i=0 to p IN
temp ⌊D/p⌋12:　　　 = ;

Adj13:　　　for j=0 to p IN
Index1 p ∗ ⌊p ∗ temp⌋+ i14:　　　　 = ;
Index2 p ∗ ⌊p ∗ temp⌋+ j15:　　　　 = ;
Index1 &Index2 Invalid16:　　　　if NOT IN
Res Index1 &Index217:　　　　　 .Append();

18:　　　　end if
19:　　　　D.Increment;
20:　　　end for
21:　　end for

 5. Function representation
To take full advantage of the structural information

in the CFGs, we utilize GNNs to embed the basic blocks
in the ACFGs. Considering that GCN belongs to trans-
ductive learning whose training method is a full graph
form and the loss of all nodes will only contribute to the
gradient data once, which cannot do the small batch up-
date usually used in DNN. This is very inefficient in
terms of the number of gradient updates [31]. Therefore,
in this section we will use GAE, a method based on in-
ductive representation learning, for the function repre-
sentation.

The core idea of GAE is to generate the embedding
of the target node by learning a function that aggregates

B⃗ Adjs
G

F⃗vi

vi vi

the representation of neighboring nodes. The embedding
of all nodes and the are regarded as the entire
graph and input to GAE. The output is the multi-di-
mensional feature vector associated with the basic
block . Current node updates its state by aggregat-
ing the neighboring hidden states and its own state in
the previous time step, which can be expressed as [37]

fk
η(vi)

← AGGREGATEk(f
k−1
u ,∀u ∈ η(vi)) (1)

fk
vi
← σ(W k · CONCAT(fk−1

vi
,fk

η(vi)
)) (2)

vi

fk−1
N(vi) K

η η : v → 2v

AGGREGATEk

First, current node aggregates its immediate neigh-
bourhood representations into a single vector .
denotes the depth of search. is defined as ,
representing a neighborhood function.
represents different aggregator functions.

fk−1
vi

fk−1
N(vi)

σ W k

K F⃗vi ≡ fk
vi
,∀vi ∈ V

Next, GAE concatenates the node’s current repre-
sentation with the aggregated neighborhood vector

 through a fully connected layer with nonlinear
transformation , as shown in (2). is the weight ma-
trices. For notational convenience, we denote the final
representations output at depth as .

K K1 ·K2 ≤ 500
K1 K2

K = 1 K = 2

This approach improves GCN in two aspects. On
the one hand, through the strategy of sampling neigh-
bors, the training way is changed from full batch to
node-centered mini batch, and the embedding representa-
tion of the current node is only relevant to its K-order
neighbor nodes. On the other hand, more aggregation
functions (aggregator) are used to aggregate information
about neighbor nodes. Aggregate functions can generate
the embedding of a node directly. Through the improve-
ment of the above two points, GAE greatly reduces the
time to generate a new node embedding, and also
achieves breakthrough progress when used in large-scale
graph. L. Hamilton et al. [37] also show that GAE can
achieve high performance with = 2 and ,
where and represent the sampling number of
neighbor nodes when and respectively. In
addition, we also evaluated GAT, which assigns weights
to nodes to consider different important inputs.
 6. Similarity calculation and applications

After getting the embeddings of binary blocks, we
can apply them to many specific tasks, such as finding
similar binary functions, compiler provenance, etc. For
the first task, given a certain bug (binary function or ba-
sic block), we have to search for similar ones in a large
dataset created using different compilers. In the compil-
er provenance task, we determine which compiler is a ba-
sic block compiled by.

 IV. Evaluation
In this section, we evaluate our framework from the

following aspects: i) How much improved the perfor-
mance overhead compared to the baseline? ii) What are

 132 Chinese Journal of Electronics, vol. 33, no. 1

the advantages of our framework over the other state-of-
the-art works?
 1. Experiment settings

Adj

1) Platform. We do our experiments on a Lenovo E5
server equipped with Intel Xeon E5 v4 core processor, 32G
running memory, and 500G disk space. We use a plug-in
of the tool Radare2 to analyze the binary code and ex-
tract CFG, and an instruction sequence from each
binary function. Our framework is implemented in Ten-
sorFlow.

p
m

K K1 K2

2) Hyper-parameters. We only show the values of all
hyper-parameters used in the final experiment. The max-
imum number of blocks in CFG is 100(), and each block
contains 50() instructions. We set the batch size to 160
and the hidden units as 25. We still use the parameter
settings in GAE, set the to 2, and , are both 25.
We also make a wide range of adjustments to these pa-
rameters, more details will be given in the next.
 2. Dataset

We use the restricted compiler dataset from [26],
which compiled different open-source projects: openssl-
3.1.1, openssl-1.1.1, ccv-0.7, binutils2.30, curl-7.61.0, val-
grind3.13.0, coreutils- 8.29, libhttpd-2.0. Each project has
been compiled for AMD64 with three compilers: gcc-3.4
and gcc-5.0 and clang3.9 and all 4 optimization levels
(O0, O1, O2, and O3). We randomly select some data
form this to form our datasets A and B, where A con-
tains 55863 basic blocks with 69107 edges and B con-
tains 25188 basic blocks with 20565 edges. Both A and B
are derived from the Restricted Compiler Dataset, but
their scales and the binary function sets they belong to
are different. Dataset A is taken from the first part of
the original data set, and dataset B is taken from the
second half.
 3. Evaluation metric

We use the following common metrics to evaluate
our framework:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(3)

Precission =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F1-score =
2× Precision× Recall
Precision+ Recall

(6)

TP

FP
FN

TN

Accuracy refers to the percentage of correctly identi-
fied blocks, in which true positive () indicates posi-
tive samples predicted by the model as positive one, false
positive () indicates negative samples predicted by the
model to be positive one, false negative () indicates
positive samples predicted by the model to be negative
and true negative () indicates negative samples pre-

dicted by the model to be negative one. Precision and re-
call measures the percentage of matched blocks that are
correctly labeled and the ability to identify matched
block correctly. F1-score considers both the precision
rate and the recall rate, so that both reach the highest
level and achieve a balance.

TRT ART

γ

In addition, we also use the total running time
() and the average running time () to measure
the efficiency. The total running time is the sum of run-
ning time per round, and the average running time is de-
fined as follows, where is the traning round number.

ART =
TRT
γ

(7)

 4. Evaluation on various implementation schemes
We implement two inductive function representa-

tion models: GAT and GAE. Combining with the mod-
els used in basic block embedding and function represen-
tation, we form six different implementation solutions in
total. We use [26] as baseline and evaluate the above
schemes from two aspects: accuracy and performance.
The details are as follows.

Accuracy In order to ensure the fairness of the
comparative experiments, we adjust the parameters of
GAT and GAE to best, and used default parameters for
[26]. We use Microsoft’s CodeBERT-base pre-trained
model. Table 1 shows the results on accuracy, precision,
recall, and F1-score of different implementation schemes
on dataset A and B. Result indicates that the scheme
with LSTM for basic block embedding and GAE for
function representation performs better than others and
with comparable accuracy to the baseline.

Performance Figure 2 shows the first 20 rounds of
seven approaches with data set A. Note that we only use
part of the origin dataset, so we take the baseline as the
standard and carry out an equal transformation of the
data listed in the Figure 2 (for example the original
dataset is double size of ours, and the values of running
time except the baseline in Figure 2 are twice of the ac-
tual running time). Figure 2 shows that the time over-
head of the LSTM+GAE is only slightly larger than
without-embedding+GAE and far smaller than the base-
line. While the inference time of a scheme is also impor-
tant in the deployment. So we record the total runtime
and runtime on the test set of each scheme. The results
are shown in the Table 2 below. Dimension is deter-
mined by the basic block embedding scheme used.

For the data in Table 2, the following points need
special attention. According to our statistics, the total
running time of the baseline is 48667 s, which we scaled
according to the size of the dataset. Relevant parame-
ters of the GAT model in the table have been fine-tuned
to a certain extent (the optimal parameters acceptable to
the current system), because when we try to run the
GAT-related model with the same parameters as GAE,
the system will Kill the process because high overhead.

Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking Advantage of NLP... 133

So we default to the same basic block embedding
method, GAT is less efficient than GAE. From the ex-
perimental results we can know that the input dimen-
sion is also positively related to the inference time when
using the same GNN models. The efficiency of the with-
out-embedding method is the highest, LSTM is slightly
worse than the first one, and the CodeBERT is the low-
est. The experimental results are basically consistent
with our initial assumptions. Combing accuracy rate, we
still think LSTM+GAE is the optimal solution for Bina-
ry code similarity detection.

0 5 10

Epoch

R
u
n
n
in

g
 t

im
e

(s
)

15 20

200

400

600

800

1000

1200

Unembedding+GAT
LSTM+GAT
LSTM+GAE
Baseline
CodeBERT+GAE
CodeBERT+GAT
Unembedding+GAE

Figure 2 The running time of each scheme in first 20 epoch.

 5. Evaluation on various basic block embedding
models

The embedding of basic block is a key part of the
overall detection, because the feature vectors of the ba-
sic blocks, as the input to GNNs, will directly affect the

representing results and the detection accuracy. We eval-
uate three basic block embedding approaches (without-
embedding, CodeBERT and LSTM) on GAT and GAE,
recording their performance in terms of accuracy (Table
1) and efficiency (Table 2).

In the Without-embedding, we omit the steps of in-
struction embedding and basic block embedding, and on-
ly function representation of CFGs. This approach can’t
make full use of semantic information of the basic blocks,
so the effect on both models is not ideal.

Before using CodeBERT for basic block embedding,
we also tried the BERT [43], but the results were not
satisfactory. CodeBert performs better than BERT in
terms of accuracy and efficiency, but not as well as
LSTM. We take full advantage of LSTM in long se-
quences and achieve good results. The scheme with
LSTM for basic block embedding and GAE for function
representation achieve the highest accuracy during the
experiment. Surprisingly, the test time of this scheme is
only slightly larger than Without-embedding + GAE and
much smaller than others.
 6. Evaluation on the number of neighbors sam-

pled in GNNs

k1, k2
K1 K = 1

K2

In this part, we explore the effects of the number of
neighbors sampled in GAE. Define a array [] where

 is the number of neighbor samples when and
the same to . Table 3 shows the effect of the number
neighbors sampled on the test set when using data set B.
With the increase of the number of neighbors sampled,
the better accuracy is, and the ART is also greatly in-
creased. Considering that more nodes will lead to higher

Table 1 The result of different implementation schemes

Scheme
Data set A Data set B

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Without-embedding+GAT 57.7 56.1 56.9 56.5 56.4 56 74.6 64.0

Without-embedding+GAE 61.3 67.0 49.5 57.0 59.9 59.5 52.0 55.5

LSTM+GAT 65.1 64.4 63.0 63.7 62.1 61.0 71.4 65.8

CodeBERT+GAE 56.7 61.0 56.0 50.8 66.7 59.7 58.1 58.4

CodeBERT+GAT 55.1 56.8 55.7 55.1 62.3 57.3 51.8 62.3

LSTM+GAE 83.4 82.0 84.4 83.2 84.2 81.4 85.7 83.5

Baseline 87 87 87 87 87 87 87 87

Table 2 The inference time and running time of different schemes in data set A&B

Scheme Dimension
Data set A Data set B

Running time (s) Test time (s) Running time (s) Test time (s)

LSTM+GAE 100 3227 75.5 3525 79.5

CodeBERT+GAE 768 3894 100.5 2259 94.4

Without-embedding+GAE 50 3032 67.8 3060 69.2

LSTM+GAT 100 3866 56.8 3293 48.8

CodeBERT+GAT 768 4265 47.8 4302 47.1

Without-embedding+GAT 50 3271 45.2 3280 46.6

Baseline 50 7373 345.6 3743 345.6

 134 Chinese Journal of Electronics, vol. 33, no. 1

K1 K2

consumption, and there is no further improvement in ac-
curacy, we finally set and to 25.
 7. Evaluation on the hidden units in GNNs

We find the number of hidden units in GNN affects
the results a lot. So, we carry out experiments from 4 to
32 different hidden units on GAE.

Figure 3(a) and (b) show the results when set B is
used. Generally speaking, as the increase of hidden units,
the accuracy, recall and F1-score all increase, and ART
does not significantly increase or decrease. Therefore, we
think there is no obvious linear relationship between sys-
tem performance and the number of hidden layers. Ex-
tensive experimental data shows that setting the num-
ber to 25 is a good choice.

 V. Discussion
In our framework, we propose an approach that uti-

lizes NLP combined with inductive GNNs to solve the
problem of high overhead and the loss of structural infor-
mation when graphs are applied to GCNs.

The block’s feature vectors are essential, as they will
act as input to function representation and participate in
the similarity detection calculation. During the continu-

ous experimentation with the basic block embedding ap-
proaches, we have tried to use BERT to complete the
tasks of basic block representation and binary function
similarity detection, but failed because the feature lexi-
con corresponding to BERT is not applicable to the in-
struction set. Therefore, we try again to use the bimodal
pre-trained model CodeBERT to complete these experi-
mental groups. CodeBERT performs very well in the
classification task of source code level (we use Code-
BERT to classify the source code of the data set, and the
accuracy rate can be as high as 93%), but not as well as
LSTM when applied to the basic block embedding. We
think that for the data set in this paper, the sequential
relationship between instructions is much more impor-
tant. This is probably the most important reason why
LSTM performs better.

The inference time of each scheme is closely related
to the graph neural network model used. GAE can get
the embedding of current node based on neighboring
nodes, while GAT needs to calculate the importance of
each node and assign weight accordingly, so it is far less
efficient than GAE. We further extract more structural
information than [26]. Interestingly, although reference [26]
uses less structural information, its accuracy is compara-
ble or better than our framework (87% for both datasets).
So, we think the temporal information of the basic blocks
is more important than the structural information. The
following two facts support our point. Firstly, LSTM
performs best among all the basic block embedding mod-
els. Secondly the two works by L. Massarelli et al. [26], [27]
also show that there are some special features of the bi-
nary function that cannot be captured by representing it
as a graph.

 VI. Conclusion
Addressing the low performance and control flow se-

mantic information loss problems in existing work is the
starting point of this paper. We propose an inductive bi-
nary function representing framework that combines
NLP with GNN. There are two mainly improvements.

Low performance, high overhead This part mainly

Table 3 Evaluation on the number of neighbors sampled in GAE

Number of
neighbor nodes Accuracy Precision Recall F1-score ART (s)

[5,5] 80.0 83.4 75.9 79.5 11

[8,8] 82.1 79.5 85.6 82.3 14

[10,10] 81.7 82.2 81.8 82.0 18

[15,15] 81.1 78.8 84.1 81.3 24

[16,16] 80.5 80.2 79.8 80.0 25

[8,16] 80.6 84.8 75.5 80.0 14

[20,20] 82.9 85.7 78.2 81.8 32

[25,25] 84.2 81.4 85.7 83.5 44

[16,25] 82.3 86.3 77.6 81.7 26

[30,30] 83.8 84.0 82.6 83.3 54

[32,32] 82.4 83.9 81.0 82.4 54

0 5 10

Hidden units

(a)

R
at

e
(%

)

15 25 30 3520

70

65

75

80

85

90

Recall

Accuracy

F1

0 5 10

Hidden units

(b)

A
R

T
 (

s)

15 25 30 3520

37

36

35

39

41

43

38

40

42

44

45

ART

Figure 3 Result under the different hidden units in GAE.

Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking Advantage of NLP... 135

includes the following two points. As mentioned above,
we use the inductive representing learning to modify the
training way from the full graph to node-centered mini
batch, which fundamentally saves the cost. In addition,
we filter the invalid nodes in the feature vector of the ba-
sic block, greatly reducing the unnecessary operation.

Adjs
The loss of control flow structural information We

use the to save the structural information as node
pairs, which will serve as a partial input to the function
representing module. Thanks to the powerful data under-
standing ability and cognitive ability of GNNs, the struc-
tural features of the graph data are integrated into the
implementation process of the algorithm.

We investigate several models in the block embed-
ding and function representation and form six implemen-
tation schemes finally. In order to avoid the influence of
objective factors as much as possible, we reset the experi-
mental environment for each experiment and make sure
that no other processes running at the same time. We
evaluated those implementation schemes on two data
sets, and the experimental results show that the scheme
with LSTM +GAE has the best comprehensive perfor-
mance. We achieve similar detection results with only
about 45% of the baseline overhead. In our writing, we
also find the follow future works.

Different basic block embedding models We ob-
serve a large impact of different block embedding ap-
proaches on the test set result. In this paper, we use a
variety of models, such as BERT and LSTM. [44] evalu-
ates network embedding techniques’ performances in
software bug prediction. The influence of different basic
block embedding models on GNN is also a direction
worth exploring. As far as we know, no related works
have been published yet.

Binary code similarity detection based on FCG
Our framework, like existing static analysis solutions, is
weak in anti-obfuscation. Due to the single reliance on
CFGs, the semantic information that can be extracted is
more limited if obfuscated. Function call graphs (FCGs)
not only consider the instruction information, but also
the more advanced internal features of the program,
which can better deal with the anti-detection techniques
commonly used in malware. Therefore, we can consider
how to effectively combine the features in CFG and FCG
to improve the anti-obfuscation capability while ensur-
ing accuracy.

Enhance the generalization ability of the frame-
work With the gradual popularization of open source
and code reuse, many seemingly new versions of soft-
ware only add a small amount of code to the original ba-
sis. So new nodes will appear on the corresponding CFG.
How to enhance the generalization ability of the frame-
work and identify these new nodes is also a direction
worthy of in-depth study.

 Acknowledgement
This work was supported by the National Natural

Science Foundation of China (Grant. No. 62172042) and
the Major Scientific and Technological Innovation
Projects of Shandong Province (Grant No. 2020CXGC
010116).

References
 Tableau, “Number of available applications in the google play
store from December 2009 to March 2023”, Available at:
https://www.statista.com/statistics/266210/number, 2023-
06-19

[1]

 X. Hu, S. Bhatkar, K. Griffin, et al., “MutantX-S: scalable
malware clustering based on static features,” in Proceedings
of 2013 USENIX conference on Annual Technical Confer-
ence, San Jose, CA, USA, pp. 187–198, 2013.

[2]

 I. U. Haq and J. Caballero, “A survey of binary code similari-
ty,” ACM Computing Surveys, vol. 54, no. 3, article no. 51,
2021.

[3]

 Z. M. Tai, H. Washizaki, Y. Fukazawa, et al., “Binary simi-
larity analysis for vulnerability detection,” in Proceedings of
the 2020 IEEE 44th Annual Computers, Software, and Ap-
plications Conference (COMPSAC), Madrid, Spain, pp.
1121–1122, 2020.

[4]

 Y. David and E. Yahav, “Tracelet-based code search in exe-
cutables,” ACM SIGPLAN Notices, vol. 49, no. 6, pp.
349–360, 2014.

[5]

 Y. David, N. Partush, and E. Yahav, “Statistical similarity of
binaries,” ACM SIGPLAN Notices, vol. 51, no. 6, pp.
266–280, 2016.

[6]

 Y. David, N. Partush, and E. Yahav, “Similarity of binaries
through re-optimization,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Barcelona, Spain, pp. 79–94, 2017.

[7]

 Y. David, N. Partush, and E. Yahav, “FirmUp: Precise stat-
ic detection of common vulnerabilities in firmware,” in Pro-
ceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, Williamsburg, VA, USA, pp. 392–404, 2018.

[8]

 P. Shirani, L. Collard, B. L. Agba, et al., “BINARM: Scal-
able and efficient detection of vulnerabilities in firmware im-
ages of intelligent electronic devices,” in Proceedings of the
15th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Saclay, France,
pp. 114–138, 2018.

[9]

 J. Jang, S. Choi, and J. Hong, “A method for resilient graph-
based comparison of executable objects,” in Proceedings of
2012 ACM Research in Applied Computation Symposium,
San Antonio, TX, USA, pp. 288–289, 2012.

[10]

 H. Flake, “Structural comparison of executable objects, ” in
Proceedings of Detection of intrusions and malware & vul-
nerability assessment, Dortmund, Germany, pp. 161–173,
2004.

[11]

 D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatical-
ly finding semantic differences in binary programs,” in Pro-
ceedings of the 10th International Conference on Informa-
tion and Communications Security, Birmingham, UK, pp.
238–255, 2008.

[12]

 U. Kargén and N. Shahmehri, “Towards robust instruction-
level trace alignment of binary code,” in Proceedings of the
2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), Urbana, IL, USA, pp.
342–352, 2017.

[13]

 Z. Z. Xu, B. H. Chen, M. Chandramohan, et al., “SPAIN: Se-
curity patch analysis for binaries towards understanding the
pain and pills,” in Proceedings of the 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE),

[14]

 136 Chinese Journal of Electronics, vol. 33, no. 1

Buenos Aires, Argentina, pp. 462–472, 2017.
 T. Kim, Y. R. Lee, B. Kang, et al., “Binary executable file
similarity calculation using function matching,” The Journal
of Supercomputing, vol. 75, no. 2, pp. 607–622, 2019.

[15]

 D. Katsaros, “Structural pattern recognition with graph edit
distance: approximation algorithms and applications,” Com-
puting Reviews, vol. 57, no. 11, pp. 665–665, 2016.

[16]

 S. Alrabaee, L. Y. Wang, and M. Debbabi, “BinGold: To-
wards robust binary analysis by extracting the semantics of
binary code as semantic flow graphs (SFGS),” Digital Investi-
gation, vol. 18, no. S, pp. S11–S22, 2016.

[17]

 M. Chandramohan, Y. X. Xue, Z. Z. Xu, et al., “BinGo:
Cross-architecture cross-OS binary search,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Seattle, WA, USA, pp.
678–689, 2016.

[18]

 S. Eschweiler, K. Yakdan, and Gerhards-Padilla E, “Dis-
covRE: Efficient cross-architecture identification of bugs in
binary code,” in Proceedings of the 23rd Annual Network
and Distributed System Security Symposium, San Diego, CA,
USA, pp. 58–79, 2016.

[19]

 S. Alrabaee, P. Shirani, L. Y. Wang, et al., “SIGMA: A se-
mantic integrated graph matching approach for identifying
reused functions in binary code,” Digital Investigation, vol.
12, no. S1, pp. S61–S71, 2015.

[20]

 F. Qian, R. D. Zhou, C. C. Xu, et al., “Scalable graph-based
bug search for firmware images,” in Proceedings of 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, pp. 480–491, 2016.

[21]

 X. J. Xu, C. Liu, Q. Feng, et al., “Neural network-based
graph embedding for cross-platform binary code similarity de-
tection,” in Proceedings of 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas, TX,
USA, pp. 363–376, 2017.

[22]

 H. J. Dai, B. Dai, and L. Song, “Discriminative embeddings
of latent variable models for structured data,” in Proceed-
ings of the 33rd International Conference on International
Conference on Machine Learning, New York City, NY, USA,
pp. 2702–2711, 2016.

[23]

 J. Gao, X. Yang, Y. Fu, et al., “VulSeeker: A semantic learn-
ing based vulnerability seeker for cross-platform binary,” in
Proceedings of the 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
Montpellier, France, pp. 896–899, 2018.

[24]

 J. Gao, X. Yang, Y. Fu, et al., “VulSeeker-pro: Enhanced se-
mantic learning based binary vulnerability seeker with emula-
tion,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Lake Bue-
na Vista, FL, USA, pp. 803–808, 2018.

[25]

 L. Massarelli, G. A. Di Luna, F. Petroni, et al., “Investigat-
ing graph embedding neural networks with unsupervised fea-
tures extraction for binary analysis,” in Proceedings of Work-
shop on Binary Analysis Research, San Diego, CA, USA, pp.
1–11, 2019.

[26]

 L. Massarelli, G. A. Di Luna, F. Petroni, et al., “SAFE: Self-
attentive function embeddings for binary similarity,” in Pro-
ceedings of the 16th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment,
Gothenburg, Sweden, pp. 309–329, 2019.

[27]

 S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec:
Boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization,”
in Proceedings of 2019 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, pp. 472–489, 2019.

[28]

 B. C. Liu, W. Huo, C. Zhang, et al., “αDiff: cross-version bi-
nary code similarity detection with DNN,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automat-
ed Software Engineering, Montpellier, France, pp. 667–678,
2018.

[29]

 Z. P. Yu, R. Cao, Q. Y. Tang, et al., “Order matters: Seman-
tic-aware neural networks for binary code similarity detec-
tion,” in Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence, New York, NY, USA, pp. 1145–1152, 2020.

[30]

 C. Y. Zhuang and Q. Ma, “Dual graph convolutional net-
works for graph-based semi-supervised classification,” in Pro-
ceedings of 2018 World Wide Web Conference, Lyon,
France, pp. 499–508, 2018.

[31]

 X. Hu, T. C. Chiueh, and K. G. Shin, “Large-scale malware
indexing using function-call graphs,” in Proceedings of the
16th ACM Conference on Computer and Communications
Security, Chicago, IL, USA, pp. 611–620, 2009.

[32]

 N. E. Rosenblum, B. P. Miller, and X. J. Zhu, “Extracting
compiler provenance from program binaries,” in Proceedings
of the 9th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis For Software Tools and Engineering, Toron-
to, Canada, pp. 21–28, 2010.

[33]

 S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[34]

 Z. Y. Feng, D. Y. Guo, and D. Y. Tang, “CodeBERT: A pre-
trained model for programming and natural languages,” in
Proceedings ofFindings of the Association for Computation-
al Linguistics: EMNLP 2020, Online, pp. 1536–1547, 2020.

[35]

 P. Veličković, G. Cucurull, A. Casanova, et al., “Graph at-
tention networks,” in Proceedings of the 6th International
Conference on Learning Representations, ICLR 2018 Open-
Review.net, 2018.

[36]

 W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” in Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, Long Beach, CA, USA, pp. 1025–1035, 2017.

[37]

 S. G. Yang, L. Cheng, Y. C. Zeng, et al., “Asteria: Deep
learning-based AST-encoding for cross-platform binary code
similarity detection,” in Proceedings of the 2021 51st Annu-
al IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), Taipei, China, pp. 224–236, 2021.

[38]

 Radareorg, “Radare2,” Available at: https://github.com/
radareorg/radare2, 2021-12.

[39]

 P. B. M. Abadi and E. A. J. Chen, “Word2vec skip-gram im-
plementation in tensor-flow,” Available at: https://www.ten-
sorflow:tutorials/representation/word2vec, 2021-12.

[40]

 T. Mikolov, K. Chen, G. Corrado, et al., “Efficient estima-
tion of word representations in vector space,” in Proceedings
of the 1st International Conference on Learning Representa-
tions, Scottsdale, AZ, USA, pp. 1–12, 2013.

[41]

 M. Abadi, P. Barham, J. M. Chen, et al., “TensorFlow: A
system for large-scale machine learning,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design
and Implementation, Savannah, GA, USA, pp. 265–283,
2016.

[42]

 J. Devlin, M. W. Chang, K. Lee, et al., “BERT: Pre-training
of deep bidirectional transformers for language understand-
ing,” in Proceedings of 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Minneapolis, MN, USA,
pp. 4171–4186, 2018.

[43]

 Y. Qu and H. Yin, “Evaluating network embedding tech-
niques’ performances in software bug prediction,” Empirical
Software Engineering, vol. 26, no. 4, article no. 60, 2021.

[44]

Fast Cross-Platform Binary Code Similarity Detection Framework Based on CFGs Taking Advantage of NLP... 137

Jinxue PENG was born in 1999. She is a post-
graduate of Beijing Institute of Technology,
China. Her main research interests focus on
binary code similarity detection and machine
learning. (Email: 3120201124@bit.edu.cn)

Yong WANG was born in 1975. She is an As-
sociate Professor of Beijing Institute of Tech-
nology, China. Her main research interests fo-
cus on cyber security and machine leaning.
(Email: wangyong@bit.edu.cn)

Jingfeng XUE was born in 1975. He is a Pro-
fessor and Ph.D. Supervisor in Beijing Insti-
tute of Technology, China. His main research
interests focus on network security and soft-
ware security. (Email: xuejf@bit.edu.cn)

Zhenyan LIU was born in 1975. She is an As-
sociate Professor of Beijing Institute of Tech-
nology, China. Her main research interests fo-
cus on machine learning.
(Email: zhenyanliu@bit.edu.cn)

 138 Chinese Journal of Electronics, vol. 33, no. 1

