

RESEARCH ARTICLE

SwiftTheft: A Time-Efficient Model Extraction
Attack Framework Against Cloud-Based
Deep Neural Networks

Wenbin YANG1, Xueluan GONG2, Yanjiao CHEN3, Qian WANG1, and Jianshuo DONG1

1. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
2. School of Computer Science, Wuhan University, Wuhan 430072, China
3. College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding author: Qian WANG, Email: qianwang@whu.edu.cn
Manuscript Received November 5, 2022; Accepted March 13, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,
such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These propri-
etary models are vulnerable to model extraction attacks due to their commercial value. In this paper, we propose a
time-efficient model extraction attack framework called SwiftTheft that aims to steal the functionality of cloud-based
deep neural network models. We distinguish SwiftTheft from the existing works with a novel distribution estimation
algorithm and reference model settings, finding the most informative query samples without querying the victim mod-
el. The selected query samples can be applied to various cloud models with a one-time selection. We evaluate our
proposed method through extensive experiments on three victim models and six datasets, with up to 16 models for
each dataset. Compared to the existing attacks, SwiftTheft increases agreement (i.e., similarity) by 8% while consum-
ing 98% less selecting time.
Keywords — Artificial intelligence security, Model extraction attacks, Deep neural networks.
Citation — Wenbin YANG, Xueluan GONG, Yanjiao CHEN, et al., “SwiftTheft: A Time-Efficient Model Ex-
traction Attack Framework Against Cloud-Based Deep Neural Networks,” Chinese Journal of Electronics, vol. 33,
no. 1, pp. 90–100, 2024. doi: 10.23919/cje.2022.00.377.

 I. Introduction
Deep learning has recently made a significant break-

through in various applications, including license plate
reading, disease diagnosing, and even sophisticated auto-
pilot. However, deep learning models require an enormous
amount of training samples and computing resources to
reach high prediction performance. To alleviate the burden-
some data collection and training process, various cloud-
service providers like IBM, Amazon, Microsoft, and Google
host sophisticated DNN models on the cloud to provide
machine-learning-as-a-service (MLaaS). Ordinary clients
utilize MLaaS for retrieving expected predictions by sub-
mitting queries through the API interface. Any technical
details of the training data, model architecture, and
model hyperparameters are inaccessible to the users.
Therefore, such a cloud-based model is treated as a black
box for end-user applications.

However, various studies have reported that high-
value black-box models are vulnerable to model extraction
attacks [1], [2]. The motivations of model extraction at-
tacks are mainly two-fold. On the one hand, the attacker
can obtain commercial value by reselling the cloud-based
model. On the other hand, the substitute model can be
utilized as a springboard for further attacks, e.g., adver-
sarial example attacks [3], backdoor attacks [4].

To recap, Tramèr et al. [5] proposed the first model
extraction attack that is effective for various simple ma-
chine learning models, e.g., logistics regression, support
vector machine (SVM), decision tree, and shallow neural
network (NN). However, such a method is not applica-
ble for deep neural networks. Wang and Gong [6] pro-
posed the first hyperparameter extraction attack against
the black-box models. Duddu et al. [7] proposed a side-
channel attack that aims to steal the model structure.

Associate Editor: Prof. Yidong LI, Beijing Jiaotong University.

Chinese Journal of Electronics
vol. 33, no. 1, pp. 90–100, January 2024
https://doi.org/10.23919/cje.2022.00.377

Papernot et al. [3] proposed a Jacobian-based method to
augment query samples. CloudLeaks [8] exploited adver-
sarial examples to extract decision boundaries with the
help of a subset of original training data. However, both
Papernot et al.’s strategy and CloudLeaks require a sub-
set of training data to achieve respectable attack perfor-
mance, which breaks the premise of the black-box set-
ting. Copycat CNN [9] uses non-problem domain natural
samples to conduct the model extraction attacks. Howev-
er, Copycat CNN will incur a high query budget since it
only randomly selects samples from the public dataset as
the query samples. More recently, Knockoff nets [2] and
ActiveThief [1] utilize active learning and reinforcement
to select a proper subset from public datasets to reduce
the query budgets. However, both ActiveThief and
Knockoff nets use an iterative selection approach, which
involves burdensome model training in each iteration.

In this work, we design SwiftTheft, a model extrac-
tion method against cloud-based deep neural networks
(DNNs). SwiftTheft employs reference models, which are
neural networks that take in an image and output its
corresponding representations, to efficiently select repre-
sentative samples from a large dataset in a single step
without iterative training. These samples are used to
query the black-box model and train the substitute mod-
el on the queried results, enabling SwiftTheft to be ap-
plied to various cloud models and significantly improv-
ing efficiency compared to existing methods. Specifically,
SwiftTheft trains multiple reference models on public da-
ta using non-overlapping subsets of the data and differ-
ent parameter initializations (referred to as reference da-
ta). These reference models are then used to estimate the
sample distribution and select informative samples from
the public dataset. The victim black-box model is
queried using the selected samples, and the returned re-
sults are used to train the substitute model, which is in-
tended to have the same functionality as the black-box
model.

We evaluated the proposed method on different vic-
tim models, and the results demonstrated that Swift-
Theft is superior to the state-of-the-art approaches [1], [3],
[9] in terms of agreement (i.e., similarity) and time con-
sumption in each iterative process. Furthermore, we car-
ried out a quantitative analysis to explore the impact of
reference data, the number of reference models on the
performance of SwiftTheft. We also evaluated the time
cost to confirm that SwiftTheft can reduce the time con-
sumption by more than 98%.

In summary, this paper elaborates on the following
contribution.

• To the best of our knowledge, we are the first to
utilize reference models to model extraction attacks. Un-
like other methods that require multiple iterations of
sample selection and substitute updates, SwiftTheft only
needs to select the most informative samples once, elimi-
nating the need for intermediate substitute model train-
ing. This significantly reduces time and computing re-

source costs.
• We design a fast distribution estimation algo-

rithm to identify the most informative samples from the
public data pool, which is more efficient and effective
than the traditional active learning-based approach and
Jacobian-based data augmentation methods. Further-
more, the selected query samples are model-agnostic and
can be used to extract functionality from a variety of
cloud models.

• Extensive experiments on a range of tasks demon-
strate that SwiftTheft can achieve a higher level of
agreement while reducing the sample selection time by
an average of 98%.

 II. Preliminaries

 1. Problem formulation
Machine-Learning-as-a-Service is a bundle of cloud

computing services that grant eligible end-users access to
proprietary machine learning models that offer machine
learning solutions containing model training, data trans-
formations, and predictive analytics. The eligible users
are charged on-demand or purchase a monthly or annual
subscription to access the models. These models are
trained on proprietary data, either collected by cloud
platforms themselves or third-party data providers who
share profits with cloud platforms. The training process
of these models is also time-consuming and costs valu-
able computing resources, which sums up as expense of
cloud providers. The end-user can access the service by
directly uploading an image to get a result or writing a
custom application to query images via API. However,
due to the black box property of API, end users cannot
access the specific detail of the victim models or the
training information.

Nowadays, model stealing attacks have been stud-
ied involving various aspects: parameters stealing [5], hy-
perparameters stealing [6], architecture extraction [7],
and functionality extraction [2], [3], [8]. In this paper, our
goal is to steal the functionality of the backbox deep
neural networks independent of their internals. Com-
pared to the MLaaS service, there are also emerging
needs for cloud vendors to train the model for end-user
to deploy on the IoT devices. In this scenario, MonoC-
NN [10] has been proposed to reduce the model foot-
print while retaining model robustness. Model extraction
attack mainly aims at stealing model with only black-box
access, while in MonoCNN, model parameters are acces-
sible to the user since the model parameters are recon-
structed in the IoT devices.

FV : X → Y
x y

FA

FV

Functionality extraction attack In this paper, we
formulate the task as follows: the attacker is given the
access to victim model , where only inputing
 and corresponding result is available to the attacker.

An adversary aims to extract a substitute model with
near-identical predicting performance as victim model
(e.g., outputing the same label as victim model within

SwiftTheft: A Time-Efficient Model Extraction Attack Framework Against Cloud-Based Deep Neural... 91

DT = {(x, FV (x)}
x ∼ PA(X)

the problem domain input). The adversary has the abili-
ty to collect a systhetic training set
where is most informative data in terms of
functionality extraction. To better illustrate the typical
model extraction against black-box models of MLaaS, we
depicted such a process in Figure 1.

Proprietary

dataset

MLaaS

Black-box

model

Training

Malicious

user

Training

Substitute

model

Model extraction attacks

Figure 1 Model extraction attack against MLaaS provider.

 2. Threat model

M
y = [y1, y2, . . . , yM] ∈ RM

x X

Following the mainstream MLaaS settings[11], we
consider the adversary targets at the cloud-based neural
network model, which is encapsulated and protected by
cloud API, thus formulating the black-box scenario. In
the black-box scenario, A -dimensional confidence vec-
tor can be acquired with arbi-
trary input within the victim input space . In the
toughest situation, the API only return the top-1 class
label, which is the attacker’s assumption in this paper.
Moreover, we consider the most realistic scenario where
adversary cannot learn any internal model information,
including model parameters, model architecture, train-
ing information, or training dataset. While most informa-
tion unknown, the adversary can obtain all the output
class names within the service domain by enquiring the
API. In terms of data availability, the adversary only has
publicly available data and the ImageNet pre-trained
models [12], which are involved as an inherent part of
the major machine learning libraries, such as PyTorch
and Tensorflow.

With the limited query budget and time, the adver-
sary aims to functionally steal the victim model from the
cloud provider and construct a similar performant substi-
tute model as victim model. Without accessing the train-
ing dataset, SwiftTheft solely relies on non-problem do-
main natural data, e.g., the ImageNet64 dataset. Swift-
Theft focus on budget-limited scenarios, and the query
upper bound is the case when the attacker uses the total
ImageNet64 dataset. Specifically, for CIFAR-10 and GT-
SRB models, the upper bound agreements of the substi-
tute models are 84.99% and 93.68%, respectively.
 3. Related works

 1) Model extraction attack
In model extraction attacks, the adversary aims to

train a substitute model with the same functionality as
the victim model. According to the source of the query
sample, the existing model extraction attacks can be cat-
egorized into three categories: Natural sample-based

model extraction attacks, Synthesized sample-based mod-
el extraction attacks, and hybrid sample-based model ex-
traction attacks.

i) Natural sample-based model extraction attacks
Natural samples are the samples downloaded from

the public dataset, such as ImageNet and CIFAR-100.
The public dataset can either be the problem domain
(PD) or non-problem domain (NPD). The problem do-
main means that the samples belong to the distribution
of the victim model training dataset. However, PD data
is hard to acquire, especially the privacy-related fields,
such as medical data. To recap, Correia-Silva et al. [9]
proposed Copycat CNN that randomly selects query
samples from the natural sample pool to train the substi-
tute model. Orekondy et al. [2] proposed Knockoff nets
that used an adaptive strategy to select the samples from
the natural sample pool. The adaptive strategy is based
on the feedback reward regarding sample efficiency, di-
versity, and training information. Chandrasekaran et al.
[13] adopted extended adaptive training (EAT) to select
samples with the least confidence scores. Pal et al. [1]
proposed ActiveThief that combines DeepFool-based Ac-
tive Learning (DFAL) strategy [14] to pick up the sam-
ples. Such samples are deemed to be easily perturbed and
less redundant.

However, the above methods always have a trade-off
between time cost and model performance.

ii) Synthesized sample-based model extraction at-
tacks

Researchers also found that synthesized samples can
also conduct model extraction attacks and explore input
space unknown to natural samples. Up to now, several
methods have been proposed to produce synthesized
query samples. Tramèr et al. [5] first synthesized some
random samples and then found the middle points be-
tween arbitrary two synthetic samples by binary search
to synthesize the new samples. Maze [15] utilized a gen-
erator to generate samples that maximize the disagree-
ment between the temporary substitute model and the
victim model to improve the efficiency of model extrac-
tion. Data-Free Model Extraction (DFME) [16] maxi-
mizes the difference between the victim model and the
substitute model by using surrogate data generated
through a synthetic method. By finding the difference
between the victim and substitute models and using this
information to train the substitute model, DFME aims to
minimize this difference and improve the attack perfor-
mance. However, synthesized-based approaches suffer
from an enormous query budget. For example, DFME [16]
expends 20 million adversarial queries on the CIFAR-10
dataset when performing model extraction. In real-world
scenarios, the high cost is a detriment to the commercial
value and viability of such attacks.

iii) Hybrid sample-based model extraction attacks
Based on the benefit of both natural and synthetic

samples, researchers have proposed hybrid sample-based
model extraction attacks in recent years. Jacobin-based

 92 Chinese Journal of Electronics, vol. 33, no. 1

augmentation attacks (JBA) [3] are typical model extrac-
tion attacks using hybrid samples. In JBA, it is assumed
that the adversary can access a subset of the victim’s
training data and use them to generate adversarial exam-
ples to train the substitute model. Juuti et al. [17] adopt-
ed the iterative fast gradient sign method (I-FGSM) [18]
with a targeted randomly chosen direction (T-RND) in
every step to reduce synthetic overlap. Yu et al. [8] pro-
posed CloudLeak that used margin-based adversarial ac-
tive learning [8] to generate synthesized datasets. Gong
et al. [19] provided InverseNet, which makes use of a
temporary substitute model to select samples of high
confidence scores for producing high-quality inversed
datasets.

However, hybrid-based methods have different
caveats as well. JBA-based methods not only suffer
marginal effects [20], but also require a subset of the vic-
tim dataset to bootstrap the attack process. Cloudleak [8]
requires guide images, which violates the black-box set-
ting of the model extraction attack. While effective, IN-
VERSENET [19] requires burdensome inverse model
training, which consumes a large number of computing
resources and time.
 2) Active learning

An accurate model needs to be trained on a large
data pool in the deep learning scenario, thus requiring
considerable efforts to label the data. Active learning em-
ploys an oracle to label samples, producing the desired
output, which is similar to model extraction. However,
active learning usually focuses on white-box scenarios,
where the source knowledge data (victim data in model
extraction scenario) is exposed to the model trainer. De-
pending on sampling strategies, active learning can be
classified into membership query synthesis, stream-based
selective sampling, and pool-based sampling.

i) Membership query synthesis
This method aims to build efficient training sets by

synthesizing the most informative samples. Schumann et
al. [21] approximated the decision boundary by the bina-
ry search and then picked up a random vector orthogo-
nal to the mid-perpendicular vector of the decision
boundary to help generate new samples. Yan et al. [22]
provided a method iteratively producing a certain num-
ber of synthesized samples, from which samples will be
selected for query in consideration of uncertainty, diver-
sity, and representativeness for real data.

ii) Stream-based selective sampling
It’s convenient to synthesize the most informative

samples, but the synthesized data is sometimes meaning-
less and hard to label. Considering this fact, selecting the
unlabeled natural data by stream-based selective sam-
pling methods may be suitable. In these methods, sam-
ples are observed in real-time, and the adversaries deter-
mine whether to query the samples. Hong et al. [23] in-
troduced a selection criterion that avoids unnecessary
queries employing the preliminary substitute model.

iii) Pool-based sampling
The stream-based selective sampling methods are

based on the assumption that adversaries can observe
samples in real-time. However, in the case that adver-
saries can get access to a pool of unlabeled samples, pool-
based sampling methods will be more advisable, in which
adversaries use sampling strategies to sample from the
pool. Mayer et al. [24] utilized GAN to synthesize high
entropy samples and a discriminator to make sure the
synthesized samples are indistinguishable from natural
data so that adversaries can use a feature extractor to
seek the most similar natural samples from the pool.
Zhang et al. [25] made use of the unified representation
generator to learn the representation of image samples
and embed annotations into the representation, employ-
ing the most informative unlabeled samples.

 III. Methodology of SwiftTheft

 1. Overview
In this paper, we proposed a time-efficient active-

based model extraction framework SwiftTheft, depicted
in Figure 2. The process mainly consists of three differ-
ent stages:

• Attack initialization. The attacker first selects
and initializes a set of reference models as feature space
mapping oracles. These models are then used to map the
public data pool to a feature space. The attacker also se-
lects seed samples as the initial selected set.

• Samples selection. The attacker then uses the dis-
tribution calculation algorithm to estimate the distribu-
tion of the selected sample pool and selects the most in-
formative samples for model training.

• Substitute model training. The attacker then uti-
lizes the selected samples to query the victim model. The
substitute model is trained based on the query results to
achieve high similarity with the victim model.

We detail the attack process of SwiftTheft in the
Algorithm 1. Our experiments show that SwiftTheft can
significantly reduce the sample selection time while
achieving a better performance than ActiveThief [1] and
Papernot et al.’s strategy [3].
 2. Attack initialization

We preprocess the dataset pool in two steps in the
attack initialization process. Firstly, the dataset pool will
be mapped to the feature space. Next, we randomly se-
lect some seed samples from the dataset pool to prepare
for subsequent sample selection.

FP : X → Z
X ∈ X Z ∈ Rf X

f

For the sample mapping process, unlike the existing
works [1], [5], [17], [19] that use an initial substitute
model to map the public data pool to feature space, we
initialize the reference model on the public
dataset, where , and . is the input space
of the reference model, and is the feature dimension of
the reference model. Note that the feature dimension of
the reference model is identical to the feature dimension

SwiftTheft: A Time-Efficient Model Extraction Attack Framework Against Cloud-Based Deep Neural... 93

of the number of the reference dataset categories.

D̃

Given the reference model, we map each data sam-
ple to feature space to form a feature pool , which can
be formulated as follows:

D̃ = {xn, FP (xn)} (1)

A single reference model can provide distribution in-
formation of a data sample. However, due to the train-
ing settings of the reference model and the underlying
model architecture, the distribution output of a single
reference model will be biased. So, we use multiple refer-
ence models to alleviate distribution bias.

Algorithm 1 SwiftTheft
D,DR D̂Data: Public data pool ; Aggregated features .

D̂j j 1 : m　Initial features for in .
// Attack Initialization

j 1 : m 1: for in do

Dj
R = (DR, j) 2:　 Subset ;

F j
R Θj 3:　Initialize model with random parameter ;

(F j
R, D

j
R) 4:　Train model ;

n S 5: for in do
j 1 : m 6:　for in do

yj
n = F j

R(xn) 7:　　 ;

D̂j = D̂j ∪ {yj
n} 8:　　);

S0 = S, s0 9: Random();
// Sample Selection

n S10: for in do

zn =
∑m

j=0 y
j
n11:　　 ;

D̂ = D̂ ∪ {xn, zn}12:　　 ;
i 0 : I13: for in do

µi =
1

|Si|
∑

n∈Si
zn14:　　 ;

σ2
i = 1

|Si|
∑

n∈Si
(zn − µi)

215:　　 ;

S̃1,i = S/Si S̃1,i16:　　 ; // refers to unselected samples
Si+1 = Si17:　　 ;

k 1 : K18:　　for in do

nk,i = argn minn∈S̃k,i
log pi(zn)19:　　　 ;

S̃k,i = S̃k−1,i/{nk,i}20:　　　 ;
Si+1 = Si+1 ∪ {nk,i}21:　　　 ;

DI = xn, n ∈ SI22: ; // Model training
DT = FV , DI23: query();

FA, DT24: Train substitute model().

m

F j
R : X → Z

DR

Dj
R

F j
R

Dj
R ∩DV = ∅ ∀j DV

Reference model training The attacker initializes
reference models . Each reference model is
trained on the subset of reference data . Reference da-
ta helps the reference models learn about the distribu-
tion information of the public dataset. The reference da-
ta is an arbitrary public dataset with no overlap with the
victim training data set. Therefore, the reference model
can be obtained by retraining an off-the-shelf pre-trained
model. We split the reference data into multiple non-
overlapping data subsets , and each of the subsets is
used to train a reference model . Note that the refer-
ence dataset has no overlap with the training dataset of
the victim model, i.e., , where is the
training dataset of the victim model. We initialize differ-

Attack initialization Sample selection Model training

Selected sample label

tagging

Substitute model

train

Dataset pool
Feature

aggregating

Feature

aggregating

Seed

samples

Sample selecting

Distribution

estimation

Distribution

estimation

Likelihood

calculation

Likelihood

calculation

Sample

mapping

Random

seeding

Dataset pool

Reference

models

Features

Sample mapping Random seeding

0.45 0.94 0.43

Victim model

querying

Substitute

model training

Reference model features

Victim model

Selected data sample

Selected data with labels

Merged feature

Substitute model

Sample selection

Model training

Figure 2 Overview of SwiftTheft.

 94 Chinese Journal of Electronics, vol. 33, no. 1

ent reference models by varying the parameter initializa-
tion settings. It is time-consuming to train a large
amount of reference models, however, reference models
are model-agnostic, which means reference models can
transfer to multiple attack processes with one time train-
ing.

F j
R(x)

F j
R D̂j

Feature mapping process We aim to map each da-
ta sample within the public data pool to the feature
space in the feature mapping process. The number of the
obtained feature is related to the number of the refer-
ence model. Given a data sample, one reference model
will output a unique feature . We denote all the
features generated by reference models as .

D̂j = {F j
R(xn): ∀xn ∈ D} for j = 1, 2, . . . ,m (2)

D

D S

S0

Seed sample selection We randomly select a small
number of seed samples from the public dataset and
preserve them as the selected sample pool to bootstrap
the distribution estimation, which will be elaborated in
Section. We denote the index set of the whole public
dataset as . And the index set of the randomly se-
lected seed samples is denoted as .
 3. Sample selection

xn m
F i
R(xn)

Feature aggregating The first step in the sample
selection process is feature aggregating, which aggre-
gates all mapped features into a single feature vector for
the given sample. It is based on an intuition that each
feature vector generated by the reference model may be
biased due to the training process and the reference data
distribution. By feature aggregating, the bias in each fea-
ture can be reduced, thus making the distribution esti-
mation of the selected sample pool more accurate. In fea-
ture aggregating, each reference model is considered to
have equal weight in the aggregated feature. Consider
that each data sample has feature vectors, the fi-
nal vector is the sum of each feature . Thus the
aggregated feature pool is calculated as

D̂ =

xn,

m∑
j=0

F j
R(xn)

 (3)

zn n
To simplify the notation, the aggregated feature for

each sample is denoted as , where is the index of
each sample.

S0

i

Si

S0

Distribution estimation Given the aggregated fea-
ture, SwiftTheft iteratively selects the most informant
samples. The sample selection iteration starts with distri-
bution estimation for the selected samples. The seed
samples are chosen as selected samples, whose index set
is denoted as , to bootstrap the iterative selecting pro-
cess. For iteration , the distribution estimation is con-
ducted on the selected sample pool of the previous itera-
tion, which denotes . Note that for the first iteration,
the selected samples are the seed samples , and the it-
eration number starts from 0. The selected sample fea-

zn
N (µ,Σ)
tures are assumed to follow normal distribution

. To estimate of the feature distribution, we com-
ply with the common settings, which calculates mean
and variance as

µi =
1

|Si|
∑
n∈Si

zn, σ2
i =

1

|Si|
∑
n∈Si

(zn − µi)
2 (4)

Si

i |Si|
Si σi

µi

In formula (4), is the index of the selected sam-
ple pool in the -th iteration, and refers to the quanti-
ty of the . The calculation of the variance depends
on the result of .

Likelihood calculation Based on the distribution of
the selected samples, the attacker can calculate the likeli-
hood of the remaining samples belonging to the distribu-
tion, which can be formulated as

p(z) =
1√

2πk|Σ|
exp

{
−1

2
(z − µ)⊤Σ−1(z − µ)

}
(5)

Σ

The goal of sample selection is to obtain more di-
verse query samples. In general, if a sample has been se-
lected before, the probability of belonging to the select-
ed sample distribution will be higher. Thus, we will not
choose the samples with a significant likelihood in the
current iteration. Given the mean and variance of the se-
lected samples, we can theoretically calculate the likeli-
hood of each sample belonging to the selected sample dis-
tribution by applying equation (5). However, the proba-
bility density function of the multivariate normal distri-
bution is hard to tackle. In this paper, we assume each
feature is independent of the other so that the co-vari-
ance of equals 0. We further use the log-likelihood to
replace the burdensome exponential calculation. Thus,
the negative log-likelihood of the sample belonging to
distribution can be simplified as

log pi(z) = −
f∑

n=1

∥zn − µi∥
σi

+ const (6)

const
i µi σi

The constant in the log probability equation will not
affect the comparison procedure, so the constant term

 is omitted in the log probability calculation. For
each iteration , with the and , each sample can be
assigned with a log probability.

KQuery sample selection The samples that are
least likely to follow the selected pool distribution are
added to the chosen sample pool for the next distribu-
tion estimation to increase the sample diversity. Formal-
ly,

nk,i = argn min
n∈S̃k,i

log pi(zn), k ∈ [1,K] (7)

S̃1,i = S/Si S̃k,i = S̃k−1,i/{nk,i}, k ∈ [2,K]

Si+1 = Si∪ {nk,i}Kk=1

where and ,
the selected pool is then updated as .

I SI

B

After iterations, when the selected sample pool
satisfies the target query budget , we obtain the query

SwiftTheft: A Time-Efficient Model Extraction Attack Framework Against Cloud-Based Deep Neural... 95

DI = {xn}, n ∈ SIset .
 4. Substitute model training

ΘFA

DI

We initialize the substitute model with random pa-
rameters , and it has the same number of labels as
the victim model. The attacker queries the black-box
model with the selected samples and obtain their la-
bels. Then the attacker can construct the substitute
model training dataset, which consists of selected sam-

DT ={xn, FV (xn)},
xn∈DI

DT

ples and corresponding labels, which is
. After retraining the initialized substitute model

on , the attacker can get the final substitute model.

 IV. Evaluation

 1. Experiment Setup
We evaluate SwiftTheft on six different datasets,

and the details of the datasets are shown in the Table 1.

Table 1 Summary of the related datasets

Dataset VGG-Flower CIFAR10 GTSRB CIFAR100 SHVN ImageNet64

Classes 10 10 43 100 10 1,000

Total samples 1,873 60,000 61,839 60,000 60,000 178,116

Training samples 1,673 50,000 39,209 50,000 50,000 128,116

Testing samples 200 10,000 12,630 10,000 10,000 50,000

Image size Arbitrary 32 × 32 Arbitrary 32 × 32 32 × 32 64 × 64

Complexity Moderate Moderate Moderate Complex Simple Complex

Victim model √ √ √ – – –

Reference model √ √ √ √ √ √

Substitute model – – – – – √

• Victim model training. We train three victim
models on GTSRB, CIFAR-10, and VGG-Flower
dataset, respectively. Following ActiveThief [1] and In-
verseNet [19], we use CNN32 for the victim models. As
for training hyper-parameter, we use SGD with momen-
tum as the optimizer, with a learning rate of 0.01 and a
momentum of 0.5. We train each victim model for 300
epochs.

• Black-box querying. We use ImageNet64 [12] as
the natural data pool to query the black box and get the
corresponding result. The query data, together with the
query result, are then utilized for training the substitute
model, which is functionally similar to the black box. To
attest the efficiency of SwiftTheft, only the selected sam-
ples are queried.

• Reference model training. We train the reference
model on ImageNet64 with ResNet-34 architecture for
comparison with other SOTA methods. For the ablation
study on the reference model, we selected three datasets
with varying complexity, including SVHN, CIFAR-100,
and ImageNet64. We also include three victim datasets
in the ablation study, which are the upper bound of ref-
erence model settings. For training hyper-parameters, the
optimizer is set to ADAM with a learning rate of 0.01,
and each reference model is trained for 100 epochs.

• Substitute model training. As for the final train-
ing process detailed in Section III.4, we trained the mod-
el using CNN32 and the same training hyper-parameters
as the victim models. The training data of the substi-
tute model is the query result of the victim model along-
side selected query data.

Following evaluation method in various other works
[1], [5], [17], [26], we adopt agreement as the evaluation

metric. Formally,

agreement(FA, FV) =
1

|DT |
∑

x∈DT

1(FA(x), FV (x)) (8)

DT 1where is the query dataset, refers to the compar-
ing function that outputs 1 when the labels are the same
and 0 otherwise. Agreement is used to measure the simi-
larity degree between the black-box model and the sub-
stitute model.

All the experiments are conducted on an Intel Xeon
CPU, 64GB of RAM server with NVIDIA GTX 2080
GPU, which runs Ubuntu 18.04 and PyTorch 1.8.
 2. State-of-the-art model extraction baselines

We compare SwiftTheft with three state-of-the-art
model extraction attacks, i.e., Copycat CNN [9], Ac-
tiveThief [1], and Papernot et al.’s strategy [3]. We run
these attacks based on their open-source codes.

• Copycat CNN. Copycat CNN [9] uses natural
samples (publicly available data) to conduct the attacks.
In each iteration, Copycat CNN randomly selects a set of
samples from the data pool to query the victim model.

• ActiveThief. Unlike Copycat CNN, ActiveThief [1]
utilizes active learning (e.g., K-Center) algorithm to se-
lect query samples from the natural sample pool. We
randomly select 500 samples as the initial seed data and
select 500 samples in each iteration.

• Papernot et al.’s strategy. Unlike the above meth-
ods that use natural samples, Papernot et al.’s strategy
[3] uses the Jabocabian-based method [3] to generate
query samples based on a small number of seed samples.
In this paper, we use a subset of ImageNet64 as seed

 96 Chinese Journal of Electronics, vol. 33, no. 1

samples. Following Papernot et al.’s strategy [3], the
augmentation algorithm is the fast gradient sign method
(FGSM) [27].
 3. Quantitative analysis

Comparison with state-of-the-art attacks The com-
parison results are shown in Figure 3. To make a fair
comparison, we use the same query budget and experi-
mental settings for both baselines and SwiftTheft. We
can see that SwiftTheft outperforms all the baseline
methods at all budgets. Notably, the performance gap
between SwiftTheft and baseline attacks is most pro-
nounced when the query budget is limited. For example,
SwiftTheft achieves an agreement of 73.73%, 64.39%,
and 83.00% on CIFAR10, GTSRB, and VGG-Flower at
query budgets of 4000. In comparison ActiveThief only
achieves an agreement of 60.04% (CIFAR10), 62.36%
(GTSRB), and 80.50% (VGG-Flower), followed by Copy-
Cat CNN, which only reaches agreement of 59.40% (CI-
FAR10), 59.24% (GTSRB), and 70.50% (VGG-Flower).
Surprisingly, in such cases, Papernot et al.’s strategy on-

ly reaches an agreement of 30.30%, 47.13%, and 56.50%
on CIFAR10, GTSRB, and VGG-Flower. Compared to
CopyCat CNN and ActiveThief, the success of Swift-
Theft is due to the distribution estimation algorithm and
introduction of reference model settings. We attribute
the reason why Papernot et al.’s strategy has the worst
attack performance to the insufficient natural data sam-
ples and the marginal effect [20] of synthetic data.

Impact of the reference data In this part, we inves-
tigate the impact of reference model training data on the
performance of SwiftTheft. We choose six different data-
sets as reference data. We also use the training datasets
as the reference datasets as the theoretical upper bound.
The experimental results are shown in Table 2.

It is shown in Table 2 that when the reference data
is identical to the victim training data, the attacker can
obtain the highest agreement. Besides, we discover that
the attacker can obtain a satisfactory attack result with
a more complex dataset, such as the ImageNet64 and
CIFAR100.

90

70

50

30

10

A
g
re

em
en

t
(%

) 90

70

50

30

10

A
g
re

em
en

t
(%

)90

70

50

30

10

A
g
re

em
en

t
(%

)

4k 8k 12k 16k 20k

Budget B

4k 8k 12k 16k 20k

Budget B

4k 8k 12k 16k 20k

Budget B

(a) CIFAR10 (b) GTSRB (c) VGG-Flower

Ours Copycat CNN ActiveThief Papernot et al.’s strategy

Figure 3 Comparison with Copycat CNN [9], ActiveThief [1], and Papernot et al.’s strategy [3].

Table 2 Impact of reference data

Dataset Reference data
Budget

4k 8k 12k 16k 20k

VGG-Flower

SVHN 83.50% 87.00% 89.50% 90.00% 89.50%

VGG-Flower 85.00% 91.00% 91.00% 91.00% 91.50%

GTSRB 82.50% 86.50% 87.50% 89.00% 89.00%

CIFAR10 84.50% 88.50% 99.50% 88.50% 90.00%

CIFAR100 86.00% 89.00% 89.00% 90.50% 90.50%

ImageNet64 86.00% 86.50% 88.50% 88.50% 89.00%

CIFAR-10

SVHN 52.04% 66.56% 72.95% 74.24% 78.24%

VGG-Flower 58.35% 62.40% 76.11% 77.82% 76.06%

GTSRB 58.26% 70.09% 76.39% 78.23% 80.88%

CIFAR10 63.06% 71.07% 78.35% 80.34% 81.36%

CIFAR100 59.19% 68.82% 74.69% 78.15% 79.04%

ImageNet64 61.17% 71.45% 74.06% 77.89% 80.67%

GTSRB

SVHN 59.18% 66.12% 72.11% 77.24% 80.44%

VGG-Flower 60.16% 64.95% 71.27% 74.41% 75.28%

GTSRB 64.13% 72.30% 78.27% 82.29% 83.79%

CIFAR10 60.19% 64.64% 74.85% 76.29% 80.78%

CIFAR100 63.55% 65.26% 72.69% 77.13% 81.25%

ImageNet64 63.08% 71.92% 78.61% 81.96% 84.49%

SwiftTheft: A Time-Efficient Model Extraction Attack Framework Against Cloud-Based Deep Neural... 97

Analysis of the time cost In this part, we make a
comparison of the time cost of SwiftTheft with that of
the baseline attacks on an iteration basis. Since Copycat
CNN is a one-time process, we only compare SwiftTheft
with the other baselines. The comparison begins from the
second iteration since both SwiftTheft and baselines have
a similar bootstrap process, i.e., selecting a small num-
ber of seed samples.

Unlike ActiveThief and Papernot et al.’s strategy
that have different time consumption on different data-

sets, SwiftTheft is a model-agnostic approach. Hence,
SwiftTheft can be applied to various victim models while
performing only one data sample selection process. In
Table 3, each data point is the iteration duration under
the currently selected data pool. Compared with base-
lines, SwiftTheft can drastically reduce the time con-
sumption of each iteration. In addition, as the selected
samples increase, the time consumption of SwiftTheft
can still remain basically unchanged while ActiveThief is
increasing rapidly.

Table 3 Time (S) of selecting or synthesizing current batch of data

Selected samples
GTSRB CIFAR10 VGG-Flower

SwiftTheft
ActiveThief [1] Papernot et al.’s

strategy [3] ActiveThief [1] Papernot et al.’s
strategy [3] ActiveThief [1] Papernot et al.’s

strategy [3]

1000 12620.57 639.30 12610.75 671.31 9364.95 554.48 10.76

1500 3939.94 719.38 3759.87 603.90 3324.62 566.08 10.72

2000 1933.33 714.60 1847.64 633.37 3640.37 580.50 10.37

2500 2101.41 781.83 1947.76 634.45 1858.98 599.27 10.27

3000 2482.72 784.07 1887.68 629.94 1773.27 606.12 11.57

3500 2665.98 784.88 2194.64 701.93 2325.85 600.94 11.39

4000 3023.09 793.77 2685.04 662.39 2469.56 631.78 10.44

4500 3219.33 817.66 2990.38 720.73 2782.97 638.84 9.90

5000 3691.46 835.25 3480.07 760.72 3324.04 623.84 10.51

5500 4077.90 839.87 3733.92 777.88 3538.48 638.77 10.19

6000 4547.31 891.91 3865.91 763.12 3942.44 655.19 11.31

6500 5064.37 928.03 4391.21 822.92 4330.01 692.54 10.19

7000 5169.38 937.40 4580.82 863.89 4530.90 688.15 10.20

7500 5468.61 981.68 4966.97 866.63 4941.78 712.22 9.91

8000 6216.50 901.06 5416.10 891.06 5170.28 747.46 9.70

8500 9136.74 1024.50 5862.50 913.19 5774.74 767.98 10.30

9000 18195.98 924.67 8708.38 903.23 6097.57 788.22 10.27

9500 11265.57 882.24 4679.12 930.17 14407.71 793.95 10.09

10000 6503.59 830.64 5192.82 854.20 7342.95 824.75 10.34

Impact of the number of reference models The
main intuition of using multiple reference models is that
combining feature outputs with different models on the
same dataset can reduce the bias of the models. To

demonstrate the effectiveness of multiple reference mod-
els, we vary the reference model number and test the
agreement of the substitute model. The results are shown
in Table 4.

Table 4 Impact of the number of reference models

Dataset Model number
Budget

4k 8k 12k 16k 20k

VGG-Flower

1 84.00% 85.50% 88.00% 88.00% 88.00%

8 85.50% 86.00% 88.00% 88.50% 89.50%

16 86.00% 86.50% 88.50% 88.50% 89.00%

CIFAR-10

1 60.50% 71.05% 75.46% 78.08% 79.10%

8 61.16% 70.19% 76.12% 78.67% 79.54%

16 61.17% 71.45% 74.06% 77.89% 80.67%

GTSRB

1 60.34% 70.71% 80.02% 82.35% 84.12%

8 60.62% 70.72% 79.82% 82.87% 84.28%

16 63.08% 71.92% 78.61% 81.96% 84.49%

 98 Chinese Journal of Electronics, vol. 33, no. 1

When the query budget is under 12k, we can see
that the agreement increases as the reference model in-
creases. When the budget is above 12k, the agreement
will fluctuate slightly up and down. It is because Swift-
Theft suffers from the marginal effect when the query
budgets are too immense. In general, using multiple ref-
erence models will lead to better and more stable perfor-
mance. Under the same training condition (i.e., training
dataset, training parameters), the model with the same
structure will output similar features. However, in our
multiple reference model setting, reference models have
different architectures. And combining features from
multiple reference models provides a more stable feature
set and better extraction performance. Furthermore, it is
better to have different model architectures with multi-
ple reference models.

 V. Conclusion
This paper presents the design, implementation, and

empirical analysis of an effective model extraction at-
tack SwiftTheft. SwiftTheft uses reference models to se-
lect informant samples. Performance evaluation also re-
veals that the selecting result of SwiftTheft has a univer-
sal performance benefit across various victim models. Ex-
tensive experiments confirm that SwiftTheft is effective
and efficient and presents as an outstanding method of
model extraction attack than the current state-of-the-art
approaches.

 Acknowledgement
This work was partially supported by the National

Key R&D Program of China (Grant No. 2020AAA0107701),
the NSFC (Grant No. U20B2049 and U21B2018).

References
 S. Pal, Y. Gupta, A. Shukla, et al., “ActiveThief: Model ex-
traction using active learning and unannotated public data,”
in Proceedings of the 34th AAAI Conference on Artificial
Intelligence, New York, NY, USA, pp. 865–872, 2020.

[1]

 T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Steal-
ing functionality of black-box models,” in Proceedings of
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, Long Beach, CA, USA, pp. 4954–4963,
2019.

[2]

 N. Papernot, P. McDaniel, I. Goodfellow, et al., “Practical
black-box attacks against machine learning,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and
Communications Security, Abu Dhabi, United Arab Emi-
rates, pp. 506–519, 2017.

[3]

 Q. X. Zhang, W. C. Ma, Y. J. Wang, et al., “Backdoor At-
tacks on Image Classification Models in Deep Neural Net-
works,” Chinese Journal of Electronics, vol. 31, no. 2, pp.
199–212, 2022.

[4]

 F. Tramèr, F. Zhang, A. Juels, et al., “Stealing machine
learning models via prediction APIs,” in Proceedings of the
25th USENIX Conference on Security Symposium, Austin,
TX, USA, pp. 601–618, 2016.

[5]

 B. H. Wang and N. Z. Gong, “Stealing hyperparameters in
machine learning,” in Proceedings of 2018 IEEE Symposium
on Security and Privacy, San Francisco, CA, USA, pp.
36–52, 2018.

[6]

 V. Duddu, D. Samanta, D. V. Rao, et al., “Stealing neural
networks via timing side channels,” arXiv preprint, arXiv:
1812.11720, 2018.

[7]

 H. G. Yu, K. C. Yang, T. Zhang, et al., “CloudLeak: Large-
scale deep learning models stealing through adversarial exam-
ples,” in Proceedings of the 27th Annual Network and Dis-
tributed System Security Symposium, San Diego, CA, USA,
2020.

[8]

 J. R. Correia-Silva, R. F. Berriel, C. Badue, et al., “Copycat
CNN: Stealing knowledge by persuading confession with ran-
dom non-labeled data,” in Proceedings of 2018 International
Joint Conference on Neural Networks, Rio de Janeiro, Brazil,
pp. 1–8, 2018.

[9]

 C. Ding, Z. Lu, F. J. Xu, et al ., “Towards Transmission-
Friendly and Robust CNN Models over Cloud and Device,”
arXiv preprint, arXiv: 2207.09616, 2022.

[10]

 M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “MlaaS:
Machine learning as a service,” in Proceedings of the IEEE
14th International Conference on Machine Learning and Ap-
plications, Miami, FL, USA, pp. 896–902, 2015.

[11]

 M. Simon, E. Rodner, and J. Denzler, “ImageNet pre-trained
models with batch normalization,” arXiv preprint , arXiv:
1612.01452, 2016.

[12]

 V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, et al ., “Ex-
ploring connections between active learning and model ex-
traction,” in Proceedings of the 29th USENIX Security Sym-
posium , pp. 1309–1326, 2020.

[13]

 M. Ducoffe and F. Precioso, “Adversarial active learning for
deep networks: A margin based approach,” arXiv preprint ,
arXiv: 1802.09841, 2018.

[14]

 S. Kariyappa, A. Prakash, and M. K. Qureshi, “MAZE: Da-
ta-free model stealing attack using zeroth-order gradient esti-
mation,” in Proceedings of 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN,
USA, pp. 13814–13823, 2021.

[15]

 J. B. Truong, P. Maini, R. J. Walls, et al ., “Data-free mod-
el extraction,” in Proceedings of 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
Nashville, TN, USA, pp. 4771–4780, 2021.

[16]

 M. Juuti, S. Szyller, S. Marchal, et al ., “PRADA: Protect-
ing against DNN model stealing attacks,” in Proceedings of
2019 IEEE European Symposium on Security and Privacy,
Stockholm, Sweden, pp. 512–527, 2019.

[17]

 A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial ex-
amples in the physical world,” in Proceedings of the 5th In-
ternational Conference on Learning Representations ,
Toulon, France, 2015.

[18]

 X. L. Gong, Y. J. Chen, W. B. Yang, et al ., “InverseNet:
Augmenting model extraction attacks with training data in-
version,” in Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence , Montreal, Canada, pp.
2439–2447, 2021.

[19]

 Z. Y. Zhang, Y. Z. Chen, and D. A. Wagner, “Towards char-
acterizing model extraction queries and how to detect them,”
EECS Department, University of California, Technical Re-
port , No. UCB/EECS-2021-126, 2021.

[20]

 R. Schumann and I. Rehbein, “Active learning via member-
ship query synthesis for semi-supervised sentence classifica-
tion,” in Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning, Hong Kong, China, pp.
472–481, 2019.

[21]

 Y. F. Yan, S. J. Huang, S. Y. Chen, et al., “Active learning
with query generation for cost-effective text classification,” in
Proceedings of the 34th AAAI Conference on Artificial In-
telligence, New York, NY, USA, pp. 6583–6590, 2020.

[22]

 S. Hong and J. Chae, “Active learning with multiple kernels,”
IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 33, no. 7, pp. 2980–2994, 2022.

[23]

 C. Mayer and R. Timofte, “Adversarial sampling for active[24]

SwiftTheft: A Time-Efficient Model Extraction Attack Framework Against Cloud-Based Deep Neural... 99

learning,” in Proceedings of 2020 IEEE Winter Conference
on Applications of Computer Vision, Snowmass, CO, USA,
pp. 3071–3079, 2020.
 B. C. Zhang, L. Li, S. J. Yang, et al., “State-relabeling adver-
sarial active learning,” in Proceedings of 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, pp. 8756–8765, 2020.

[25]

 M. Jagielski, N. Carlini, D. Berthelot, et al ., “High accuracy
and high fidelity extraction of neural networks,” in Proceed-
ings of the 29th USENIX Security Symposium, Virtual event,
pp. 1345–1362, 2020.

[26]

 I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in Proceedings of the 3rd
International Conference on Learning Representations, San
Diego, CA, USA, arXiv: 1412.6572, 2015.

[27]

Wenbin YANG was born in 1997. He re-
ceived the B.S. degree from School of Cyber
Science and Engineering at Wuhan University,
in 2020. He is currently pursuing the M.S. de-
gree in School of Cyber Science and Engineer-
ing at Wuhan University, China. His research
interests include machine learning and deep
learning security.
(Email: yangwenbin@whu.edu.cn)

Xueluan GONG was born in 1996. She re-
ceived the B.S. degree in computer science
and electronic engineering from Hunan Uni-
versity in 2018. She is currently pursuing the
Ph.D. degree in the School of Computer Sci-
ence, Wuhan University, China. Her research
interests include network security and AI se-
curity. (Email: xueluangong@whu.edu.cn)

Yanjiao CHEN received the B.E. degree in
electronic engineering from Tsinghua Uni-
versity in 2010 and Ph.D. degree in computer
science and engineering from Hong Kong Uni-
versity of Science and Technology in 2015.
She is currently a Bairen Researcher in Zheji-
ang University, China. Her research interests
include computer networks, wireless system
security, and network economy. She is a Mem-

ber of the IEEE.

Qian WANG was born in 1980. He received
the Ph.D. degree from the Illinois Institute of
Technology, USA. He is a Professor at the
School of Cyber Science and Engineering,
Wuhan University, China. His research inter-
ests include AI security, data storage, search
and computation outsourcing security, etc.
　 Prof. Wang received the National Science
Fund for Excellent Young Scholars of China

in 2018. He is a recipient of the 2016 IEEE Asia-Pacific Out-
standing Young Researcher Award. He serves as Associate Ed-
itors for IEEE Transactions on Dependable and Secure Comput-
ing (TDSC) and IEEE Transactions on Information Forensics and
Security (TIFS). (Email: qianwang@whu.edu.cn)

Jianshuo DONG is currently an undergradu-
ate at the School of Cyber Science and Engin-
eering in Wuhan University, China. His re-
search interests include machine learning and
deep learning security.

 100 Chinese Journal of Electronics, vol. 33, no. 1

