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Abstract — With  the  rise  of  artificial  intelligence  and  cloud  computing,  machine-learning-as-a-service  platforms,
such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These propri-
etary models are vulnerable to model extraction attacks due to their commercial value. In this paper, we propose a
time-efficient model extraction attack framework called SwiftTheft that aims to steal the functionality of cloud-based
deep neural network models. We distinguish SwiftTheft from the existing works with a novel distribution estimation
algorithm and reference model settings, finding the most informative query samples without querying the victim mod-
el.  The selected query samples  can be applied to various cloud models  with a one-time selection.  We evaluate our
proposed method through extensive experiments on three victim models and six datasets, with up to 16 models for
each dataset. Compared to the existing attacks, SwiftTheft increases agreement (i.e., similarity) by 8% while consum-
ing 98% less selecting time.
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 I. Introduction
Deep learning has recently made a significant break-

through  in  various  applications,  including  license  plate
reading, disease diagnosing, and even sophisticated auto-
pilot. However, deep learning models require an enormous
amount  of  training  samples  and  computing  resources  to
reach high prediction performance. To alleviate the burden-
some data collection and training process, various cloud-
service providers like IBM, Amazon, Microsoft, and Google
host  sophisticated DNN models  on the cloud to provide
machine-learning-as-a-service  (MLaaS).  Ordinary  clients
utilize MLaaS for retrieving expected predictions by sub-
mitting queries through the API interface. Any technical
details  of  the  training  data,  model  architecture,  and
model  hyperparameters  are  inaccessible  to  the  users.
Therefore, such a cloud-based model is treated as a black
box for end-user applications.

However,  various  studies  have  reported  that  high-
value black-box models are vulnerable to model extraction
attacks [1],  [2]. The motivations of  model  extraction at-
tacks are mainly two-fold. On the one hand, the attacker
can obtain commercial value by reselling the cloud-based
model.  On the  other  hand,  the  substitute  model  can be
utilized as a springboard for further attacks, e.g., adver-
sarial example attacks [3], backdoor attacks [4].

To recap, Tramèr et al. [5] proposed the first model
extraction attack that is effective for various simple ma-
chine  learning  models,  e.g.,  logistics  regression,  support
vector machine (SVM), decision tree, and shallow neural
network (NN).  However,  such  a  method  is  not  applica-
ble  for  deep  neural  networks.  Wang  and  Gong  [6] pro-
posed the first hyperparameter extraction attack against
the black-box models.  Duddu et  al. [7]  proposed a side-
channel  attack  that  aims  to  steal  the  model  structure. 
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Papernot et al. [3] proposed a Jacobian-based method to
augment query samples. CloudLeaks [8] exploited adver-
sarial  examples  to  extract  decision  boundaries  with  the
help of a subset of original training data. However, both
Papernot et al.’s strategy and CloudLeaks require a sub-
set of training data to achieve respectable attack perfor-
mance, which  breaks  the  premise  of  the  black-box  set-
ting. Copycat CNN [9] uses non-problem domain natural
samples to conduct the model extraction attacks. Howev-
er, Copycat CNN will incur a high query budget since it
only randomly selects samples from the public dataset as
the query samples. More recently, Knockoff nets [2] and
ActiveThief  [1]  utilize  active  learning  and reinforcement
to select a proper subset from public datasets to reduce
the  query  budgets.  However,  both  ActiveThief  and
Knockoff nets use an iterative selection approach, which
involves burdensome model training in each iteration.

In this work, we design SwiftTheft, a model extrac-
tion  method  against  cloud-based  deep  neural  networks
(DNNs). SwiftTheft employs reference models, which are
neural  networks  that  take  in  an  image  and  output  its
corresponding representations,  to efficiently select  repre-
sentative  samples  from  a  large  dataset  in  a  single  step
without  iterative  training.  These  samples  are  used  to
query the black-box model and train the substitute mod-
el on  the  queried  results,  enabling  SwiftTheft  to  be  ap-
plied to  various  cloud  models  and  significantly  improv-
ing efficiency compared to existing methods. Specifically,
SwiftTheft trains multiple reference models on public da-
ta using non-overlapping subsets  of  the data and differ-
ent parameter initializations (referred to as reference da-
ta). These reference models are then used to estimate the
sample  distribution and select  informative  samples  from
the  public  dataset.  The  victim  black-box  model  is
queried using the selected samples, and the returned re-
sults are used to train the substitute model, which is in-
tended  to  have  the  same  functionality  as  the  black-box
model.

We evaluated the proposed method on different vic-
tim models,  and  the  results  demonstrated  that  Swift-
Theft is superior to the state-of-the-art approaches [1], [3],
[9] in terms of agreement (i.e., similarity) and time con-
sumption in each iterative process. Furthermore, we car-
ried out a quantitative analysis to explore the impact of
reference  data,  the  number  of  reference  models  on  the
performance  of  SwiftTheft.  We  also  evaluated  the  time
cost to confirm that SwiftTheft can reduce the time con-
sumption by more than 98%.

In  summary,  this  paper  elaborates  on  the  following
contribution.

• To the best of our knowledge, we are the first to
utilize reference models to model extraction attacks. Un-
like  other  methods  that  require  multiple  iterations  of
sample selection and substitute updates, SwiftTheft only
needs to select the most informative samples once, elimi-
nating the need for intermediate substitute model train-
ing. This  significantly  reduces  time  and  computing  re-

source costs.
• We  design  a  fast  distribution  estimation  algo-

rithm to identify the most informative samples from the
public  data  pool,  which  is  more  efficient  and  effective
than  the  traditional  active  learning-based  approach  and
Jacobian-based data  augmentation  methods.  Further-
more, the selected query samples are model-agnostic and
can  be  used  to  extract  functionality  from  a  variety  of
cloud models.

• Extensive experiments on a range of tasks demon-
strate  that  SwiftTheft  can  achieve  a  higher  level  of
agreement  while  reducing  the  sample  selection  time  by
an average of 98%.

 II. Preliminaries

 1. Problem formulation
Machine-Learning-as-a-Service  is  a  bundle  of  cloud

computing services that grant eligible end-users access to
proprietary  machine  learning  models  that  offer  machine
learning solutions containing model training, data trans-
formations,  and  predictive  analytics.  The  eligible  users
are charged on-demand or purchase a monthly or annual
subscription  to  access  the  models.  These  models  are
trained  on  proprietary  data,  either  collected  by  cloud
platforms  themselves  or  third-party  data  providers  who
share  profits  with  cloud platforms.  The training  process
of these  models  is  also  time-consuming  and  costs  valu-
able  computing  resources,  which  sums  up  as  expense  of
cloud  providers.  The  end-user  can  access  the  service  by
directly uploading an image to get a result  or writing a
custom  application  to  query  images  via  API.  However,
due to the black box property of API, end users cannot
access  the  specific  detail  of  the  victim  models  or  the
training information.

Nowadays, model  stealing  attacks  have  been  stud-
ied involving various aspects: parameters stealing [5], hy-
perparameters  stealing  [6],  architecture  extraction  [7],
and functionality extraction [2], [3], [8]. In this paper, our
goal  is  to  steal  the  functionality  of  the  backbox  deep
neural networks  independent  of  their  internals.  Com-
pared  to  the  MLaaS  service,  there  are  also  emerging
needs  for  cloud vendors  to  train  the  model  for  end-user
to deploy  on  the  IoT  devices.  In  this  scenario,  MonoC-
NN  [10] has  been  proposed  to  reduce  the  model  foot-
print while retaining model robustness. Model extraction
attack mainly aims at stealing model with only black-box
access, while in MonoCNN, model parameters are acces-
sible to  the  user  since  the  model  parameters  are  recon-
structed in the IoT devices.

FV : X → Y
x y

FA

FV

Functionality  extraction  attack  In  this  paper,  we
formulate  the  task  as  follows:  the  attacker  is  given  the
access to victim model , where only inputing
 and corresponding result  is available to the attacker.

An adversary aims to extract a substitute model  with
near-identical predicting performance as victim model 
(e.g.,  outputing  the  same  label  as  victim  model  within
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DT = {(x, FV (x)}
x ∼ PA(X)

the problem domain input). The adversary has the abili-
ty  to  collect  a  systhetic  training  set 
where  is  most  informative  data  in  terms  of
functionality  extraction.  To  better  illustrate  the  typical
model extraction against black-box models of MLaaS, we
depicted such a process in Figure 1.
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Figure 1  Model extraction attack against MLaaS provider.
 

 2. Threat model

M
y = [y1, y2, . . . , yM ] ∈ RM

x X

Following  the  mainstream  MLaaS  settings[11],  we
consider the adversary targets at the cloud-based neural
network  model,  which  is  encapsulated  and protected  by
cloud  API,  thus  formulating  the  black-box  scenario.  In
the black-box scenario, A -dimensional confidence vec-
tor  can be acquired with arbi-
trary  input  within  the  victim  input  space .  In  the
toughest  situation,  the  API  only  return  the  top-1  class
label,  which  is  the  attacker’s  assumption  in  this  paper.
Moreover,  we  consider  the  most  realistic  scenario  where
adversary  cannot  learn  any  internal  model  information,
including model  parameters,  model  architecture,  train-
ing information, or training dataset. While most informa-
tion  unknown,  the  adversary  can  obtain  all  the  output
class  names  within  the  service  domain  by  enquiring  the
API. In terms of data availability, the adversary only has
publicly  available  data  and  the  ImageNet  pre-trained
models  [12],  which  are  involved  as  an  inherent  part  of
the  major  machine  learning  libraries,  such  as  PyTorch
and Tensorflow.

With the limited query budget and time, the adver-
sary aims to functionally steal the victim model from the
cloud provider and construct a similar performant substi-
tute model as victim model. Without accessing the train-
ing dataset,  SwiftTheft  solely  relies  on  non-problem do-
main natural  data,  e.g.,  the  ImageNet64  dataset.  Swift-
Theft  focus  on  budget-limited  scenarios,  and  the  query
upper bound is the case when the attacker uses the total
ImageNet64 dataset. Specifically, for CIFAR-10 and GT-
SRB models, the upper bound agreements of the substi-
tute models are 84.99% and 93.68%, respectively.
 3. Related works

 1) Model extraction attack
In  model  extraction  attacks,  the  adversary  aims  to

train  a  substitute  model  with  the  same  functionality  as
the  victim model.  According  to  the  source  of  the  query
sample, the existing model extraction attacks can be cat-
egorized  into  three  categories:  Natural  sample-based

model extraction attacks, Synthesized sample-based mod-
el extraction attacks, and hybrid sample-based model ex-
traction attacks.

i) Natural sample-based model extraction attacks
Natural  samples  are  the  samples  downloaded  from

the  public  dataset,  such  as  ImageNet  and  CIFAR-100.
The  public  dataset  can  either  be  the  problem  domain
(PD) or  non-problem  domain  (NPD).  The  problem  do-
main means that the samples belong to the distribution
of the victim model training dataset. However, PD data
is  hard  to  acquire,  especially  the  privacy-related  fields,
such  as  medical  data.  To  recap,  Correia-Silva et  al. [9]
proposed  Copycat  CNN  that  randomly  selects  query
samples from the natural sample pool to train the substi-
tute  model.  Orekondy et  al. [2]  proposed  Knockoff  nets
that used an adaptive strategy to select the samples from
the natural sample pool.  The adaptive strategy is based
on the  feedback  reward  regarding  sample  efficiency,  di-
versity,  and training information. Chandrasekaran et al.
[13] adopted extended adaptive training (EAT) to select
samples  with  the  least  confidence  scores.  Pal et  al. [1]
proposed ActiveThief that combines DeepFool-based Ac-
tive Learning (DFAL) strategy [14] to pick up the sam-
ples. Such samples are deemed to be easily perturbed and
less redundant.

However, the above methods always have a trade-off
between time cost and model performance.

ii) Synthesized  sample-based  model  extraction  at-
tacks

Researchers also found that synthesized samples can
also conduct model extraction attacks and explore input
space  unknown  to  natural  samples.  Up  to  now,  several
methods  have  been  proposed  to  produce  synthesized
query  samples.  Tramèr et  al. [5]  first  synthesized  some
random samples  and  then  found  the  middle  points  be-
tween arbitrary  two synthetic  samples  by  binary  search
to synthesize the new samples. Maze [15] utilized a gen-
erator to  generate  samples  that  maximize  the  disagree-
ment  between  the  temporary  substitute  model  and  the
victim model  to  improve  the  efficiency of  model  extrac-
tion.  Data-Free  Model  Extraction  (DFME)  [16] maxi-
mizes  the  difference  between  the  victim  model  and  the
substitute  model  by  using  surrogate  data  generated
through  a  synthetic  method.  By  finding  the  difference
between the victim and substitute models and using this
information to train the substitute model, DFME aims to
minimize this  difference  and  improve  the  attack  perfor-
mance.  However,  synthesized-based  approaches  suffer
from an enormous query budget. For example, DFME [16]
expends 20 million adversarial queries on the CIFAR-10
dataset when performing model extraction. In real-world
scenarios, the high cost is a detriment to the commercial
value and viability of such attacks.

iii) Hybrid sample-based model extraction attacks
Based  on  the  benefit  of  both  natural  and  synthetic

samples,  researchers  have proposed hybrid sample-based
model  extraction  attacks  in  recent  years.  Jacobin-based
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augmentation attacks (JBA) [3] are typical model extrac-
tion attacks using hybrid samples. In JBA, it is assumed
that  the  adversary  can  access  a  subset  of  the  victim’s
training data and use them to generate adversarial exam-
ples to train the substitute model. Juuti et al. [17] adopt-
ed the iterative fast gradient sign method (I-FGSM) [18]
with  a  targeted  randomly  chosen  direction  (T-RND)  in
every step to reduce synthetic overlap. Yu et al. [8] pro-
posed CloudLeak that used margin-based adversarial ac-
tive  learning  [8]  to  generate  synthesized  datasets.  Gong
et  al. [19]  provided  InverseNet,  which  makes  use  of  a
temporary  substitute  model  to  select  samples  of  high
confidence  scores  for  producing  high-quality  inversed
datasets.

However,  hybrid-based  methods  have  different
caveats  as  well.  JBA-based  methods  not  only  suffer
marginal effects [20], but also require a subset of the vic-
tim dataset to bootstrap the attack process. Cloudleak [8]
requires guide  images,  which  violates  the  black-box  set-
ting of the model extraction attack. While effective, IN-
VERSENET  [19]  requires  burdensome  inverse  model
training,  which  consumes  a  large  number  of  computing
resources and time.
 2) Active learning

An  accurate  model  needs  to  be  trained  on  a  large
data  pool  in  the  deep  learning  scenario,  thus  requiring
considerable efforts to label the data. Active learning em-
ploys  an  oracle  to  label  samples,  producing  the  desired
output,  which  is  similar  to  model  extraction.  However,
active  learning  usually  focuses  on  white-box  scenarios,
where  the  source  knowledge data (victim data in  model
extraction scenario) is exposed to the model trainer. De-
pending  on  sampling  strategies,  active  learning  can  be
classified into membership query synthesis, stream-based
selective sampling, and pool-based sampling.

i) Membership query synthesis
This method aims to build efficient training sets by

synthesizing the most informative samples. Schumann et
al. [21] approximated the decision boundary by the bina-
ry search and then picked up a random vector orthogo-
nal  to  the  mid-perpendicular  vector  of  the  decision
boundary to  help  generate  new samples.  Yan et  al. [22]
provided a method iteratively producing a certain num-
ber  of  synthesized  samples,  from  which  samples  will  be
selected for query in consideration of uncertainty, diver-
sity, and representativeness for real data.

ii) Stream-based selective sampling
It’s  convenient  to  synthesize  the  most  informative

samples, but the synthesized data is sometimes meaning-
less and hard to label. Considering this fact, selecting the
unlabeled natural  data  by  stream-based  selective  sam-
pling methods  may  be  suitable.  In  these  methods,  sam-
ples are observed in real-time, and the adversaries deter-
mine whether to query the samples.  Hong et al. [23] in-
troduced  a  selection  criterion  that  avoids  unnecessary
queries employing the preliminary substitute model.

iii) Pool-based sampling
The  stream-based  selective  sampling  methods  are

based  on  the  assumption  that  adversaries  can  observe
samples in  real-time.  However,  in  the  case  that  adver-
saries can get access to a pool of unlabeled samples, pool-
based sampling methods will be more advisable, in which
adversaries  use  sampling  strategies  to  sample  from  the
pool.  Mayer et  al. [24]  utilized  GAN to  synthesize  high
entropy  samples  and  a  discriminator  to  make  sure  the
synthesized  samples  are  indistinguishable  from  natural
data  so  that  adversaries  can  use  a  feature  extractor  to
seek  the  most  similar  natural  samples  from  the  pool.
Zhang et al. [25]  made use of  the unified representation
generator  to  learn  the  representation  of  image  samples
and embed annotations into the representation, employ-
ing the most informative unlabeled samples.

 III. Methodology of SwiftTheft

 1. Overview
In  this  paper,  we  proposed  a  time-efficient  active-

based  model  extraction  framework  SwiftTheft,  depicted
in Figure  2. The process  mainly consists  of  three  differ-
ent stages:

• Attack  initialization.  The  attacker  first  selects
and initializes a set of reference models as feature space
mapping oracles. These models are then used to map the
public data pool to a feature space. The attacker also se-
lects seed samples as the initial selected set.

• Samples selection. The attacker then uses the dis-
tribution calculation  algorithm to  estimate  the  distribu-
tion of the selected sample pool and selects the most in-
formative samples for model training.

• Substitute model training. The attacker then uti-
lizes the selected samples to query the victim model. The
substitute model is trained based on the query results to
achieve high similarity with the victim model.

We  detail  the  attack  process  of  SwiftTheft  in  the
Algorithm 1. Our experiments show that SwiftTheft can
significantly  reduce  the  sample  selection  time  while
achieving a better performance than ActiveThief [1] and
Papernot et al.’s strategy [3].
 2. Attack initialization

We preprocess  the  dataset  pool  in  two steps  in  the
attack initialization process. Firstly, the dataset pool will
be mapped to the feature  space.  Next,  we randomly se-
lect some seed samples from the dataset pool to prepare
for subsequent sample selection.

FP : X → Z
X ∈ X Z ∈ Rf X

f

For the sample mapping process, unlike the existing
works  [1],  [5],  [17],  [19]  that  use  an  initial  substitute
model to map the public data pool to feature space, we
initialize  the  reference  model  on  the  public
dataset, where , and .  is the input space
of the reference model, and  is the feature dimension of
the  reference  model.  Note  that  the  feature  dimension of
the reference model is identical to the feature dimension
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of the number of the reference dataset categories.

D̃

Given the reference model,  we map each data sam-
ple to feature space to form a feature pool , which can
be formulated as follows:
 

D̃ = {xn, FP (xn)} (1)

A single reference model can provide distribution in-
formation of  a  data  sample.  However,  due  to  the  train-
ing  settings  of  the  reference  model  and  the  underlying
model  architecture,  the  distribution  output  of  a  single
reference model will be biased. So, we use multiple refer-
ence models to alleviate distribution bias.

Algorithm 1  SwiftTheft
D,DR D̂Data: Public data pool ; Aggregated features .

D̂j j 1 : m　Initial features  for  in .
// Attack Initialization

j 1 : m 1: for  in  do

Dj
R = (DR, j) 2:　  Subset ;

F j
R Θj 3:　Initialize model  with random parameter ;

(F j
R, D

j
R) 4:　Train model ;

n S 5: for  in  do
j 1 : m 6:　for  in  do

yj
n = F j

R(xn) 7:　　 ;

D̂j = D̂j ∪ {yj
n} 8:　　 );

S0 = S, s0 9:  Random( );
// Sample Selection

n S10: for  in  do

zn =
∑m

j=0 y
j
n11:　　 ;

D̂ = D̂ ∪ {xn, zn}12:　　 ;
i 0 : I13: for  in  do

µi =
1

|Si|
∑

n∈Si
zn14:　　 ;

σ2
i = 1

|Si|
∑

n∈Si
(zn − µi)

215:　　 ;

S̃1,i = S/Si S̃1,i16:　　 ; //  refers to unselected samples
Si+1 = Si17:　　 ;

k 1 : K18:　　for  in  do

nk,i = argn minn∈S̃k,i
log pi(zn)19:　　　 ;

S̃k,i = S̃k−1,i/{nk,i}20:　　　 ;
Si+1 = Si+1 ∪ {nk,i}21:　　　 ;

DI = xn, n ∈ SI22: ; // Model training
DT = FV , DI23:  query( );

FA, DT24: Train substitute model( ).

m

F j
R : X → Z

DR

Dj
R

F j
R

Dj
R ∩DV = ∅ ∀j DV

Reference model training  The attacker initializes 
reference  models .  Each  reference  model  is
trained on the subset of reference data . Reference da-
ta helps  the  reference  models  learn  about  the  distribu-
tion information of the public dataset. The reference da-
ta is an arbitrary public dataset with no overlap with the
victim  training  data  set.  Therefore,  the  reference  model
can be obtained by retraining an off-the-shelf pre-trained
model.  We  split  the  reference  data  into  multiple  non-
overlapping data subsets ,  and each of  the subsets  is
used to train a reference model . Note that the refer-
ence dataset has no overlap with the training dataset of
the victim model, i.e., , where  is the
training dataset of the victim model. We initialize differ-
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Figure 2  Overview of SwiftTheft.
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ent reference models by varying the parameter initializa-
tion  settings.  It  is  time-consuming  to  train  a  large
amount  of  reference  models,  however,  reference  models
are  model-agnostic,  which  means  reference  models  can
transfer to multiple attack processes with one time train-
ing.

F j
R(x)

F j
R D̂j

Feature mapping process  We aim to map each da-
ta  sample  within  the  public  data  pool  to  the  feature
space in the feature mapping process. The number of the
obtained feature  is  related  to  the  number  of  the  refer-
ence  model.  Given  a  data  sample,  one  reference  model
will  output  a  unique  feature .  We  denote  all  the
features generated by reference models  as .
 

D̂j = {F j
R(xn): ∀xn ∈ D} for j = 1, 2, . . . ,m (2)

D

D S

S0

Seed  sample  selection  We randomly  select  a  small
number  of  seed  samples  from the  public  dataset  and
preserve  them  as  the  selected  sample  pool  to  bootstrap
the  distribution  estimation,  which  will  be  elaborated  in
Section.  We  denote  the  index  set  of  the  whole  public
dataset  as . And  the  index  set  of  the  randomly  se-
lected seed samples is denoted as .
 3. Sample selection

xn m
F i
R(xn)

Feature  aggregating  The  first  step  in  the  sample
selection process  is  feature  aggregating,  which  aggre-
gates all mapped features into a single feature vector for
the  given  sample.  It  is  based  on  an  intuition  that  each
feature vector generated by the reference model  may be
biased due to the training process and the reference data
distribution. By feature aggregating, the bias in each fea-
ture can  be  reduced,  thus  making  the  distribution  esti-
mation of the selected sample pool more accurate. In fea-
ture  aggregating,  each  reference  model  is  considered  to
have  equal  weight  in  the  aggregated  feature.  Consider
that each data sample  has  feature vectors,  the fi-
nal  vector  is  the  sum of  each  feature .  Thus  the
aggregated feature pool is calculated as
 

D̂ =

xn,

m∑
j=0

F j
R(xn)

 (3)

zn n
To simplify the notation, the aggregated feature for

each  sample  is  denoted  as ,  where  is  the  index  of
each sample.

S0

i

Si

S0

Distribution  estimation  Given the  aggregated  fea-
ture,  SwiftTheft  iteratively  selects  the  most  informant
samples. The sample selection iteration starts with distri-
bution  estimation  for  the  selected  samples.  The  seed
samples are chosen as selected samples,  whose index set
is denoted as , to bootstrap the iterative selecting pro-
cess.  For  iteration , the  distribution  estimation  is  con-
ducted on the selected sample pool of the previous itera-
tion,  which denotes .  Note that for  the first  iteration,
the selected samples are the seed samples , and the it-
eration number  starts  from  0.  The  selected  sample  fea-

zn
N (µ,Σ)
tures  are  assumed  to  follow  normal  distribution

. To estimate of the feature distribution, we com-
ply  with  the  common  settings,  which  calculates  mean
and variance as
 

µi =
1

|Si|
∑
n∈Si

zn, σ2
i =

1

|Si|
∑
n∈Si

(zn − µi)
2 (4)

Si

i |Si|
Si σi

µi

In formula (4),  is the index of  the selected sam-
ple pool in the -th iteration, and  refers to the quanti-
ty of the . The calculation of the variance  depends
on the result of .

Likelihood calculation  Based on the distribution of
the selected samples, the attacker can calculate the likeli-
hood of the remaining samples belonging to the distribu-
tion, which can be formulated as
 

p(z) =
1√

2πk|Σ|
exp

{
−1

2
(z − µ)⊤Σ−1(z − µ)

}
(5)

Σ

The goal  of  sample  selection  is  to  obtain  more  di-
verse query samples. In general, if a sample has been se-
lected before,  the  probability  of  belonging to  the  select-
ed sample distribution will  be higher.  Thus, we will  not
choose  the  samples  with  a  significant  likelihood  in  the
current iteration. Given the mean and variance of the se-
lected samples,  we  can  theoretically  calculate  the  likeli-
hood of each sample belonging to the selected sample dis-
tribution by applying equation (5). However, the proba-
bility density function of the multivariate normal distri-
bution is  hard to  tackle.  In  this  paper,  we assume each
feature  is  independent  of  the  other  so  that  the  co-vari-
ance of  equals 0. We further use the log-likelihood to
replace  the  burdensome  exponential  calculation.  Thus,
the  negative  log-likelihood  of  the  sample  belonging  to
distribution can be simplified as
 

log pi(z) = −
f∑

n=1

∥zn − µi∥
σi

+ const (6)

const
i µi σi

The constant in the log probability equation will not
affect  the  comparison  procedure,  so  the  constant  term

 is  omitted  in  the  log  probability  calculation.  For
each iteration , with the  and , each sample can be
assigned with a log probability.

KQuery  sample  selection  The  samples  that  are
least  likely  to  follow  the  selected  pool  distribution  are
added to  the  chosen  sample  pool  for  the  next  distribu-
tion estimation to increase the sample diversity. Formal-
ly,
 

nk,i = argn min
n∈S̃k,i

log pi(zn), k ∈ [1,K] (7)

S̃1,i = S/Si S̃k,i = S̃k−1,i/{nk,i}, k ∈ [2,K]

Si+1 = Si∪ {nk,i}Kk=1

where  and ,
the selected pool is then updated as  .

I SI

B

After  iterations, when the selected sample pool 
satisfies the target query budget , we obtain the query
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DI = {xn}, n ∈ SIset .
 4. Substitute model training

ΘFA

DI

We initialize the substitute model with random pa-
rameters ,  and  it  has  the  same  number  of  labels  as
the  victim  model.  The  attacker  queries  the  black-box
model with the selected samples  and obtain their la-
bels.  Then  the  attacker  can  construct  the  substitute
model training  dataset,  which  consists  of  selected  sam-

DT ={xn, FV (xn)},
xn∈DI

DT

ples and corresponding labels, which is 
.  After retraining the initialized substitute model

on , the attacker can get the final substitute model.

 IV. Evaluation

 1. Experiment Setup
We  evaluate  SwiftTheft  on  six  different  datasets,

and the details of the datasets are shown in the Table 1.
 
 

Table 1  Summary of the related datasets

Dataset VGG-Flower CIFAR10 GTSRB CIFAR100 SHVN ImageNet64

Classes 10 10 43 100 10 1,000

Total samples 1,873 60,000 61,839 60,000 60,000 178,116

Training samples 1,673 50,000 39,209 50,000 50,000 128,116

Testing samples 200 10,000 12,630 10,000 10,000 50,000

Image size Arbitrary 32 × 32 Arbitrary 32 × 32 32 × 32 64 × 64

Complexity Moderate Moderate Moderate Complex Simple Complex

Victim model √ √ √ – – –

Reference model √ √ √ √ √ √

Substitute model – – – – – √
 
 

• Victim  model  training.  We  train  three  victim
models  on  GTSRB,  CIFAR-10,  and  VGG-Flower
dataset,  respectively.  Following  ActiveThief  [1] and  In-
verseNet  [19],  we  use  CNN32 for  the  victim models.  As
for training hyper-parameter, we use SGD with momen-
tum as the optimizer, with a learning rate of 0.01 and a
momentum  of  0.5.  We  train  each  victim  model  for  300
epochs.

• Black-box  querying.  We  use  ImageNet64  [12]  as
the natural data pool to query the black box and get the
corresponding result.  The query data,  together  with the
query result, are then utilized for training the substitute
model, which is functionally similar to the black box. To
attest the efficiency of SwiftTheft, only the selected sam-
ples are queried.

• Reference model training. We train the reference
model  on  ImageNet64  with  ResNet-34  architecture  for
comparison with other SOTA methods. For the ablation
study on the reference model, we selected three datasets
with  varying  complexity,  including  SVHN,  CIFAR-100,
and  ImageNet64.  We  also  include  three  victim  datasets
in the ablation study, which are the upper bound of ref-
erence model settings. For training hyper-parameters, the
optimizer  is  set  to  ADAM with  a  learning  rate  of  0.01,
and each reference model is trained for 100 epochs.

• Substitute model training. As for the final train-
ing process detailed in Section III.4, we trained the mod-
el using CNN32 and the same training hyper-parameters
as the  victim  models.  The  training  data  of  the  substi-
tute model is the query result of the victim model along-
side selected query data.

Following evaluation method in various other works
[1],  [5],  [17],  [26],  we adopt agreement as the evaluation

metric. Formally,
 

agreement(FA, FV ) =
1

|DT |
∑

x∈DT

1(FA(x), FV (x)) (8)

DT 1where  is  the  query  dataset,  refers to  the  compar-
ing function that outputs 1 when the labels are the same
and 0 otherwise. Agreement is used to measure the simi-
larity degree between the black-box model  and the sub-
stitute model.

All the experiments are conducted on an Intel Xeon
CPU,  64GB  of  RAM  server  with  NVIDIA  GTX 2080
GPU, which runs Ubuntu 18.04 and PyTorch 1.8.
 2. State-of-the-art model extraction baselines

We  compare  SwiftTheft  with  three  state-of-the-art
model  extraction  attacks,  i.e.,  Copycat  CNN  [9], Ac-
tiveThief  [1],  and Papernot et al.’s  strategy [3].  We run
these attacks based on their open-source codes.

• Copycat  CNN.  Copycat  CNN  [9]  uses  natural
samples (publicly available data) to conduct the attacks.
In each iteration, Copycat CNN randomly selects a set of
samples from the data pool to query the victim model.

• ActiveThief. Unlike Copycat CNN, ActiveThief [1]
utilizes active  learning  (e.g.,  K-Center)  algorithm to  se-
lect  query  samples  from  the  natural  sample  pool.  We
randomly select 500 samples as the initial seed data and
select 500 samples in each iteration.

• Papernot et al.’s strategy. Unlike the above meth-
ods  that  use  natural  samples,  Papernot et  al.’s  strategy
[3]  uses  the  Jabocabian-based  method  [3]  to  generate
query samples based on a small number of seed samples.
In  this  paper,  we  use  a  subset  of  ImageNet64  as  seed
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samples.  Following  Papernot et  al.’s  strategy  [3],  the
augmentation algorithm is the fast gradient sign method
(FGSM) [27].
 3. Quantitative analysis

Comparison with state-of-the-art attacks  The com-
parison  results  are  shown  in Figure  3.  To  make  a  fair
comparison, we  use  the  same  query  budget  and  experi-
mental  settings  for  both  baselines  and  SwiftTheft.  We
can  see  that  SwiftTheft  outperforms  all  the  baseline
methods  at  all  budgets.  Notably,  the  performance  gap
between SwiftTheft  and  baseline  attacks  is  most  pro-
nounced when the query budget is limited. For example,
SwiftTheft  achieves  an  agreement  of  73.73%,  64.39%,
and 83.00% on CIFAR10, GTSRB, and VGG-Flower at
query  budgets  of  4000.  In  comparison  ActiveThief  only
achieves  an  agreement  of  60.04%  (CIFAR10),  62.36%
(GTSRB), and 80.50% (VGG-Flower), followed by Copy-
Cat CNN, which only reaches agreement of 59.40% (CI-
FAR10),  59.24% (GTSRB),  and  70.50% (VGG-Flower).
Surprisingly, in such cases, Papernot et al.’s strategy on-

ly reaches an agreement of 30.30%, 47.13%, and 56.50%
on  CIFAR10,  GTSRB,  and  VGG-Flower.  Compared  to
CopyCat CNN  and  ActiveThief,  the  success  of  Swift-
Theft is due to the distribution estimation algorithm and
introduction  of  reference  model  settings.  We  attribute
the reason why Papernot et al.’s  strategy has the worst
attack performance to the insufficient natural data sam-
ples and the marginal effect [20] of synthetic data.

Impact of the reference data  In this part, we inves-
tigate the impact of reference model training data on the
performance of SwiftTheft. We choose six different data-
sets as reference data. We also use the training datasets
as the reference datasets as the theoretical upper bound.
The experimental results are shown in Table 2.

It is shown in Table 2 that when the reference data
is identical to the victim training data, the attacker can
obtain  the  highest  agreement.  Besides,  we  discover  that
the attacker can obtain a satisfactory attack result with
a  more  complex  dataset,  such  as  the  ImageNet64  and
CIFAR100.
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Figure 3  Comparison with Copycat CNN [9], ActiveThief [1], and Papernot et al.’s strategy [3].
   

Table 2  Impact of reference data

Dataset Reference data
Budget

4k 8k 12k 16k 20k

VGG-Flower

SVHN 83.50% 87.00% 89.50% 90.00% 89.50%

VGG-Flower 85.00% 91.00% 91.00% 91.00% 91.50%

GTSRB 82.50% 86.50% 87.50% 89.00% 89.00%

CIFAR10 84.50% 88.50% 99.50% 88.50% 90.00%

CIFAR100 86.00% 89.00% 89.00% 90.50% 90.50%

ImageNet64 86.00% 86.50% 88.50% 88.50% 89.00%

CIFAR-10

SVHN 52.04% 66.56% 72.95% 74.24% 78.24%

VGG-Flower 58.35% 62.40% 76.11% 77.82% 76.06%

GTSRB 58.26% 70.09% 76.39% 78.23% 80.88%

CIFAR10 63.06% 71.07% 78.35% 80.34% 81.36%

CIFAR100 59.19% 68.82% 74.69% 78.15% 79.04%

ImageNet64 61.17% 71.45% 74.06% 77.89% 80.67%

GTSRB

SVHN 59.18% 66.12% 72.11% 77.24% 80.44%

VGG-Flower 60.16% 64.95% 71.27% 74.41% 75.28%

GTSRB 64.13% 72.30% 78.27% 82.29% 83.79%

CIFAR10 60.19% 64.64% 74.85% 76.29% 80.78%

CIFAR100 63.55% 65.26% 72.69% 77.13% 81.25%

ImageNet64 63.08% 71.92% 78.61% 81.96% 84.49%
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Analysis  of  the  time cost  In  this  part,  we  make  a
comparison  of  the  time  cost  of  SwiftTheft  with  that  of
the baseline attacks on an iteration basis. Since Copycat
CNN is a one-time process, we only compare SwiftTheft
with the other baselines. The comparison begins from the
second iteration since both SwiftTheft and baselines have
a similar  bootstrap  process,  i.e.,  selecting  a  small  num-
ber of seed samples.

Unlike  ActiveThief  and  Papernot et  al.’s  strategy
that  have  different  time  consumption  on  different  data-

sets,  SwiftTheft  is  a  model-agnostic  approach.  Hence,
SwiftTheft can be applied to various victim models while
performing  only  one  data  sample  selection  process.  In
Table 3, each data point is the iteration duration under
the currently  selected  data  pool.  Compared  with  base-
lines, SwiftTheft  can  drastically  reduce  the  time  con-
sumption  of  each  iteration.  In  addition,  as  the  selected
samples  increase,  the  time  consumption  of  SwiftTheft
can still remain basically unchanged while ActiveThief is
increasing rapidly.

 
 

Table 3  Time (S) of selecting or synthesizing current batch of data

Selected samples
GTSRB CIFAR10 VGG-Flower

SwiftTheft
ActiveThief [1] Papernot et al.’s

strategy [3] ActiveThief [1] Papernot et al.’s
strategy [3] ActiveThief [1] Papernot et al.’s

strategy [3]

1000 12620.57 639.30 12610.75 671.31 9364.95 554.48 10.76

1500 3939.94 719.38 3759.87 603.90 3324.62 566.08 10.72

2000 1933.33 714.60 1847.64 633.37 3640.37 580.50 10.37

2500 2101.41 781.83 1947.76 634.45 1858.98 599.27 10.27

3000 2482.72 784.07 1887.68 629.94 1773.27 606.12 11.57

3500 2665.98 784.88 2194.64 701.93 2325.85 600.94 11.39

4000 3023.09 793.77 2685.04 662.39 2469.56 631.78 10.44

4500 3219.33 817.66 2990.38 720.73 2782.97 638.84 9.90

5000 3691.46 835.25 3480.07 760.72 3324.04 623.84 10.51

5500 4077.90 839.87 3733.92 777.88 3538.48 638.77 10.19

6000 4547.31 891.91 3865.91 763.12 3942.44 655.19 11.31

6500 5064.37 928.03 4391.21 822.92 4330.01 692.54 10.19

7000 5169.38 937.40 4580.82 863.89 4530.90 688.15 10.20

7500 5468.61 981.68 4966.97 866.63 4941.78 712.22 9.91

8000 6216.50 901.06 5416.10 891.06 5170.28 747.46 9.70

8500 9136.74 1024.50 5862.50 913.19 5774.74 767.98 10.30

9000 18195.98 924.67 8708.38 903.23 6097.57 788.22 10.27

9500 11265.57 882.24 4679.12 930.17 14407.71 793.95 10.09

10000 6503.59 830.64 5192.82 854.20 7342.95 824.75 10.34
 
 

Impact  of  the  number  of  reference  models  The
main intuition of using multiple reference models is that
combining  feature  outputs  with  different  models  on  the
same  dataset  can  reduce  the  bias  of  the  models.  To

demonstrate the effectiveness of  multiple reference mod-
els,  we  vary  the  reference  model  number  and  test  the
agreement of the substitute model. The results are shown
in Table 4.

 
 

Table 4  Impact of the number of reference models

Dataset Model number
Budget

4k 8k 12k 16k 20k

VGG-Flower

1 84.00% 85.50% 88.00% 88.00% 88.00%

8 85.50% 86.00% 88.00% 88.50% 89.50%

16 86.00% 86.50% 88.50% 88.50% 89.00%

CIFAR-10

1 60.50% 71.05% 75.46% 78.08% 79.10%

8 61.16% 70.19% 76.12% 78.67% 79.54%

16 61.17% 71.45% 74.06% 77.89% 80.67%

GTSRB

1 60.34% 70.71% 80.02% 82.35% 84.12%

8 60.62% 70.72% 79.82% 82.87% 84.28%

16 63.08% 71.92% 78.61% 81.96% 84.49%
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When  the  query  budget  is  under  12k,  we  can  see
that the  agreement  increases  as  the  reference  model  in-
creases.  When  the  budget  is  above  12k,  the  agreement
will fluctuate slightly up and down. It  is  because Swift-
Theft  suffers  from  the  marginal  effect  when  the  query
budgets are too immense. In general, using multiple ref-
erence models will lead to better and more stable perfor-
mance.  Under the same training condition (i.e.,  training
dataset,  training  parameters),  the  model  with  the  same
structure  will  output  similar  features.  However,  in  our
multiple  reference  model  setting,  reference  models  have
different  architectures.  And  combining  features  from
multiple reference models provides a more stable feature
set and better extraction performance. Furthermore, it is
better to  have  different  model  architectures  with  multi-
ple reference models.

 V. Conclusion
This paper presents the design, implementation, and

empirical analysis  of  an  effective  model  extraction  at-
tack SwiftTheft.  SwiftTheft  uses reference models  to se-
lect informant  samples.  Performance  evaluation  also  re-
veals that the selecting result of SwiftTheft has a univer-
sal performance benefit across various victim models. Ex-
tensive  experiments  confirm  that  SwiftTheft  is  effective
and  efficient  and  presents  as  an  outstanding  method  of
model extraction attack than the current state-of-the-art
approaches.
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