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Abstract — Cross-platform binary code similarity detection aims at detecting whether two or more pieces of bina-
ry code are similar or not. Existing approaches that combine control flow graphs (CFGs)-based function representa-
tion and graph convolutional network (GCN)-based similarity analysis are the best-performing ones. Due to a large
amount of convolutional computation and the loss of structural information, the use of convolution networks will in-
evitably bring problems such as high overhead and sometimes inaccuracy. To address these issues, we propose a fast
cross-platform binary code similarity detection framework that takes advantage of natural language processing (NLP)
and inductive graph neural network (GNN) for basic blocks embedding and function representation respectively by
simulating  extracting  structural  features  and  temporal  features.  GNN’s  node-centric  and  small  batch  is  a  suitable
training  way  for  large  CFGs,  it  can  greatly  reduce  computational  overhead.  Various  NLP  basic  block  embedding
models and GNNs are evaluated. Experimental results show that the scheme with long short term memory (LSTM)
for basic blocks embedding and inductive learning-based GraphSAGE(GAE) for function representation outperforms
the state-of-the-art works. In our framework, we can take only 45% overhead. Improve efficiency significantly with a
small performance trade-off.
Keywords — Control  flow  graph, Natural  language  processing, Inductive  graph  neural  network, Binary  code
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 I. Introduction
With the development of smartphones and the Inter-

net of things (IoT), the number of software is increasing
exponentially, while  the  number  of  malware  is  also  in-
creasing recklessly. Statistics show that more than 100,000
malicious  apps  were  uploaded  to  different  platforms  (a
variety of operating systems and hardware environments)
such  as  9game  and  Google  in  2019  [1].  The  malware
hides  in  benign  ones,  controlling  execution  and  stealing
information  [2].  What’s worse,  IoT  vendors  are  compil-
ing and  deploying  third-party  code  developed  on  multi-
ple platforms, which poses a huge challenge to our detec-
tion efforts.

The core part of malware detection is cross-platform
binary code similarity detection, which can be can be ap-

plied at different granularities, such as instructions, basic
blocks,  functions,  and  whole  programs  [3].  In  addition,
cross-platform  binary  code  similarity  detection  can  be
also used in vulnerability search [4]–[9] and patch analy-
sis  [10]–[14],  etc.  In  real-world  scenarios,  the  amount  of
data can be as  high as  one million or  more.  Over  time,
there will be problems such as excessive data volume and
model aging.  However,  model  updating  requires  exces-
sive resource and time costs, so improving model efficien-
cy is crucial.

Current solutions can be roughly divided into three
categories: the graph-matching based [15]–[20], the graph-
embedding  based  [21]–[25],  and  the  deep-learning  based
[26]–[30].  The  graph  matching-based  approaches  detect
whether two binary functions’ control flow graphs (CFGs)
are similar, which have much higher time complexity and 
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weaker  portability  [15]. The  graph  embedding-based  so-
lutions  map  binary  code  into  multi-dimensional  vector
representations (embeddings),  and  then  use  vectors  in-
stead of binary code snippets [27]. However, the features
of CFGs are usually manually defined, which will proba-
bly cause bias. An end-to-end similarity detection method
based on graph convolutional network (GCN) is proposed
to fix this defect, and the biggest improvement is to use
unsupervised feature  extraction  to  replace  manual  fea-
ture extraction. But the following problems still exist:

•  Low performance,  high  overhead.  In  GCN-based
approaches [22],  [23],  [26]–[31], binary functions are rep-
resented  as  structure-regular  images  or  sequences,  and
then  analyzed  with  convolutional  neural  networks
(CNN).  However,  because  of  CFG’s irregular  and  un-
structured natures, the convolutional operations can’t be
performed  effectively.  GCN  is  a  kind  of  transductive
learning, which learns the nodes embeddings in a deter-
ministic  graph  and  the  eigenvalue  decomposition  of  the
graph’s Laplacian  matrix.  We  find  that  the  total  run-
time  of  [26]  exceeds  10  hours  when  we  reproduce  it  on
our own server. For larger CFGs of complex binary func-
tions, the time cost of the traversing subgraphs, the com-
putational  cost  of  the  model  training,  and  the  storage
cost become more uncontrollable.

•  The  loss  of  control  flow  structural  information.
Control flow  semantic  information  represents  the  inter-
nal  structure  of  a  function,  reflecting  the  dependencies
between  basic  blocks  and  their  contextual  semantics,
which is essential for distinguishing malware from differ-
ent platforms [32]. Unfortunately, the structural informa-
tion is not fully utilized in some approaches, since many
graph  embedding  methods  depend  on  the  random  walk
strategy during the representation of CFGs. But the ran-
dom walk cannot obtain all the structural information of
the central node. What’s worse, the loss of structural in-
formation may affect the detection accuracy.

To address the above issues, we propose a fast bina-
ry  code  similarity  detection  framework  that  combines
NLP with inductive GNN. We solve the first problem by
changing the neighbor sampling strategy and filtering in-
valid  nodes.  And  for  the  second  problem,  we  combine
NLP and  GNNs  together.  NLP  can  automatically  learn
the representations needed from raw data with the small-
est  possible  human  bias.  Unlike  transductive  learning,
the feature learning of each node in inductive representa-
tion learning is only related to its K-order neighbors in-
stead  of  considering  the  full  graph  information,  which
makes distributed learning of large-scale graph data pos-
sible. To the  best  of  our  knowledge,  the  graph comput-
ing framework Plato proposed by Tencent can reduce the
computation  time  of  a  super-scale  graph  with  1  billion
nodes to the level of minutes.

In  this  paper,  we  investigate  several  approaches  to
embed the blocks of the CFGs. Specifically, we disassem-
ble  the  binary  code  with  third-party  tools  and  extract
the  instruction  sequence,  CFG,  and  adjacency  matrix

(Adj) of binary functions. Then we successively perform
instruction embedding, basic block embedding, and func-
tion  representation  using  specific  NLP  models  and
GNNs. We evaluate our framework on the task of  com-
piler  provenance,  which  is  first  afforded  by  Rosenblum
et  al.  [33].  Our  framework  can  be  adapted  to  various
NLP models and GNNs. In our experiment, LSTM [34],
CodBERT [35], and without-embedding are used in basic
block embedding and graph attention network (GAT) [36]
and GAE [37] for function representing. Finally, we form
six implementation schemes in total. The work of [26] is
our baseline which is the subsequent work of [27]. Exper-
imental results show that the scheme of LSTM for basic
block  embedding  and  inductive  learning-based  GAE  for
function  representation  performs  best,  which  takes  only
45% of the time overhead of the baseline.

The main contributions of our work are as follows:
1) We propose a cross-platform binary code similari-

ty detection framework, that combines NLP and GNN to
solve the problems of high overhead and structural infor-
mation loss in existing works;

2) We represent the blocks of CFGs using an induc-
tive representing learning-based approach;

3) We extensively evaluate the framework by six dif-
ferent  NLP models  and  GNNs,  showing  that  LSTM for
basic block embedding and GAE for function representa-
tion performs  best.  We  can  Improve  efficiency  signifi-
cantly with a small performance trade-off;

4) We fully preserve and utilize the structural infor-
mation of  the  CFG and  analyze  the  final  result  in  Sec-
tion V (the section Discussion).

 II. Related Work
While  there  has  been  a  series  of  efforts  on  binary

code similarity detection, most of them only work on bi-
nary code  from  a  single  platform.  Due  to  the  develop-
ment of IoT, security practitioners have to focus on the
problems  caused  by  cross-platform  applications.  All  the
research can be divided into the following categories.

Graph matching-based solutions  Those  approaches
based on graph match use the edit distance of two CFGs
as the similarity value of the corresponding function pair.
Edit  distance  refers  to  the  minimum  number  of  edits
converted from one graph to another, and it is extended
from string  edit  distance  [16].  BinGold  [17] extracts  se-
mantic  information  from  CFGs  and  data  flow  graphs
(DFGs)  and  performs  similarity  calculation  using  the
graph match algorithm. BINGO [18] introduces function
filtering  before  the  similarity  calculation  to  significantly
reduce  irrelevant  target  functions.  discovRE  [19]  and
SIGMA [20] detect whether the two graphs are complete-
ly  similar  first.  If  they  are  identical,  the  detection  ends
here and the edit distance between the two graphs is 0.
Otherwise,  discovRE  uses  the  distance  to  prune  and
guide the next operation, and finally arranges the candi-
date functions with a distance less than the threshold in
the order from smallest to largest (the similarity is from
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largest to  smallest),  that  is  the  similarity  matching  re-
sult. SIGMA executes fuzzy matching, calculating the ed-
it distance of the graphs and taking it as the final result.

Graph  embedding-based  solutions  Graph  match  is
not only computationally expensive and time-consuming
but also difficult to be applied to new tasks. In order to
represent  graphs  in  a  computationally  convenient  form,
Genius [21] takes advantage of graph embedding to con-
vert  CFGs  into  high-dimensional  vectors.  Gemini  [22]
improves  Genius  by  using  Structure2Vec  [23]  for  graph
embedding. Structure2Vec can capture the spatial struc-
ture similarity between two nodes. The concept of anno-
tated  CFG  (ACFG)  is  first  proposed  in  Gemini,  which
represents a graph containing manually selected features.
Different  from Gemini,  VulSeeker  [24]  inputs  the  CFGs
and DFGs of binary functions into the Structure2Vec to
jointly guide the feature learning of nodes. VulSeeker-pro
[25] improves VulSeeker by enhancing function semantic
emulation based on semantic learning.

α

Deep learning-based solutions  It is worth mention-
ing that the features in CFGs discussed above are usual-
ly manually defined, which inevitably introduces human
bias.  In  the  last  few  years,  researchers  have  focused  on
tackling  the  problem  of  autonomous  feature  learning.
Diff [29] extracts the internal features after binary pre-

processing  by  feeding  the  function  directly  into  CNN.
SAFE [27] and Asm2vec [28] use an unsupervised feature
learning-based  solution  to  train  the  model  by  treating
each assembly instruction’s  operand as a token.  Yu [30]
combine semantic representation with structure represen-
tation,  using  recurrent  neural  network  (RNN),  message
passing neural network (MPNN), and CNN to extract se-
mantic, structure,  and  sequence  information,  which  in-
creases the F1 value to nearly 5% higher than Gemini.

 III. Problem Definition and Solution

 1. Problem statement
For easy reading, the symbols used for classification

task in this article are shown as follows:
S′− A source code S and the binary code ;

f−  A function  belongs to S;
− A set of compile C;

bscj cj− A binary code  belongs to S and compiled by ;
G = (V,E)

p&q

− A graph  where  the  the  set  of  vertices
V and the set of edge E;  is the number of nodes and
edges in G;

N∗− Positive integer set ;
R− Real-number set ;

− The number of instructions in b is m;
− A set of instructions in f is If, n instructions in to-

tal;
Ivi

I⃗vi

− A  set  of  instructions  in b is ,  mapping  vector
;

B⃗

− A set of  the multi-dimensional feature vectors of
all blocks in G in ;

B⃗vi− The multi-dimensional of b is ;

B⃗o− A set of invalid nodes ;
− A set of true labels of blocks T;

F⃗vi− The multi-dimensional feature vector of f is ;

Ki

−  The  sampling  depth  in  GNN K,  the  number  of
node in i-th layer is .

bs1 bs2

C: {c1, c2, . . .}
S

Our  framework  is  on  the  basic  block  level.  The
cross-platform binary code similarity analysis  at the ba-
sic block level can be defined as two binary blocks , 
compiled  on  different  platforms  that  are  similar  if  they
are  compiled  by  different  compilers  but
belong to the same original source code . The difficulty
lies in the fact that different CPU architectures different
program versions and different compilers with four opti-
mization levels may produce vastly different binary func-
tion segments [38].

b
C: {c1,

c2, . . .} bcj
b cj

Y (cj)|cj ∈ C

Essentially,  our  framework is  a  transformation that
maps  a  binary  basic  block  to a  corresponding embed-
ding.  We  are  given  a  set  of  possible  compilers 

,  and  a  binary  basic  block  (the  binary  basic
block  compiled by ) and we have to judge the com-
piler family .

G=(V,E) V =(v1, . . . , vp), vj ∈ N∗, 1 ≤ j ≤ p
E = (e1, . . . , eq), ej ∈ N∗, 1 ≤ j ≤ q

G
f1

If1 =(i1, . . . , in), ij ∈ N∗, 1 ≤ j ≤ n
vi Ivi

= (i1,
. . . , im), ij ∈ N∗, 1 ≤ j ≤ m vi

R

Control flow graph (CFG) is the representation form
of code during the compilation process. Denoting a CFG
as  where 
and  are  the  set  of
vertices  (basic  blocks)  and  edges  in .  We indicate  the
list  of  assembly instructions composing function  with

, and represent the list
of  assembly  instructions  contain  in  with 

. We want to represent  as a
vector in .
 2. Solution overview

To achieve cross-platform binary code similarity de-
tection  with  lower  overhead  and  higher  accuracy.  We
propose a fast detection framework which combines NLP
and inductive GNN. As shown in Figure 1, the whole de-
tection process includes four phases.

S′ If
Adj f

1) Pre-processing.  We  use  Radare2  [39]  to  analyze
the binary code  and get the instruction sequences ,
CFG and  of .

B⃗vi = (⃗i1,

. . . , i⃗m), i⃗j ∈ RL, 1≤j≤m vi

L B⃗vi

Ivi

h : Ivi → I⃗vi

Ivi
vi I⃗vi

I⃗vi =(⃗i1, . . . , i⃗m), i⃗j ∈ RL, 1≤j≤m
L I⃗vi

B⃗vi vi

B⃗vi B⃗vi

2) Basic block  embedding.  This  phase  aims  at  ob-
taining  the  multi-dimensional  feature  vector 

 associated with basic block .
 is  the  the  dimension  of . We  embed  the  instruc-

tions in  by word2vec [40] in NLP. This model can be
represented  by  a  mapping  function ,  where

 is the instruction sequences contained in , and  is
the  mapping  vector. ,

 is  the dimension of .  In order to further make full
use of  the  temporal  information  between  instruction  se-
quences,  we further  mainly  use  NLP methods  to  embed
the basic block as a whole, and obtain the feature vector

 associated with . And then a CFG is transformed
into  an  ACFG.  But  in  this  process,  we  find  that  some

 are  composed  of  all  zero  vectors.  We call  such 
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B⃗oinvalid nodes marked as . We also analyze the specif-
ic reasons in Section III.4. Considering the invalid nodes
will take up a lot of extra space in the following step, we
design an algorithm (see Section III.4).

F⃗vi =(⃗i1, . . . , i⃗m),

i⃗j ∈ RL, 1 ≤ j ≤ m L F⃗vi F⃗vi

vi

3) Function representation.  This  phase further  con-
siders the structural information in CFGs on the basis of
basic  block  embedding.  We  use  the  inductive  GNNs  to
accomplish it and indicate the result as 

,  is the dimension of .  rep-
resents the final representation of each basic block  af-
ter  instruction  embedding,  basic  block  embedding  and
function representation.

F⃗vi

4) Similarity calculation and applications. In the last
phase we can use the similarity between two  to rep-
resent  the  similarity  between  the  corresponding  binary
basic blocks, and apply it in different downstream tasks.
Such  as  vulnerability  search,  similar  function  detection
and compiler provenance, etc.
 3. Pre-processing

Adj

We  exploit  Radare2  to  dissemble  the  binary  code,
counting  the  arithmetic  instructions,  constants,  strings
and  jump  etc.  to  obtain  a  sequence  of  instructions  for
each function. At the same time we also retain CFG and

 of the  corresponding  function.  Because  of  the  com-
plex structure  of  the  compiled  instruction  set,  we  stan-
dardized it to facilitate the subsequent processing. Same
as SAFE [27], we replace all basic memory addresses and
all immediate addresses with MEM and IMM, respective-
ly.
 4. Basic block embedding

Instruction  embedding  The next  step  is  instruc-
tion  embedding.  There  are  two  common  embedding
methods:  one-hot  encoding  and  word2vec.  The  one-hot
encoding can represent a relatively simple instruction for
an input, but it can’t capture the correlation of two simi-

lar instructions. In contrast, word2vec convert similar in-
structions into similar vectors. The core idea of word2vec
is to portray a word in its context. There are two com-
mon models in word2vec: CBow and Skip-gram [41]. The
Skip-gram model can achieve better performance on large
data  sets,  so  we  finally  choose  Skip-gram to  accomplish
the instruction embedding.

B⃗vi

Basic block embedding  Basic block embedding based
on the instruction embedding, with the goal of obtaining
the  associated  multi-dimensional  feature  vector  for
each block in CFG.

p

m

p m

m = 50 p = 100

Tensorflow  [42] (a  deep  learning  framework)  re-
quires train batches of uniform dimension. Actually, the
total  number  of  basic  blocks  contained  in  each  CFG( )
and  the  number  of  instruction  sequences  in  each  basic
block( )  are  both  uncertain.  Therefore,  we  firstly  need
to  determine  the  value  of  and . Extensive  experi-
ments show that our framework can achieve best perfor-
mance when  and  and this is done by two
operations: padding or truncation.

We use LSTM, CodeBERT to embed the basic block.
For comparison,  we  also  do  the  without-embedding  ex-
periments.  Note that CodeBERT is only for basic block
embedding  here,  function  representation  and  similarity
calculation  are  still  done  by  GNNs.  This  section  takes
LSTM as  an  example,  and  other  models  will  be  further
detailed  in  Section  IV.5.  The  core  idea  of  LSTM  is  to
control the transmission state by gating the state. Com-
pared with RNN, LSTM can selectively forget or remem-
ber the input from the previous node, instead of just one
memory  superposition  mode.  So,  LSTM  can  solve  the
problem  vanishing  gradient  and  exploding  gradient  in
long- sequence training.

Each component of the padding vector is zero. That’s
why invalid  nodes  appear.  Generally  speaking,  the  in-
valid nodes will be generated when the actual total num-

 

Binary
code

Reverse
analysis

Addr_1: mov eax,10

Addr_2: dec eax

Addr_3: mov [base+eax], 0

Addr_4: jnz Addr_2

Addr_5: mov eax,ebx

CFG

Instruction
embedding

B1ock
embedding

B1ock embedding

i1=(0.32,..., 0.21)
→

i2=(0.12,..., 0.41)
→

i3=(0.22,..., 0.62)
→

i4=(0.50,..., 0.78)
→

i5=(0.58,..., 0.99)
→

B1=(1.3,..., 3.1)
→

B2=(1.1,..., 1.6)
→

B3=(2.5,..., 5.1)
→

B4=(3.0,..., 1.1)
→

B5=(5.1,..., 1.2)
→

ACFG

Function representation

Similarity value F

GNN

→

Figure 1  The system processing flow graph, input is a binary code, and output the similarity value.
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p
p

ber of basic blocks formed by a function after disassem-
bly is less than . In order to avoid information omission
such as semantics, we usually set higher values of , so it
is inevitable that invalid nodes will appear in most cases.
However, in the following step, the invalid nodes have no
practical  significance  (zero  vector  means  no  feature
valid)  and will  cause  additional  system overhead,  so  we
design  an  algorithm  that  can  delete  the  invalid  nodes
while retaining the structure information.

B⃗ Adj T G

G

The input to Algorithm 1 includes all basic blocks’s
embeddings ,  and the true label set  of  three
parts.  We  are  aiming  at  filtering  out  invalid  nodes  and
keeping valid nodes and the structural information in .
The algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1  Invalid node filtering
B⃗ AdjInput:　 :  all  basic  blocks’s  embeddings  in G; : Adja-

cency matrix; T: true label set.
B⃗viOutput: .

Invalid V alid Res ∅ 1:　　global values A,D; , ,  = ;

B⃗vi B⃗ 2:　　for each  IN 

B⃗vi 3:　　　if  equals(0)
Invalid 4:　　　　 .Append(A);

 5:　　　else
B⃗vi 6:　　　　X = CONCAT(A, , T);

V alid 7:　　　　 .Append(X);
 8:　　　end if
 9:　　　C.Increment;
10:　　end for

Adj11:　　for i=0 to p IN 
temp ⌊D/p⌋12:　　　 = ;

Adj13:　　　for j=0 to p IN 
Index1 p ∗ ⌊p ∗ temp⌋+ i14:　　　　  = ;
Index2 p ∗ ⌊p ∗ temp⌋+ j15:　　　　  = ;
Index1 &Index2 Invalid16:　　　　if   NOT IN 
Res Index1 &Index217:　　　　　 .Append(  );

18:　　　　end if
19:　　　　D.Increment;
20:　　　end for
21:　　end for

 5. Function representation
To take full advantage of the structural information

in the CFGs, we utilize GNNs to embed the basic blocks
in the ACFGs. Considering that GCN belongs to trans-
ductive  learning  whose  training  method  is  a  full  graph
form and the loss of all nodes will only contribute to the
gradient data once, which cannot do the small batch up-
date  usually  used  in  DNN.  This  is  very  inefficient  in
terms of the number of gradient updates [31]. Therefore,
in this section we will  use GAE, a method based on in-
ductive representation  learning,  for  the  function  repre-
sentation.

The core idea of GAE is to generate the embedding
of the target node by learning a function that aggregates

B⃗ Adjs
G

F⃗vi

vi vi

the representation of neighboring nodes. The embedding
of  all  nodes  and  the  are  regarded  as  the  entire
graph  and input to GAE. The output is the multi-di-
mensional  feature  vector  associated  with  the  basic
block . Current node  updates its state by aggregat-
ing  the  neighboring  hidden  states  and  its  own  state  in
the previous time step, which can be expressed as [37]
 

fk
η(vi)

← AGGREGATEk(f
k−1
u ,∀u ∈ η(vi)) (1)

 

fk
vi
← σ(W k · CONCAT(fk−1

vi
,fk

η(vi)
)) (2)

vi

fk−1
N(vi) K

η η : v → 2v

AGGREGATEk

First, current node  aggregates its immediate neigh-
bourhood representations  into  a  single  vector . 
denotes  the  depth  of  search.  is  defined  as ,
representing  a  neighborhood  function. 
represents different aggregator functions.

fk−1
vi

fk−1
N(vi)

σ W k

K F⃗vi ≡ fk
vi
,∀vi ∈ V

Next,  GAE  concatenates  the  node’s current  repre-
sentation  with the aggregated neighborhood vector

 through  a  fully  connected  layer  with  nonlinear
transformation , as shown in (2).  is the weight ma-
trices.  For  notational  convenience,  we  denote  the  final
representations output at depth  as .

K K1 ·K2 ≤ 500
K1 K2

K = 1 K = 2

This  approach  improves  GCN  in  two  aspects.  On
the one  hand,  through  the  strategy  of  sampling  neigh-
bors,  the  training  way  is  changed  from  full  batch  to
node-centered mini batch, and the embedding representa-
tion  of  the  current  node  is  only  relevant  to  its  K-order
neighbor  nodes.  On  the  other  hand,  more  aggregation
functions (aggregator) are used to aggregate information
about  neighbor  nodes.  Aggregate  functions  can generate
the embedding of a node directly. Through the improve-
ment of the above two points,  GAE greatly reduces the
time  to  generate  a  new  node  embedding,  and  also
achieves  breakthrough progress  when used in large-scale
graph.  L.  Hamilton et  al.  [37]  also  show that  GAE can
achieve high performance with  = 2 and ,
where  and  represent  the  sampling  number  of
neighbor  nodes  when  and  respectively.  In
addition, we also evaluated GAT, which assigns weights
to nodes to consider different important inputs.
 6. Similarity calculation and applications

After  getting  the  embeddings  of  binary  blocks,  we
can  apply  them  to  many  specific  tasks,  such  as  finding
similar  binary  functions,  compiler  provenance,  etc.  For
the first task, given a certain bug (binary function or ba-
sic  block),  we have to search for  similar  ones in a large
dataset created using different compilers.  In the compil-
er provenance task, we determine which compiler is a ba-
sic block compiled by.

 IV. Evaluation
In this section, we evaluate our framework from the

following aspects:  i)  How  much  improved  the  perfor-
mance overhead compared to the baseline? ii) What are
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the advantages of our framework over the other state-of-
the-art works?
 1. Experiment settings

Adj

1) Platform. We do our experiments on a Lenovo E5
server equipped with Intel Xeon E5 v4 core processor, 32G
running memory, and 500G disk space. We use a plug-in
of the  tool  Radare2  to  analyze  the  binary  code  and ex-
tract  CFG,  and  an  instruction  sequence  from  each
binary function.  Our framework is  implemented in Ten-
sorFlow.

p
m

K K1 K2

2) Hyper-parameters. We only show the values of all
hyper-parameters used in the final experiment. The max-
imum number of blocks in CFG is 100( ), and each block
contains 50( ) instructions. We set the batch size to 160
and  the  hidden  units  as  25.  We  still  use  the  parameter
settings in GAE, set the  to 2, and ,  are both 25.
We also make a wide range of adjustments to these pa-
rameters, more details will be given in the next.
 2. Dataset

We  use  the  restricted  compiler  dataset  from  [26],
which  compiled  different  open-source  projects:  openssl-
3.1.1, openssl-1.1.1, ccv-0.7, binutils2.30, curl-7.61.0, val-
grind3.13.0, coreutils- 8.29, libhttpd-2.0. Each project has
been  compiled  for  AMD64 with  three  compilers:  gcc-3.4
and  gcc-5.0  and  clang3.9  and  all  4  optimization  levels
(O0,  O1,  O2,  and  O3).  We  randomly  select  some  data
form this  to  form our  datasets  A  and  B,  where  A  con-
tains 55863 basic  blocks  with 69107 edges and  B  con-
tains 25188 basic blocks with 20565 edges. Both A and B
are  derived  from  the  Restricted  Compiler  Dataset,  but
their  scales  and the  binary  function  sets  they  belong  to
are  different.  Dataset  A  is  taken  from  the  first  part  of
the  original  data  set,  and  dataset  B  is  taken  from  the
second half.
 3. Evaluation metric

We  use  the  following  common  metrics  to  evaluate
our framework:
 

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(3)

 

Precission =
TP

TP+ FP
(4)

 

Recall =
TP

TP+ FN
(5)

 

F1-score =
2× Precision× Recall
Precision+ Recall

(6)

TP

FP
FN

TN

Accuracy refers to the percentage of correctly identi-
fied  blocks,  in  which  true  positive  ( ) indicates  posi-
tive samples predicted by the model as positive one, false
positive ( ) indicates negative samples predicted by the
model  to  be  positive  one,  false  negative  ( )  indicates
positive  samples  predicted  by  the  model  to  be  negative
and  true  negative  ( ) indicates  negative  samples  pre-

dicted by the model to be negative one. Precision and re-
call measures the percentage of matched blocks that are
correctly  labeled  and  the  ability  to  identify  matched
block  correctly.  F1-score  considers  both  the  precision
rate  and  the  recall  rate,  so  that  both  reach  the  highest
level and achieve a balance.

TRT ART

γ

In  addition,  we  also  use  the  total  running  time
( ) and the average running time ( ) to measure
the efficiency. The total running time is the sum of run-
ning time per round, and the average running time is de-
fined as follows, where  is the traning round number.
 

ART =
TRT
γ

(7)

 4. Evaluation on various implementation schemes
We implement  two  inductive  function  representa-

tion models:  GAT and GAE. Combining with the mod-
els used in basic block embedding and function represen-
tation, we form six different implementation solutions in
total.  We  use  [26]  as  baseline  and  evaluate  the  above
schemes  from  two  aspects:  accuracy  and  performance.
The details are as follows.

Accuracy  In  order  to  ensure  the  fairness  of  the
comparative  experiments,  we  adjust  the  parameters  of
GAT and GAE to best, and used default parameters for
[26].  We  use  Microsoft’s  CodeBERT-base  pre-trained
model. Table 1 shows the results on accuracy, precision,
recall,  and F1-score of different implementation schemes
on  dataset  A  and  B.  Result  indicates  that  the  scheme
with  LSTM  for  basic  block  embedding  and  GAE  for
function  representation  performs  better  than others  and
with comparable accuracy to the baseline.

Performance  Figure 2 shows the first 20 rounds of
seven approaches with data set A. Note that we only use
part of the origin dataset, so we take the baseline as the
standard  and  carry  out  an  equal  transformation  of  the
data  listed  in  the Figure  2 (for  example  the  original
dataset is double size of ours, and the values of running
time except the baseline in Figure 2 are twice of the ac-
tual  running  time). Figure  2 shows that  the  time  over-
head  of  the  LSTM+GAE  is  only  slightly  larger  than
without-embedding+GAE and far smaller than the base-
line. While the inference time of a scheme is also impor-
tant in the deployment.  So we record the total  runtime
and runtime on the test set of each scheme. The results
are  shown  in  the Table  2 below. Dimension  is  deter-
mined by the basic block embedding scheme used.

For  the  data  in Table  2,  the  following  points  need
special  attention.  According  to  our  statistics,  the  total
running time of the baseline is 48667 s, which we scaled
according to  the  size  of  the  dataset.  Relevant  parame-
ters of the GAT model in the table have been fine-tuned
to a certain extent (the optimal parameters acceptable to
the  current  system),  because  when  we  try  to  run  the
GAT-related  model  with  the  same  parameters  as  GAE,
the  system  will  Kill  the  process  because  high  overhead.
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So  we  default  to  the  same  basic  block  embedding
method, GAT is  less  efficient  than  GAE.  From the  ex-
perimental results  we  can  know  that  the  input  dimen-
sion is also positively related to the inference time when
using the same GNN models. The efficiency of the with-
out-embedding  method  is  the  highest,  LSTM is  slightly
worse than the first one, and the CodeBERT is the low-
est.  The  experimental  results  are  basically  consistent
with our initial assumptions. Combing accuracy rate, we
still think LSTM+GAE is the optimal solution for Bina-
ry code similarity detection.
 

0 5 10

Epoch

R
u
n
n
in

g
 t

im
e 

(s
)

15 20

200

400

600

800

1000

1200

Unembedding+GAT
LSTM+GAT
LSTM+GAE
Baseline
CodeBERT+GAE
CodeBERT+GAT
Unembedding+GAE

 

Figure 2  The running time of each scheme in first 20 epoch.
 

 5. Evaluation  on  various  basic  block  embedding
models

The  embedding  of  basic  block  is  a  key  part  of  the
overall detection,  because  the  feature  vectors  of  the  ba-
sic blocks, as the input to GNNs, will directly affect the

representing results and the detection accuracy. We eval-
uate  three  basic  block  embedding  approaches  (without-
embedding, CodeBERT and LSTM) on GAT and GAE,
recording their performance in terms of accuracy (Table
1) and efficiency (Table 2).

In the Without-embedding, we omit the steps of in-
struction embedding and basic block embedding, and on-
ly function representation of CFGs. This approach can’t
make full use of semantic information of the basic blocks,
so the effect on both models is not ideal.

Before using CodeBERT for basic block embedding,
we  also  tried  the  BERT  [43],  but  the  results  were  not
satisfactory.  CodeBert  performs  better  than  BERT  in
terms  of  accuracy  and  efficiency,  but  not  as  well  as
LSTM. We  take  full  advantage  of  LSTM  in  long  se-
quences  and  achieve  good  results.  The  scheme  with
LSTM for basic block embedding and GAE for function
representation  achieve  the  highest  accuracy  during  the
experiment. Surprisingly, the test time of this scheme is
only slightly larger than Without-embedding + GAE and
much smaller than others.
 6. Evaluation on  the  number  of  neighbors  sam-

pled in GNNs

k1, k2
K1 K = 1

K2

In this part, we explore the effects of the number of
neighbors sampled in GAE. Define a array [ ] where

 is  the  number  of  neighbor  samples  when  and
the same to . Table 3 shows the effect of the number
neighbors sampled on the test set when using data set B.
With  the  increase  of  the  number  of  neighbors  sampled,
the better  accuracy  is,  and  the  ART is  also  greatly  in-
creased. Considering that more nodes will lead to higher

  

Table 1  The result of different implementation schemes

Scheme
Data set A Data set B

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Without-embedding+GAT 57.7 56.1 56.9 56.5 56.4 56 74.6 64.0

Without-embedding+GAE 61.3 67.0 49.5 57.0 59.9 59.5 52.0 55.5

LSTM+GAT 65.1 64.4 63.0 63.7 62.1 61.0 71.4 65.8

CodeBERT+GAE 56.7 61.0 56.0 50.8 66.7 59.7 58.1 58.4

CodeBERT+GAT 55.1 56.8 55.7 55.1 62.3 57.3 51.8 62.3

LSTM+GAE 83.4 82.0 84.4 83.2 84.2 81.4 85.7 83.5

Baseline 87 87 87 87 87 87 87 87
 

  

Table 2  The inference time and running time of different schemes in data set A&B

Scheme Dimension
Data set A Data set B

Running time (s) Test time (s) Running time (s) Test time (s)

LSTM+GAE 100 3227 75.5 3525 79.5

CodeBERT+GAE 768 3894 100.5 2259 94.4

Without-embedding+GAE 50 3032 67.8 3060 69.2

LSTM+GAT 100 3866 56.8 3293 48.8

CodeBERT+GAT 768 4265 47.8 4302 47.1

Without-embedding+GAT 50 3271 45.2 3280 46.6

Baseline 50 7373 345.6 3743 345.6
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consumption, and there is no further improvement in ac-
curacy, we finally set  and  to 25.
 7. Evaluation on the hidden units in GNNs

We find the number of hidden units in GNN affects
the results a lot. So, we carry out experiments from 4 to
32 different hidden units on GAE.

Figure 3(a) and (b) show the results  when set  B is
used. Generally speaking, as the increase of hidden units,
the  accuracy,  recall  and F1-score  all  increase,  and ART
does not significantly increase or decrease. Therefore, we
think there is no obvious linear relationship between sys-
tem performance  and  the  number  of  hidden  layers.  Ex-
tensive experimental  data  shows  that  setting  the  num-
ber to 25 is a good choice.

 V. Discussion
In our framework, we propose an approach that uti-

lizes  NLP  combined  with  inductive  GNNs  to  solve  the
problem of high overhead and the loss of structural infor-
mation when graphs are applied to GCNs.

The block’s feature vectors are essential, as they will
act as input to function representation and participate in
the similarity  detection calculation.  During the  continu-

ous experimentation with the basic block embedding ap-
proaches,  we  have  tried  to  use  BERT  to  complete  the
tasks  of  basic  block  representation  and  binary  function
similarity detection,  but  failed  because  the  feature  lexi-
con corresponding to BERT is  not  applicable  to  the in-
struction set. Therefore, we try again to use the bimodal
pre-trained model  CodeBERT to  complete  these  experi-
mental  groups.  CodeBERT  performs  very  well  in  the
classification task  of  source  code  level  (we  use  Code-
BERT to classify the source code of the data set, and the
accuracy rate can be as high as 93%), but not as well as
LSTM when  applied  to  the  basic  block  embedding.  We
think that for  the data set  in this  paper,  the sequential
relationship between  instructions  is  much  more  impor-
tant.  This  is  probably  the  most  important  reason  why
LSTM performs better.

The inference time of each scheme is closely related
to  the  graph  neural  network  model  used.  GAE  can  get
the  embedding  of  current  node  based  on  neighboring
nodes,  while  GAT needs  to  calculate  the  importance  of
each node and assign weight accordingly, so it is far less
efficient  than  GAE.  We  further  extract  more  structural
information than [26]. Interestingly, although reference [26]
uses less structural information, its accuracy is compara-
ble or better than our framework (87% for both datasets).
So, we think the temporal information of the basic blocks
is  more  important  than  the  structural  information.  The
following  two  facts  support  our  point.  Firstly,  LSTM
performs best among all the basic block embedding mod-
els. Secondly the two works by L. Massarelli et al. [26], [27]
also show that there are some special features of the bi-
nary function that cannot be captured by representing it
as a graph.

 VI. Conclusion
Addressing the low performance and control flow se-

mantic information loss problems in existing work is the
starting point of this paper. We propose an inductive bi-
nary  function  representing  framework  that  combines
NLP with GNN. There are two mainly improvements.

Low performance,  high overhead  This  part  mainly

 

Table 3  Evaluation on the number of neighbors sampled in GAE

Number of
neighbor nodes Accuracy Precision Recall F1-score ART (s)

[5,5] 80.0 83.4 75.9 79.5 11

[8,8] 82.1 79.5 85.6 82.3 14

[10,10] 81.7 82.2 81.8 82.0 18

[15,15] 81.1 78.8 84.1 81.3 24

[16,16] 80.5 80.2 79.8 80.0 25

[8,16] 80.6 84.8 75.5 80.0 14

[20,20] 82.9 85.7 78.2 81.8 32

[25,25] 84.2 81.4 85.7 83.5 44

[16,25] 82.3 86.3 77.6 81.7 26

[30,30] 83.8 84.0 82.6 83.3 54

[32,32] 82.4 83.9 81.0 82.4 54
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Figure 3  Result under the different hidden units in GAE.
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includes  the  following  two  points.  As  mentioned  above,
we use the inductive representing learning to modify the
training  way  from  the  full  graph  to  node-centered  mini
batch,  which  fundamentally  saves  the  cost.  In  addition,
we filter the invalid nodes in the feature vector of the ba-
sic block, greatly reducing the unnecessary operation.

Adjs
The loss of control flow structural information  We

use the  to save the structural information as node
pairs, which will serve as a partial input to the function
representing module. Thanks to the powerful data under-
standing ability and cognitive ability of GNNs, the struc-
tural  features  of  the  graph  data  are  integrated  into  the
implementation process of the algorithm.

We investigate  several  models  in  the  block  embed-
ding and function representation and form six implemen-
tation schemes finally. In order to avoid the influence of
objective factors as much as possible, we reset the experi-
mental  environment for  each experiment and make sure
that  no  other  processes  running  at  the  same  time.  We
evaluated  those  implementation  schemes  on  two  data
sets, and the experimental results show that the scheme
with LSTM  +GAE  has  the  best  comprehensive  perfor-
mance.  We  achieve  similar  detection  results  with  only
about  45% of  the  baseline  overhead.  In  our  writing,  we
also find the follow future works.

Different  basic  block  embedding  models  We ob-
serve a  large  impact  of  different  block  embedding  ap-
proaches  on  the  test  set  result.  In  this  paper,  we  use  a
variety of models, such as BERT and LSTM. [44] evalu-
ates  network  embedding  techniques’ performances  in
software bug prediction.  The influence of  different basic
block  embedding  models  on  GNN  is  also  a  direction
worth  exploring.  As  far  as  we  know,  no  related  works
have been published yet.

Binary  code  similarity  detection  based  on  FCG  
Our framework,  like  existing static  analysis  solutions,  is
weak  in  anti-obfuscation.  Due  to  the  single  reliance  on
CFGs, the semantic information that can be extracted is
more limited if obfuscated. Function call graphs (FCGs)
not  only  consider  the  instruction  information,  but  also
the  more  advanced  internal  features  of  the  program,
which can better deal with the anti-detection techniques
commonly  used  in  malware.  Therefore,  we  can  consider
how to effectively combine the features in CFG and FCG
to improve  the  anti-obfuscation  capability  while  ensur-
ing accuracy.

Enhance the  generalization  ability  of  the  frame-
work  With  the  gradual  popularization  of  open  source
and code  reuse,  many  seemingly  new  versions  of  soft-
ware only add a small amount of code to the original ba-
sis. So new nodes will appear on the corresponding CFG.
How to  enhance  the  generalization  ability  of  the  frame-
work  and  identify  these  new  nodes  is  also  a  direction
worthy of in-depth study.
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